2209.01541v3 [cs.CR] 18 Sep 2022

arxXiv

InviCloak: An End-to-End Approach to Privacy and Performance
in Web Content Distribution

Shihan Lin Rui Xin
Duke University Duke University
ABSTRACT

In today’s web ecosystem, a website that uses a Content Delivery
Network (CDN) shares its Transport Layer Security (TLS) private
key or session key with the CDN. In this paper, we present the
design and implementation of InviCloak, a system that protects
the confidentiality and integrity of a user and a website’s private
communications without changing TLS or upgrading a CDN. Invi-
Cloak builds a lightweight but secure and practical key distribution
mechanism using the existing DNS infrastructure to distribute a
new public key associated with a website’s domain name. A web
client and a website can use the new key pair to build an encryp-
tion channel inside TLS. InviCloak accommodates the current web
ecosystem. A website can deploy InviCloak unilaterally without
a client’s involvement to prevent a passive attacker inside a CDN
from eavesdropping on their communications. If a client also in-
stalls InviCloak’s browser extension, the client and the website can
achieve end-to-end confidential and untampered communications
in the presence of an active attacker inside a CDN. Our evaluation
shows that InviCloak increases the median page load times (PLTs)
of realistic web pages from 2.0s to 2.1s, which is smaller than the
median PLTs (2.8s) of a state-of-the-art TEE-based solution.

CCS CONCEPTS

« Networks — Web protocol security; « Security and privacy
— Key management.

KEYWORDS
CDN; HTTPS; Private key sharing

1 INTRODUCTION

Content Delivery Networks (CDNs) play an important role in the
web ecosystem. They not only speed up web content distribution
but also protect a website from a wide range of attacks. For example,
CDNss such as Akamai [68], Cloudflare [18], and CloudFront [16]
offer Distributed Denial of Service (DDoS) attack mitigation and
malicious content scrubbing services [22, 48].

Unfortunately, as more and more websites migrate to 100% HTTPS
[8], a third-party CDN introduces undesirable security ramifica-
tions. It is a common practice for a website to share its Transport
Layer Security (TLS) certificate’s private key with a CDN to fully
take advantage of a CDN’s performance and security benefits. A
measurement conducted by Cangialosi et al. in 2016 shows that
76.5% of organizations share their private keys with a third-party
hosting provider, and for popular websites, they mainly share their
keys with CDN providers[34].

CCS °22, November 7-11, 2022, Los Angeles, CA, USA
2022. ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3559336

Aayush Goel
Cupertino High School

Xiaowei Yang
Duke University

This key-sharing practice breaks the end-to-end security guaran-
tees offered by TLS/HTTPS, posing potential security risks. A CDN,
as an organization, may suffer from an insider attack or exploitable
security vulnerabilities. Since a CDN typically serves many web-
sites, a compromised CDN may leak the private credentials of many
web services, becoming a central point of failure. As an example,
web cache deception attacks [46, 64] exploit a CDN’s configura-
tion vulnerability. Researchers have shown that an attacker can
deceive a CDN into caching and exposing Personally Identifiable
Information (PII) such as names and phone numbers [64].

The security risk of this current practice has prompted multiple
solutions. Each has made trade-offs among adoptability, security,
and performance. Cloudflare’s Keyless SSL [80] and certificate del-
egation [62] do not expose a website’s TLS private key to a CDN,
but still allow a CDN to possess the TLS session key — this allows
an attacker inside a CDN to continue to observe and modify the
content inside a TLS session. Other solutions such as mcTLS and
maTLS [33, 59, 67] modify the TLS protocol to include middleboxes
in a TLS handshake. Although technically sound, these solutions
require coordinated efforts from clients, middleboxes, and websites
to upgrade their TLS implementations.

Alternatively, a website could obtain two TLS certificates for
two different domains (e.g., site.com and site-cdn.com): one for
privacy-sensitive content hosted by itself and the other for content
hosted by a CDN, similar to [47]. The website shares the CDN-
related TLS certificate’s private key with its CDN and keeps the
other one private. We refer to this proposal as the two-domain
solution. A main drawback of the two-domain solution is that it
does not protect against active attacks when a website uses a CDN to
distribute its base HTML file, which is the first file a user downloads
when she visits a web page. For performance reasons, a website
desires to distribute its base HTML file via a CDN [86](§ 2.1), but
an active attacker inside the CDN could modify this file and hijack
the subsequent private TLS sessions. Moreover, the two-domain
solution prevents a CDN from caching any private content, even in
encrypted form, as a website will send it via a separate TLS session.
This design reduces the performance benefit of a CDN.

In a different direction, researchers have proposed to use Trusted
Execution Environments (TEEs) [29, 38] to prevent distrusted CDN
code from accessing a shared TLS private key [27, 85] or a TLS
session key [51]. These solutions offer desirable security guarantees
without any deployment effort on the user side. However, they face
both deployment and performance challenges for CDNs. Because
of costly system calls inside an enclave, the current TEE hardware
may slow down a CDN edge server’s throughput by two to four
times [51]. In addition, these solutions require CDNs to upgrade the
hardware of their infrastructure. The financial cost of upgrading a
CDN’s infrastructure to support a TEE-based solution can exceed
more than 100 million dollars per our analysis (§ 6.6). Furthermore,
the future of current TEE-based solutions is unclear, since Intel has

https://doi.org/10.1145/3548606.3559336
site.com
site-cdn.com

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

announced that the Intel TEE, called Software Guard Extensions
(SGX) [38] is deprecated in the 12th generation of Intel CPUs [10].

Each of the existing proposals has its own security, performance,
and deployment cost trade-offs. In this work, we aim to explore a
solution with different cost and benefit trade-offs for the market to
choose from. The solution, InviCloak, takes an end-to-end approach.
It accommodates the current key-sharing practice and separates
content serving authorization from confidentiality. A website uses
the shared TLS key to authorize a CDN to serve its non-privacy-
sensitive content. It then uses a new pair of private/public keys that
it does not share with a CDN to protect privacy-sensitive content.
InviCloak protects against active attacks and does not increase the
traffic sent to an origin server.

A main design challenge InviCloak faces is how to balance the
security benefit it brings with its deployment and performance cost.
To address this challenge, we design InviCloak to use the existing
DNSSEC [31] and DNS-over-HTTPS [52] (DoH) infrastructure to
distribute a website’s new public key, thereby obviating the need
for the website to obtain a new TLS certificate for a new domain
name. For ease of deployment, InviCloak embeds an end-to-end
encryption tunnel inside the existing TLS sessions between a web
client and a website’s origin server to transmit private data, such as
auser’s login password. This design obviates the need for modifying
TLS, a CDN, a web server, or web resources.

As a result, InviCloak has several deployment advantages over
existing proposals. It does not change the underlying TLS protocol
and is completely transparent to a CDN. CDNs need not upgrade
their infrastructure. Furthermore, it does not modify existing web
server implementations, and web developers need not change exist-
ing web resources or manage new domain names and certificates.
A website can unilaterally deploy InviCloak as a JavaScript library
to defeat a passive eavesdropper without any user-side operations.
If a user installs InviCloak’s browser extension, she can detect and
prevent an active attacker from tampering or eavesdropping on her
private communications with a website.

As performance is critical to web applications, the encryption-
in-encryption design of InviCloak is easy to be dismissed due to
its overhead. We implemented a prototype, micro-benchmarked
InviCloak’s operations, and measured how it affects the page load
times (PLTs) of web pages. On our testbed, InviCloak introduces
less than 100 ms delay to median PLTs. This overhead is about
700 ms lower than a state-of-the-art TEE-based solution [51]. If the
overhead becomes a concern, we can modify browser implemen-
tations to eliminate the inner-layer encryption at the cost of an
increased deployment hurdle.

This work makes the following key contributions:

o The design of InviCloak, which protects users’ private data
from a compromised CDN while keeping the CDN function-
ing as a DDoS shield for a website.

e A prototype implementation that is immediately deployable
within the current web ecosystem !. Our evaluation shows
that it introduces acceptable overhead to web content distri-
bution.

e We analyze the deployment efforts of InviCloak and compare
it with related work. We show that InviCloak’s deployment

I The source code is accessible at https://github.com/SHiftLin/CCS2022-InviCloak

Shihan Lin, Rui Xin, Aayush Goel, and Xiaowei Yang

requires no modifications of a CDN, TLS, OSes, or a web
server. Neither does it require a new domain name nor a new
TLS certificate.

Ethical concern: This work does not raise any ethical concerns.

2 DESIGN RATIONALE
2.1 Motivation

We have conducted a measurement study on Alexa top-100 web-
sites [15] to understand how websites that use third-party CDNs
protect their privacy-sensitive data such as user login passwords.

We refer to methodologies in existing research [34, 54, 57, 61] to
discover the CDN usage of a website and determine the organization
to which a website belongs. If a website’s organization is not the
same as the CDN provider, we conclude that the website uses a
third-party CDN. The result shows that 67 of top-100 websites
employ third-party CDNs, and 54 of them use the CDNs to deliver
the homepages’ base HTML files. For all these 54 websites, an active
attacker inside a CDN could modify those pages even if they employ
the two-domain solution as described in § 1.

We further examined the login procedure of these websites to
investigate their strategies for sensitive data transmission. Of the
67 CDN-enabled websites, 7 of them do not use password logins,
and 25 of them expose their login servers’ IP addresses in the login
procedure, while 35 of them send users’ passwords through CDNs.
This result suggests that not all websites trust the CDNs they use,
as indicated by the 25 websites which bypass CDNs for user logins.
However, exposing the IP address of a website’s login server makes
the website vulnerable to DDoS attacks. For those websites that
expose their users’ passwords to CDNs, they risk leaking users’
sensitive and private data to the CDNs.

The above observations motivate us to design a solution that is
both conceptually simple and secure.

2.2 CDN Service Model

For clarity, we describe a service model between a website and
its CDN service provider. We use this model to design InviCloak.
Specifically, we categorize the content served by a website into
CDN-visible content and private content. We regard private content
as the content that belongs to a registered user of a website and
should only be accessible to an authenticated user. For example,
a user must log in to check her bank account balance. If some
content is cached by a CDN or is not private to a user, we consider
it CDN-visible. For example, static content cached by CDN servers
or behind a paywall, such as videos available from a subscription
service, is CDN-visible.

Due to privacy concerns, a website does not share its private
databases with a CDN. It uses a CDN to cache and serve its CDN-
visible content, but a user will send/retrieve private content directly
to/from a website’s origin server [26]. Furthermore, we assume it
is desirable for a website to cache some private content such as
private user photos on CDNs for performance acceleration. Thus,
InviCloak’s design also supports such use cases while keeping the
private content secret to CDNs. We note that InviCloak does not
change the existing CDN service model so it will not increase the
traffic volume sent to a website’s origin server. A website that does

https://github.com/SHiftLin/CCS2022-InviCloak

InviCloak: An End-to-End Approach to Privacy and Performance in Web Content Distribution

not serve any private content is outside the scope of this work and
does not need to deploy InviCloak.

In this paper, we refer to a server hosted by a website as an “origin
server”, which is the initial source of all content of the website. The
term “user” always denotes the user of a website instead of a CDN.
When we use the term “client”, it refers to the endpoint (a browser
or a computer) that a user uses. Finally, an “attacker” refers to any
malicious entity.

2.3 Threat Model

We assume that not all CDN customers completely trust their CDNs.
These customers would like to benefit from CDN’s caching and
DDoS protection services without exposing private content to
CDNs. We assume a compromised CDN may launch two types
of attacks with different risk factors.

Passive Attacks: A CDN may have a software or configuration
vulnerability that results in unintended information leak, such as
the web cache deception attack [46, 64]. Or a curious eavesdropper
inside the CDN may log the plaintext data after a CDN’s edge
server decrypts the TLS session data it receives. We model this
type of vulnerability as passive attacks that eavesdrop on private
communications between a web client and a website’s origin server.

Active Attacks: A CDN may have a compromised insider that
gains access to its customer websites’ TLS private keys, or there
is a software bug inside the CDN that allows an attacker to inject
malicious code. We model this threat as active attacks that can
eavesdrop, tamper, or leak any message it receives.

2.4 Trust Assumptions

We make the following trust assumptions.

