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ABSTRACT
The distribution of data within or between organizations is
crucial for many applications. Such a distribution may be
transparent, as it is embodied in distributed database systems
to increase their performance, reliability and availability. Other
systems either do not require transparent data distribution or
even explicitly need their own copies of the data. Examples are
data warehouses which collect base data from different transac-
tion processing systems, or financial data distribution systems
in banking where data are bought from external providers and
distributed to different working groups. Such systems need
non-transparent, partial and selective replication of databases.
If object databases are used, appropriate replication systems
have to cope with the additional complexity of object models.
TodayÕs replication systems do not meet these requirements.
Consequently, we introduce a meta model that specifies the ab-
stract functionality which is needed for the non-transparent,
partial and selective replication of object databases. This meta
model allows incorporation of its replication concepts in a va-
riety of object models. In addition, we present the design of a
replication infrastructure, based on the meta model, which
serves as the foundation for concrete realizations of object
replication systems. The development of a replication system
for a time series database management system proved the viabil-
ity of the proposed solution.
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1. INTRODUCTION
Numerous distributed systems rely on data replication. De-
pending on their application domains, the properties of the
replication systems vary heavily. For example, data are usually
physically distributed and replicated but conceptually central-
ized in transaction-processing applications. In contrast to
these, typical decision-support applications, e.g., financial
time series management [5], explicitly distinguish between
different copies of data. These copies do not have to be perma-
nently synchronized. Company-wide access to such data is of-
ten crucial. Data are obtained from many providers. Financial
institutions often store millions of time series. Most of these
data are meant to be utilized by a variety of users, who have the

following main requirements regarding data access:1

Autonomy, local control over data. Most empirical inves-
tigations are based on raw data, that is, researchers do not want
data that, for example, already underwent seasonal adjustments.

Data management by experts. When a company collects
data from a variety of sources, one cannot expect a centralized
department to be familiar with all these sources. Therefore, an
architecture that allows the experts to manage their own data is
preferable.

Access to the whole universe of externally bought finan-
cial data. It is more cost-effective for a company to have a
global contract with a data provider and to subsequently dis-
tribute the data within the company.

Public access to project-generated data. Some of the pro-
ject-generated data are also of interest to other users, that is,
they must be accessible to those too.

Current systems in this and in similar application domains
store their data in files only, or in both files and centralized
databases, as shown in figure 1. Both approaches do not meet
our requirements.
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Figure 1: Two current system architectures.

The structure of this paper is as follows: An architecture based
on partially replicated databases that meets the requirements
regarding company-wide data access is presented in section 2.
An object and type replication meta model that is the ground-

1 During the time of writing, the author was working for UBS AG,
Switzerland (http://www.ubs.com).
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work for the non-transparent, partial and selective replication
of object databases is developed in section 3. Section 4 pre-
sents a replication infrastructure which allows incorporation
of the main properties of the replication meta model into a con-
crete DBMS. Based on this infrastructure, the implementation
of a replication system for a time series management system is
illustrated in section 5. Section 6 presents related work. Sec-
tion 7 contains the conclusions and an outlook.

2. A DATA MANAGEMENT ARCHITEC-
TURE WITH PARTIALLY REPLICATED
DATABASES

To meet our requirements, we propose an architecture based on
partially replicated databases [10]. Figure 2 presents an
overview of this architecture. Black squares represent objects
which are stored in a database, dashed lines denote object
replication.

The involved databases are autonomous, but all use the
same object DBMS. Permitting heterogeneous DBMS would
introduce additional requirements like data model transforma-
tions, but the basics of the replication functionality which are
the core of this paper would remain the same.

