
Understanding Real-world Threats to Deep Learning Models in
Android Apps

Zizhuang Deng
SKLOIS, IIE, CAS†

School of Cyber Security, UCAS‡
Beijing, China

dengzizhuang@iie.ac.cn

Kai Chen �
SKLOIS, IIE, CAS†

School of Cyber Security, UCAS‡
BAAI∗

Beijing, China
chenkai@iie.ac.cn

Guozhu Meng �
SKLOIS, IIE, CAS†

School of Cyber Security, UCAS‡
Beijing, China

mengguozhu@iie.ac.cn

Xiaodong Zhang
SKLOIS, IIE, CAS†

School of Cyber Security, UCAS‡
Beijing, China

zhangxiaodong@iie.ac.cn

Ke Xu
Huawei International Pte Ltd

Singapore, Singapore
xuke64@huawei.com

Yao Cheng
Huawei International Pte Ltd

Singapore, Singapore
chengyao101@huawei.com

ABSTRACT
Famous for its superior performance, deep learning (DL) has been
popularly used within many applications, which also at the same
time attracts various threats to the models. One primary threat is
from adversarial attacks. Researchers have intensively studied this
threat for several years and proposed dozens of approaches to create
adversarial examples (AEs). But most of the approaches are only
evaluated on limited models and datasets (e.g., MNIST, CIFAR-10).
Thus, the effectiveness of attacking real-world DL models is not
quite clear. In this paper, we perform the first systematic study of
adversarial attacks on real-world DNN models and provide a real-
world model dataset named RWM. Particularly, we design a suite
of approaches to adapt current AE generation algorithms to the
diverse real-world DL models, including automatically extracting
DL models from Android apps, capturing the inputs and outputs
of the DL models in apps, generating AEs and validating them by
observing the apps’ execution. For black-box DL models, we design
a semantic-based approach to build suitable datasets and use them
for training substitute models when performing transfer-based
attacks. After analyzing 245 DL models collected from 62,583 real-
world apps, we have a unique opportunity to understand the gap
between real-world DL models and contemporary AE generation
algorithms. To our surprise, the current AE generation algorithms
can only directly attack 6.53% of the models. Benefiting from our
approach, the success rate upgrades to 47.35%.

� Corresponding authors.
† Institute of Information Engineering, Chinese Academy of Sciences.
‡ University of Chinese Academy of Sciences.
∗ Beijing Academy of Artificial Intelligence.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3559388

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
Deep learning; On-device model; Adversarial attack; Android app;

ACM Reference Format:
Zizhuang Deng, Kai Chen �, Guozhu Meng �, Xiaodong Zhang, Ke Xu,
and Yao Cheng. 2022. Understanding Real-world Threats to Deep Learning
Models in Android Apps. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’22), November 7–11, 2022,
Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3548606.3559388

1 INTRODUCTION
Deep learning (DL) models, as known for their comparable or even
better performance than human experts in some areas, have been
widely adopted in various areas such as computer vision, object
detection and speech recognition [4, 11, 79], which also brings
broader use of DL models in mobile applications (apps for short).
For example, the app PayPal [18] authenticates users through face
recognition; the app Google Assistant [4] identifies and executes
users’ voice commands through speech recognition. Both of the two
apps have more than 10 million users with 50 million downloads. To
reduce the heavy burden of computation on the server, DL models
are often designed to be stored in client-side apps. However, at
the same time, the models are exposed to end-users or attackers
who may leverage state-of-the-art approaches to breach the apps’
defenses and finally threaten the security and privacy of users,
especially when the models are undertaking security-critical tasks,
e.g., authentication through face recognition and money transfer
through scanning bank cards.

Among the attacks to DL models, adversarial attacks [27, 37, 76]
are considered as one of the most severe. It can fool the DL models
through a crafted input. By adding a few perturbations on an origi-
nal input (e.g., an image, a piece of audio), despite being unnoticed
to humans, the new input can let a vulnerable model misclassify
it to an arbitrary category. According to recent studies [48], deep

785

https://doi.org/10.1145/3548606.3559388
https://doi.org/10.1145/3548606.3559388
https://doi.org/10.1145/3548606.3559388
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548606.3559388&domain=pdf&date_stamp=2022-11-07

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zizhuang Deng et al.

neural networks (DNNs) are often inevitably vulnerable to adver-
sarial attacks according to the evaluation on popular models such as
VGGNet [69], ResNet [41] and GCN [74] using open datasets (e.g.,
MNIST [53], CIFAR-10 [51], ImageNet [30] and COCODataset [56]).
However, it is less known whether the real-world DNN models in
mobile apps can be attacked. Nor do we know the real impact of
successful attacks. Thus, in this work, we aim to understand
whether the DNNmodels in mobile apps are affected by such
threats, and if so, the severity of the threats. Last, we provide
the RWM dataset we collected and used in this work that
could benefit researchers in understanding the limitations of
current attacks and motivate them to design better attacks
against real-world models.
Challenges in performing real-world attacks. Quite different
from previous research (e.g., DeepSec [57], RealSafe [31]) whose
goals are often emphasized on evaluating the attack approaches,
our research is end-to-end, which considers how to automatically
extract DNN models from mobile apps, convert them into the forms
that can be accepted by those attack approaches, generate AEs,
and validate the results. The reason for extracting models is that
dynamically analyzing all themodels in appswould cost a lot of time
and resources. Thus, firstly, one main challenge is to automatically
extract models from mobile apps. After manually analyzing some
apps, we find that the DNN models in the apps are not in fixed
locations, but could be in any directories.Whatmakes the extraction
even more challenging is that the models are often with various file
names, or even protected by encryption. Thus, merely searching
through keywords would not work.

Secondly, even if the models are successfully extracted, they can-
not be directly fed into the attacking approaches since the models’
inputs and outputs, which are critical for the attacking approaches
to generate reasonable AEs, are unknown. For example, in order
to attack a DNN model GoogleLeNet [37], the input is an image
of panda and the output (i.e., labels) is “panda”, which is usually
assumed to be known to attackers by default. However, when attack-
ing real-world models in apps, such inputs/outputs are not known.
They are not simply stored in any file in mobile apps. Instead, the
information about the inputs and outputs is in the semantics of the
app code. For example, an app for authentication takes a photo of a
user and transforms the photo into a specific format to fit the DNN
model. Only by understanding the semantics of the app code, we
can correctly extract the inputs and outputs. Thus, accurately iden-
tifying the code for handling inputs and outputs and understanding
the code are important to successful attacks.

Thirdly, it is challenging to automatically generate and verify
AEs. For white-box models, it is necessary to translate the Java
code for preprocessing (e.g., normalization) in the app to Python
code for AE generation. As we know, there are no such APIs in
Java that allow us to perform AE attacks or even calculate gradi-
ents. For black-box models (not using a public framework, such as
Sensory [9]), we can perform a transfer-based attack by attacking a
white-box substitute model. However, the challenge lies in building
a suitable alternative dataset to train the substitute model. The
alternative training dataset is required to only include the data with
the same semantics indicated by the apps’ output labels.

Our approach. To address the challenges described above, we
design an approach and build a tool called AdvDroid to perform
large-scale end-to-end attacks on the DNN models in mobile apps,
including automatically extracting the on-device DNN models, fig-
uring out their input formats and output labels, generating AEs
through various attacking approaches and validating the generated
AEs, which in turn measures the performance of various AE genera-
tion algorithms. In particular, to address the first challenge, we find
that no matter how the model’s filename and location are changed,
the app would finally load the model through the APIs provided
by DL frameworks. Even if the model is encrypted, the app would
decrypt the model in memory before using it for inference. Based
on this observation, AdvDroid performs a semantic-guided method
to extract the model file. In particular, if the model is encrypted, Ad-
vDroid tries to automatically trigger the code that loads the model
(calledModel Inference Site orMIS for short). After the app loads the
model, AdvDroid dynamically extracts the decrypted model from
memory through API hooking.

Then, AdvDroid infers the inputs and outputs of themodel (called
model interfaces). To achieve this goal, AdvDroid first locates the
MIS, then performs data flow analysis with cross references from
MIS. We also design tailored static data flow analysis to quickly
determine whether there exists a path from inputs (i.e., source) to
the MIS (i.e., sink), and if so, how the app preprocesses the inputs.
Also, from the MIS, AdvDroid does forward slicing to locate and
recognize the outputs. The extracted models are treated as being
white-box if they can be loaded with known DL frameworks and
their interface is recognized. Otherwise, it requires more steps to
attack black-box models that cannot be loaded out of the app. Note
that, we focus on the models for image classification and object
detection in this study, as they occupy the majority (70.31%) of the
on-devices models.

To attack a black-box model, we leverage transfer-based attacks.
As we know, such attacks need to train a substitute model which
requires suitable inputs and labels from the target black-box model.
The inputs should be meaningful to the model; otherwise, the substi-
tute model may not be trained closely enough to the target model,
which would make the attacks less successful. To build such a
dataset, we leverage the output labels extracted from the apps in
the previous step. By comparing the semantics of the output labels
in the app with the labels in the open-source datasets such as Ima-
geNet [30], we can find a number of inputs with labels of similar
meanings. We also leverage Google Image Search [5] and Open
Images Dataset [8] to find more inputs and extend the dataset. Then
we could use this dataset to train a substitute model for attacking.
Findings. After analyzing 62,583 apps, we find that 568 apps have
960 on-device DNN models. After deduplicating the extracted mod-
els, we obtain 245 unique on-device DNNmodels. Among them, 177
models are white-box models which use public DL frameworks; 60
models are protected through encryption; 8 models are black-box,
which means that no public DL frameworks are used. Only 16 mod-
els (6.53%) of 245 models can be directly attacked by the popular
attacking approaches. In contrast, using our semantic-based model
interface reasoning, our approach boosts the attack success rate
on model (𝐴𝑆𝑅𝑚) from 6.53% to 47.35% (116/245). Benefiting from
the unique opportunity to observe the attacks on the real-world

786

Understanding Real-world Threats to Deep Learning Models in Android Apps CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

models, we have a set of interesting findings. We find that the suc-
cess rates of adversarial attacks on real-world quantized models are
generally 5-10% lower than those in corresponding unquantized
versions. We also find that real-world model quantization makes
on-device models more robust to adversarial attacks. According to
our results, the C&W [23] method has the highest attack success
rate on sample (𝐴𝑆𝑅𝑠) among the adversarial attacks.
Contributions The contributions of this work are as follows.
• Large-scale adversarial attacks on real-world DNN models. We
propose the first systematic study on adversarial attacks by col-
lecting real-world DNN models and adapting them to current ad-
versarial attacks. Particularly, we perform on-device model ex-
traction to build a real-world model dataset RWM including 245
unique models. For each model, we build a test dataset through
semantic analysis on the apps. We also adapt the models to cur-
rent adversarial attacks through a suite of new techniques, includ-
ing interface reasoning (i.e., model I/O analysis) and semantic-
based training data generation. The RWM dataset is released at
https://github.com/Advdroid/advdroid-pro.
• New findings. By analyzing the real-world models, we have the
unique opportunity to understand the gap between the capability
of the popularly studied adversarial attacks and the real-world
situations of deployed DNN models. We find that the real-world
models are more difficult to attack (with a very low attack success
rate 𝐴𝑆𝑅𝑚) than the commonly-used models/datasets. Among the
attacks, the C&W method has the best performance in attacking
the real-world models.