No colluding attackers between DNS and CDN's: We assume
that an adversary is not powerful enough to penetrate both a web-
site’s CDN provider and its DNS provider. In other words, even if
there exists an attacker in a website’s DNS provider and one in its
CDN provider, we assume the two adversaries are independent of
each other and cannot collude with each other.

InviCloak cannot defeat a powerful attacker that compromises
both a website’s DNS and CDN providers since its design uses DNS
to distribute a new public key. Thus, if a web service is concerned
with colluding DNS and CDN attackers, it can choose to separate its
CDN provider from its DNS provider. In practice, all major CDNs we
survey, including Akamai, CloudFront, Google Cloud, Azure, and
Fastly, allow users to use separate DNS providers. Cloudflare, by
default, requires its customers to use their DNS service to host the
customers’ domain names, but it also allows customers to switch
to other DNS providers [36].

We conducted a measurement study on Alexa top-10K websites
to validate this assumption. We first used the existing methods [34,
54, 57, 61] to discover the third-party CDN usage of the websites.
Moreover, we used dig [37] to obtain the nameservers of each CDN-
enabled domain in a website, and we obtained the domain registrars
from the WHOIS service [40]. A website may own multiple domains.
If the nameserver of a domain does not belong to the website’s CDN
provider, we regard that the website separates the DNS provider
from the CDN provider. Besides, if the domain registrar is not the

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

CDN provider, we regard that the website separates the domain
registrar from the CDN provider.

Among the top-10K websites, 4867 of them use a third-party
CDN provider. We find that 2765 of the 4867 (57%) websites already
separated their DNS providers from their CDN providers. Moreover,
among those 2102 (43%) websites that do not have the separation,
1668 of them separate their domain registrars from CDNs. These
1668 websites can separate their DNS providers from their CDNs by
transferring their DNS providers to their domain registrars without
financial cost.

Bootstrapping security: We assume users or websites can ob-
tain their OSes, browsers, and InviCloak-related modules or exten-
sions securely without involving a compromised CDN.

Trusted Computing Base (TCB): We consider the implemen-
tations of the browsers, websites, OSes, and hardware of the clients
and origin servers as our TCB. Specifically, we trust the implemen-
tation of a website that would deploy InviCloak, including its web
pages (HTML, JavaScript, CSS) and all other system components
it uses such as databases and the service backend. Admittedly, an
attacker may exploit the vulnerabilities in a website or a client’s
browser to launch attacks such as SQL injection [50] and cross-site
scripting (XSS) [87]. We consider preventing such attacks outside
the scope of this work.

Hardness of cryptography: We assume attackers cannot over-
come the hardness of a cryptographic algorithm. For example, they
cannot decrypt ciphertext without the cryptographic key, and they
cannot falsify a digital signature without the private key.

2.5 Design Goals

Our design goals are multi-fold, including privacy and confidential-
ity, usability, low deployment cost, and performance. These goals
set our work apart from related work.

Privacy and confidentiality: Our foremost goal is privacy and
confidentiality. We aim to protect private content transmitted be-
tween users and websites from leaking to third-party CDNs. Our
design should resist both active and passive attacks from a compro-
mised CDN.

Usability: An important design goal of InviCloak is to comply
with the current usability model of the web. We require that a
website need not obtain a new domain name nor negotiate a new
type of service with its CDN provider. Besides, a website should
not change the domain names displayed to its users, otherwise it
may cause brand name confusion and phishing vulnerabilities.

Low deployment cost: We hypothesize that if a security fea-
ture is financially costly and requires coordinated upgrades from
multiple stakeholders, then it is difficult to deploy that feature in
practice. Thus, we aim for low financial cost of deploying InviCloak.
Besides financial cost, we target at minimum operation cost for
web developers and users. For example, web developers need not
modify their application logic or existing web resources. A website
need not revoke the certificate it shares with a CDN nor apply to a
new one, since the revocation and application of business certifi-
cates could be time-consuming [62]. We also aim for an end-to-end
design that a website and users can deploy without CDN support.

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Shihan Lin, Rui Xin, Aayush Goel, and Xiaowei Yang

Browser Website
... »l
e Integrity Verifier — |_ [..

(Signature Verification) CDN
Web page 1} Server Proxy Origin Server
; (Encryption/Decryption)
Client Proxy

< | (Encryption/Decryption) <

i

vDNSSEC-enab‘l’ed ----- CDN-visable content ~ —-— Public key (DNS-over-HTTPS)

DNSSEC Resovler —— Private content Public key (DNSSEC)

Figure 1: This figure shows the high-level design of InviCloak in the case of active attackers. It has three components: a client proxy, a server

proxy, and an integrity verifier. The client proxy and server proxy encrypt and decrypt the communication between a client and a website’s

origin server, while the integrity verifier validates the integrity of HTML and JavaScript files returned by a CDN. The client proxy is a Service

Worker, which is different from regular JavaScript code (§ 3.3). In the case of passive attackers, the integrity verifier is unnecessary.

Performance: Our solution should retain a CDN’s performance
benefits such as low latency and high throughput, as well as its
security benefits such as DDoS mitigation.

3 DESIGN
3.1 Architecture

The main design challenge we face is to achieve InviCloak’s se-
curity goals without sacrificing usability, deployability, or perfor-
mance. We make a few design decisions to address this challenge.
First, we use the DNS-based Authentication of Named Entities
(DANE) [42] to distribute a website’s new public key to ease key
management. Second, we design InviCloak’s main client compo-
nent to be a JavaScript library so a website can distribute it via
its landing page without having the users install it. Last, we use a
reverse server proxy to serve InviCloak’ server-side functions, so
web servers need not be modified.

Figure 1 depicts the overall architecture of InviCloak, its key
components, and their locations. InviCloak introduces three new
components: a client proxy running in a web browser, an integrity
verifier introduced as a browser extension, and a server proxy
running as a reverse proxy in front of a website’s origin server. The
integrity verifier works for all InviCloak-enabled websites, while the
client proxy is a JavaScript library that includes per website-specific
configurations. A website embeds the client proxy in its landing
page, and the integrity verifier will be distributed via a browser-
vendor-approved mechanism such as the extension market. We
note that in the case of passive attackers, the integrity verifier is
unnecessary. InviCloak uses the DNS infrastructure to distribute
a public key of a website for establishing an encryption channel
between a browser and the website’s origin server. Its design is
completely transparent to a CDN.

We use an example to illustrate how it works at a high level.
In this example, a user named Alice visits her bank, bank.com.
We assume she is a security-conscious user and has installed Invi-
Cloak’s integrity verifier in her web browser. First, Alice’s browser
fetches the landing page bank.com/login.html from bank.com’s
CDN provider. This page will automatically download bank.com’s
client proxy code (JavaScript). This download will trigger the in-
tegrity verifier to send a DNS-over-HTTPS query to a DNSSEC-
enabled resolver to obtain the public key of bank.com. The public

key will be cached in the extension’s storage for reuse. The integrity
verifier validates the client proxy and installs it in the browser.

After Alice fills in her username and password for her bank
account, she clicks the submit button. This action triggers the client
proxy to encrypt the request, as the submission URL is listed as one
that contains private information and needs encryption in the client
proxy’s configuration file. Since the client proxy and the integrity
verifier run as separate processes, the client proxy launches its own
DNS query to obtain bank.com’s public key. It caches the public
key in the browser’s cache storage for reuse. The client proxy then
invokes a key exchange process with the server proxy and generates
a symmetric session key to encrypt the request that contains Alice’s
login credentials.

The encrypted request is forwarded to bank.com’s CDN and
then to its origin server. Because the request is encrypted end-to-
end between the client proxy and the server proxy, any on-path
adversary inside the CDN cannot peek inside and acquire Alice’s
login credentials. Similarly, the server proxy encrypts the private
content in bank.com’s responses to Alice.

Next, we describe each of InviCloak’s components and how they
interact with each other.

3.2 Key Distribution & Management

A website’s new public key is the root of trust in the InviCloak
design. InviCloak uses the existing DNS infrastructure to distribute
the new public key. A website stores its new public key in a TLSA
record, following the specification of DANE [53]. Since a website
will not change its public key frequently, it can set a long Time-to-
Live (TTL) value for the TLSA record, e.g., on the order of hours, to
reduce the query load on DNS.

A website should use DNSSEC [31] to protect the integrity of
the TLSA record. Without DNSSEC, an on-path active adversary
may tamper with the public key distributed in the TLSA record,
compromising InviCloak’s security. According to a measurement
study in 2019 [76], 15 out of 20 most-used domain registrars sup-
port DNSSEC and all top-level domains such as .com and .org are
DNSSEC-enabled [74]. Hence, a website that desires to protect its
users’ privacy can find a suitable domain name registrar or DNS
provider that supports DNSSEC.

bank.com
bank.com/login.html
bank.com
bank.com
bank.com
bank.com
bank.com
bank.com
.com
.org

InviCloak: An End-to-End Approach to Privacy and Performance in Web Content Distribution

Despite an increasing number of DNSSEC-enabled domain reg-
istrars [76], a client’s default DNS resolver may not be DNSSEC-
enabled. Therefore, in InviCloak, the client proxy and the integrity
verifier will send a query for the public key in DNS-over-HTTPS
(DoH) [52] to a DNSSEC-enabled resolver, as shown in Figure 1.
Currently, all mainstream browsers can launch DoH requests, as
they are essentially HTTPS requests. A website can specify a trusted
DNS resolver that supports DNSSEC in its client proxy. InviCloak
refers to TLS Encrypted Client Hello (ECH) for distributing pub-
lic keys by DNS [73]. InviCloak optimizes ECH by adopting DoH
to ensure that a DNSSEC-enabled resolver is used even when the
client’s default resolver does not support DNSSEC.

We note that such a key distribution mechanism will not heavily
increase the load of the DNS infrastructure nor introduce DDoS
vulnerabilities because the request for the public key is a one-time
cost. InviCloak caches a website’s public key in the browser and
does not request for the public key until the user clears the cache.

InviCloak stores a public key instead of a certificate in the TLSA
record for two reasons. First, certificate verification requires a client
proxy to access the trusted root certificates of the client’s OS or
browser. Currently, JavaScript code in a browser cannot access
those certificates. Supporting this design requires modifications
to browser implementations. Second, a website can publish or re-
voke the public key independently and efficiently. It does not com-
municate with Certificate Authorities (CAs) for new certificate
application or potential revocation, which may be costly and time-
consuming [62]. Our design simplifies a website’s key management.

There are two alternative ways to key distribution. One is to
piggyback a website’s public key on an HTML file delivered to
the client. However, this approach only works in the presence of a
passive adversary, since an active adversary in a CDN may replace
the public key in the HTML file. Another approach is for the client
to bypass a CDN and fetch the public key from the origin server
directly, but it exposes the origin server to DDoS attacks.

3.3 The Client Proxy

In InviCloak’s design, the client proxy is a JavaScript library that
runs inside a web browser. A web service that desires to deploy
InviCloak distributes this proxy to its users via a landing page
(e.g., login.html or homepage). We design the client proxy to take
a configuration file as an input so that each website only needs to
configure the file to deploy InviCloak and does not need to develop
new JavaScript code. The client proxy is in charge of 1) querying
DNS to download the web service’s new public key, 2) establishing
an encryption channel with the origin server, 3) encrypting a user’s
private requests sent to the server, and 4) decrypting the server’s
responses that include private content.

A website customizes a configuration file (configure.js) in
the client proxy to include the URLs of private content and the
handshake APL A client proxy uses the handshake URL to establish
an encryption channel with a server proxy. A website can specify
the set of private request URLs using regular expressions to reduce
the configuration overhead and the size of the configuration file. An
example of configure.js is shown in Appendix B. We evaluate
the configuration effort in § 6.5.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

The main difference between InviCloak’s client proxy and the
usual JavaScript code is that the client proxy is a Service Worker [78],
which runs in the background of a browser and works across dif-
ferent web pages from the same domain. A CDN-visible landing
page installs the proxy by registering it with the browser in the
HTML, and the browser caches it subsequently. When the browser
navigates to a private web page in the same domain, the client
proxy does not need to be installed again.