Some of the databases are provider-specific, others are pro-
ject-specific. Provider-specific databases are used to store
provider-delivered data. They are administered by specialists
with detailed knowledge about the respective data. These ex-
perts leverage the semantics of the data. For example, they
structure objects in collections, and they add descriptive at-
tributes. Structuring and descriptions are very important, as
many providers offer very limited or no search facilities at all,
and there are hardly any on-line descriptions of the available
objects. Project-specific databases get some objects by repli-
cating them from other databases, or directly from project-spe-
cific sources if these objects are not of interest to a wide range
of users.
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Figure 2: A data management architecture with integrated
replication services.

Replication is realized by a publish-and-subscribe mechanism,
so publishers do not need to know who will replicate them
later on. If a user subscribes to an object, all directly or indi-
rectly referenced objects are replicated too. For example, sub-
scribing to a collection object leads to the replication of its
members.

As it is not necessarily known at setup time of a project-
specific database which objects will be replicated from other
databases, the replication system must also be able to replicate
the schema prior to object replication. In addition, subsequent
schema changes have to be replicated, too.

The architecture presented in this section shows the following
main characteristics: (1) The basic entities to be replicated are
objects. (2) Non-transparent replication is used, that is, users
explicitly work with a specific replica. (3) Replicas are weakly
consistent, update delays can be tolerated. (4) A master-slave
configuration is utilized. (5) Individual objects are eligible for
replication. (6) Objects that are referenced by a replica are im-
plicitly replicated, too. (7) The schema and its changes are im-
plicitly replicated.

Comparing these characteristics with current replication
systems and protocols (see section 6 for related work) shows
that no available system has all these characteristics. Conse-
quently, we propose the development of a special-purpose
replication system that is tailored to the characteristics of our
targeted data management architecture.

3. A META MODEL OF OBJECT AND
TYPE REPLICATION

The meta model is the groundwork for non-transparent, partial
and selective replication of object databases. It allows incor-
poration of its replication concepts in a variety of object mod-
els. Its main properties are as follows: (1) An object model
with generic operations is presumed. (2) Replication takes
place between independent databases. (3) Both objects and
types are replicated. (4) A master-slave relationship between
replicas exists. (5) Replication is non-transparent. (6) Explicit
replication of certain objects leads to implicit replication of en-
tire object and type graphs. (7) The semantics of modification
operations is enhanced to meet the needs caused by replica-
tion. (8) The degree of implicit replication can be controlled.
(9) Transactional properties are maintained.

3.1 Object model
As mentioned above, the replication meta model must be appli-
cable for various object models. Therefore, it can only require
the presence of a minimal, least common denominator, object
model. We introduce a structural object model [6] which sup-
ports complex objects and generic operations.

Because user-defined operations can be mapped to a se-
quence of generic operations, our replication meta model can
still be the basis of a fully object-oriented model .

Definition 1: An object is a triple <identifier, state, be-
havior>. The identifier distinguishes each object from all
others. The state of an object encompasses a set of properties
and their actual values. The set of operations an object can
execute determines its behavior.

Properties are either attributes or relationships. At-
tributes are <name, value>-tuples, relationships are named ref-
erences to other objects. They are either unidirectional or bidi-
rectional.

Definition 2: A type defines a set of objects that share
common properties and common behavior. Every type has an
identifier. Types can be organized into a type hierarchy.

Every type comprises a set of attribute declarations, a set
of relationship declarations and a set of operation declarations.
An attribute declaration consists of a name and an attribute
type. Relationship declarations comprise a name, the target
type, the cardinality and, in case of bidirectional relationships,
the name of the inverse relationship name. Operation declara-
tions consist of the operation signature.

Objects belong to a most specific type (MST) and every
other type higher up the hierarchy. For the remainder of this
paper, we simply refer to the ÒtypeÓ of an object when we actu-
ally mean its MST.
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Definition 3: A database is a storage domain for objects. For
every object it contains, it also stores the corresponding type.
The set of types in a database constitute the database schema.
Different databases always have disjunct contents.