2 BACKGROUND
2.1 Mobile DL Frameworks
With the growing device computational power, advanced mobile
hardware accelerating techniques [25, 28, 39] and abundant RAM
resource, an inference on edge devices gains its momentum nowa-
days. Especially due to the increasing demand of privacy protection,
on-device inference is bound to be a pivot in the near future. Tech-
nically, DL models should be first quantized for fitting the low
bit-width mobile platforms [49]. The quantized models are then
packed into a mobile app, e.g., an APK file. On Android, the models
usually locate at assets folders or exist as raw resource of varying
file formats attributed to different DL frameworks. An app may
be equipped with multiple models, even developed on different
frameworks, which together perform complex functions such as
identifying road conditions, including traffic lights and construction
zones. On the other hand, one model may be deployed on multiple
apps to accomplish the same tasks. For example, developers like to
use open-source models from TFHub [10]. The model file includes
the model structure and parameters, and hence there is no need to
build the model in the code. After the app is installed, the model can
be loaded and run as a local module using SDK or NDK libraries of
the DL framework. Functions in code receive, pre-process, and feed
the data into the local model which computes locally and returns
the model output.

Generally, mobile DL frameworks provide essential APIs and
convenient tool sets so that developers can easily train and deploy
their models on mobile devices without worrying about the detailed

matrix operation or run-time optimization. Comparing to server
DL frameworks, mobile DL frameworks need to enable the model
with good performance, small RAM consumption, and fast model
inference. It is more light-weight, which is usually achieved by
optimized kernels, pre-fused activations, and fewer dependencies.

There are many open-source frameworks and proprietary frame-
works, e.g., TensorFlow Lite (TFLite) from Google [11], Caffe2 from
Facebook [2]. These models, with a known format, can be invoked
via public APIs. Therefore, it is relatively easy for an attacker to
understand the model information as well as how the model is used
in the app. However, in order to protect their proprietary models,
there are companies, such as DL service provider companies to
whom the model is an important intellectual property, using their
own proprietary mobile DL framework. The file format of these
models is unknown, and hence the model information cannot be
retrieved by directly analyzing model files. It increases the barrier
for attackers to retrieve any information from the model.

2.2 On-device model protection
It is of great importance to protect the models deployed on mo-
bile devices. On one hand, as model training is expensive in both
data and computational power, well-trained models are always the
target of attackers. On the other hand, the disclose of the exact
model structure and parameters jeopardizes the model, as the infor-
mation facilitates adversarial machine learning attacks. Instead of
developing a proprietary mobile DL framework with unpredictable
efforts, app developers are prone to using obfuscation or encryp-
tion to protect their models [71]. Obfuscation is one cost-effective
approach by obscuring any meaningful text in the stored model file.
Encryption is cost-heavier than obfuscation but also provides more
protection by not just obscuring meaningful text but concealing all
structure and parameter information into ciphertext.

3 APPROACH
Threat Model. To collect the real-world DL models for evaluating
the adversarial attacks, we assume that the adversary can obtain
Android apps with DL models from markets and install them on
a rooted smartphone or Android emulator locally. He can freely
instrument the target apps for analysis and AE generation. In the
attack scenario, we assume that the adversary can only send AEs
to the victim (app) without permission to modify any environment
(e.g., victim’s smartphone). For example, he cannot instrument the
target app.
Overview. As shown in Figure 1, AdvDroid proceeds in four stages:
model extraction, model interface reasoning, dataset generation and
attack observer. In the model extraction module, we compile a rule
list to identify the Android apps powered by deep neural networks,
i.e., containing on-device models. One app may have multiple mod-
els; one model may also be deployed by multiple apps. By tracking
the calling paths of model APIs, AdvDroid can locate and then
extract models statically. To cope with encrypted or packed mod-
els [71], AdvDroid performs dynamic analysis to extract the plain
model files. In model interface reasoning, AdvDroid utilizes seman-
tic analysis to infer code semantics to obtain the information of
model interfaces, including input format, model output, model task
and preprocessing parameters. In dataset generation, AdvDroid

787

https://github.com/Advdroid/advdroid-pro

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zizhuang Deng et al.

③ Dataset Generation

on-device

models

Attack Validation

① Model
Extraction

Dataset
Validation

④ Attack Observer

② Model Interface Reasoning

DatasetSearch Engine

MIS

preproc

init

Loader

Sink

Source

modelInput

modelOutput

preprocessParam

Model Profile

modelTask

APK

Test Driver
Findings

AE generation

Figure 1: System overview of AdvDroid

initializes the environment for evaluating security of on-device
models, which basically contains preparing drivers to load and
trigger either white-box or black-box models, as well as auxiliary
testing data as per model profiles. Last, we reproduce six popular
white-box adversarial attacks and three black-box ones in the mod-
ule of model attack observer to reveal the models’ robustness and
demonstrate the caused harm.

3.1 Model Extraction
Given an app, AdvDroid first checks whether the app contains an
on-device DL model. If so, AdvDroid locates the model and extracts
it from the app. Below we present the details.

DL App Recognition. A straightforward way to check if an app
contains DL models is to check the file format of every file in the
app. If the file format matches the model format, we say that a
model is found. As we know, the models developed on different DL
frameworks have different file formats. So we investigated the top
17 DL frameworks based on market share [75] and analyzed typical
model formats in Table 4 in the Appendices1. For example, a model
developed on TFLite [11] has the format “TFL3”. So if any file has
the format in a given app, we can extract the file as the model file.
The app containing the file is a candidate DL app.

Sometimes, apps aim to protect models by encrypting them or
loading them dynamically. This makes it impossible to recognize the
file format directly. To this end, we look for the code that loads the
model. In most cases, the way to load models is fixed by different DL
frameworks. Therefore, by identifying the code for model loading,
we can ensure that the app contains the DL model. The code can
also be instrumented to extract the models. We identified different
file features and code features for loading models (see Table 4). With
these features, we can quickly identify candidate DL apps.

Model Localization and Extraction. After obtaining candidate
apps that contain on-device models, we locate the models and ex-
tract them for further analysis. We can extract the models directly
if they are not protected. If a model is encrypted or dynamically
loaded, we need to instrument the app for model extraction. Partic-
ularly, we divide the models into three types as follows.

1For the content of the appendices, please refer to the released link.

• Type A. Unprotected models using open-source frameworks. These
models are developed under open-source frameworks such as
TFLite. To further verify that they can be loaded without protec-
tion, we use the loader APIs provided by the corresponding DL
frameworks. For example, TFLite uses API Interpreter.invoke
for model loading. If the target model can be loaded successfully,
we say the model is Type-A.
• Type B. Protected models using open-source frameworks. If the
model file cannot be recognized directly, the model is very likely
protected (e.g., encrypted). To this end, AdvDroid hooks the code
for model loading (i.e., MIS), dynamically executes the app to
trigger the MIS, and then dumps the model from memory after it
is loaded. The dynamic triggering of the MIS can be facilitated
via constructing a sequence of UI operations that are associated
with the code of model loading.
• Type C. Models using closed source framework. Some models may
be developed with a private DL framework, so it is difficult to
load them outsides the apps since libraries or environmental
requirements could not be satisfied. Without any details about
the model, we view them as a black box and propose a dynamic
approach to interact with them. More specifically, AdvDroid
traces API calls during running apps, selects the APIs related to
model inference, and builds a remote query service with remote
procedure calls (RPCs). In such a manner, we can pass crafted
data to the APIs detected during runtime to obtain model output.

Based on the above, we successfully find 960 on-device models
and extract 245 distinct ones from 568 apps after deduplication by
hash values. 177 (72.24%) models are of Type A, 60 (24.49%) are Type
B. Besides these extracted models, 8 (3.27%) of on-device models
belong to Type C.

3.2 Model Interface Reasoning
To enable security evaluation of on-device models, we need to know
the model’s input and output. Figure 2 illustrates how one model is
loaded and executed with crafted input. First, the model is loaded
from a light_model.tflite file via loader API “loadModel”. Then the
inference API “runModel” uses the loaded model for inference. It
has two parameters: the model and the input “modelInput”. Note
that the input has been preprocessed (e.g., re-scaling). At last, the
model outputs the results which are further parsed to various labels.
Such input and output are important for understanding the model

788

Understanding Real-world Threats to Deep Learning Models in Android Apps CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

img = createBitmap(source);modelPath = getAssets().open
(“light_model.tflite”);

model = loadModel(modelPath);

modelOuput = runModel(model, modelInput);

modelInput = preprocess(img);

labelResult = argmax(modelOutput);

switchHandle(labelResult);

1. Model Loading 2. Input Preparation

3. Output Processing

Case 1: R.drawable.Green
Case 2: R.drawable.Red
Case 3: R.drawable.Yellow

Model Inference Site

Figure 2: An example of data flow with cross references of
an on-device model named “light_model.tflite”.

