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ABSTRACT
Crowd counting, which has been widely adopted for estimating the
number of people in safety-critical scenes, is shown to be vulnera-
ble to adversarial examples in the physical world (e.g., adversarial
patches). Though harmful, adversarial examples are also valuable
for evaluating and better understanding model robustness. How-
ever, existing adversarial example generation methods for crowd
counting lack strong transferability among different black-box mod-
els, which limits their practicability for real-world systems. Moti-
vated by the fact that attacking transferability is positively corre-
lated to the model-invariant characteristics, this paper proposes
the Perceptual Adversarial Patch (PAP) generation framework to
tailor the adversarial perturbations for crowd counting scenes us-
ing the model-shared perceptual features. Specifically, we hand-
craft an adaptive crowd density weighting approach to capture
the invariant scale perception features across various models and
utilize the density guided attention to capture the model-shared
position perception. Both of them are demonstrated to improve
the attacking transferability of our adversarial patches. Extensive
experiments show that our PAP could achieve state-of-the-art at-
tacking performance in both the digital and physical world, and
outperform previous proposals by large margins (at most +685.7
MAE and +699.5 MSE). Besides, we empirically demonstrate that
adversarial training with our PAP can benefit the performance of
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vanilla models in alleviating several practical challenges in crowd
counting scenarios, including generalization across datasets (up
to -376.0 MAE and -354.9 MSE) and robustness towards complex
backgrounds (up to -10.3 MAE and -16.4 MSE) 1.
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1 INTRODUCTION
Crowd counting, which estimates the number of people in un-
constrained scenes, is becoming increasingly important in many
safety-critical scenarios in practice (e.g., pedestrian density mon-
itoring). Up to now, research has focused on designing different
crowd counting methods, including detection-based approaches
[24, 27, 61], count regression approaches [5, 7, 8, 47], and density-
map-estimation-based methods [2, 25, 29, 32, 36, 39, 41, 46, 58, 60].
The last has become the de facto solution for the crowd counting
task due to its insensitivity to occlusion and stability for large crowd
scenes. In general, given an input image, this type of approach first
generates a 2D crowd density map and then subsequently estimates
the total number of the crowd by summing the density values across
all spatial locations of the density map.

1Our code can be found in https://github.com/shunchang-liu/PAP-Pytorch.
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Figure 1: Bidirectional role of our adversarial patches in
the crowd counting scenario. (a) Physical world attacks (left:
clean scene; right: perturbed scene). Our patch can lead the
crowd counting system to seriously wrong predictions. (b)
Performance improvement with PAP (left: vanilla model;
right: enhanced model trained with PAP). Model robustness
towards complex backgrounds (e.g., Haze) is improved by ad-
versarial training with our patches.

With increasing deployment of intelligent crowd counting de-
vices in the safety-critical scenarios, their vulnerability has attracted
considerable attention and become a growing concern for the public.
Unfortunately, current estimation-based crowd counting models
are highly vulnerable to adversarial examples, i.e., small perturba-
tions that are imperceptible to humans but can easily lead deep
neural networks to make wrong predictions [42]. Though harmful,
adversarial attacks could also be used to evaluate model robustness
and provide valuable insights into the blind spots of deep learning
models. In contrast with 𝐿𝑝−norm based attacks [18, 42], adver-
sarial patch [4], a type of perturbation confined into a small patch
region without an 𝜖−ball constraint, has a much higher application
value in the real world due to its strong resistance to physical in-
fluences. However, as the only adversarial patch study for crowd
counting models, [51] performs weak transferable attacks, which
limits its ability to evaluate the robustness of black-box crowd
counting systems in practice.