3.2 Inter-database replication
We design our replication meta model for non-transparent
replication of objects and types between different databases. Of
course, this does not prevent the DBMS from internally and
transparently replicate objects for other reasons, for example, to
improve performance by multiversion concurrency control [2].

3.3 Replication of single types
Before treating replication of entire object and type graphs, we
introduce replication of single objects and types.

Definition 4: Two types are replica-equivalent iff: (1)
They define equal properties. The only possible exception are
the target types of relationships, which may differ. (2) Non-nil
target types of corresponding relationship declarations ei-
ther have equal properties, or they only differ in their own
target types. (3) The inheritance graphs of the two types and
of their target types are isomorphic. All corresponding su-
pertypes are again replica-equivalent.

Nil-typed relationship declarations allow the selective
replication of types without being forced to also replicate all
related types.

Figure 3 shows an example where types T2 and T8 are
replica-equivalent. We use OMT [24] notation with the fol-
lowing enhancements: Arrows between types denote unidirec-
tional relationships, and grounding symbols stand for nil-
typed relationships.
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Figure 3: Replica-equivalent types.

Histories and combined histories are a further part of the meta
model. The history of a type is the sequence of the type's at-
tribute declarations, relationship declarations, operation dec-

larations, and inheritance hierarchies over time. A combined
history of a set of types is the merger of all the individual his-
tories. Merging is based on causal ordering [18]. Thus, more
than one combined history may be deduced from a set of indi-
vidual histories.

Definition 5: A replicated type manages a set of types. It
has the following properties: (1) It modifies its types either
on external request or to make them replica-equivalent to the
current or a former state of a combined history of the whole
set of types. (2) It enforces the history of every type within the
set to be a replica-equivalent subsequence of the same com-
bined history of the entire set.

A replicated type is a conceptual notion and thus does
not necessarily have to be materialized.

Definition 6: Types are type replicas of each other iff
they are managed by the same replicated type.

Figure 4 presents an example of four replica-equivalent
types. Vertical arrows represent replicas over time. Black bul-
lets denote modifications by users or applications. Gray bul-
lets stand for updates caused by the DBMS to restore replica-
equivalence. Arrows between bullets visualize the flow of up-
dates. The resulting causal ordering is shown in the lower part
of figure 4. The numbers on the arrows indicate from which
replica the causality can be deduced. The four possible com-
bined histories are ABDEC, ABDCE, ABCDE, and ACBDE.                                 
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Figure 4: Replica histories and their causal ordering.

3.4 Replication of single objects
The definitions regarding object replication closely resemble
those of type replication.

Definition 7: Two objects are replica-equivalent iff: (1)
Their types are replica-equivalent. (2) Their attribute values
are equal. (3) Each pair of corresponding relationships ei-
ther has target objects with equal attribute values and
replica-equivalent types, or at least one of the target objects
is nil.

As for nil-typed relationship declarations, the reason to
permit uninitialized relationships is that this allows more se-
lective object replication.

The history of an object is its sequence of states. A com-
bined object history is defined analogously to a combined
type history.

Definition 8: A replicated object manages a set of ob-
jects. It has the following properties: (1) It modifies its ob-
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jects either on external request or to make them replica-
equivalent to the current or a former state of a combined his-
tory of the whole set of objects. (2) It enforces the history of
every object within the set to be a replica-equivalent subse-
quence of the same combined history of the entire set.

Definition 9: Objects are object replicas of each other if
they are managed by the same replicated object.

Figure 5 shows an example conceptual object diagram. The
gray objects are replicas of each other. The grounding symbol
stands for an uninitialized relationship. Types and replicated
types are represented as first-class objects.
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Figure 5: Conceptual diagram with object replicas.

3.5 Master-slave replication
There is a master-slave relationship between replicas. Users
designate certain objects to be master replicas, and the replica-
tion system creates the corresponding slaves. The system modi-
fies slave replicas according to updates of the respective master
replicas, and it prevents users from directly altering slave
replicas. This setup does not prohibit cascading replications,
where a slave replica can itself be a master replica for another
slave. However, every slave has exactly one master, and repli-
cation is unidirectional.