Algorithm 1: Model Interface Reasoning
Input: model inference site 𝑆 , inter-component call graph𝐺 , and

pre-defined source list 𝐼 and output𝑂
Output: model𝑚, input 𝑖 and output 𝑜

1 𝑚, 𝑖, 𝑜 ← 𝑝𝑎𝑟𝑠𝑒 (𝑆) ; ⊲ initialize m, i and o from MIS

2 while𝑚 ≠ 𝑁𝑈𝐿𝐿 do
3 𝑛𝑜𝑑𝑒𝑠 ← 𝑜𝑛𝑒_𝑠𝑡𝑒𝑝_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 (𝐺, 𝑚) ; ⊲ perform

backward data flow analysis within one jump

4 if any 𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠 points to a file then
5 𝑚 ← 𝑛 ; ⊲ find the location of model file

6 break;

7 𝑚 ← 𝑛𝑜𝑑𝑒𝑠 ;

8 while 𝑖 ≠ 𝑁𝑈𝐿𝐿 do
9 𝑛𝑜𝑑𝑒𝑠 ← 𝑜𝑛𝑒_𝑠𝑡𝑒𝑝_𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 (𝐺, 𝑖) ;

10 foreach 𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠 do
11 if 𝑛 ∈ 𝐼 then
12 𝑖 ← 𝑛 ; ⊲ identify the input for models

13 break;

14 𝑖 ← 𝑛𝑜𝑑𝑒𝑠 ;

15 while 𝑜 ≠ 𝑁𝑈𝐿𝐿 do
16 𝑛𝑜𝑑𝑒𝑠 ← 𝑜𝑛𝑒_𝑠𝑡𝑒𝑝_𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝐺, 𝑜) ;
17 foreach 𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠 do
18 if 𝑛 ∈ 𝑂 then
19 𝑜 ← 𝑛 ; ⊲ identify the ouput for models

20 break;

21 𝑜 ← 𝑛𝑜𝑑𝑒𝑠 ;

22 return𝑚, 𝑖, 𝑜

and also vital for further attacks. Therefore, we perform model
interface reasoning to obtain the input and output.

To start with model interface reasoning, we define the Model
Inference Site (MIS) as follows.

Definition 1. A model inference site S is a concrete execution of
on-device models and can be characterized as S = {𝑚, 𝑖, 𝑜}, where𝑚 is
executed model, 𝑖 is the input for the model and 𝑜 is the output result.

Generally, MIS associates the input and output to on-device
models, which is our starting point for model interface reasoning.

Take TFLite model in Figure 2 as an example. The API “runModel”
is treated as an MIS and glues the model’s input, output, and the
model instance. Other DL frameworks have their own MISs, we
manually summarize them in Table 5 in the Appendices. From an
MIS, we adopt context-sensitive data flow analysis to track the
arguments and return values as stated in Algorithm 1. In particu-
lar, considering an MIS (𝑚, 𝑖, 𝑜), we perform backward data flow
analysis from its parameter 𝑚 (i.e., model), which can finally lo-
cate the file “light_model.tflite” (Line 2-7 in Algorithm 1). From
parameter 𝑖 (i.e., modelInput), we are diverted to the statement
“img=createBitmap(source)” and learn that the model’s input is an
image (Line 8-14 in Algorithm 1). Similarly, model output can be
determined by a forward data flow analysis, where we infer the
output details, e.g., pre-defined labels for a classifier (Line 15-21 in
Algorithm 1). Below we detail how to locate the model together
with the corresponding inputs and outputs.
Model Loading. Starting from an MIS, we first need to know what
model𝑚 it loads. An app may contain multiple MISs and models,
which should be connected correspondingly. Data flow analysis is
used here to ensure the connection. For example, in Figure 2, using
the method proposed in Section 3.1, we only know that the app uses
the model “light_model.tflite”. For further analysis, we locate the
MIS at the statement “runModel”. Its parameter indicates the model
is “model”. By backtracking from the parameter, we further locate
the API loadModel and identify the model as “light_model.tflite”.
Input Preparation. We intend to infer the semantics of parameter
𝐼 in MIS, which is either an image, audio file or text in deep learning
tasks. We first construct an inter-component call graph (ICCG) via
class hierarchy analysis [29] and perform a backward data flow
analysis to determine where the parameter 𝐼 comes from. The anal-
ysis is terminated upon pre-defined sources are detected. These pre-
defined sources are Android APIs that we have summarized in Table
6 in the Appendices. For example, we takemethods “createBitmap”
and “createScaledBitmap” as the source for creating an image,
and “AudioRecord” for an audio file. Oftentimes, input data needs
to be transformed for suiting the model. For example, image resiz-
ing and normalization are conventional operations before being
passed to a model. AdvDroid infers the resizing configuration from
model input layer, where for example, (1, 224, 224, 3) denotes that
the model accepts a three channel 224 × 224 sized image. As for
image normalization, we list a number of commonly-used APIs
in image processing libraries for normalization and determine the
key parameters–mean and standard deviation (see “input preproc
method” in Table 6 in the Appendices). Then AdvDroid performs a
code search in the current class to identify the possible values. It is
worth mentioning that the analysis of input transformation is usu-
ally unnecessary for a protected model as the code is dynamically
triggered with the original input.
Output Processing. Here we aim to learn what results come from
the model so as to prepare the necessary information for our test
data. Take a classification task for example. We need to learn what
types of objects (i.e., labels) the model can classify and then select
well-suited data to feed. It cannot be known from viewing model
structure, but instead, we can find clues from the processing code
like colors in Figure 2.

789

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zizhuang Deng et al.

Similar with input reasoning, AdvDroid identifies from the ICCG
where the result generated from MIS flows to. For example, as
shown in Figure 2, the app calls switchHandle() with model out-
puts as parameters and the model output is interpreted with three
possible labels for a classification model. Therefore, switch-case
and if-else serve as the termination condition for our forward
flow analysis. Besides classification, there are other types of tasks
as well as outputs for a model, e.g., segmentation, style transfer
and optical character recognition. Therefore, we summarize three
types of processing handlers in terms of mainstream model tasks
used in our static analysis: ❶ n-dimensional array of floating-point
probabilities. It usually occurs in a classification task where one
element of the array represents the probability of being an object. ❷
4-tuple of floating-point numbers. It is common in object detection
to outline the boundaries of the recognized object. ❸ a matrix of
floating-point numbers. It appears in a segmentation task where
each element indicates what class the corresponding pixel is associ-
ated with. For a style transfer task, it represents an image and each
element is the pixel value. More details about output examples can
be found in Table 6.

As our AE attacks focus on image classification and object de-
tection, we retain these two kinds of models recognized as above
and determine the literal labels of their output. Sometimes, one file
like “labelmap.txt” that records the label information resides in the
same folder as the model. It is observed from the experiments that
50.31% (483/960) of models have such files. Otherwise, we strip the
values in switch-case and if-else statements and build the label
mapping accordingly. Additionally, we find that 43 apps use the
labels mapping of public datasets, e.g., the output value “1” means
label “Person” in dataset COCO. If all the trials fail, AdvDroid will
use random initial samples for adversarial attacks.

3.3 Dataset Generation
Besides the model itself, we also need to form a dataset to evaluate
the attacks. Since our adversarial attacks are mainly targeting clas-
sification tasks, sample inputs with the correct labels are required.
Then by varying the input with different perturbation levels, we
can evaluate the effectiveness of different attack methods. More
inputs with various labels can better help evaluate attack methods.

Recall that we have already known the labels of the models. So
the dataset can be automatically generated by searching for the
corresponding inputs using the labels. We take inputs from popu-
lar datasets (e.g., ImageNet, Microsoft COCO) and search engines.
Firstly, given a model that outputs different labels, we collect inputs
with the same labels from popular datasets. For example, if a label
is “cat”, AdvDroid can get inputs from the open datasets. Secondly,
AdvDroid also uses search engines (e.g., Google image and Bing
image) to obtain sufficient inputs. In addition to the image corpora,
we also choose AudioSet [36] as audio corpora and Metatext [14]
as text corpora.

However, the generated data may be not qualified for the attacks
with either wrong or inaccuracy labels. For example, search en-
gines may return a “banana” with the keyword “apple”, and images
associated with “elephant” may have refined labels like “African
elephant” and “tusker” in ImageNet. Therefore, we perform data

Algorithm 2: Dataset Validation on Model Outputs
Input: Dataset 𝐷 = {(𝑋𝑖 , 𝑌𝑖) }(0 ≤ 𝑖 < 𝑁) contains top-N closest

classes,𝑚𝑜𝑑𝑒𝑙 with𝑀 classes (M ≤ N), threshold 𝛼1 and 𝛼2.
Output: 𝑙𝑎𝑏𝑒𝑙𝑚𝑎𝑝 .

1 // cand is a 2-dimensional list to store valid samples for each index.
2 𝑐𝑎𝑛𝑑 ← ∅;
3 𝑙𝑎𝑏𝑒𝑙𝑚𝑎𝑝 ← ∅;
4 𝑚 ← 𝑙𝑜𝑎𝑑𝑒𝑟 (𝑚𝑜𝑑𝑒𝑙) ;
5 for 𝑠𝑎𝑚𝑝𝑙𝑒 ∈ 𝐷 do
6 𝑚𝑜𝑑𝑒𝑙_𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑟𝑢𝑛_𝑚𝑜𝑑𝑒𝑙 (𝑚,𝑠𝑎𝑚𝑝𝑙𝑒) ;
7 𝑖𝑛𝑑𝑒𝑥,𝑚𝑎𝑥_𝑐𝑜𝑛𝑓 ← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑚𝑜𝑑𝑒𝑙_𝑜𝑢𝑡𝑝𝑢𝑡) ;
8 // we only count the samples with high confidence (> 𝛼1)
9 if𝑚𝑎𝑥_𝑐𝑜𝑛𝑓 > 𝛼1 then
10 𝑐𝑎𝑛𝑑 [𝑖𝑛𝑑𝑒𝑥] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑎𝑚𝑝𝑙𝑒′𝑠 𝑜𝑟𝑖𝑔𝑖𝑛 𝑙𝑎𝑏𝑒𝑙 𝑌 ′) ;

11 for 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑙𝑒𝑛 (𝑐𝑎𝑛𝑑) do
12 // count is a temporary dictionary that stores the number of

times the label appears.
13 𝑐𝑜𝑢𝑛𝑡 ← ∅;
14 for 𝑖𝑡𝑒𝑚 ∈ 𝑐𝑎𝑛𝑑 [𝑖𝑛𝑑𝑒𝑥] do
15 𝑐𝑜𝑢𝑛𝑡 {𝑌 ′ } + +;
16 // we choose the label with the most occurrences.
17 𝑠𝑜𝑟𝑡 (𝑐𝑜𝑢𝑛𝑡) ;
18 𝑡𝑜𝑝_𝑙𝑎𝑏𝑒𝑙, 𝑡𝑜𝑝_𝑐𝑛𝑡 ← 𝑡𝑜𝑝_1(𝑐𝑜𝑢𝑛𝑡) ;
19 // we calculate the number of all samples in cand[index].
20 𝑡𝑜𝑡_𝑐𝑛𝑡 ← 𝑠𝑢𝑚 (𝑐𝑜𝑢𝑛𝑡) ;
21 // we map index to the label that occurs most frequently. Note

that the number of occurrences should reach the threshold.
22 if 𝑡𝑜𝑝_𝑐𝑛𝑡

𝑡𝑜𝑡_𝑐𝑛𝑡 > 𝛼2 then
23 𝑙𝑎𝑏𝑒𝑙𝑚𝑎𝑝 [𝑖𝑛𝑑𝑒𝑥] ← 𝑡𝑜𝑝_𝑙𝑎𝑏𝑒𝑙 ;

24 return 𝑙𝑎𝑏𝑒𝑙𝑚𝑎𝑝

validation to get more quality data based on Algorithm 2. The in-
puts to Algorithm 2 are top-N closest classes, the model with M
classes, and two thresholds 𝛼1 and 𝛼2. The output is a 𝑙𝑎𝑏𝑒𝑙𝑚𝑎𝑝

that maps model labels (numeric values) to strings describing the
label. In particular, we first feed the data into the model and get the
inference result (Line 5-10). Note that we only count the samples
with high confidence value (> 𝛼1, Line 9). AdvDroid then maps a
label (returned by the model) to a string. We assume that the string
appearing most frequently should better describe the label (Line
11-23). Also, note that we require that the number of occurrences
should reach a threshold (Line 22). In this way, we obtain a suitable
dataset for the on-device model.