3.4 The Server Proxy

We design the server proxy to be an add-on module to a web
server such as NGINX [71]. A website need not modify its web
server’s implementation to deploy InviCloak. The website lists the
URLs of private content in the server proxy’s configuration file
(nginx.conf), similar to how it configures the client proxy. An
example of nginx. conf is shown in Appendix B. The server proxy
is in charge of 1) establishing an encryption channel with a client
proxy, 2) decrypting requests encrypted by the client proxy, and 3)
encrypting private content returned to the client.

3.5 Establishing the Encryption Channel

We now describe how a client proxy establishes an encryption
channel with a server proxy. The client proxy will first send a DoH
query to obtain the TLSA record that stores a website’s new public
key. Then it will establish a secret session key with the server proxy
for encryption and decryption. Our key exchange protocol is based
on TLS 1.3 [72], as TLS security has been carefully examined by
researchers. We describe the protocol in Appendix A.

Session key reuse: We design the session key to be reused
across multiple requests/responses so that the session key setup is a
one-time cost in a web session. According to TLS 1.3 [72], InviCloak
will randomize a 32-byte session ID after each key exchange and
store the corresponding session key. The session ID is returned to
the client. When the client proxy sends encrypted private content
to the server proxy, it will include the session ID in plaintext. The
server proxy retrieves the session key through the session ID, and
it will reject the request if no corresponding session key is found.

On-demand vs. Asynchronous key exchange: The key ex-
change process can happen either on-demand or asynchronously.
Each approach has its pros and cons. For on-demand key exchange,
a client proxy triggers the key exchange when it sends the first
private request in a web session. For asynchronous key exchange,
the client proxy starts the key exchange right after the user loads
the landing page that distributes the client proxy. For example, the
key exchange may happen when a user visits a website’s login
page. When the user enters her login information, the session key
is already available for encrypting her password. In contrast, with
the on-demand approach, the key exchange happens when the user
hits the password submit button.

The advantage of the on-demand approach is that it does not
waste a website’s resources to perform the key exchange in case the
user does not log in; the disadvantage is that it adds a round trip
time (RTT) to the load latency for the first encrypted request. In
contrast, the asynchronous approach shortens the page load time
(PLT) when a user requests private content for the first time.

login.html

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

We leave it as a configuration option for a website to choose
between on-demand or asynchronous key exchange. We note that
even with the on-demand approach, the key setup is a one-time
cost for an entire InviCloak session.

3.6 Using the Encryption Channel

After the session key setup, the client and server proxy can use it
to encrypt and decrypt private communications between a browser
and a website’s origin server. These operations are described below.

Encrypting an HTTP request: When a browser initiates a
request whose URL is in the list of the client proxy’s configuration
file, the client proxy generates a message that includes a session
ID, a sequence number, and the request content. The session ID
uniquely identifies the InviCloak session it shares with the server
proxy, and the sequence number uniquely identifies the request
within this session to prevent replay attacks (described shortly).
The client proxy encrypts the sequence number and the request
content with the session key it shares with the server proxy, using
a ciphersuite approved by TLS 1.3. It then sends the encrypted
request to the CDN, which will forward it to the origin server.
InviCloak does not change TLS, so the underlying TLS connections
are unaware of the additional encryption added by the client proxy
and will treat the encrypted request as a regular HTTP request.

Our current design only encrypts the body of an HTTP request,
because most headers do not contain private content. The Cookie
header may contain important authentication information, and we
describe cookie encryption and management in § 3.9. The current
design can be extended to encrypt other request headers specified
by the client proxy’s configuration file.

Client-side session state: The session state a client proxy main-
tains include the session ID, the latest outstanding sequence number,
and the session key it shares with the server proxy. The client proxy
stores the session state in a browser cache. Thus, an InviCloak ses-
sion may be valid across multiple web sessions. For private requests
to the same server, the client proxy can reuse the session key. Web
developers can configure an expiration period for the sessions.

Processing an encrypted HTTP request: When a server proxy
receives an encrypted request, it uses the session ID and the en-
crypted sequence number to detect and prevent replay attacks. The
server proxy maintains a sliding window of recently received se-
quence numbers, and any out-of-window requests or requests with
duplicate sequence numbers are discarded by the server proxy. For
a valid request, the server proxy decrypts it, strips off the additional
fields added by the client proxy, and forwards the decrypted request
to the website’s origin server.

The difference between the sliding windows of InviCloak and
TCP is that InviCloak accepts an out-of-order request before its pre-
vious ones are accepted since a browser will launch HTTP requests
in parallel.

Encrypting an HTTP response: When a server proxy receives
an HTTP response of a private URL from the origin server, it will
attach the corresponding sequence number to the beginning of the
response body and then encrypt the response body with the session
key. The server proxy also encrypts certain cookies specified in the
Set-Cookie header to avoid cookie leakage as described in § 3.9.

Shihan Lin, Rui Xin, Aayush Goel, and Xiaowei Yang

Decrypting an HTTP response: When the client proxy re-
ceives an encrypted response from the server proxy, it will decrypt
it using the session key. The response will include the original se-
quence number to prevent a response replay attack. If the client
proxy finds that the sequence number matches the one it sends
out, it returns the response to the web browser; otherwise, it will
discard the response.

3.7 Integrity Verifier

The client proxy and the server proxy are sufficient to defeat a
passive adversary residing inside a CDN, as the private communica-
tions will be protected by InviCloak’s encryption channel. However,
an active adversary residing in a CDN may inject malicious code
and hijack the encryption channel, thereby gaining access to the
private content.

InviCloak uses integrity verification to defend against such an
active adversary. A website will use the private key corresponding
to the public key distributed in its DNS TLSA record to sign CDN-
visible objects such as the client proxy, HTML files, and JavaScript
code. We refer to these objects as CDN-visible executable objects,
which also include the code of the client proxy. The other CDN-
visible objects such as CSS and images are not executable, and
modifying them cannot break InviCloak’s protection. A website
need not sign them to reduce the computational cost. A website
can sign the CDN-visible executable objects offline before a CDN
caches them using any signing tool, such as OpenSSL [82].

We introduce an integrity verifier at the client side to verify the
signatures. Unlike a client proxy, the integrity verifier is a browser
extension to an existing browser. It is a component independent of
a web service and can be securely obtained outside a web session
(e.g., via the extension market in a browser) as we assume in § 2.4.

When a request is sent out, the integrity verifier simultaneously
fetches the server’s new public key through DoH (if not cached),
and it determines the InviCloak’s enablement of a website through
the existence of the TLSA record. When a browser receives the
response from the CDN, the integrity verifier will intercept the
response and examine whether the response body is a CDN-visible
executable object. If so, it validates the signature of the object using
the server’s new public key. If one of the web objects fails on the
verification, the extension will block the loading page and send a
pop-up to alert the user. The verifier can also prompt the user to
report the incident to a central repository. This repository could be
maintained by the distributor of the integrity verifier or any third
party that is interested in aggregating user reports to collectively
detect ongoing security threats. The integrity verifier does not
verify the encrypted responses from the server proxy. Instead, the
client proxy decrypts and validates the integrity of such messages.

An alternative way to preserve the integrity of web resources is
to use the existing web techniques, Subresource Integrity (SRI) [28]
or Signed HT TP Exchanges (SXG) [89]. However, both SRI and SXG
attach the integrity of subresources to the trust of the base HTML
files, and they do not ensure such HTML files’ integrity. Besides,
they require extensive modification of HTML files, while InviCloak
is designed to ease the deployment by minimizing modification to
existing web resources.

InviCloak: An End-to-End Approach to Privacy and Performance in Web Content Distribution

3.8 Partial Deployment of Integrity Verifier

In the InviCloak design, a website can deploy the server proxy and
the client proxy without a user’s involvement to defeat a passive
adversary, but the user needs to install the integrity verifier herself
to defeat an active adversary.

However, a partial deployment of the integrity verifier can deter
active attacks. This is because an adversary cannot tell which user
has installed the integrity verifier. If it launches an active attack
such as the code injection attack, it risks being caught by those users
who have installed the integrity verifier. Admittedly, an adversary
may attempt to conduct a targeted attack, e.g., modifying the client
proxy code for those users who have not installed the integrity
verifier. A typical method to learn about a client’s information
is to use the User-Agent header, but InviCloak can be configured
to mask this header in the client proxy to prevent such informa-
tion leakage. We acknowledge that some browsers do not support
browser extensions currently, but overall, InviCloak provides an
option for security-conscious users and websites to protect their
sensitive data from potential active attackers by using the browsers
that support browser extensions.

3.9 Cookie Management

A website may issue a cookie to a user after the user successfully
authenticates herself. We refer to such a cookie as a user authenti-
cation cookie. When a user’s HT TP request presents the cookie, the
website may return private content available only to an authenti-
cated user. Currently, such cookies are visible to a CDN in an HTTP
request/response header. An adversary inside a CDN may intercept
this cookie and attempt to use it to access a user’s private content.
InviCloak prevents such leakage by encrypting a user’s authen-
tication cookie with the session key established between the client
and the server proxy. A website will specify which cookies are
private to a CDN (referred to as private cookies) in its server proxy’s
configuration file. The server proxy will encrypt the private cook-
ies in the Set-Cookie header of an HTTP response and decrypt
the cookies in the Cookie header of an HTTP request. A client
proxy need not decrypt the cookies, so the browser will store the
encrypted ones and attach them to request headers when needed.
The encryption binds a user authentication cookie to the In-
viCloak session where the session key is established. When an
on-path adversary replays an encrypted user authentication cookie,
it cannot impersonate the user, because it does not have the cor-
responding session key to generate a valid private request to the
server. It cannot decrypt an encrypted response, either. Therefore,
the adversary cannot gain access to a user’s private content.
Since InviCloak’s session state are stored in the browser cache,
InviCloak can decrypt the existing cipher-cookies as long as a user
does not clear the cache, and the InviCloak session is not expired.
Thus, a user does not need to re-login when she revisits a web page.
We note that websites may share cookies with CDNs. For ex-
ample, a website may share a paywall cookie after a user logs into
a paywall and obtains content behind the paywall. Such cookies
are separate from authentication cookies and are referred to as
signed cookies [12, 25]. Signed cookies should be configured as
CDN-visible and InviCloak will not encrypt them nor affect the
existing cookie-sharing practice between a CDN and a website.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

4 SECURITY ANALYSIS

In this section, we analyze InviCloak’s security properties. Our
analysis suggests that InviCloak can preserve confidentiality and
integrity in the presence of a compromised CDN or a compromised
DNS provider.

Man-in-the-Middle attacks: An attacker inside a CDN is on
the communication path between a client and an origin server and
may attempt to eavesdrop and tamper the messages it transmits.
However, InviCloak enables a client and an origin server to establish
a secret session key to encrypt their private content. A server signs
its key exchange message with a private key that it does not share
with the CDN, so the CDN cannot compromise the session key
setup process. Therefore, even if an on-path adversary may have
access to the TLS private key of a website, it cannot eavesdrop or
tamper with the private content that a client and an origin server
exchange.

Code injection attacks: In the InviCloak design, the client
proxy is a JavaScript library, so a client may download it from
a CDN. An attacker inside a CDN may attempt to inject or modify
the code in the client proxy to obstruct InviCloak’s session key
setup. InviCloak uses the integrity verifier (§ 3.7) to prevent such
attacks.

Replay attacks: An attacker inside a CDN may replay messages
it receives between a client and an origin server. We prevent these
attacks by including a session ID and an encrypted sequence num-
ber in a client’s request (§ 3.6). The server proxy can use the request
ID to detect a replayed client request.

Forward secrecy: InviCloak provides forward secrecy because
it uses the Diffie-Hellman key exchange protocol as in TLS 1.3 [72]
to encrypt private content. The long-term secret in the protocol is
the website’s private key. Even if this private key or future session
keys are compromised, an attacker cannot decrypt the messages
sent in the past sessions.

Impersonating as a user: As in TLS [72], InviCloak’s key ex-
change protocol does not authenticate a user. A malicious adversary
may attempt to impersonate as a user to access private content, but
we hypothesize that a website will use additional authentication
mechanisms such as a login password to protect private content.
Therefore, although the adversary can establish a session key with
the origin server as any client can, it cannot authenticate as the user.
In addition, we encrypt the user authentication cookie using the
session key after a user authenticates herself. As described in § 3.9,
this design binds a user’s authentication cookie to the InviCloak
session key. Thus, an on-path attacker cannot impersonate a user
to access the user’s private content protected by the session key.