3.6 Non-transparent replication
According to the needs of the targeted application domain,
non-transparent replication is utilized. Users do not explicitly
see a replicated object, they rather directly update the master
replica and read specific replicas.

Non-transparent replication in combination with com-
pletely autonomous databases implies that databases assign
different identities for replicas of the same replicated object or
type, respectively.

3.7 Root objects
As we explained in section 2, some objects are explicitly repli-
cated. We call them root objects:

Definition 10: A root object is an object a user deliber-
ately designates to be a source replica for replication into a
given destination database.

For the time being, we define an object o2  as being reach-
able from another object o1  if ( , )o o1 2  is in the transitive clo-
sure of relationships. A precise definition is given in formula 2
below.

Principle: Given a root object o, all objects which are
reachable from o are implicitly replicated too.
In other words, all replicated objects are either root objects
themselves, or they are reachable from a root object. In section

3.10, we will present a refined approach that allows a more de-
liberate selection of objects to be replicated.

To subscribe to an object means that it is added to the set
of roots of a subscription. To unsubscribe from an object signi-
fies that it is removed from the root set.

Definition 11: A subscr ip t ion  is a triple <source
database, destination database, roots>. roots is the set of
root objects designated to be replicated from the source
database into the destination database.

3.8 Replication of object and type graphs
The process of implicit replication leads to the construction of
a mirrored object graph in the slave database. The object
graphs that are spanned by a root object and one of its replicas
are isomorphic.

Types are only replicated if they are needed to describe an
object replica. Therefore, we establish the following principle
for type replication:

Principle: All types with a non-empty extension of master
object replicas are implicitly replicated into the same desti-
nation databases as the objects in their extensions.

The graph of destination type replicas and its correspond-
ing source replica graph are also isomorphic.

We formally model replication graphs as directed, at-
tributed multigraphs. A graph system GS, consisting of a mas-
ter and a slave graph, that conforms to the meta model can thus
be defined as follows:

GS
O O Root R L r reach l rep T
T Parent Rd L rd l rep type type

M S O O O M

S T T T M S
= 





, , , , , , , , , ,
, , , , , , , ,

OM  and OS , with O OM S∩ = ∅ , are the sets of object replicas
in the master and the slave graph, respectively. Root OM⊆  de-
notes the set of root objects. R is the set of relationships be-
tween objects. LO  stands for the set of relationship attribu-
tions. An attribution comprises the relationship name and pos-
sible further information, e.g.,  the cardinality.
r R O O O OM M S S: ( ) ( )→ × ∪ ×  is the mapping from relation-
ships  to  the related objects .  The predicate

  reach O O O OM M S S: ( ) ( ) { , }× ∪ × → Á '  is true if the second
object is reachable from the first one. l R LO O: →  assigns attri-
butions to relationships. rep O OO M S: →  is a bijective func-
tion which maps a master to a slave replica object. TM  and TS ,
with T TM S∩ = ∅ , are the sets of type replicas in the master
a n d  t h e  s l a v e  g r a p h ,  r e s p e c t i v e l y .
Parent T T T TM M S S⊂ × ∪ ×( ) ( )  is an acyclic relationship.
( , )t t Parent1 2 ∈  denotes that t1  is a direct supertype of t2 . Rd
is the set of relationship declarations. LT  stands for the set of
a t t r i b u t i o n s  o f  r e l a t i o n s h i p  d e c l a r a t i o n s .
rd Rd T T T TM M S S: ( ) ( )→ × ∪ ×  is the mapping from relation-
ship declarations to the related types. l Rd LT T: →  assigns at-
tributions to relationship declarations. rep T TT M S: →  is a bi-
jective function that maps a master to a slave replica type.
type O TM M M: →  and type O TS S S: →  map objects to their most
specific types.