3.4 Attack Observer
AdvDroid provides a platform to measure the effectiveness of differ-
ent attack methods against a given on-device model. The platform
accepts a model as input. It also needs to know the input and output
of the model. Regarding the inputs, AdvDroid supports a template
and fills the template with the resizing and normalization argu-
ments extracted from the app. AdvDroid also fills the index-label
mapping into a dictionary in the template, e.g., labelmap<index,
label>. We also define a successful attack to an on-device model.
In particular, AdvDroid randomly selects 50 samples as inputs for
each class from the dataset generated in Section 3.3. If one method

790

Understanding Real-world Threats to Deep Learning Models in Android Apps CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

can generate AEs on 80% of them, we say that the model is defeated
by this attack method [23]. We implemented nine state-of-the-art
adversarial attack methods (including six white-box methods and
three black-box methods). Untargeted attack can satisfy our mea-
surement requirements, and targeted attack is generally lower in
𝐴𝑆𝑅𝑠 than untargeted attack. Details of the attack methods are
shown in Table 3. On this platform, AdvDroid automatically mu-
tates an input and generates adversarial samples with different
levels of perturbation. In this way, the on-device models can be
evaluated uniformly.

4 IMPLEMENTATION
We implement AdvDroid with more than 5,000 lines of Python
code and around 500 lines of JavaScript code. AdvDroid employs
and extends FlowDroid [19] to accomplish model extraction and
interface reasoning. During data flow analysis, we encounter errors
for 183 apps including “timeout”, “out-of-memory” and “no-sink-
found”. The average size of these failed apps is 52MB. 163 of them
have multiple DEX files, and the average DEX code size is around
19MB. See Appendix E for details. By debugging and fixing these
errors like considering implicit call in java.util.concurrent.Fut

ure, we successfully reduce the number of errors to 12. For the
models that cannot be directly loaded, we apply DroidBot [54]
to dynamically run them, and involve manual efforts if apps are
authenticated and protected via registration.

As for model testing, we set 𝛼1 = 0.7 and 𝛼2 = 0.8 typically for
Algorithm 2. When performing AE attacks, AdvDroid adapts from
projects Foolbox [68] and AdvBox [33] six white-box adversarial
attacks, i.e., Fast Gradient Sign Method (FGSM), Projected Gradient
Descent (PGD), Deepfool, Basic Iterative Method (BIM) [52], Mo-
mentum IterativeMethod (MIM) [32] and C&W, and three black-box
attacks, i.e., boundary attack [22], NES attack [47] and substitute
model transfer attack [32, 64]. We use a large model ResNet152 as
the substitute model following [31, 40]. It is pre-trained on Ima-
geNet with 75.4% accuracy and has 60.4M parameters. For these
models whose gradient information can be calculated, AdvDroid
uses white-boxmethods. Otherwise, AdvDroid uses black-boxmeth-
ods, which are usually harder than white-box methods [64]. For
example, although the TFLite framework is open-source, its model
in our dataset lacks operators to compute gradients (see Section 8).
It is known to be impossible so far to reverse TFLite to its Tensor-
flow model. It is because model quantization (Tensorflow to TFLite)
uses int values (e.g., INT8) or low-precision floating points (e.g.,
FP16) to approximate and replace original full-precision floating
weights that is irreversible [3]. Besides, there are no official Ten-
sorFlow APIs to support the conversion from TFLite to Tensorflow.
We then re-implement the existing transfer attack methods and
build our own adversarial attack toolbox which is compatible with
TFLite models.

5 EVALUATION
App Dataset.We collect 62,583 apps from Google Play Store and
alternative markets from May 2020 to October 2021, aiming to draw
more comprehensive conclusions and identify new threats and
defenses over time. From the Google play store, we crawl the top
1,000 apps at most for all of 24 categories and obtain 22,632 apps

Table 1: Distribution of different frameworks of models.
Many apps use identicalmodels so that the numbers in paren-
theses are counts of models after deduplication.

Framework Type A Type B Type C Total

Tensorflow 153 (32) 3 (1) 0 156 (33)
TFLite 271 (98) 66 (30) 0 337 (128)
Caffe 26 (12) 28 (6) 0 54 (18)
Caffe2 6 (3) 13 (4) 0 19 (7)
PyTorch 13 (1) 0 0 13 (1)
PaddleLite 33 (12) 21 (5) 0 54 (17)
NCNN 22 (10) 19 (9) 0 41 (19)
MNN 20 (7) 14 (3) 0 34 (10)
MindSpore 8 (2) 6 (2) 0 14 (4)
SenseTime 0 0 106 (2) 106 (2)
Megvii 0 0 110 (2) 110 (2)
Sensory 0 0 19 (1) 19 (1)
-Others- 0 0 3 (3) 3 (3)

Total 552 (177) 170 (60) 238 (8) 960 (245)

in total. Similarly, we crawl the top apps from alternative markets
and obtain 39,951 apps which are deduplicated by app hash values.
Environment. The experiments are conducted on three Ubuntu
18.04 Linux servers. One with five NVIDIA Titan X GPUs, 32 cores
CPU, and 128 GB RAM is used for model attack experiments, the
other two both have 128 cores CPU and 256 GB RAM for Android
app analysis and on-device models extraction. The attack validation
experiments are conducted on a Google Pixel 2 smartphone.

Here we conduct experiments to evaluate AdvDroid and con-
duct comprehensive analysis of the results, in order to answer the
following research questions:
RQ1. How effective and efficient of AdvDroid in extracting and

analyzing on-device models? (see Section 5.1)
RQ2. How are the on-device models protected from physical theft

during deployment in mobile devices? (see Section 6.1)
RQ3. How robust of on-device models with regards to state-of-the-

art adversarial attacks? (see Section 6.2)

5.1 Effectiveness and Efficiency (RQ1)
We evaluate the effectiveness of AdvDroid for each phase.
Model extraction. AdvDroid identifies 5,573 candidate DL apps
from 62,583 apps. From the 5,573 apps, AdvDroid further recognizes
568 apps containing DL models, and extracts 991 models. After a
two-week manual examination, we find that 31 models are false
positives. For example, some apps contain files with the extension
“*.pb”. However, the file is not a model but a “protobuf” file with
the same file extension as models. So our model recognition found
960 real models and yielded a false positive rate of 3.13%. Further-
more, these fake models are actually configure files: feat.params
(12 occurrences), METADATA.pb (10), ClientInfo.pb (2), and others
(7). As for false negatives, we randomly sampled 100 apps from
those without DL characteristics and found no DL apps.
Model interface reasoning. We successfully identify 902 MISs,
880 input sources and 562 output labels from the extracted models.
To validate the correctness, we feed specific samples into models
and examine whether models return the consistent output labels.
The reasoning is correct and accurate if the model to test accepts

791

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zizhuang Deng et al.

the offered input and has the consistent output labels as inferred.
Based on that, it is found that 853 (96.93%) of the input sources and
509 (90.57%) of the output handlers are correct. Additionally, apps
may preprocess the input for models like resizing and normaliza-
tion. AdvDroid identifies 94 such operations as well as their key
parameters (e.g., mean and standard deviation in normalization).
Dataset generation. To further evaluate the quality of the gener-
ated data for models, we just feed them into our extracted models
and the original in apps, and then obtain their inference results.
By computing the 𝑙2-norm distance of two inference results, we
show how consistent of the extracted models with the original. We
repeat this evaluation for 10 times. In such a manner, 475 (98.55%)
of models exhibit a high consistency under the threshold 0.1.
Runtime of AdvDroid. Overall, AdvDroid spends about 26 hours
on extracting and attacking the models in 568 DL apps. On average,
it takes AdvDroid 9.58 minutes to attack one model in white-box
attacks and 69.28 minutes in black-box attacks. We also evaluate the
time spent on each step. For each app, it takes about 1.25 minutes to
find and extract the on-device models. The time spent on inferring
inputs/outputs is 5.60 minutes. For white-box AE generation, the
average time is 2.73 minutes. For black-box AE generation2, the
average time is 62.43 minutes.

5.2 Statistics of on-device Models
We remove the replicates from 960 extracted models via hash code
and obtain 245 distinct on-device models. Here we characterize
these models from the following aspects.
Model Frameworks & Accessibility.We present the frameworks
used by the models as well as their accessibility in Table 1. It is ob-
served that Tensorflow and TFLite contribute the most (16.25% and
35.10%, respectively) in the collected models. Models with Caffe2
and NCNN frameworks are only available through the native APIs,
and a higher percentage of models with these frameworks (68.42%
for Caffe2 and 46.34% for NCNN) have lower model accessibility
(i.e., Type B models). Through our experiment, we find that 170
models are protected to some extent. Although AdvDroid extracts
960 models, only 587 (61.15%) of them can be loaded from an exter-
nal loader with the model files, which contain 552 models of Type
A and 35 ones of Type B. For the left, i.e., 135 models of Type B
and 238 ones of Type C, we need to dynamically load and execute
models in apps. In this study, AdvDroid successfully runs 41 such
on-device models in the apps.
Model Task. Here we focus on what tasks the models can perform
and the data types of model input. As shown in Table 2, the image-
based models account for the largest share (70.31%), compared to
audio-based (13.13%) and text-based (8.23%) models. There are 465
image classification models, 168 object detection models including
OCR models, 29 style transfer models, and 13 pose detection mod-
els among 675 image-based models. One DL app may use several
models (e.g., bank card recognition model) while one model would
be used by several DL apps (e.g., NSFW detection model). On the
other hand, not all models in apps will be executed during runtime.
For example, some SDKs (e.g., Google Firebase) have integrated
on-device models for special use. Therefore, one app that relies

2The iteration threshold for substitute model training is 100,000 queries.