DDoS attacks: InviCloak does not change the current CDN ser-
vice model, so an origin server enjoys the same DDoS protection
benefits as in the current service model. The current DDoS protec-
tion service of a CDN has the caveat that if an attacker uncovers the
IP address of the origin server [83], she may directly flood DDoS
traffic at the server. InviCloak provides an additional benefit in this
case. Since a client will only communicate with an origin server via
a CDN, the server can use router filters that are resistant to source
address spoofing to whitelist the traffic from the CDN [11, 43].

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Application-layer attacks: A CDN may act as a Web Applica-
tion Firewall (WAF) to filter client requests that contain application-
layer attack payloads [48], including SQL injection [50], cross-
site scripting (XSS) [87], and application-layer DDoS attack re-
quests [41, 88]. With our solution, a client’s requests that include
private content are encrypted. Although a CDN can continue to fil-
ter unencrypted requests, it can no longer filter encrypted requests.

A website can employ a WAF by itself to defend against such
attacks. There exists an open-source WAF, ModSecurity [21], avail-
able to two commonly used web servers: Apache [17] and NG-
INX [71]. Besides, the WAF rules for commonly known attacks are
openly available [23]. Developers can maintain a WAF with NGINX
and ModSecurity through a simple one-line configuration. More-
over, a general defense provided by a CDN might be ineffective,
as application-layer attacks such as algorithmic complexity DDoS
attacks [39, 41] can be site-specific. A website needs to deploy a
site-specific WAF anyway for effective attack protection. Given
InviCloak’s protection for privacy, a website may consider it an
acceptable tradeoff to deploy an on-site WAF and filter malicious
requests after they are decrypted.

A compromised DNS provider: InviCloak uses DNSSEC and
DoH to secure key distribution. A website’s public key may be
tampered with when its DNS provider is compromised. In this
case, as long as the adversary does not obtain the website’s TLS
private key or session key shared with the website’s CDN provider,
it cannot successfully impersonate a website to complete the TLS
exchange or the session key exchange between a client proxy and a
server proxy. Therefore, the adversary is still unable to gain access
to users’ private content.

A powerful attacker that compromises both a website’s DNS
provider and CDN provider will compromise InviCloak’s security.
Technically, it is possible to defeat such threats by distributing a
new TLS certificate instead of a public key in a website’s TLSA
record and modifying browser implementations to validate the new
certificate. However, we believe the risk of such threats is low and
opt for a design that does not require browser modifications.

5 IMPLEMENTATION

We implement a prototype client proxy using JavaScript and Ser-
vice Worker API (SW) [78]. The same implementation works for
browsers that support SW including Firefox, Chrome, Safari and
Edge. SW has been enabled in mainstream browsers (Firefox, Chrome,
Safari, and Edge) since 2018 [30]. In the case where a browser is
outdated and does not support SW, the server proxy will reject the
request without encryption by SW for security reasons and return
a response to prompt the user to upgrade her browser.

We use the Web Cryptography API [84] provided by browsers for
cryptographic algorithms. We use the ciphersuite AEAD-AES256-
GCM-SHA384 for symmetric encryption, and use the curve NIST P-
256 for Diffie-Hellman key exchange. Both algorithms are approved
by TLS1.3 [72]. The lines of JavaScript code for the client proxy
code (excluding the configuration file) is ~590.

For the integrity verifier, we implement it as a Chrome and Fire-
fox extension. It takes less than 300 lines of JavaScript code. One
complication is that the current implementation of Chrome lacks a
browser extension API, webRequest.filterResponseData(), to

Shihan Lin, Rui Xin, Aayush Goel, and Xiaowei Yang

read the response body [3], which is already implemented in Fire-
fox [13]. A discussion and a proposal from Chrome developers
show that the API does not introduce new vulnerabilities, and it is
missing because of the technical complexity[1, 2]. Thus, we pro-
vide a Chromium (the open-source version of Chrome) patch to
implement the function.

For the server proxy, we implement it in C as a module to a
popular web server NGINX. It takes ~2000 lines of code. We release
our code to facilitate InviCloak’s deployment [63]. We include a
more detailed description of our implementation and sample con-
figuration files in Appendix B.

6 EVALUATION

We evaluate the performance of our prototype implementation
of InviCloak, and compare it with related work. First, we micro-
benchmark the computational overhead by measuring the computa-
tion time of each InviCloak operation. Second, we evaluate how the
added overhead affects an origin server and a CDN’s edge server’s
throughput along with the page load times (PLTs) of realistic web
pages at the client side. We compare this overhead with the TEE-
based solution, Phoenix [51]. We also evaluate InviCloak’s overhead
on a modern web application using Cloudflare. Besides performance
overhead, we estimate how much effort it takes to deploy InviCloak
at a website using the lines of configuration a website needs to
make to deploy InviCloak. Finally, we analyze the deployment cost
of InviCloak and compare it with Phoenix. We do not directly com-
pare InviCloak’s performance with the TLS-modification-based
solutions [33, 59, 67] and the two-domain solution [47] as their
performance can be approximated by the baseline client/server
performance without InviCloak enabled [47, 67]. We describe each
of the experiments and the evaluation results in detail.

Testbed: We set up a small testbed of three Dell Precision T3620
machines in our experiments. The three machines serve as a client,
a CDN, and a website’s origin server, respectively. Each machine has
an Intel Core i7-7700 CPU and 32 GB of RAM, and runs Ubuntu 16.04.
The three machines connect to each other via Ethernet. We use the
tool, Linux Traffic Control, (tc) [55] to configure the bandwidth and
RTT values between the machines if necessary. The server machine
then runs the NGINX implementation and configuration as we
describe in § 3.4. In order to emulate CDN functions, we set up an
NGINX proxy or Phoenix at the CDN machine. In our experiments,
we use Chromium (Version 87.0.4280.88) as the browser.

6.1 Computation Overhead

Experiments: We let the client machine load our client proxy
implementation into Chromium. It sends synthetic web requests
to the origin server, and the server responds with synthetic web
responses. In order to measure how the payload size affects the
computational overhead, we vary the payload size of an HTTP
request/response from 2 KB to 8 MB, because 90% of web pages are
smaller than (8 MB) [9] at the time of this work.

We instrument the client proxy, the server proxy, and the in-
tegrity verifier to record the computation time of the encryption,
decryption, and signature verification operations. We do not show
signature generation overhead because websites can sign the static
files offline. The measurement includes the complete computational

InviCloak: An End-to-End Approach to Privacy and Performance in Web Content Distribution

—60 &4 .
é -@-Encryption P = h Encrypt{on
© -2 Decryption o 3| = Decryption
E 40 Signature Verification E

S 82

8 s

3 3

€ IS

o o

o o

2 8 32 128 512 20488192 2 8 32 128 512 20488192
Payload Size (KB) Payload Size (KB)

(a) Client side (b) Server side

Figure 2: This figure shows the computational time our testbed ma-
chines take to perform InviCloak’s cryptographic operations.

overhead caused by the cryptographic algorithms and the other
necessary operations such as memory allocation and copy. We do
not measure the session key setup overhead in this experiment, as
it is a one-time cost per session. However, we do measure it in the
PLT experiment (§ 6.3). We repeat each experiment one hundred
times and use the mean values as results.

Results: Figure 2 shows the results of these experiments. The
encryption, decryption, and signature overhead grow almost lin-
early with the size of the payload. The computation overhead at the
server is one order of magnitude smaller than that at the client in
all cases. The reason for this performance gap is that we implement
the server proxy in C, while the client proxy is in JavaScript for easy
deployment. For payloads smaller than 8 MB, the encryption and
decryption take around 3 ms at the server. At the client, the encryp-
tion takes less than 50 ms while the decryption takes around 60 ms.
Decryption is slower than encryption at the client side because
the decryption code is more complicated in our implementation
and supports streamlined decryption of large responses. The client
takes around 60 ms to verify the signature of an 8 MB file. Our test
using a simple tool we developed for signature generating takes
16 ms for an 8 MB file on the server.

We consider the computation overhead of InviCloak acceptable
at both the server side and the client side. Furthermore, as the
median web page size is around 2 MB [9], much smaller than 8MB,
we expect InviCloak’s overhead to be low in practice. We validate
this argument by evaluating the PLTs in § 6.3 and § 6.4.

6.2 CDN & Server Throughput

Experiments: We run two sets of experiments to test the through-
put of the CDN and the server, respectively. We use GoHTTP-
Bench [6], which is a multi-thread version of ApacheBench [14],
to send 50K HTTP requests in total from the client machine to the
CDN machine or to the server machine. We vary the size of an
HTTP response from the CDN or the server from 1 KB to 8 MB.
GoHttpBench will send requests with 64 concurrent threads to sim-
ulate 64 concurrent clients, which keeps the server machine or the
CDN machine’s CPU usage exceeding 95%.

For the CDN performance evaluation, we measure the through-
put of Phoenix and a baseline (an NGINX proxy). Since InviCloak
does not require any modification of a CDN, we use the baseline
performance to represent the CDN performance when InviCloak
is deployed. For the origin server performance, we measure the

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 1: The sum of object sizes in the crawled web pages. Login
pages do not contain any private content. The numbers in paren-
theses indicate the number of URLSs. ‘JS’ refers to JavaScript.

Median Mean

All 2476 KB (47) | 3895 KB (63)
Login pages | HTML | 85KB (4) 225 KB (4)

JS 1794 KB (17) | 2815 KB (25)

All 5361 KB (74) | 6396 KB (93)
Private pages Private | 210 KB (7) 505 KB (17)

HTML | 212KB (4) | 344 KB (6)

JS 3551 KB (30) | 5378 KB (34)

throughput of an NGINX proxy with InviCloak and a baseline (an
NGINX proxy without InviCloak). Since Phoenix does not require
any modification of an origin server, we use the baseline perfor-
mance to represent the origin server’s performance when Phoenix
is deployed.

Results: Figure 3a shows the results of the CDN performance
experiments. As we can see, Phoenix introduces considerable over-
head to a CDN server. Its throughput is only about one-third of
baseline’s in each experiment, which is consistent with the results
in the original Phoenix paper [51]. Figure 3b shows the results of ori-
gin server performance experiments. InviCloak reduces the server
throughput by less than 5% for payload sizes ranging from 1 KB
to 8 MB. Overall, due to different designs, InviCloak and Phoenix
possess different advantages. Phoenix preserves the origin server’s
throughput but degrades the CDN’s throughput significantly. Invi-
Cloak does not introduce overhead to a CDN server, but slightly
slows down the origin server.

6.3 Client Page Load Times

We use realistic web pages to estimate how InviCloak affects a
user’s perceivable performance. We crawl the two groups of web
pages from the top-50 websites that we are able to register and
log in from Alexa’s top-100 websites. For the first group, we crawl
the login page of each website. Some websites embed login forms
inside the homepage instead of a separate login page. In such cases,
we crawl their homepages as the login pages. For the second group,
we manually log into each website and crawl one private web page
that contains private information such as the profile, the visiting
history, or the list of favorite items. We mirrored these web pages
in our testbed.

For the login pages, we regard each web object as CDN-visible
as it does not require a user login. For the private pages, we use the
HTTP Cache-Control header to identify the non-cacheable web
objects. We regard all non-cacheable objects as private objects in
our evaluation and include their URLs in the configuration files.
InviCloak will encrypt such objects in the experiments. For each
web page, we sum up the size of embedded web objects. Among
the crawled web pages, we calculate the median and mean of the
sum values, as shown in Table 1. The average size of login pages
and private pages is 3895 KB and 6896 KB, respectively. On average,
a private page contains 505 KB of private objects.

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

3
g X 10
m I InviCloak / Baseline (64 clients)
g6 = Phoenix (64 clients)
=]
24
D
3
E 2
'_
0
1 2 8 32 128 512 2048 8192
Payload Size (KB)
(a) CDN throughput

Shihan Lin, Rui Xin, Aayush Goel, and Xiaowei Yang

3
8 x10

2 I InviCloak (64 clients)
=6 BE= Phoenix / Baseline (64 clients)
5
&4
(=)
3
E 2
'_

1 2 8 32 128 512 2048 8192

Payload Size (KB)
(b) Server throughput

Figure 3: This figure shows how InviCloak and Phoenix affect a server and a CDN’s throughput. The throughput is in the unit of HTTP

responses per second.