Isomorphism between a master and a slave object graph is
specified in formula 1:
∀ ∈ ∀ ∈
∃ ∈

= ∧
=













⇔
∃ ∈

= ∧
=













o o O label L

rel R
r rel o o
l rel label

rel R
r rel rep o rep o
l rel label

M O

M

M

O M

S

S O O

O S

1 2

1 2 1 2

, : :

:
( ) ( , )
( )

:
( ) ( ( ), ( ))
( )

(1)

Formula 2 defines reachability of objects:
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As we stated earlier, master replicas are either roots themselves,
or they are reachable by a root object.
∀ ∈ ∈ ∨ ∃ ∈o O o Root o Root reach o oM : ( : ( , ))1 1 (3)

Type graph isomorphism is defined in formulas 4 and 5. First,
master replica types and their corresponding slave types con-
tain identical relationship declarations:
∀ ∈ ∀ ∈
∃ ∈

= ∧
=













⇔
∃ ∈

= ( ) ∧
=















t t T label L

decl Rd
rd decl t t
l decl label

decl Rd

rd decl rep t rep t
l decl label

M T

M

M

T M

S

S T T

T S

1 2

1 2 1 2

, : :

:
( ) ( )
( )

:

( ) ( ), ( )
( )

, (4)

Second, the supertype/subtype graphs between masters and
slaves are identical:
∀ ∈ ∈ ⇔ ∈t t T t t Parent rep t rep t ParentM T T1 2 1 2 1 2, : ( , ) ( ( ), ( )) (5)

A type is only replicated if its extension contains replicated
objects:
∀ ∈ ∃ ∈

= ∨ ∃ ∈ = ∧ ∈< >
t T o O

type o t t T type o t t t Parent
S S

S S S t

: :
( ) : ( ) ( , )1 1 1

(6)

As both the object graphs and the type graphs are isomorphic,
the combined graphs are isomorphic too:
∀ ∈ ∀ ∈

= ⇒ =
o O o O

rep o o rep type o type o
M M S S

O M S T M M S S

: :
( ) ( ( )) ( ) (7)

Figure 6 presents an example. The bold-framed object O11 is a
root object, dashed arrows between databases stand for replica-
tion. O11 is explicitly replicated as a root object, O12 because it
is reachable from O11. O13 is not reachable from a root object
and thus remains unreplicated. T11, T12 and T13 have object
replicas in their extension and are therefore replicated too.

               

T15

T13 T23

T14

T12 T22

T11 T21

O11

O12 O22
O13

O21

source database destination database

Figure 6: Combined object and type replication.

3.9 The impact of replication on object and
type modifications

When a source replica is modified, all or some of the following
steps are executed: (1) Determination of the new objects and
types that have to be replicated from now on; initial replica-
tion of these objects and types. (2) Modification of the slave
replica to make it again replica-equivalent to its master. (3) De-

termination of the types and objects which no longer have to
be replicated; termination of replication of these types and ob-
jects.

The following modification operations are concerned: (1)
Modification of attribute values. (2) Modification of relation-
ships. (3) Specialization and generalization.

The modification of an attribute value in a master replica
leads to the same modification of the slaves. The set of objects
and types to be replicated remains unchanged.

Relationship modifications have the following conse-
quences: First, the entire object and type graph originating
from the new target of the relationship has to be replicated if
this is not already the case. Second, the changed relationship
in the destination database is set accordingly. Third, it has to
be checked for every object and type of the graph that stems
from the former target whether it still needs to be replicated; if
not, their replication is discontinued.

When an object is generalized, replication for the types
below the new type in the inheritance hierarchy only contin-
ues if these types still have source replicas in their extensions.
Object specialization requires the new type and its supertypes
that are more specialized than the former type to be replicated.