Table 2: Model input types in apps of different categories

Category Image Audio Text UNKNOWN Total

Photo/Video 274 34 2 12 322
Entertainment 95 20 6 14 135
Beauty 87 32 3 8 130
Tools 27 10 21 14 72
Finance 43 2 10 0 55
Communication 32 5 2 9 48
Education 23 4 19 1 47
Medical 12 0 3 1 16
-Others- 82 19 13 21 166

Total 675 126 79 80 960

on the SDK may not demand the DL service, and thereby will not
execute the models.

App category is associated with these models to showwhat types
of apps are more prone to using on-device models. It is observed
that Photo/Video apps exhibit the most interest as object detection,
optical character recognition (OCR) [16], and VR/AR [15] are the
more mature areas in deep learning. After manually vetting these
245 model tasks, we find that security-critical tasks account for
about 20-30%. Top security-critical tasks include face recognition
(23), identity card recognition (14), road condition recognition (3),
malware detection (2), and so on. The models in Finance category
are mainly used for face recognition, and the models in category
Communication are mainly used for speech recognition. Besides,
the apps in Education usually use models for OCR and keyboard
typing, and the apps in Tools use models usually for translation to
provide accessibility service.
Model Optimization. In order to reduce the size of models and
raise inference efficiency, most mobile deep learning frameworks
quantify numerical representation in parameters and reduce fused
operators used in the training process. In the 587 loadable mod-
els that can be peeked into for network internals, there are 261
models with optimization characteristics, including quantization
(238) and pruning (23). Additionally, there are 200 (84.03%) quan-
tized models using the TFLite framework, 196 quantized models
use the 8-bit uint quantization method, and the rest 42 models
use 16-bit uint quantization method and else. Quantization pa-
rameters can be directly obtained from model files, for example,
by calling TFLite API interpreter.get_input_details()[0
][‘quantization’]. The most used quantized parameters are
(𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡 = 0.0078125, 𝑠𝑐𝑎𝑙𝑒 = 128). We consider that a model
pruning exists if the ratio of zero weights and biases is larger than
a certain threshold (e.g., 40% [58]). As such, we find that 23 models
are pruned.

6 MEASUREMENT AND FINDINGS
In this section, we conduct an empirical analysis of physical theft
threat and evaluate the robustness of on-device models under ad-
versarial attacks.

6.1 Threats of Physical Theft (RQ2)
Intellectual property infringement becomes a severe threat for deep
learning models and has yet to be solved [43]. Prior research has
paved a way to unveil the possibilities of stealing models through

792

Understanding Real-world Threats to Deep Learning Models in Android Apps CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

authorized APIs [42, 50]. However, this threat is significantly worse
when offline models are deployed in mobile devices where the mod-
els may be physically accessed and stolen by attackers. It shows
that on-device models have already performed limited measures to
protect their weights [71]. In this section, we investigate the host
apps for the extracted 960 models, introduce the existing protection
measures that are being used in reality and unveil the flaws threat-
ening these models. Below we compile a list of model protection
techniques from two perspectives.
System-level protection. Apps treat on-device models as a sensi-
tive component and protect them in conventional manners.

• Remote loading. Models are not stored in apps so that static
analysis and code viewing cannot find them. Otherwise, models
are dynamically loaded from the remote during runtime and
perform inference for one time. As observed, there are 4 apps that
behave in such a way in our dataset. For example, we find that one
app contains a DL native library and MIS “MgFaceLab::Miguface”,
but the size of the associated model file “thin.tflite” is zero.
By monitoring its execution, we identify that the model content
comes from HTTP requests, and the model is used to extract
features of face images and then upload them to one server for
further detection and recognition.
• Model encryption. Alike other key components, on-devicemodels
are often encrypted and the ciphertext is stored locally. Apps
need to decrypt ciphertext and load the model in memory for
use. We find that 23 apps have taken this measure to protect their
models. The popular encryption methods include simple bitwise
computation (5), TEA [17] (2), AES (10), etc.
• Model packing. As described by the document of MACE frame-
work [13], models can be converted to native C++ code that is
much harder for parsing. That is, one model is stored as native
code rather than a plain file. It is common in reality and 16 models
cannot be extracted.
• Identity authentication. Models are only granted to specific users
for use. Therefore, some apps authenticate whether the current
user owns a valid authorization token. The token is generally
distributed during app execution by a remote server for the reg-
istered users. For example, we find that an app requires users to
register first to use the model for liveness detection.
• Integrity verification. It is used to verify whether models are
stolen and apps are repackaged. More specifically, models may
be replaced with a poisoned one, or code is changed to bypass
authentication by attackers. To handle this problem, apps can
compute the hash code for the model and app itself in advance.
On-device inference is only conducted if integrity is verified
successfully. We find 3 cases that have verified model integrity.

Model security enhancement. System-level protections can be
hacked by mature techniques like instrumentation, debugging, and
simulation. It is intriguing to explore the measures to enhance the
security of on-device models from physical theft. In this study, we
identify the following three out-of-the-box techniques.

• Layers obfuscation. Layers are commonly assigned with lucid
names in model design. For example, “Conv2D” is a 2D convo-
lution layer while “AvgPool2D” implies a layer of performing
average pooling. We find some apps obfuscating model layer

name in our dataset, e.g., ‘‘7cff058686c711e9a0ac4ccc6ac78afa:2’’.
Although ineffective in protecting models from theft and misuse,
it can increase the difficulty of model interpretation and further
model development.
• Weights transformation and protection. Weights are vital for a
model and should be protected as well. Prior studies have pro-
posed several methods, e.g., placing parts of themodel in TEE [20]
and masking model weights during deployment and unmasking
them during runtime [70]. Although we find no apps with this
type of protection, it exhibits a superior efficacy in model protec-
tion and will be widely applied once the additional overhead is
significantly reduced.
• Custom operators. Model developers may create their own opera-
tors with DL frameworks, seeking for more flexible and powerful
computations beyond built-in operators (e.g., convolution, relu,
pooling, normalization). These operators, in the meantime, raise
the difficulty of misusing the models. Unless the attackers learn
how operators compute, they cannot load and use these models.
In our dataset, we find 20 models with custom operators that are
defined in native libraries. For example, in app Google AR [15], an
operator “MaxPoolingWithArgmax2D” is designed to perform max
pooling and output the pooling indices.

Through an analysis of these protection techniques, we identify
some development flaws, as described in Table 7 in the appendices.
We have reported these issues to the affected vendors and received
one confirmation. We also find that four issues are fixed in the newer
versions. As shown in Table 7, we do find an app that applies more
defenses to protect models in its new version. But it does not necessarily
imply that on-device models become more secure over time. We also
provide some suggestions in Section 7.

0.65 0.70 0.75 0.80 0.85 0.90
Accuracy

White-Box Model

Black-Box Model

Figure 3: The accuracy of different models tested on our
generated test dataset.

6.2 Threats from Adversarial Attacks (RQ3)
In this section, we explore how robust on-devicemodels considering
adversarial examples. Note that, we only test image-based models
since the models of other types are too few to draw convincing
conclusions. Even so, our attacking approach can be easily adapted
to them by employing proper AE generation algorithms.
Test dataset. For each model to test, we prepare a dataset for
adversarial attacks from public datasets (e.g., ImageNet [30], Open
Images [8]) and Google Image. As such, we obtain 46 datasets in
total for these models that contain 251,765 samples. We manually
evaluate the accuracy of semantic-based training data generation.
In total, 20 datasets are generated with 320 labels during white-box
attacks, and 26 datasets are generated with 620 labels during black-
box attacks. The accuracy of 245 models tested on our datasets is
shown in Figure 3.

793

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zizhuang Deng et al.

Table 3: Untargeted attack results with 𝜖 = 0.06 (16/255) under the 𝑙∞ norm

Model Type Test Difficulty Num1 White-box method Black-box method Succ Num1
FGSM PGD Deepfool BIM MIM C&W NES Boundary Transfer

A direct test 21 14 16 14 13 15 14 9 8 / 16
interface adaption 156 63 52 56 51 45 66 22 12 / 80

B dynamic extraction 27 3 6 5 5 5 6 5 3 5 7
black-box query 33 / / / / / / 4 9 4 9

C black-box query 8 / / / / / / 3 1 3 4
Total 245 80 74 75 69 65 86 43 33 12 116

1 “Num” indicates the number of models, “Succ Num” indicates the number of models successfully attacked by any one method.

0.000 0.005 0.010 0.015 0.020
Perturbation Budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tta

ck
 S
uc
ce
ss
 R
at
e

Mobilenet
FGSM
PGD
DEEPFOOL
BIM
MIM
C&W

Figure 4: Performance comparison on the most-used real-
world model MobileNet against untargeted white-box algo-
rithms under 𝑙∞ norm.

Test difficulties. Models are varying from test difficulties con-
sidering protection measures. Here we define four types of test
difficulties to launch an adversarial attack.

• Direct test means that we can run adversarial attacks to evaluate
models with no adaptions.
• Interface adaption denotes that it needs to provide any input
preparation to adapt the models, like normalizing input images.
• Dynamic extraction means that the plain models need to be
extracted in advance for loading outside the app.
• Black-box query necessitates an app trigger to dynamically send
input samples to themodel and then get the attack results, amount-
ing to 41 models (33 Type-B and 8 Type-C models).

As shown in Table 3, 116 of 245 tested models can be successfully
attacked by AEs. Except 16 Type A models of “direct test” difficulty,
100 (86.21%) of them are benefited from interface reasoning. We
also find that white-box attack methods can attack more models
than black-box methods.
White-box adversarial attacks. For white-box models, AdvDroid
performs six different white-box attacks. The results are shown in
Table 3. In terms of the number of successful attacks, i.e., 𝐴𝑆𝑅𝑚 ,
C&W has the best performance. For the FGSM method, we draw
a box plot in Figure 5 to show the distribution of 𝐴𝑆𝑅𝑠 of white-
box models with different perturbation budgets. We find that the
distribution of 𝐴𝑆𝑅𝑠 of different models gradually diverges as per-
turbation budget increases. Additionally, the models with high
𝐴𝑆𝑅𝑠 are generally those with a large number of classes (e.g., > 10)
and complicated model structures (e.g., over 100 model layers and

0.0
0.0
01
0.0
02
0.0
03
0.0
04
0.0
05
0.0
06
0.0
07
0.0
08
0.0
09 0.0

1
0.0
11
0.0
12
0.0
13
0.0
14
0.0
15
0.0
16
0.0
17
0.0
18
0.0
19 0.0

2

Perturbation Budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tta

ck
 S
uc

ce
ss
 R
at
e

Figure 5: Distribution of 𝐴𝑆𝑅𝑠 of white-box models over the
𝑙∞ perturbation budgets in untargeted FGSM attack.