[—Baseline
8 0.5 Enc —Baseline
----- Enc&Sign Enc
—--Phoenix | f..§ Enc&Sign
. - GDN-off - CDN-off
0
0 2 4 6 8 0.5 1 1.5 2
PLT (s) PLT (s)
(a) Alexa websites (b) DeathStarBench

Figure 4: (a) CDF of PLTs on 50 Alexa websites (§ 6.3). (b) CDF of
DeathStarBench’s PLTs from six geographically distributed clients
(§ 6.4). The unit of each figure’s x-axis is second.

To measure the PLT of each test web page, we instrument the
browser at the client machine send all requests to the CDN machine.
The CDN machine replies with the CDN-visible web objects it
caches and forwards the private requests to the server machine. To
present a more realistic evaluation, we limit the bandwidth between
machines to 100 Mbps. According to [32], the average RTT between
clients and Cloudflare’s edge servers is 36 ms. Thus, we use this
value as the RTT between the client and the CDN machine. We
set the RTT between the CDN and the server as 100 ms, which is
approximately the RTT measured between two machines located
on the east coast and the west coast of the United States. We load
each web page five times in Chromium and compute the average
PLT for each web page.

We evaluate InviCloak’s initiation overhead by measuring the
PLT increments of the crawled login pages when they are used as
InviCloak’s landing page. The initiation process includes the verifi-
cation of CDN-visible executable objects, installation of the client
proxy, and the asynchronous key exchange as discussed in § 3.5.
The results show that InviCloak’s initiation increases a login page’s
PLT by less than 8% for all websites. Specifically, the overheads on
47 websites are less than 5%. We note that such an overhead is a
one-time cost, as the CDN-visible objects and InviCloak’s session
state will be cached by the browser after a user visits the landing
page for the first time.

As for the crawled private pages, we run experiments in multiple
settings to show how various computational overhead affects the

10

PLTs. For the first setting, we measure the PLTs when both Invi-
Cloak and Phoenix are disabled as the baseline (Baseline). In the
second setting, the client machine runs only the client proxy with-
out the integrity verifier (Enc). For the third one, the client machine
runs both the client proxy and the integrity verifier (Enc&Sign). In
these two settings of InviCloak, the client proxy has already set
up the session key with the server proxy in the landing page. To
compare InviCloak with the existing solution, we measure the PLTs
when Phoenix is enabled (Phoenix). All the settings above use a
CDN with warm cache. We also measure the PLTs with cold cache,
i.e., the CDN cache is disabled (CDN-off).

Figure 4a shows the results of the 50 websites in each setting.
The PLTs under the Baseline, Enc, and Enc&Sign settings have
similar distributions, and there is a large gap between them and the
CDN-of'f curve. This result suggests that InviCloak largely preserves
a CDN’s performance benefit. Besides, InviCloak’s overhead is
lower than that of Phoenix. More than 32% of PLTs exceed 4.0s when
Phoenix is on, but more than 92% of PLTs under the Baseline, Enc,
and Enc&Sign settings are less than 4.0s. The median PLT with
Phoenix is 2.8s, while the median PLTs for Baseline, Enc, and
Enc&Sign are 2.0s, 2.1s, and 2.1s, respectively.

6.4 A Modern Web Application with Cloudflare

Evaluating InviCloak in a laboratory setting with crawled web
pages may not fully capture InviCloak’s performance in reality. To
address this limitation, we run a modern web application, DeathStar-
Bench [44], and evaluate InviCloak with geographically distributed
clients on the Internet. We use Cloudflare, one of the largest CDN
providers as the CDN. We cannot compare with Phoenix in this
evaluation because TEE is not available on any CDN today.

DeathStarBench is developed as a benchmark for studying the
performance of modern cloud services [44]. It adopts the popular
microservice architecture and is used by several academic and
industrial institutions [44]. We use the social network provided by
DeathStarBench in our evaluation, which provides functions similar
to Twitter. In addition to a realistic web application, we also use
realistic web content for our evaluation. We import a small social
graph with 962 nodes and 18,812 edges from Facebook into the
social network [75]. We also crawled 612,455 tweets from randomly
selected 962 Twitter users through Twitter API [24], and imported
the tweets into the database.

InviCloak: An End-to-End Approach to Privacy and Performance in Web Content Distribution

We deploy DeathStarBench with the crawled workload on a
virtual machine of AWS in Virginia. We use six geographically
distributed virtual machines of AWS as the clients. The clients are
distributed in six AWS regions, including California, Montreal, Paris,
Singapore, Sao Paulo, and Bahrain. Each virtual machine used in
this experiment has 4 vCPUs and 8 GB of RAM and runs Ubuntu
20.04. We use Cloudflare as the CDN to cache the static resources
near the clients.

In our experiment, we randomly select 10 users from the database,
and instrument each client to login as each user and visit three
private pages of the user. The three pages include a page showing
at most 100 recent tweets of a user’s followees, a page showing at
most 100 recent tweets of the user, and a page showing the user’s all
followees and followers. To show a conservative result, we regard all
tweets, the followee list, and the follower list as private data. They
are encrypted and not cached on Cloudflare. The other resources
are public and cached on Cloudflare. To be conservative, we not
only sign HTML and JavaScript files, but also sign CSS files. As
defined in § 6.3, we run experiments in four settings: Baseline, Enc,
Enc&Sign, and CDN-of f. Overall, each of the six clients will visit
each of the three pages of all 10 users for five times. We compute
the average PLT for each page. Thus, we have 6 X 3 X 10 = 180 PLT
values in each setting.

As shown in Figure 4b, we can find three explicit stages in the
curves: Si, S2, S3, which originates from the variance of PLTs be-
tween different locations. The low network latency in California,
Montreal, and Paris lead to small PLTs shown in S;. With the larger
network latency, Sz includes the PLTs in Sao Paulo and Bahrain,
while S3 shows the PLTs in Singapore. Besides stages, a large gap
exists between the curve of CDN-of f and the other ones, indicating
that InviCloak retains the performance benefit of a CDN. Moreover,
Baseline, Enc, and Enc&Sign have similar distributions, indicating
InviCloak has low overhead. Specifically, in either setting of Invi-
Cloak, InviCloak introduces less than 5% overhead to 170 of all 180
PLT values. Therefore, we conclude that InviCloak’s performance
overhead is low.

6.5 Deployment Effort

In this section, we estimate InviCloak’s deployment effort.

We use the lines of code (LoC) to measure the configuration over-
head of crawled websites and DeathStarBench. For the 50 websites,
we add the private URLs of each site into the server proxy configu-
ration file (nginx. conf) and edit the client proxy configuration file
(configure. js) to include the private URLs. We insert the code
for Service Worker registration into each website’s login page. The
LoC of nginx.conf ranges from 4 to 62 with an average of 13.7
and a median of 8.0. For configure. conf, the LoC ranges from 10
to 68 with an average of 19.7 and a median of 14.0. For all websites,
the LoC of registration is 4. As for DeathStarBench, we also use 4
LoC to register a Service Worker in the login page. Besides, we add
a configure.js with 9 LoC and inserting 14 LoC into the existing
nginx.conf.

InviCloak’s deployment requires a website developer to explicitly
separate private URLs from public URLs. We discuss this process
and the impacts of possible configuration errors made by a website’s
developer in two cases.

11

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

First, if the website developers have categorized the URLs into
private and public directories (e.g. /private and /public), they can
list the private URLs by wildcard or regular expressions in the
configuration file. The configuration effort in this case is low. If the
website developers erroneously categorize the URLs, the errors will
be propagated into InviCloak’s configuration.

Second, if the URLs are not categorized, we propose a method
to automatically generate InviCloak’s configuration through the
Cache-Control header as we did in the experiments of § 6.3. This
method is effective because current website developers manage the
URLs that should not be cached through the HTTP headers [4, 58].
With such a method, the configuration effort is also low.

There are two sources of errors in this case: 1) developers er-
roneously configure the Cache-Control header; 2) a website may
serve non-cacheable public objects or cacheable private objects. The
first source is introduced by a website’s erroneous usage of the CDN
and is not introduced by InviCloak. As for the second source, our
method would regard a non-cacheable public URL as private and a
cacheable private one as public. The former only affects InviCloak’s
efficiency. The latter will lead to privacy leakage. However, for web-
sites that would like to protect user privacy, it is a misconfiguration
to allow a CDN to cache private objects [26, 46, 64]. Therefore, this
type of error also originates from websites’ URLs misconfiguration.

In summary, the configuration effort of InviCloak is low, as
the configuration can be inherited from the existing website URL
categorizations. As a result, any existing errors in a website’s URL
categorization may be propagated into InviCloak’s configuration
and some of the errors may divulge user privacy.

6.6 Estimating Hardware Deployment Cost

We compare the monetary hardware deployment cost of Phoenix
and InviCloak by estimating the amount of new hardware a CDN
provider or a website needs to purchase. We note that this estimate
does not include the changes of operational costs when a website
deploys InviCloak or when a CDN upgrades to use TEE, as those
numbers are difficult to obtain.

Phoenix requires a CDN to support SGX, but it does not require
any upgrade on a website’s origin servers. To make a lower bound
estimate, we assume that all existing edge servers of a CDN support
SGX. Thus, a CDN does not need to replace the old servers with
SGX-enabled servers. We take Akamai, one of the largest CDN
providers, as an example to show the cost of the additional edge
servers.

As shown in Figure 3a, the throughput of Phoenix is about one-
third of a CDN’s edge server. Therefore, when Phoenix is enabled,
a CDN should at least add two times the amount of existing edges
servers to achieve a comparable throughput. Since Akamai has
more than 290K edge servers spread around the world [77], it needs
to add about 290K X 2 = 580K edge servers to maintain its current
throughput. As each Intel Xeon processor that supports SGX will
cost at least $200 [20], the lower bound of the cost to Akamai is
580K X $200 = $116, 000K, which exceeds $100M.

InviCloak is an end-to-end solution, so it does not require any
modification on CDNs. However, unlike Phoenix, it introduces
computational overhead to a website’s origin server. To estimate
the cost to upgrade for a website to deploy InviCloak, we take an

/private
/public

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

e-commerce website, Etsy [19], a US top-50 sites, as an example in
the estimate.

According to [90], Akamai observes 395 GB of traffic for Esty
during a 18-hour period, namely 4909 KB per second. Existing
research shows that 74.2% of requested bytes are cacheable [90].
Therefore, we estimate that the origin server Esty responds with
4909x 1;1_42‘50% = 1706 KB of payload per second. Note that InviCloak
acts as a reverse proxy at the server side, so the added overhead
of InviCloak is independent of the application’s logic. According
to Figure 3b, even when the payload size of each response is as
small as 1 KB, an InviCloak server proxy can serve more than
5000 X 1 = 5000 KB payload per second. Therefore, if we assume
that a website like Etsy deploys the server proxy on a separate
machine, it only needs to add one additional machine as those in our
testbed to support its traffic load. The cost of each machine in our
testbed is less than $600 at the time of this work. Moreover, as the
server proxy slows down an origin server’s throughput by merely
5% in our experiments, if a website’s origin server is not running
near its full capacity, a website may collocate the server proxy with
its origin server without purchasing any new machine. We omit
the hardware cost of on-premise WAFs, because according to a
survey [7], on-premise firewalls are popular among web services.
More than 98.1% already host on-premise firewalls.

We note that this cost comparison is not an apple-to-apple com-
parison because of the essentially different designs of the two so-
lutions. Upgrading a CDN with Phoenix will secure all websites
that use the CDN, while upgrading a website with InviCloak only
secures the website itself. We do not sum up the cost of all web-
sites using the CDN, because the costs of website upgrades are
distributed among their corresponding organizations. Each organi-
zation makes an independent decision, enabling a gradual process
of deployment.