Regarding type replication, the following type modifica-
tion operations are adapted: (1) Insertion and removal of at-
tribute declarations. (2) Insertion and removal of relationship
declarations. (3) Creation and deletion of objects.

Whenever a new attribute declaration is added to a source
replica or removed from it, an identical declaration is also
added to the target replicas or removed from there, respectively.

Insertions and removals of relationship declarations are
basically treated in the same way. However, the target type of
the relationship declaration is replaced by the corresponding
slave type replica.

Object creation is the same as without replication: A new
object is never automatically replicated, but only after it either
has been determined to be a root object, or has become reach-
able by a root object.

When a master object is to be deleted, those objects that
are reachable from it remain only replicated if they are still
reachable by a root object. The objectÕs type and its super-
types only remain replicated if they have further replicated ob-
jects in their extensions.

3.10 Restricting the set of objects to be repli-
cated

We defined an object o2  as being reachable from another object
o1  if ( )o o1 2,  is in the transitive closure of relationships. Be-
cause this approach potentially leads to a large number of ob-
jects to be replicated, we now present an approach to decrease
this number.

Formula 2 defined basic object reachability. To restrict
replication, we modify this formula by introducing the predi-
cate   traverse R: { }→ Á ',  which tests relationships for the ne-
cessity of traversal:
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= ∧
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As the predicateÕs input is the set of relationships R, a large
variety of factors can influence its evaluation, namely, the orig-
inating object, the target object, the relationship attributions,
or combinations of these factors. Examples of object character-
istics that influence replication are the type of an object, the
object identifier or the value of an attribute. The predicate
could be further enhanced by differentiating between different
destination databases or distinct replication tasks.

3.11 Transactional properties
We examined the impact of replication on individual opera-
tions. In a concrete system, updates are executed under transac-
tional control. Destination transactions do not necessarily
contain an update operation for every corresponding source
operation: First, only a subset of the modified objects may be
replicated. Second, as we illustrated in definitions 5 and 8,
only a subsequence of source changes might be applied at the
destination.

4. A REPLICATION INFRASTRUCTURE
Based on the meta model, this section presents a replication
infrastructure that becomes an integral part of a DBMS. The in-
frastructureÕs basic concepts are described, abstracting from a
concrete DBMS. Section 5 will complete this description by
presenting the implementation of a real replication system.

We describe the most essential part of the meta model, that
is, replication of individual objects and of object graphs.

4.1 Architectural overview
The overall architecture of the replication infrastructure is de-
picted in figure 7.

                      
source DBS destination DBS

data
exchange
format of

the DBMS

replication 
exporter

import
interface

logging

subscrip-
tion

manage-
ment

DBMS
kernel

id map

DBMS
kernel

dest. DBsource DB

Figure 7: Replication infrastructure, overall architecture.

A DBMS that manages a source database is enhanced by a log
facility and a subscription management component. The repli-
cation exporter uses these two components to determine all
changes of a subscription since the most recent instant of repli-
cation of this subscription, and to export these changes in the
standard data exchange format of the DBMS. On the destination
side, the importer applies these changes to the destination
database after replacing source database-specific references by
their corresponding target database counterparts.

4.2 Source DBMS components
Figure 8 shows the replication-relevant components of a
source DBMS.

A Database manages instances and types, and it controls a
subscription manager. Instance stands for objects according to
definition 1. Every instance can be updated and queried, and
its reachable instances can be determined by recursively get-
ting referenced instances. Type denotes types as introduced in

definition 2. They are represented as first-class objects in the
sense of type-representatives [4]. As section 5 will show, this
allows to treat type replication very similarly to object replica-
tion. DbObject serves to factor out logging and other common
characteristics of objects and types.

       

SubscriptionManager Database

DbObject Log

Subscription Instance Type

Figure 8: Replication components of a source DBMS.