20,000 model neurons). Thus, providing real-world models is of
great value to security researchers.

Using these 6 attack algorithms with best-practice parameters de-
scribed in RealSafe [31] and DeepSec [57], we make a performance
comparison on the same real-world model using different attack al-
gorithms. For instance, we choose the most-used real-world model
MobileNet as our target and the results are shown in Figure 4. We
also select three popular DNNs for testing–ResNet, MnasNet, and
InceptionNet. For each model, we compute the 𝐴𝑆𝑅𝑠 of six attack
algorithms on the same dataset from ImageNet. We find that the
most effective algorithm against real-world models is method C&W,
but it is slower compared to other algorithms.

Since 40.55% (238/587) of models have been quantized before
being deployed on edge devices, we conduct another experiment
to quantify the influence of model quantization and determine the
main reason for the𝐴𝑆𝑅𝑚 gap. We randomly select 20 unquantized
models and also convert them into 20 quantized ones to perform 6
white-box attacks. The models are all from the real world and the
results are shown in Figure 6. We attack each model at different
perturbation budgets, ranging from 0 to 0.02 with a stride of 0.001,
and find that the 𝐴𝑆𝑅𝑠 of the quantized models is lower than that
of the unquantized models. At the perturbation budget 0.02, the
𝐴𝑆𝑅𝑠 difference between the quantized model and the unquantized
model can be 5-10%. The root cause of this problem is that quantized
models have a certain degree of gradient masking [64].

Moreover, quantized models have poor transferability with AEs
generated from unquantized models. This phenomenon is consis-
tent with prior studies. For example, Galloway et al. [35] point

794

Understanding Real-world Threats to Deep Learning Models in Android Apps CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

0.000 0.005 0.010 0.015 0.020
Perturbation Budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tta

ck
 S
uc
ce
ss
 R
at
e

FGSM

quantized
unquantized

0.000 0.005 0.010 0.015 0.020
Perturbation Budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tta

ck
 S
uc
ce
ss
 R
at
e

PGD

quantized
unquantized

0.000 0.005 0.010 0.015 0.020
Perturbation Budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tta

ck
 S
uc
ce
ss
 R
at
e

DeepFool

quantized
unquantized

0.000 0.005 0.010 0.015 0.020
Perturbation Budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tta

ck
 S
uc
ce
ss
 R
at
e

C&W

quantized
unquantized

0.000 0.005 0.010 0.015 0.020
Perturbation Budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tta

ck
 S
uc
ce
ss
 R
at
e

BIM

quantized
unquantized

0.000 0.005 0.010 0.015 0.020
Perturbation Budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tta

ck
 S
uc
ce
ss
 R
at
e

MIM

quantized
unquantized

Figure 6: Comparison between quantized and unquantized models with different perturbation budgets against untargeted
white-box attacks under the 𝑙∞ norm.
out that quantized networks have better robustness against ad-
versarial attacks. Bernhard et al. [21] state that quantized models
have a quantization shift phenomenon which ruins the adversarial
effect. Although [55] draws a different conclusion from us, their
work is mainly based on only two models (i.e., VGG-16 and Wide
ResNet) with AE attack setting (𝜖 ranges from 1/255 to 9/255), and
it only takes into account activation quantization. Additionally,
based on our findings, real-world quantized models mostly adopt
the post-training 8-bit integer quantization method [12] which is
parameter-quantized. It is observed that the C&W algorithm per-
forms the best with regard to quantization, causing about 1-2%
𝐴𝑆𝑅𝑠 loss. Because the C&W method essentially turns the genera-
tion of AEs into an optimization problem, there is little dependence
on the gradient information of the original model.

Summary. It is concluded that model quantization can to some
extent raise the robustness of a DL model, which results in a lower
𝐴𝑆𝑅𝑠 in real-world models.

Black-box adversarial attacks. AdvDroid performs three types
of attacks–transfer-based, score-based and decision-based attacks
on black-box models. Table 3 shows that 43 models are vulnerable
to NES attack, 33 models are vulnerable to boundary attack, and
12 models to transfer attack. Finally, we find that 48.86% (43/88)
of successful black-box attacks use NES, which is most effective.
The transfer attack of the black-box model has two requirements
to train a substitute model, suitable dataset, and model query. We
have no limit on the number of queries. In most cases, the internal
structure and parameters of the model are not clear.

We find that black-box quantized models need more queries
to train a transfer model to reach the same 𝐴𝑆𝑅𝑠 on unquantized
models. As well known, it is difficult to train a substitute model,
because we do not know what model architecture to train with.
With more queries, the substitute model may have more abilities
to learn the original model’s feature. We choose three different
white-box algorithms to attack substitute models, and the results
are shown in Figure 7. When the query number reaches 32,500,
the model accuracy decreases as the same level as the unquantized

model with 13,333 queries, additional 19,167 queries bring extra time
and resource consumption. The upper bound of 𝐴𝑆𝑅𝑠 reflects the
consistency of the substitute model with the original. With fewer
queries, the substitute model is more consistent with unquantized
models so the generated AEs exhibit stronger transferability. Over
the number of queries, the consistencies of the unquantized and
quantized model reach a similar upper bound and thereby the gap
decreases.
White-box Case Study. “Nsfw.pb” is found in 19 social and video
apps, e.g., an app named HOLLA with 10+ million installs. It is a not-
suitable-for-work (NSFW) image classifier with two labels (non-
NSFWor NSFW). By using AdvDroid, we change a dog image’s label
from the non-NSFW to NSFW using DeepFool with 𝜖 = 0.14 under
the 𝑙∞ norm. This kind of attack is applicable in many scenarios, like
bypassing the detection of received images on victim’s phone. On
the contrary, if the app user acts as an attacker, it is more practical
to upload the AEs of NSFW images rather than real NSFW images
by intentionally disabling NSFW detection in app. It is because
NSFW images can be likely blocked by either the server or the
receivers’ detectors. Besides, many apps have adopted app integrity
check (e.g., SafetyNet [1]) that makes it harder to manipulate one
app nowadays [44].
Black-box Case Study. We test a black-box model which is devel-
oped with NanoNet [6]. Its usage is to detect the traffic lights and
construction zones from the pictures captured by the dash-cam app,
a popular app called Nexar [7], with about 1 million downloads. Its
task is to identify and classify traffic lights in real-time scenarios.
It has four output labels: empty, red, green, and yellow. We gener-
ate a training dataset from Internet, and train a substitute model
with MobileNet after 50,000 queries. After that, we use targeted
white-box method to generate 10 AEs, and find that 8 of them have
the same attack effects in the original model. This kind of AEs can
bring considerably severe consequences. Supposing there are two
cars on the road, the attacker can put an adversarial stop sign or
red light sign on the front car. So that the rear car, the victim who
is using this dash-cam app, will make wrong driving decisions.

795

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zizhuang Deng et al.

0 20000 40000 60000 80000 100000
Queries

0.1

0.2

0.3

0.4

A
tta

ck
 S
uc

ce
ss
 R

at
e

FGSM

quantized
unquantized

0 20000 40000 60000 80000 100000
Queries

0.1

0.2

0.3

0.4

A
tta

ck
 S
uc

ce
ss
 R

at
e

Deepfool

quantized
unquantized

0 20000 40000 60000 80000 100000
Queries

0.1

0.2

0.3

0.4

A
tta

ck
 S
uc

ce
ss
 R

at
e

C&W

quantized
unquantized

Figure 7: Comparison between quantized and unquantizedmodels with the number of queries against untargeted transfer-based
attacks with 𝜖 = 0.06 (16/255) under the 𝑙∞ norm.

7 SUGGESTIONS FOR DEVELOPERS
On-device models are important intellectual properties to app de-
velopers and model providers. On one hand, improper protection
of on-device models may attract attackers to launch attacks against
legitimate app function, leading to various consequences. On the
other hand, the misuse of such on-device models may cause damage
to the revenue of the model providers, as attackers can plagiarize
the model through infinite queries and building a substitute model.
However, it is well recognized that the arms race between attack
and defense never ends. It is appealing for defenders to raise the
barrier for attackers so that the benefit from the attack cannot offset
the attack cost. Here we provide three suggestions against model
stealing, misuse and AE attacks.
1. Avoid clear text on-device models. Our analysis tool relies
on a lot of useful information provided by the clear text on-device
models. Therefore, to avoid being analyzed, the straightforward
way is to well protect on-device model files. Obfuscation is one
cost-effective approach by obscuring any meaningful text in the
stored model files. Encryption can even make the model exist only
in memory, and users cannot identify the model by looking at the
storage. We found that 70 apps take the defense. In these apps, we
can only extract models from 18.57% (13/70) of them. In contrast,
for unprotected apps, 97.80% (241/246) of them can be successfully
analyzed for model extraction, demonstrating the defense’s effec-
tiveness. We further analyzed the failed apps and found that 23
apps use obfuscation to make plaintext unrecognizable. While we
cannot directly use string matching to locate the code for model
loading, we can still use dynamic analysis to find the code. However,
for the rest of the 34 apps using encryption, it is really hard for
us to extract the models. So heavy-weight encryption/obfuscation
can make the analysis very difficult. A developer can even split
the model into two parts and encrypt them [72]. When using the
model, users dynamically decrypt the two parts and combine them
to form a whole DL model, which can increase the difficulty of
model extraction. Obfuscation and encryption are two common
techniques for protecting apps. Developers only need to follow
standard methods to deploy the two techniques.
2. Prevent the misuse of on-device models. On-device mod-
els are valuable assets, and hence the approaches of protecting
assets can be applied directly, e.g., authentication. Authentication
ensures that only authenticated users/apps are permitted to use
the on-device models. This requires the collaboration between app
developers and model providers. For app developers, this can be
performed by requiring login and user token before the use of their