7 LIMITATIONS AND DISCUSSION

Missing extension APIin Chrome and insufficient extension
support in mobile browsers: The integrity verifier of InviCloak
requires an extension API missing in Chrome [2, 3, 13]. This missing
API currently limits the extension’s deployment on Chrome, but
InviCloak still provides a viable option for a website and a user who
desire to protect their private communications. This is because both
the desktop and mobile versions of Firefox already implemented
the API [13]. A user can switch to Firefox if she is concerned with
active attacks. Moreover, we envision this work can facilitate the
enablement of the extension in mobile Chrome and our implemen-
tation of the Chromium patch can assist in the implementation of
the missing API in Chrome. Furthermore, the key idea of securely
distributing the new key pair through the combination of DoH and
DNSSEC in today’s Internet is not limited by the extension. The
integrity verifier can be implemented as a process separated from
the browser.

Limiting CDN’s WAF functions: InviCloak encrypts a user’s
sensitive requests so a CDN can not apply WAF rules to those re-
quests. We consider this limitation acceptable because websites that
are concerned with privacy already built firewalls for private data
on their origin servers. A Firemon report from 573 professionals

12

Shihan Lin, Rui Xin, Aayush Goel, and Xiaowei Yang

in 2019 shows that 40% of respondents have only on-premise fire-
walls, and 58.1% of respondents host both on-premise and cloud
firewalls [7]. Therefore, 98.1% of the surveyed professionals already
hosted on-premise firewalls. It is possible that a website that uses
cloud firewalls may need to extend its current on-premise fire-
wall capabilities after it deploys InviCloak, but it does not start
from scratch. If the website considers the security benefit InviCloak
brings outweighs the overhead of extending its firewall, it may still
consider InviCloak a viable option.

Performance Overhead: InviCloak adds the overhead of cryp-
tographic operations at the client side. Specifically, all users of an
InviCloak-enabled website benefit from the passive attack defense
at the cost of the encryption/decryption overhead, because Invi-
Cloak prevents passive attacks without any client-side operations.
Besides, the overhead of signature verification only affects users
who installed the extension and benefit from the active attack de-
fense. The extension does not conduct verification when it detects
the user is visiting a website without InviCloak as described in
§ 3.7. Despite the overhead, InviCloak retains the performance ben-
efit of CDNs because it does not encrypt public data and CDNs
can still cache them at edge servers. For private data, InviCloak
enables CDNSs to cache them in an encryption format within an
InviCloak session. The session lives across multiple page visits as
described in § 3.6. Furthermore, the computational overhead can
be reduced via optimization techniques at the cost of increased
design and implementation complexity. One technique is to replace
a pre-signed digital signature of a web object with a hash value and
distribute one signed file that includes a list of hash values. Overall,
We believe the current design and implementation of InviCloak
achieves a proper trade-off among performance, deployability, and
usability, and the overhead is acceptable for most websites and
users according to our evaluation in § 6.3 and § 6.4.

Third-party Service Security: An InviCloak-enabled website
(e.g., bank.com) may use third-party services (e.g., service.com) but
InviCloak cannot protect requests to service.com if InviCloak is not
deployed on the service. When a page of bank.com sends a request
to service.com and the URL is listed as private in configure. js
of bank.com, the client proxy of bank.com can intercept the re-
quest but will forward the request without encryption. It is because
service.com does not distribute a new public key in a specific TLSA
record. The request can be protected only when service.com also
deploys InviCloak. We consider such a decision on the third-party
service reasonable because a website has no responsibility and
ability to protect the data of other services.

Attacks on Service Worker and CSS: Recent research has
explored attacks on Service Worker [35, 60, 70]. However, these
attacks exploit the vulnerabilities in the Javascript code of a website.
As discussed in § 2.4, such attacks are orthogonal to our work since
we assume the website’s code is trusted. If an attacker modifies a
website’s JavaScript code to include a vulnerability, InviCloak can
detect it through signature verification.

Besides Service Worker, existing research shows that CSS can
be vulnerable [49, 69]. However, these attacks all exploit specific
vulnerabilities in a website’s HTML or JavaScript code. Although
InviCloak does not sign CSS files by default and CDNs can modify
CSS code, we are not aware of how to launch such attacks with CSS
injection alone and without vulnerabilities in HTML or Javascript

bank.com
service.com
service.com
bank.com
service.com
bank.com
bank.com
service.com
service.com

InviCloak: An End-to-End Approach to Privacy and Performance in Web Content Distribution

code. Furthermore, we can configure CSS to be signed in InviCloak
if future research finds that CSS injection alone can become an
attack vector.

8 RELATED WORK

No protection of session keys: Cloudflare has deployed a solu-
tion called Keyless SSL [79, 80] that allows a website to keep its TLS
private key at the cost of involving the website’s server for every
TLS connection. However, it still reveals the TLS session key to the
CDN. In this solution, the CDN forwards TLS handshake messages
from a client to the website that holds the required private key.
Keyless SSL requires the website to host a key server locally to de-
crypt or sign the handshake messages forwarded by a CDN. Thus,
a CDN that does not know about the private key can complete the
handshakes.

Akamai also has a similar patent [45], and WASP is a similar ap-
proach proposed by Goh et al. [65]. Besides Keyless SSL, a solution
proposed by Liang et al. adopts DANE [42] to inform clients about
a website’s delegation of a CDN provider so that clients will accept
the CDN’s certificate [62]. Overall, these solutions do not protect
users’ private data since a CDN still obtains the session key of an
HTTPS connection.

TEE-based solutions: Another line of research utilizes a tech-
nology called a Trusted Execution Environment (TEE), for example,
Intel Software Guard Extensions (Intel SGX) [29, 38]. STYX [85]
and Harpocrates [27] are two such solutions based on Intel SGX,
but the same problem with Keyless SSL exists: the CDN still knows
the HTTPS session keys. Herwig et al. designed and implemented
the first true “Keyless CDN” called Phoenix [51] using Intel SGX.
Their work achieves the goal of retaining the full functionality
of a CDN while keeping both a website’s TLS private key and an
HTTPS session key from the access of a distrusted CDN. However,
deploying Phoenix with its security guarantees requires that a CDN
upgrade all its edge servers and software to support Intel’s SGX.
The deployment cost may discourage a CDN from migrating to
such a solution (§ 6.6). Besides the financial cost, Phoenix’s edge
server throughput is three to four times lower than a server without
using SGX (§ 6.2). This is a potential performance bottleneck that
will reduce a CDN’s benefits for accelerating web access (§ 6.3).
InviCloak shows a lower overhead than Phoneix in our evaluation
but does not retain the WAF functionality of a CDN.

Two-domain solution: Another solution is to use two separate
domain names for CDN-visible content and private content, respec-
tively. However, this solution faces a few security, performance,
and usability challenges. First and foremost, current websites pre-
fer to use CDNs to deliver their base HTML files for page load
acceleration [86], as shown in our measurement (§ 2.1). Thus, the
two-domain solution cannot prevent an active attacker in a CDN
from tampering with the base HTML files to expose private content.

Besides the security concern, the two-domain solution prevents
a CDN from caching encrypted private content, such as encrypted
private photos, because the private content is in unshared TLS
sessions and CDNs cannot differentiate between HTTP requests. In
contrast, InviCloak retains the current TLS session practice between
websites and CDNs, so CDNs can cache the encrypted HTTP body
and headers without access to the content.

13

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

In addition, websites have to take a few extra steps to deploy
the two-domain solution. They include: (1) A website that already
shared its private key to a CDN needs to revoke the certificate and
reapply for two different TLS certificates. Such a procedure could
be expensive and time-consuming for business certificates [62]. (2)
The website needs to negotiate two different types of services with
its CDN provider (one for caching and the other for forwarding [81])
(3) The domain separation may require extensive web restructure
and modification to include the new domain in the URLs.

CDN-on-Demand: Gilad et al. use the two-domain solution to
build a low-cost on-demand CDN [47]. In their design, they force a
client to fetch all base HTML files from the origin server through
the private domain. Although this design prevents active attacks, it
is incompatible with the current practice that websites use CDNs
to deliver the base HTML files [86] and will increase the page
load times of websites’ landing pages. Finally, it inherits the other
drawbacks of the two-domain solution in terms of functionality
and deployment as discussed above.

TLS modification: Researchers also proposed to modify TLS
to make middleboxes visible in the TLS handshake. Naylor et al.
proposed mcTLS [67] to provide different context keys and use
these keys to control what content middlesboxes can read or write
to. Bhargavan et al. discovered the security vulnerability of mcTLS
and provided an alternative to it with formal proof [33]. Lee et al. ex-
tended mcTLS to maTLS, which makes middleboxes auditable [59].
Compared to InviCloak, such solutions face significant deployment
challenges as they modify the HTTPS/TLS protocol stack. End
users need to explicitly authorize eligible middleboxes’ certificates
in the TLS handshake, which may raise usability concerns. Clients,
servers, and CDNs all need to upgrade their TLS libraries and adapt
their application code to use the new protocol.

Summary: We consider InviCloak strikes a unique balance
among privacy, performance, user interface, and deployment costs.
Table 2 in the appendix compares the features among the various
solutions. Compared to mcTLS and the two-domain solution, Invi-
Cloak does not change the current web interface and requires fewer
changes in the web ecosystem. Compared to the TEE solutions,
InviCloak does not require a hardware upgrade by a CDN provider.

9 CONCLUSION

We have presented InviCloak, a system that allows a website to use
a CDN for DDoS protection and web acceleration without exposing
the sensitive data it exchanges with its users. InviCloak encrypts
sensitive data transmitted between the client and the origin server
so that a distrusted CDN cannot eavesdrop on their communica-
tions. InviCloak introduces low overhead, and it is easy to deploy.
A unilateral deployment by a website can prevent a passive eaves-
dropper in a CDN. If a user installs InviCloak’s browser extension,
InviCloak can prevent an active attacker inside a CDN from eaves-
dropping on or tampering with their private communications.

ACKNOWLEDGMENTS

We sincerely thank anonymous reviewers for their detailed com-
ments. We are also grateful to Jeffrey Chase, Matthew Lentz, Bruce
Maggs, Kartik Nayak, Michael Reiter, and Danyang Zhou for their

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

insightful discussion and feedback. This work is supported in part
by NSF award CNS-1910867.

REFERENCES

(1]

[15]

(18]
[19]
[20]

)
N =

[23]
[24]
[25

[26]

[27]

[28]

[29

[30]

[31

[32]

[33

[34]

[35

[36

[37

2014. Groups: chrome.webRequest Response Body Reading/Editing Pro-
posal. https://groups.google.com/a/chromium.org/g/apps-dev/c/v176iCmRgSs/
m/dIPoHuPtJuM]

2014. WebRequest Response Body Reading/Editing Proposal.
https://docs.google.com/document/d/1iE6M-YSmPtMOsec7pR-
ILWveQie8]QQXTm15JKEcUTS/edit#

2015. Issue 487422: WebRequest API: Allow Extensions to Read Response Body.
https://bugs.chromium.org/p/chromium/issues/detail?id=487422
2019. Control Azure CDN caching behavior with caching rules .
docs.microsoft.com/en-us/azure/cdn/cdn-caching-rules

2019. December 2019 Web Server Survey. https://news.netcraft.com/archives/
2019/12/10/december-2019-web-server-survey.html

2019. GoHTTPBench. https://github.com/parkghost/gohttpbench

2019. State of the Firewall Report 2019. https://www.firemon.com/wp-content/
uploads/2019-FireMon-State- of- the-Firewall-Report.pdf

2020. Let’s Encrypt Stats. https://letsencrypt.org/stats/

2020. State of the Web. https://httparchive.org/reports/state-of-the-web

2021. Deprecated Technologies - Core Processors. https://edc.intel.com/content/
www/us/en/design/ipla/software-development-platforms/client/platforms/
alder-lake-desktop/12th- generation-intel-core-processors-datasheet-volume-
1-of-2/004/deprecated- technologies/

2021. Netfilter. https://www.netfilter.org/

2021. Signed URLs and Signed Cookies Overview. https://cloud.google.com/cdn/
docs/private-content

2021. webRequest.filterResponseData. https://developer.mozilla.org/en-US/docs/
Mozilla/Add- ons/WebExtensions/API/webRequest/filterResponseData

2022. ab - Apache HTTP Server Benchmarking Tool. https://httpd.apache.org/
docs/2.4/programs/ab.html

2022. Alexa Top Sites. https://www.alexa.com/topsites

2022. Amazon CloudFront. https://aws.amazon.com/cloudfront/

2022. Apache HTTP Server Project. https://httpd.apache.org/

2022. Cloudflare. https://www.cloudflare.com/

2022. Etsy. https://www.etsy.com/

2022. Intel Product Specifications. https://ark.intel.com/content/www/us/en/
ark.html

2022. ModSecurity. https://github.com/SpiderLabs/ModSecurity

2022. Module ngx_http_proxy_module. http://nginx.org/en/docs/http/
ngx_http_proxy_module.html

2022. OWASP ModSecurity Core Rule Set. https://coreruleset.org/

2022. Twitter APL https://developer.twitter.com/en/docs/twitter-api

2022. Using signed cookies. https://docs.aws.amazon.com/AmazonCloudFront/
latest/DeveloperGuide/private-content-signed-cookies.html

2022. What is Cache-Control? Cache explained. https://www.cloudflare.com/
learning/cdn/glossary/what-is-cache-control/

Rufaida Ahmed, Zirak Zaheer, Richard Li, and Robert Ricci. 2018. Harpocrates:
Giving Out Your Secrets and Keeping Them Too. In Proc. of IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 103-114.