A source database has one instance of Subscription for every des-
tination database which subscribes to it. A subscription stores
the current root objects, and also all objects that belonged to
the subscription at the most recent instant of replication. Com-
paring the latter set (previous ) to the current instances
(current) reachable from the root objects allows the subscrip-
tion to determine the instances which are to be newly repli-
cated (current \ previous), persist to be replicated (previous ∩
current), and those whose replication has become obsolete
(previous \ current). Furthermore, a subscription determines for
every instance those log entries that have been made after the
last instant of replication. Subscriptions are managed by the
SubscriptionManager.

A Log is created for every instance which belongs to at
least one subscription. Whenever such an instance is modified,
a corresponding entry is added to its log. A log entry com-
prises an identification of the changed property (e.g., the at-
tribute name) and the kind of operation. The new value itself is
not stored in the log.

When a subscription is to be replicated, the replication
exporter lets the subscription determine the new, persisting
and obsolete replicas. For new objects, a create-directive for a
target replica and the entire state are exported. For persisting
replicas, the log is used to determine changed properties, and
those values are then exported. If the log does not reach back
far enough, the object's entire state is taken. For obsolete repli-
cas, a delete-directive is generated.

4.3 Destination DBMS components
The relevant components of a destination DBMS are illustrated
in figure 9. An instance of IdMap manages the mappings be-
tween the source and the corresponding destination replica
identifiers.

    

IdMap Database

Instance Type

Figure 9: Replication components of a destination DBMS.

First, the creation of new destination replicas is handled. The
importer, given the identifier of a source replica, queries the id
mapping table and detects that there is no corresponding des-
tination replica. Consequently, it creates a new instance and
registers the identifier mapping. This is done for all new repli-
cas, but their states are not set yet.

Second, the states of both the newly created and the per-
sisting destination replicas are set or updated, respectively.
Destination replicas are retrieved by using the mapping from
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source to destination identifiers. Attribute values of destina-
tion replicas are set to the corresponding source values, and re-
lationship targets are mapped to their local counterparts ac-
cording to the mapping table.

Third, obsolete replicas are deleted, and their mapping
table entries are removed.

5. A REPLICATION SYSTEM FOR THE
CALANDA TIME SERIES MANAGE-
MENT SYSTEM

Based on the replication infrastructure described in section 5,
we have realized a replication system as a component of Ca-
landa [7, 8], which is a special-purpose DBMS for the manage-
ment of time series [26]. Calanda is developed and used within
UBS, the largest Swiss bank. Its main audiences are economists
and financial analysts who want to be able to design and use
their time series databases without the help of computing ex-
perts. Calanda has been developed on top of ObjectStore [21].
Its object model provides types like time series, group and cal-
endar. A time series consists of a header, that is, data character-
izing the time series as a whole, and a chronologically ordered
sequence of observations. Groups allow to partition the set of
time series into different, possibly nested, categories. A group
comprises a header and a set of members. As time series and
groups are the basic abstractions, instances of these two types
can be replicated. The type system presented in figure 8 is thus
enhanced as follows: Timeseries and Group inherit from Instance,
TimeseriesType and GroupType from Type.

Calanda's replication system is a straightforward realiza-
tion of the infrastructure which has been presented in the pre-
vious section. Therefore, we only describe two specific topics,
namely, log processing and an optimized determination of a
subscription's member set.

5.1 Log processing
The replication infrastructure is part of a concrete DBMS and
thus also operates on a well-defined data model. The knowl-
edge of the frequency and the kind of update operations allows
to optimize logging by choosing an appropriate granularity of
a log entry. For example, the log does not distinguish between
individual header or observation attributes, but simply records
that the header or a specific observation has been changed. The
reason is that typical applications rarely change the header,
and usually update or add entire observations rather than they
alter individual observation attributes.

Furthermore, log processing is optimized by knowing the
semantics of the update operations. As an example, modifying
an observation followed by clearing all observations in a
source time series has the net effect of clearing all observations.
Therefore, only the clearing operation is relevant for the desti-
nation database, the other log entry can be ignored.