on-device models. For model providers, secure license distribution
from server side and proper license management from client side
are necessary before the use of their models. According to our eval-
uation, 47 apps take advantage of this defense, and they are all
Type-C. Recall that the Type-C model uses closed source frame-
works. That is to say, even if we successfully extract the models, we
cannot directly load them for white-box analysis. So the only choice
is to treat the apps as black-box and query the models using various
input/output pairs. However, for 35 apps that use the defense, we
cannot obtain proper licenses or tokens and cannot execute queries.
For other Type-C models without the defense, we can successfully
conduct black-box attacks. For example, the AppLock app with
about 1 million downloads, uses Sensory’s face liveness detection
model. This model lacks a license manager to verify user access to
the model. An attacker can just copy the model and the library to
steal this closed source model and rebuild another face detection
app. One challenge of deploying the defense is securing licenses
well. Once the license is compromised, malicious users can query
the model and perform black-box attacks. Therefore, it is recom-
mended to store licenses on the cloud and update authentication
credentials regularly. Besides, recent studies use TEE to protect
mobile models from AE attacks by concealing model loading and
execution (e.g., OMG [20]).
3. Build more robust on-device models. Last but not the least, it
is important for both app developers and model providers to bear
in mind the necessity of enhancing the robustness of the on-device
model itself. It is shown that the robustness can be achieved us-
ing various techniques, such as adversarial training [60, 77] and
input transformation [38]. There are also approaches [34, 59] to
detect whether the input is an AE. To evaluate the efficacy of these
three defenses, we randomly select 20 real-world models and com-
pare the attack success rates (𝐴𝑆𝑅𝑠) before and after the defenses.
Specifically, we employ PGD-AT [60] and TRADES [77] for adver-
sarial training. The𝐴𝑆𝑅𝑠 drops by 37.5% on average, indicating that
37.5% of adversarial examples cease to be effective. As for input
transformation, we use JPEG compression [38] and Pixel Deflection
(PD) [67], which reduces the 𝐴𝑆𝑅𝑠 by 17.0% on average. For AE
detection, we take two popular methods–Local Intrinsic Dimen-
sionality (LID) [59] and Kernel Density Estimation (KDE) [34] with
the default settings. The average detection ROC-AUCs are 82.1%
and 71.5%, respectively. Detailed experiment settings and results
are shown in Appendix D.

We also compare the time cost of the three defenses. For ad-
versarial training, the average training time is 2.8 hours. Input

796

Understanding Real-world Threats to Deep Learning Models in Android Apps CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

transformation does not require additional time to retrain the mod-
els. Its cost is mainly from dynamic execution, which on average
takes about 0.03 seconds to process an image. AE detection usually
requires to extract features of AEs and models and train a detector
for recognizing abnormal input, which takes us 1.2 hours on aver-
age. The extra time comes from detectors’ inference of the given
input, which averagely takes about 0.5 seconds.

The main challenge of deploying the defenses is to minimize the
impact on normal inputs. Adversarial training requires updating the
model, whichmay affect themodel’s accuracy; input transformation
requires changing the inputs, which may make the original input
unrecognizable; AE detection can also classify normal inputs as
adversarial examples. Therefore, developers should deploy defenses
carefully so as not to affect the normal requests of users.

8 DISCUSSION
Real-world vs. Academic models. After extracting and eval-
uating these on-device models, we make a comparison between
real-world models and conventional models. Real-world models
exhibit significant differences from those in academia based on our
study. Specifically, real-world models are prone to employing: ❶

cost-efficient network architectures like MobileNets, EfficientNet,
which negatively impact prediction accuracy (see Figure 3). In the
RWM dataset, these models’ average file size is 4.35 MB. In particu-
lar, there are 84 MobileNets, 18 SqueezeNets, 13 EfficientNets in the
RWM dataset. ❷ layers obfuscation or custom operators designed
for edge devices and hardware accelerators (e.g., TPU, NPU) in
Section 6.1. There are 12 kinds of custom operators found in the
RWM dataset, e.g., MaxPoolingWithArgmax2D, MaxUnpooling2D,
StrSim, and TextEncoder3. ❸ model quantization (40.55% as stated
in Section 6.2), model compression and pruning for optimization.
Such differences could inspire interesting research questions.
Limitations. During the model extraction in Section 3.1, there may
be some false negatives due to the model protection adopted by
app developers. For example, for the app that adopts obfuscation
techniques, AdvDroid based on semantic search may not be able to
find any model-related strings in the app’s bytecode or lib export
functions. Moreover, the file formats of protected models in some
apps are with suffixes like .bin or .data instead of common model
file format like .tflite.
Future work. In this work, we only try several mainstream attacks
which are experimentally effective. There are more and more pow-
erful attacks being proposed. To keep up with the arm race, we will
experiment with more new attack methods in the future, e.g., re-
cently proposed optimized boundary attack [22]. It is an interesting
extension to our work to study models with more diverse functions,
such as audio recognition and natural language processing, other
than image-related functions. Even so, we believe AdvDroid, which
facilities model extraction, interface reasoning and automated test-
ing, can benefit the security assessment of mobile DL models.

9 RELATEDWORK
On-device model evaluation. As the on-device inference has
been practically adopted on mobile devices, it is of great signifi-
cance to analyze and understand the potential security threats in
these on-device models [73]. Ignatov et al. [45, 46] evaluate different

mobile hardware accelerators for on-device model inference and
present the first real-world benchmark performance of different
mobile SoCs. Xu et al. [75] give a glance at how DL techniques are
deployed in smartphone apps. Their work uses statistical methods
to provide insightful results, for example, how many top apps use
DL techniques, what these apps use DL for, what is the average size
of on-device models, and whether the apps are using any optimiza-
tion techniques, etc. Based on the revealed results, they provide
implications for multiple stakeholders of the mobile DL ecosystem.
However, it is worth noting that though plenty of toolboxes, such
cleverhans [63] and ART [62], are developed for practically evalu-
ating DL models using traditional DL framework, few of work has
been done to evaluate on-device models that are built upon mobile
DL frameworks. Different from their work, our study is to understand
the gap between real-world adversarial attacks and academic attacks
on DL models, and show robustness and threats in real-world models.
Attacks on DL apps. Deep learning has been witnessed to be
suffering from many attacks, for example adversarial attacks [23,
24, 37, 61, 64, 65]. Attacks aim to find AEs to force a machine learn-
ing system to produce erroneous outputs. This type of attacks can
be done in both white-box manner [23, 37, 61, 65] and black-box
manner [24, 64]. More specifically, white-box attacks can be catego-
rized into gradient-based methods [37, 65] and optimization-based
methods [23, 61]. Due to the lack of sufficient model information,
black-box attacks are achieved using scored-based methods to esti-
mate the gradient [24], or using the transferability feature of the
adversarial input between an accessible model and the victim black-
box model [64]. In addition, there are attacks against specific critical
DL apps, such as biometric authentication system [26], liveness
detection system [78] and malware detection [66].

10 CONCLUSION AND OUTLOOK
This work is the first measurement work looking at security risks of
learning models deployed in mobile apps. We have found that 5,573
(8.90%) of 62,583 apps from the market have been equipped with
DL technology to enhance their performance, while 568 (10.19%)
of them have local on-device models inside the APK files. Many
on-device models are unprotected and vulnerable to adversarial
attacks. We proposed a novel method to get model interface of DL
models and build model testing environment to generate the AEs.
Benefiting from our model analysis, 47.35% of the models can be
successfully attacked by current AE generation algorithms. We also
found that real-world models with quantization are more robust
than academic ones. In the end, we provided insightful suggestions
on deploying DL models and defending AE attacks for developers.

ACKNOWLEDGEMENTS
We thank all the anonymous reviewers for their constructive feed-
back. IIE authors are supported in part by the National Key R&D
Program of China (2020AAA0140001), NSFC (U1836211, 61902395),
Beijing Natural Science Foundation (No.M22004), the Anhui De-
partment of Science and Technology under Grant 202103a05020009,
Youth Innovation Promotion Association CAS, Beijing Academy of
Artificial Intelligence (BAAI) and a research grant from Huawei.

797

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zizhuang Deng et al.

REFERENCES
[1] 2020. Android SafetyNet. https://developer.android.com/training/safetynet/attes

tation.
[2] 2020. Caffe2. https://research.fb.com/downloads/caffe2/.
[3] 2020. Convert from TFLite. https://stackoverflow.com/questions/59559289/is-

there-any-way-to-convert-a-tensorflow-lite-tflite-file-back-to-a-keras-fil.
[4] 2020. Google Assistant. https://assistant.google.com.
[5] 2020. Google Image. https://images.google.com.
[6] 2020. NanoNet. https://nanonets.com.
[7] 2020. Nexar - AI Dash Cam for Peace of Mind on the Road. https://play.google.

com/store/apps/details?id=mobi.nexar.dashcam&hl=en.
[8] 2020. Open Images Dataset. g.co/dataset/open-images.
[9] 2020. Sensory. https://www.sensory.com.
[10] 2020. TensorFlow Hub. https://tfhub.dev.
[11] 2020. TensorFlow Lite example apps. https://www.tensorflow.org/lite/examples.
[12] 2020. TensorFlow Lite model optimization. https://www.tensorflow.org/lite/per

formance/model_optimization.
[13] 2021. Convert model(s) to C++ code. https://mace.readthedocs.io/en/latest/user

_guide/advanced_usage.html#convert-model-s-to-c-code.
[14] 2021. Curated NLP Database. https://metatext.io/datasets.
[15] 2021. Google Play Services for AR. https://play.google.com/store/apps/details?i

d=com.google.ar.core&hl=en.
[16] 2021. Google Translate. https://play.google.com/store/apps/details?id=com.goog

le.android.apps.translate&hl=en.
[17] 2021. Tiny Encryption Algorithm. https://en.wikipedia.org/wiki/Tiny_Encrypt

ion_Algorithm.
[18] 2022. PayPal. https://play.google.com/store/apps/details?id=com.paypal.android

.p2pmobile&hl=en&gl=US.
[19] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[20] Sebastian P Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer,
Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and ChristianWeinert.
2020. Offline model guard: Secure and private ML on mobile devices. In 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 460–
465.

[21] Remi Bernhard, Pierre-Alain Moellic, Jean-Max Dutertre, and France Gardanne.
2019. Adversarial Robustness of Quantized Embedded Neural Networks. Com-
puter & Electronics Security Applications Rendezvous (2019), 1–33.

[22] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2017. Decision-based
adversarial attacks: Reliable attacks against black-box machine learning models.
arXiv preprint arXiv:1712.04248 (2017).

[23] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy (sp). IEEE,
39–57.

[24] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
Zoo: Zeroth order optimization based black-box attacks to deep neural networks
without training substitute models. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security. 15–26.

[25] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning. ACM SIGARCH Computer Architecture
News 42, 1 (2014), 269–284.

[26] Yu Chen and H. C. Ma. 2019. Biometric Authentication Under Threat : Liveness
Detection Hacking. In Black Hat USA.

[27] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue Zhao, Shengzhi Zhang, Kai
Chen, and XiaoFeng Wang. 2020. Devil’s Whisper: A General Approach for
Physical Adversarial Attacks against Commercial Black-box Speech Recognition
Devices.. In USENIX Security Symposium. 2667–2684.