Devdatta Akhawe, Frederik Braun, Francois Marier, and Joel Weinberger. 2016.
Subresource Integrity. W3C Recommendation (2016).

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
Technology for CPU Based Attestation and Sealing. In Proc. of HASP, Vol. 13.
ACM New York, NY, USA, 7.

Jake Archibald. 2022. IS Service Worker Ready? https://jakearchibald.github.io/
isserviceworkerready/

Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose. 2005. RFC
4033: DNS Security Introduction and Requirements. Internet Engineering Task
Force (IETF) (2005).

Emir Beganovi¢. 2019. Analysing Global CDN Performance. https://labs.ripe.net/
Members/emirb/analysing-global-cdn-performance

Karthikeyan Bhargavan, Ioana Boureanu, Antoine Delignat-Lavaud, Pierre-Alain
Fouque, and Cristina Onete. 2018. A Formal Treatment of Accountable Proxying
over TLS. In Proc. of S&P. IEEE, 799-816.

Frank Cangialosi, Taejoong Chung, David Choffnes, Dave Levin, Bruce M Maggs,
Alan Mislove, and Christo Wilson. 2016. Measurement and Analysis of Private
Key Sharing in the HTTPS Ecosystem. In Proc. of CCS. ACM, 628-640.
Phakpoom Chinprutthiwong, Raj Vardhan, GuangLiang Yang, and Guofei Gu.
2020. Security Study of Service Worker Cross-Site Scripting. In Proc. of ACSAC.
ACM, 643-654.

Cloudflare. 2021. Understanding a CNAME Setup. https://support.cloudflare.com/
hc/en-us/articles/360020348832-Understanding-a- CNAME-Setup
Internet Systems Consortium. 2022. dig(1) - Linux Man Page.
//linux.die.net/man/1/dig.

https://

https:

14

[38

[39

[40

[41]

[42

(43

[44]

[45

[46

[47

S
&

o
=

[
_

[61

[62

[63

[64

o
2

(66

[67

Shihan Lin, Rui Xin, Aayush Goel, and Xiaowei Yang

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1-118.

Scott A Crosby and Dan S Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks. In Proc. of Security Symposium. USENIX, 29-44.

Leslie Daigle. 2004. RFC 3912: WHOIS Protocol Specification. Internet Engineering
Task Force (IETF) (2004).

Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasilakis, Vincent Liu, Boon Thau
Loo, and Linh Thi Xuan Phan. 2019. Detecting Asymmetric Application-layer
Denial-of-Service Attacks In-Flight with Finelame. In Proc. of ATC. USENIX,
693-708.

Viktor Dukhovni and Wes Hardaker. 2015. RFC 7671: The DNS-Based Authenti-
cation of Named Entities (DANE) Protocol: Updates and Operational Guidance.
Internet Engineering Task Force (IETF) (2015).

Toby Ehrenkranz and Jun Li. 2009. On the State of IP Spoofing Defense. Transac-
tions on Internet Technology (TOIT) 9, 2 (2009), 1-29.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proc. of ASPLOS. 3-18.

Charles E Gero, Jeremy N Shapiro, and Dana J Burd. 2017. Terminating SSL
Connections without Locally-Accessible Private Keys. U.S. Patents, 9647835B2.
Omer Gil. 2017. Web Cache Deception Attack. https://omergil.blogspot.com/
2017/02/web-cache-deception-attack.html

Yossi Gilad, Amir Herzberg, Michael Sudkovitch, and Michael Goberman. 2016.
CDN-on-Demand: An Affordable DDoS Defense via Untrusted Clouds. In Proc.
of NDSS. ISOC.

David Gillman, Yin Lin, Bruce Maggs, and Ramesh K Sitaraman. 2015. Protecting
Websites from Attack with Secure Delivery Networks. Computer 48, 4 (2015),
26-34.

Mike Gualtieri. 2018. Stealing Data With CSS: Attack and Defense. https://
www.mike-gualtieri.com/posts/stealing- data- with- css-attack-and- defense
William G Halfond, Jeremy Viegas, Alessandro Orso, et al. 2006. A Classifica-
tion of SQL-Injection Attacks and Countermeasures. In Proc. of International
Symposium on Secure Software Engineering, Vol. 1. IEEE, 13-15.

Stephen Herwig, Christina Garman, and Dave Levin. 2020. Achieving Keyless
CDNs with Conclaves. In Proc. of Security Symposium. USENIX.

Paul Hoffman and Patrick McManus. 2018. RFC 8484: DNS Queries over HTTPS
(DoH). Internet Engineering Task Force (IETF) (2018).

Paul Hoffman and Jakob Schlyter. 2012. RFC 6698: The DNS-Based Authentica-
tion of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA.
Internet Engineering Task Force (IETF) (2012).

Cheng Huang, Angela Wang, Jin Li, and Keith W Ross. 2008. Measuring and
Evaluating Large-Scale CDNs. In Proc. of IMC. ACM, 15-29.

Bert Hubert, Thomas Graf, Greg Maxwell, Remco van Mook, Martijn van Oost-
erhout, P Schroeder, Jasper Spaans, and Pedro Larroy. 2002. Linux Advanced
Routing & Traffic Control. In Proc. of Ottawa Linux Symposium, Vol. 213.

Hugo Krawczyk and Pasi Eronen. 2010. RFC 5869: Hmac-based Extract-and-
Expand Key Derivation Function (HKDF). Internet Engineering Task Force (IETF)
(2010).

Balachander Krishnamurthy, Craig Wills, and Yin Zhang. 2001. On the Use and
Performance of Content Distribution Networks. In Proc. of IMC. ACM, 169-182.
Alex Krivit and Zaidoon Al Hadi. 2021. CDN-Cache-Control: Precision Control for
your CDN(s). https://blog.cloudflare.com/cdn-cache-control/

Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi, Selin Chun, Taejoong
Chung, and Ted Taekyoung Kwon. 2019. maTLS: How to Make TLS Middlebox-
aware?. In Proc. of NDSS. ISOC.

Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride
and prejudice in progressive web apps: Abusing native app-like features in web
applications. In Proc. of CCS. ACM, 1731-1746.

Akash Levy. 2017. CDNs and Privacy Threats: A Measurement Study. Master’s
thesis. Princeton University, Princeton, NJ.

Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao Wan, and Jianping Wu. 2014.
When HTTPS meets CDN: A Case of Authentication in Delegated Service. In
Proc. of S&P. IEEE, 67-82.

Shihan Lin. 2022. InviCloak Source Code. https://github.com/SHiftLin/CCS2022-
InviCloak

Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu, Bruno Crispo, Engin Kirda,
and William Robertson. 2020. Cached and Confused: Web Cache Deception in
the Wild. In Proc. of Security Symposium. USENIX, 665-682.

Nagendra Modadugu and Eu-Jin Goh. 2002. The Design and Implementation of
WASP: A Wide-Area Secure Proxy. Technical Report. Stanford University.

David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and Peter
Steenkiste. 2017. And then There were More: Secure Communication for More
than Two Parties. In Proc. of CONEXT. ACM, 88-100.

David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego R Lopez, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Pe-
ter Steenkiste. 2015. Multi-context TLS (mcTLS): enabling secure in-network
functionality in TLS. In Proc. of SSIGCOMM. ACM, 199-212.

https://groups.google.com/a/chromium.org/g/apps-dev/c/v176iCmRgSs/m/dIPoHuPtJuMJ
https://groups.google.com/a/chromium.org/g/apps-dev/c/v176iCmRgSs/m/dIPoHuPtJuMJ
https://docs.google.com/document/d/1iE6M-YSmPtMOsec7pR-ILWveQie8JQQXTm15JKEcUT8/edit#
https://docs.google.com/document/d/1iE6M-YSmPtMOsec7pR-ILWveQie8JQQXTm15JKEcUT8/edit#
https://bugs.chromium.org/p/chromium/issues/detail?id=487422
https://docs.microsoft.com/en-us/azure/cdn/cdn-caching-rules
https://docs.microsoft.com/en-us/azure/cdn/cdn-caching-rules
https://news.netcraft.com/archives/2019/12/10/december-2019-web-server-survey.html
https://news.netcraft.com/archives/2019/12/10/december-2019-web-server-survey.html
https://github.com/parkghost/gohttpbench
https://www.firemon.com/wp-content/uploads/2019-FireMon-State-of-the-Firewall-Report.pdf
https://www.firemon.com/wp-content/uploads/2019-FireMon-State-of-the-Firewall-Report.pdf
https://letsencrypt.org/stats/
https://httparchive.org/reports/state-of-the-web
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/deprecated-technologies/
https://www.netfilter.org/
https://cloud.google.com/cdn/docs/private-content
https://cloud.google.com/cdn/docs/private-content
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.alexa.com/topsites
https://aws.amazon.com/cloudfront/
https://httpd.apache.org/
https://www.cloudflare.com/
https://www.etsy.com/
https://ark.intel.com/content/www/us/en/ark.html
https://ark.intel.com/content/www/us/en/ark.html
https://github.com/SpiderLabs/ModSecurity
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
https://coreruleset.org/
https://developer.twitter.com/en/docs/twitter-api
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-signed-cookies.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-signed-cookies.html
https://www.cloudflare.com/learning/cdn/glossary/what-is-cache-control/
https://www.cloudflare.com/learning/cdn/glossary/what-is-cache-control/
https://jakearchibald.github.io/isserviceworkerready/
https://jakearchibald.github.io/isserviceworkerready/
https://labs.ripe.net/Members/emirb/analysing-global-cdn-performance
https://labs.ripe.net/Members/emirb/analysing-global-cdn-performance
https://support.cloudflare.com/hc/en-us/articles/360020348832-Understanding-a-CNAME-Setup
https://support.cloudflare.com/hc/en-us/articles/360020348832-Understanding-a-CNAME-Setup
https://linux.die.net/man/1/dig
https://linux.die.net/man/1/dig
https://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
https://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
https://www.mike-gualtieri.com/posts/stealing-data-with-css-attack-and-defense
https://www.mike-gualtieri.com/posts/stealing-data-with-css-attack-and-defense
https://blog.cloudflare.com/cdn-cache-control/
https://github.com/SHiftLin/CCS2022-InviCloak
https://github.com/SHiftLin/CCS2022-InviCloak

InviCloak: An End-to-End Approach to Privacy and Performance in Web Content Distribution

[68] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The Akamai Network:
a Platform for High-Performance Internet Applications. SIGOPS OSR 44, 3 (2010),
2-19.

OWASP. 2018. Testing for CSS Injection (OTG-CLIENT-005). https://
wiki.owasp.org/index.php/Testing_for_CSS_Injection_(OTG-CLIENT-005)
Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P
Markatos, Sotiris loannidis, and Giorgos Vasiliadis. 2019. Master of Web Puppets:
Abusing Web Browsers for Persistent and Stealthy Computation. In Proc. of NDSS.
ISOC.

Will Reese. 2008. Nginx: the High-Performance Web Server and Reverse Proxy.
Linux Journal 2008, 173 (2008), 2.