5.2 Determination of subscription members
If there are many objects with a large number of relationships
between them, the determination of a subscription's member set
becomes a costly operation, which should be avoided as often
as possible. As an optimization, we only redetermine the mem-
bers of a subscription if relationships are modified. Experience
has shown that only a minority of all operations do this.

5.3 Type replication
The current working system does not implement type replica-
tion. However, this functionality is straightforward to add:
The sets of new, persisting and obsolete type replicas can be

calculated like their object counterparts. Schema evolution
corresponds to modifications of type-representative objects.
These operations can be logged and processed like instance-
modifying operations.

5.4 Experiences
The first productive use of CalandaÕs replication system within
UBS is for a data feed infrastructure that gathers financial data
from different source and prepares them for import into data
marts. Provider data is converted into CalandaÕs data exchange
format, possibly followed by some transformation steps (for ex-
ample, provider-specific numeric country codes in a header are
replaced by real country names). The resulting data are stored
in a Calanda time series base that serves as a staging database.
All time series that originate from one provider are placed in an
appropriate group structure. Destination databases subscribe
to this staging database and add the groups they are interested
in to their subscriptions. At the time of writing, this system
was operative for half a year and entirely met the users' re-
quirements.

6. RELATED WORK
A variety of different replication protocols can be found in the
literature and in working systems. See, for example, [�V98],
[13], [12], and [17].

Examples for distributed systems that either use replica-
tion or provide infrastructure for building replication systems
are described in, among others, [3], [19], [23], [15], [28], [14],
and [27].

The majority of contemporary DBMS support some kind of
replication. Among object DBMS, these are, for example, Ge-
mEnterprise [11], Versant [25], Objectivity/DB [20] and Ob-
jectStore [21].

An approach for composite object replication is presented
in [1]. Three different replication schemes are specified, namely,
type-specific, instance-specific and instance-set-specific repli-
cation.

A related area of research is object view maintenance and
materialization [16].

A detailed evaluation of various replication protocols,
replication systems, and replication functionality in commer-
cially available DBMS can be found in the thesis this paper is
based on [9] (http://www.ifi.unizh.ch/ifiadmin/staff/rofrei/
Dissertationen/Jahr_1999/thesis_dreyer.pdf). As this evalua-
tion shows, none of the existing protocols and system meets all
the requirements presented in section 2.

7. CONCLUSIONS AND OUTLOOK
We have presented an object replication meta model and the
design of a replication infrastructure that is well suited for
company-wide distribution of financial data aimed at decision-
support. The meta model is general enough that it can be ap-
plied to a variety of object models. The replication infrastruc-
ture only requires minor DBMS enhancements: Source DBMS
need a logging facility, a subscription management and a
method to determine reachable objects, destination DBMS re-
quire an identifier mapping mechanism. Some of these enhance-
ments can also be utilized for other purposes or are even al-
ready available: A logging mechanism, for example, can also
serve statistical or accounting purposes, and the identifier
mapping facility is useful for coping with external data
providers who use proprietary object identifiers. (Calanda also
uses the mapping tables for this purpose.)

350



Further work that would enhance the applicability of the de-
veloped solution are, for example, the incorporation of schema
transformations, the consideration of inter-database object rela-
tionships, and the support for peer-to-peer replication with a
mechanism that supports different consistency strategies.

The system as presented here can also be used for other
purposes than object replication between databases. An exam-
ple is a notification mechanism: A user of a large database that
contains hundreds of thousands of objects is usually only in-
terested in a rather small subset of these data, but these may
still be several dozens or hundreds of time series. A notifica-
tion system that informs this user about changes of objects of
interest closely resembles the replication system: Instead of
importing the source data changes into a destination database,
they can be parsed to generate an appropriate notification
which is then mailed to the user. We are currently developing
such functionality for another financial database system within
UBS.
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