[28] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 367–379.

[29] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming. Springer, 77–101.

[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Ima-
geNet: A Large-Scale Hierarchical Image Database. In CVPR09.

[31] Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun
Zhu. 2020. Benchmarking Adversarial Robustness on Image Classification. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 321–331.

[32] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting adversarial attacks with momentum. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 9185–9193.

[33] Goodman Dou, Xin Hao, Yang Wang, Yuesheng Wu, Junfeng Xiong, and Huan
Zhang. 2020. Advbox: a toolbox to generate adversarial examples that fool neural
networks. arXiv:2001.05574 [cs.LG]

[34] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. 2017.
Detecting Adversarial Samples from Artifacts. ArXiv abs/1703.00410 (2017).

[35] Angus Galloway, Graham W Taylor, and Medhat Moussa. 2017. Attacking bina-
rized neural networks. arXiv preprint arXiv:1711.00449 (2017).

[36] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R ChanningMoore, Manoj Plakal, andMarvin Ritter. 2017. Audio set: An ontology
and human-labeled dataset for audio events. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 776–780.

[37] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
harnessing adversarial examples. In ICLR.

[38] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. 2018.
Countering Adversarial Images using Input Transformations. In International
Conference on Learning Representations. https://openreview.net/forum?id=SyJ7
ClWCb

[39] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: efficient inference engine on compressed deep
neural network. ACM SIGARCH Computer Architecture News 44, 3 (2016), 243–
254.

[40] Jamie Hayes and George Danezis. 2018. Learning universal adversarial perturba-
tions with generative models. In 2018 IEEE Security and Privacy Workshops (SPW).
IEEE, 43–49.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[42] Yingzhe He, Guozhu Meng, Kai Chen, Jinwen He, and Xingbo Hu. 2021. DRMI:
A Dataset Reduction Technology based on Mutual Information for Black-box At-
tacks. In Proceedings of the 30th USENIX Security Symposium (USENIX) (Vancouver,
B.C., Canada).

[43] Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, and Jinwen He. 2022. Towards
Security Threats of Deep Learning Systems: A Survey. IEEE Transactions on
Software Engineering (TSE) 48, 5 (2022), 1743–1770. https://doi.org/10.1109/TSE.
2020.3034721

[44] Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi. 2021. SafetyNOT:
on the usage of the SafetyNet attestation API in Android. In Proceedings of the
19th Annual International Conference on Mobile Systems, Applications, and Services.
150–162.

[45] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley,
and Luc Van Gool. 2018. Ai benchmark: Running deep neural networks on
android smartphones. In Proceedings of the European Conference on Computer
Vision (ECCV). 0–0.

[46] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo Yang, Ke Wang, Felix
Baum, Max Wu, Lirong Xu, and Luc Van Gool. 2019. AI Benchmark: All About
Deep Learning on Smartphones in 2019. arXiv preprint arXiv:1910.06663 (2019).

[47] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. 2018. Black-
box adversarial attacks with limited queries and information. arXiv preprint
arXiv:1804.08598 (2018).

[48] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. 2019. Adversarial examples are not bugs, they are
features. In Advances in Neural Information Processing Systems. 125–136.

[49] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2704–2713.

[50] Hengrui Jia, Christopher A. Choquette-Choo, Varun Chandrasekaran, and Nicolas
Papernot. 2021. Entangled Watermarks as a Defense against Model Extraction.
In Proceedings of the 30th USENIX Security Symposium (USENIX) (Vancouver, B.C.,
Canada).

[51] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[52] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial machine
learning at scale. In ICLR.

[53] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[54] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: A
Lightweight UI-Guided Test Input Generator for Android. IEEE Press.

[55] Ji Lin, Chuang Gan, and Song Han. 2019. Defensive quantization: When efficiency
meets robustness. arXiv preprint arXiv:1904.08444 (2019).

[56] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[57] Xiang Ling, Shouling Ji, Jiaxu Zou, JiannanWang, ChunmingWu, Bo Li, and Ting
Wang. 2019. Deepsec: A uniform platform for security analysis of deep learning
model. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 673–690.

[58] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2019.
Rethinking the Value of Network Pruning. In International Conference on Learning
Representations. https://openreview.net/forum?id=rJlnB3C5Ym

798

https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation
https://research.fb.com/downloads/caffe2/
https://stackoverflow.com/questions/59559289/is-there-any-way-to-convert-a-tensorflow-lite-tflite-file-back-to-a-keras-fil
https://stackoverflow.com/questions/59559289/is-there-any-way-to-convert-a-tensorflow-lite-tflite-file-back-to-a-keras-fil
https://assistant.google.com
https://images.google.com
https://nanonets.com
https://play.google.com/store/apps/details?id=mobi.nexar.dashcam&hl=en
https://play.google.com/store/apps/details?id=mobi.nexar.dashcam&hl=en
g.co/dataset/open-images
https://www.sensory.com
https://tfhub.dev
https://www.tensorflow.org/lite/examples
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html##convert-model-s-to-c-code
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html##convert-model-s-to-c-code
https://metatext.io/datasets
https://play.google.com/store/apps/details?id=com.google.ar.core&hl=en
https://play.google.com/store/apps/details?id=com.google.ar.core&hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.translate&hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.translate&hl=en
https://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
https://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
https://play.google.com/store/apps/details?id=com.paypal.android.p2pmobile&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.paypal.android.p2pmobile&hl=en&gl=US
https://arxiv.org/abs/2001.05574
https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=SyJ7ClWCb
https://doi.org/10.1109/TSE.2020.3034721
https://doi.org/10.1109/TSE.2020.3034721
https://openreview.net/forum?id=rJlnB3C5Ym

Understanding Real-world Threats to Deep Learning Models in Android Apps CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

[59] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi Wijewickrema, Grant
Schoenebeck, Michael E. Houle, Dawn Song, and James Bailey. 2018. Characteriz-
ing Adversarial Subspaces Using Local Intrinsic Dimensionality. In International
Conference on Learning Representations. https://openreview.net/forum?id=B1gJ
1L2aW

[60] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. In International Conference on Learning Representations. https://openre
view.net/forum?id=rJzIBfZAb

[61] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2574–2582.

[62] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish
Rawat, Martin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen,
Heiko Ludwig, Ian Molloy, and Ben Edwards. 2018. Adversarial Robustness
Toolbox v1.2.0. CoRR 1807.01069 (2018). https://arxiv.org/pdf/1807.01069

[63] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Fein-
man, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexan-
der Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin
Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato, Willi Gierke,
Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber, and Rujun Long.
2018. Technical Report on the CleverHans v2.1.0 Adversarial Examples Library.
arXiv preprint arXiv:1610.00768 (2018).

[64] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia conference on computer and
communications security. 506–519.

[65] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In 2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 372–387.

[66] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing Properties of Adversarial ML Attacks in the Problem Space.
In 2020 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
1308–1325. https://doi.org/10.1109/SP40000.2020.00073

[67] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James A.
Storer. 2018. Deflecting Adversarial Attacks with Pixel Deflection. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018), 8571–8580.

[68] Jonas Rauber, Wieland Brendel, and Matthias Bethge. 2017. Foolbox: A Python
toolbox to benchmark the robustness of machine learning models. In Reliable
Machine Learning in the Wild Workshop, 34th International Conference on Machine
Learning. http://arxiv.org/abs/1707.04131

[69] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[70] Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Somesh
Jha, and Long Lu. 2020. Shadownet: A secure and efficient system for on-device
model inference. arXiv preprint arXiv:2011.05905 (2020).

[71] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. 2021. Mind Your
Weight(s): A Large-scale Study on Insufficient Machine Learning Model Protec-
tion in Mobile Apps. In 30th USENIX Security Symposium (USENIX Security 21).
1955–1972.

[72] Florian Tramèr and Dan Boneh. 2019. Slalom: Fast, Verifiable and Private Execu-
tion of Neural Networks in Trusted Hardware. In ICLR.

[73] Dianlei Xu, Tong Li, Yong Li, Xiang Su, Sasu Tarkoma, and Pan Hui. 2020. A
Survey on Edge Intelligence. arXiv preprint arXiv:2003.12172 (2020).

[74] Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and Anil K.
Jain. 2020. Adversarial attacks and defenses in images, graphs and text: A review.
International Journal of Automation and Computing 17, 2 (2020), 151–178.

[75] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and
Xuanzhe Liu. 2019. A First Look at Deep Learning Apps on Smartphones. In The
World Wide Web Conference (San Francisco, CA, USA) (WWW ’19). Association
for Computing Machinery, New York, NY, USA, 2125–2136. https://doi.org/10.1
145/3308558.3313591

[76] Mingming Zha, Guozhu Meng, Chaoyang Lin, Zhe Zhou, and Kai Chen. 2019.
RoLMA: A Practical Adversarial Attack Against Deep Learning-Based LPR Sys-
tems. In Information Security and Cryptology (Inscrypt). 4701–4708.

[77] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and
Michael I. Jordan. 2019. Theoretically Principled Trade-off between Robustness
and Accuracy. In International Conference on Machine Learning.

[78] Benjamin Zi Hao Zhao, Hassan Jameel Asghar, and Mohamed Ali Kaafar. 2020.
On the Resilience of Biometric Authentication Systems against Random Inputs.
arXiv preprint arXiv:2001.04056 (2020).

[79] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. 2019. Object
detection with deep learning: A review. IEEE transactions on neural networks and
learning systems 30, 11 (2019), 3212–3232.

799

https://openreview.net/forum?id=B1gJ1L2aW
https://openreview.net/forum?id=B1gJ1L2aW
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://arxiv.org/pdf/1807.01069
https://doi.org/10.1109/SP40000.2020.00073
http://arxiv.org/abs/1707.04131
https://doi.org/10.1145/3308558.3313591
https://doi.org/10.1145/3308558.3313591

	Abstract
	1 Introduction
	2 Background
	2.1 Mobile DL Frameworks
	2.2 On-device model protection

	3 Approach
	3.1 Model Extraction
	3.2 Model Interface Reasoning
	3.3 Dataset Generation
	3.4 Attack Observer

	4 Implementation
	5 Evaluation
	5.1 Effectiveness and Efficiency (RQ1)
	5.2 Statistics of on-device Models

	6 Measurement and Findings
	6.1 Threats of Physical Theft (RQ2)
	6.2 Threats from Adversarial Attacks (RQ3)

	7 Suggestions for Developers
	8 Discussion
	9 Related Work
	10 Conclusion and Outlook
	References