Eric Rescorla. 2018. RFC 8446: The Transport Layer Security (TLS) Protocol
Version 1.3. Internet Engineering Task Force (IETF) (2018).

Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher Wood. 2021. Internet
Draft: TLS Encrypted Client Hello. Internet Engineering Task Force (IETF) (2021).
ICANN Research. 2021. TLD DNSSEC Report. http://stats.research.icann.org/
dns/tld_report/

Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In Proc. of AAAL

Spencer Roth, Roland van Rijswijk-Deij, and Chung Taejoong. 2019. Tracking
Registrar Support for DNSSEC. In Proc. of IMC. ACM.

John P Rula, Philipp Richter, Georgios Smaragdakis, and Arthur Berger. 2020.
Who's left behind? Measuring Adoption of Application Updates at Scale. In Proc.
of IMC. ACM, 710-723.

Alex Russell, Jungkee Song, Jake Archibald, and Marijn Kruisselbrink. 2019.
Service Workers. W3C Candidate Recommendation (2019).

Douglas Stebila and Nick Sullivan. 2015. An Analysis of TLS Handshake Proxying.
In Proc. of Trustcom, Vol. 1. IEEE, 279-286.

Nick Sullivan. 2014. Keyless SSL: The Nitty Gritty Technical Details.
//blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
Akamai Technology. 2020. ProlexicRouted. https://www.akamai.com/content/
dam/site/en/documents/product-brief/prolexic-routed-product-brief.pdf

[82] John Viega, Matt Messier, and Pravir Chandra. 2002. Network Security with
OpenSSL: Cryptography for Secure Communications. O’Reilly Media, Inc.
Thomas Vissers, Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015.
Maneuvering around Clouds: Bypassing Cloud-based Security Providers. In Proc.
of CCS. ACM, 1530-1541.

Mark Watson. 2017. Web Cryptography API. W3C Recommendation (2017).
Changzheng Wei, Jian Li, Weigang Li, Ping Yu, and Haibing Guan. 2017. STYX:
A Trusted and Accelerated Hierarchical SSL Key Management and Distribution
System for Cloud Based CDN Application. In Proc. of SoCC. ACM, 201-213.
Joel M Wein, John Josef Kloninger, Mark C Nottingham, David R Karger, and
Philip A Lisiecki. 2006. HTML Delivery from Edge-of-network Servers in a
Content Delivery Network (CDN). U.S. Patents, 6996616B1.

Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter, Richard
Shin, and Dawn Song. 2011. A Systematic Analysis of XSS Sanitization in Web
Application Frameworks. In ESORICS. Springer, 150-171.

Yi Xie and Shun-Zheng Yu. 2008. Monitoring the Application-Layer DDoS Attacks
for Popular Websites. Transactions on Networking (ToN) 17, 1 (2008), 15-25.
Kinuko Yasuda. 2019. Signed HTTP Exchanges. https://developers.google.com/
web/updates/2018/11/signed-exchanges

Liang Zhang, Fangfei Zhou, Alan Mislove, and Ravi Sundaram. 2013. Maygh:
Building a CDN from Client Web Browsers. In Proc. of EuroSys. ACM, 281-294.

[69]

[70]

71

[72]

[73

[74]
[75]

[76

[77]

(78

[79]

[80

https:

[81]

[83]

[87]

[88

[89]

[90

APPENDIX

A KEY EXCHANGE PROTOCOL

The protocol uses Diffie-Hellman Key Exchange (DHKE), and we
denote g and p as the system-wide DHKE parameters. Note that the
exponentiation of g is implicitly modulo by p. The protocol works
as follows:

(1) The client proxy generates a nonce x randomly and sends g*
to the CDN, which will forward this message to the origin
server.

(2) After receiving g*, the origin server randomly generates a
nonce y and computes the session key (g*)¥ = g*Y. As in
TLS 1.3, we use an HMAC-Based Key Derivation Function
(HKDF) [56] to generate a cryptographically strong secret
key. The origin server also generates a session ID sID and
a session expiration time expireT. The server configures
this expiration time and generates a message that includes

15

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

gY,sID, expireT, signs the message, and sends it back to the
client proxy.

(3) With the response from the server and the public key from
DNS, the client verifies the signature in the above message.
After a successful verification, the client proxy accepts the
common secret derived by HKDF and g*¥ as the session key.
Since the public key is only used in this step, the DNS query
can be sent in parallel with the first key exchange message
to the origin server.

B IMPLEMENTATION

We present a prototype implementation of InviCloak. The imple-
mentation faces the challenges of being compatible with existing
websites and browser implementations. We describe how we ad-
dress these challenges to make InviCloak easy to deploy.

B.1 Client Proxy

We implement the client proxy library using the Service Worker
API supported by mainstream browsers, including Chrome, Firefox,
and Safari. A Service Worker is a JavaScript file that runs in the
background of an open web page. A Service Worker enables the
client proxy to intercept each HTTP request that a browser issues.
When a browser initiates an HTTP request, either by Asynchronous
JavaScript (AJAX) or by navigation to another URL, the browser
will trigger a fetch event and call the corresponding handler in the
Service Worker script. The handler code can block or modify the
request and the corresponding response. We implement a handler
function to encrypt private requests and decrypt private responses.

The client proxy stores the session state of InviCloak in browser
cache through Cache API. Each time when the handler of fetch
event is called, it will retrieve the session state from the cache. If the
session state does not exist, the handler starts to handshake with the
server through a handshake URL specified by the web developers.
If web developers enable pre-handshake, the client proxy will bind
another handler for pre-handshake to the active event. This event
is triggered when the Service Worker is activated in the landing
page.

A website can embed the client proxy JavaScript library and
register the client proxy’s Service Worker script (named sw. js
in our library) in a landing page that a user visits before she au-
thenticates herself to retrieve private content, e.g., login.html. The
changes are only a few lines of HTML code. A website specifies
its sensitive URLs and a handshake URL in the configuration file
(configure. js). The configuration file uses regular expressions to
reduce the overhead of configuration and the size of the configura-
tion file. An example of configure. js is shown in Figure 5.

B.2 Server Proxy

We implement the server proxy as a module of a widely used web
server: NGINX [5]. A website can modify an NGINX configuration
file (nginx.conf) to activate the server proxy. Our module provides
three configuration directives:

o cloakhello A website uses this directive to specify the server
path/URL where the code that constructs the session key
with a client proxy resides. It should be exactly the same

https://wiki.owasp.org/index.php/Testing_for_CSS_Injection_(OTG-CLIENT-005)
https://wiki.owasp.org/index.php/Testing_for_CSS_Injection_(OTG-CLIENT-005)
http://stats.research.icann.org/dns/tld_report/
http://stats.research.icann.org/dns/tld_report/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://www.akamai.com/content/dam/site/en/documents/product-brief/prolexic-routed-product-brief.pdf
https://www.akamai.com/content/dam/site/en/documents/product-brief/prolexic-routed-product-brief.pdf
https://developers.google.com/web/updates/2018/11/signed-exchanges
https://developers.google.com/web/updates/2018/11/signed-exchanges
login.html

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Shihan Lin, Rui Xin, Aayush Goel, and Xiaowei Yang

Table 2: This table shows the changes that each solution introduces to the components of the current web ecosystem. The symbol -’ means

no change is required by a component. * Chrome/Chromium needs a patch as it misses a standard function API

Components InviCloak TEE [51, 66] TLS[;;’OS;T‘I;;;IOKI Two domains
Browser Extension installation® - Code modification -
& TLS library upgrade
CDN - Code modification Code modification Negotiate with CDNs for
& TEE-enabled CPU & TLS library upgrade new forwarding service
Server Reverse proxy configura- - Code modification Restructure website for two
tion & TLS library upgrade domain names
TLS - - Protocol modification -
Web pages | JavaScript library adoption - HTML modification HTML modification
Security Active-attack-resistant Active-attack-resistant Active-attack-resistant Passive-attack-resistant
& Passive-attack-resistant & Passive-attack-resistant & Passive-attack-resistant

var config = {
sensitiveURLs: [
"/transactions" # String matching
/*\/profile/, # Regular expression
1,
handshakeURL: "/clientHello"

};

Figure 5: This figure shows an example of the client proxy config-
uration file configure. js. A website can specify its sensitive URLs
succinctly using regular expressions. In this example, the sensitive
URLs are those whose paths are exactly “/transactions” and start
with “/profile”

handshake path/URL as the one specified in the client’s con-
figuration file (configure. js).

o cloakenc This directive allows the website to specify the sen-
sitive URLs related to private content. The server proxy will
automatically decrypt the requests or encrypt the responses
of those URLs. This set of URLs should be the same as those
specified in the client’s configuration file (configure. js).

o cloakstate This directive specifies the size of the shared
memory used by the NGINX processes to store InviCloak-
related session state. This directive also provides the server
module the private key corresponding to the server’s public
key distributed via DNS.

A website needs to install our NGINX server module and config-
ure it to deploy the server proxy. If a website already uses NGINX
as its web server implementation or reverse proxy, it can integrate
the InviCloak’s server module into their NGINX instances by re-
compiling the NGINX source code. If it does not use NGINX, it
can compile our module into an NGINX server, run it as a reverse
proxy in front of its web server, and configure the NGINX proxy
to forward all requests to the web server. A website also needs to
configure the three directives we describe above to customize the
server proxy. We show an example of nginx.conf in Figure 6 for
interested readers.

16

Allocate 10MB shared memory named "shared".
The private key is located at /cert/private.pem.
cloakstate shared 10240 /cert/private.pem;

Encrypt the authentication cookie (named token).
cloakcookie token;

The path for constructing the secure channel
location /clientHello {
cloakhello on;

URLs with the path "/transactions" are sensitive.
location = /transactions {

cloakenc on;

proxy_pass http://origin:porturiis_argssargs;

URLs starting with the path "/profile"
are sensitive.
location /profile {
cloakenc on;
proxy_pass http://origin:porturiis_args$args;

Other requests are forwarded to the origin.
location / {
proxy_pass http://origin:porturiis_argssargs;

Figure 6: This figure shows an example of InviCloak’s configura-
tion directives in an NGINX configuration file nginx. conf. The di-
rective proxy_pass, provided by NGINX; is used to forward a request
to the origin server[22].

B.3 Integrity Verifier

We implement the integrity verifier as an extension to both Firefox
and to Chromium. A user needs to install this extension to take

InviCloak: An End-to-End Approach to Privacy and Performance in Web Content Distribution CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

advantage of the integrity verifier. However, the Chromium im- of the public executable web objects. The extension also uses a DoH
plementation raises a complication. Unlike Firefox’s webRequest request to obtain the public key of the website for the verification.
API for extensions, Chromium does not allow an extension to ob- The extension will alert a user if the verification fails. However,
tain the body of an HTTP response [3, 13]. Therefore, we provide a a website may not deploy InviCloak. In this case, the extension
Chromium patch that adds an APInamed webRequest.onDataReceived should not falsely alarm the user. Our implementation uses the
to the Chromium extension. Thus, Chromium users need to update existence of a server’s public key record in DNS to differentiate the
their Chromium to install the extension. above two cases. If a website does not provide the public key in its

The extension registers a callback function through the API to DNS record, we consider it has not deployed InviCloak, and the
read the response body and verifies the signature attached to each integrity verifier will skip verification.

17

	Abstract
	1 Introduction
	2 Design Rationale
	2.1 Motivation
	2.2 CDN Service Model
	2.3 Threat Model
	2.4 Trust Assumptions
	2.5 Design Goals

	3 Design
	3.1 Architecture
	3.2 Key Distribution & Management
	3.3 The Client Proxy
	3.4 The Server Proxy
	3.5 Establishing the Encryption Channel
	3.6 Using the Encryption Channel
	3.7 Integrity Verifier
	3.8 Partial Deployment of Integrity Verifier
	3.9 Cookie Management

	4 Security Analysis
	5 Implementation
	6 Evaluation
	6.1 Computation Overhead
	6.2 CDN & Server Throughput
	6.3 Client Page Load Times
	6.4 A Modern Web Application with Cloudflare
	6.5 Deployment Effort
	6.6 Estimating Hardware Deployment Cost

	7 Limitations and Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Key Exchange Protocol
	B Implementation
	B.1 Client Proxy
	B.2 Server Proxy
	B.3 Integrity Verifier