Recent studies [14, 22] have shown that model-invariant char-
acteristics greatly influence transferable attacks in vision tasks. In
light of this, we aim to find those intrinsic characteristics that are
shared between models for generating adversarial patches with
strong transferability. For crowd counting, we reached two key
insights: (1) Different models tend to show different perceptual
preferences for different crowd scales, i.e., multiple scale percep-
tions. Due to the different structures, various models with different
receptive fields can hardly capture consistent scale representations.
Therefore, a model trained with specific object scales (e.g., the sizes
of human heads) always performs well on its preferred scale while
it is difficult to make correct predictions on others. (2) Different
models show similar attention patterns at the same crowd positions,
i.e., shared position perception. Almost all density-estimation-based
models rely on head features for crowd prediction. In other words,
they have similar attention patterns to the position of human heads.
Figure 2 illustrates the above observations.

Thus, based on the above investigations, we propose the Percep-
tual Adversarial Patch (PAP) generation framework to learn model-
invariant features by exploiting the model scale and position percep-
tions, thus promoting the transferability of our adversarial patches.
(1) As for scale perception, PAP introduces the adaptive density
during training to dynamically adjust the contribution of features
with different scales, which helps to capture the scale invariance
between models. In particular, we automatically enhance the contri-
bution of the crowd scale features that are not captured well by the
specific target model, so that the adversarial patches can be opti-
mized with the complete scale features, i.e., the adversarial patches
could adapt to models with different crowd scale perceptions. (2)
Regarding position perception, PAP draws the model-shared at-
tention of the target model from the spatially dispersed crowd
patterns to the patch region, which helps to capture position invari-
ance among models. Specifically, we utilize density-based gradients
to obtain the attention map and strengthen the salient degree of
the patch region. Thus, we could force the position perception of
different models to focus on the patch. Overall, as shown in Figure
1 (a), our approach can generate strongly transferable adversarial
patches in the physical world.

Furthermore, while most studies have found that adversarial
training will reduce the model’s performance on the original task
[33, 45], we found an intriguing effect that benefits model perfor-
mance for crowd counting by training with our adversarial patches.
Since the generated adversarial patches consist of model-invariant
characteristics (i.e., scale perception and position perception), adver-
sarial training with our patches can force the vanilla model to better
focus on crowds at perception level. We empirically demonstrate
that it could benefit the vanilla models for better generalization
across datasets and better robustness towards complex backgrounds
(as shown in Figure 1 (b)).

To sum up, our contributions are as follows:

• We proposed a Perceptual Adversarial Patch (PAP) genera-
tion framework that exploits the inherent perceptual prop-
erties to capture the model-invariant features for attacking
the real-world crowd counting systems.
• We designed the adaptive density and guided attention to
capture scale and position perceptions, which could improve
the transferable attacking ability of the adversarial patches
across multiple crowd counting models in various structures.
• Besides, we empirically demonstrated that our generated ad-
versarial patches could be utilized for promoting the vanilla
model’s robustness in several aspects (e.g., generalization
across datasets and robustness towards complex backgrounds)
via the adversarial training scheme.
• Extensive experiments in the digital and physical world
demonstrated that our PAP achieves the state-of-the-art at-
tacking ability and outperforms other baselines by large mar-
gins (at most +685.7 MAE and +699.5 MSE). In addition,
adversarial training with our PAP can improve the model
performance by at most -376.0 MAE, -354.9 MSE for gen-
eralization across datasets, and -10.3 MAE, -16.4 MSE for
robustness towards complex backgrounds.
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Figure 2: Perceptual properties of density-map-estimation-based crowd counting models. For scale perception, we show the
feature maps in three branches of MCNN and the density maps of six models. Branches with different receptive fields capture
different scale features, and thus various model structures lead to multiple scale preferences in the density map. For position
perception, we show the model attention maps through Grad-CAM [38]. All models have similar spatially dispersed attention
patterns for the same crowd position.

2 RELATEDWORKS AND PRELIMINARY
2.1 Crowd Counting
Image or video-based crowd counting aims to automatically esti-
mate the number of people in unconstrained scenes. Early work
mainly focuses on detection-based methods [24, 27, 61] and count
regression methods [5, 7, 8, 47], which either show unsatisfactory
results in extremely dense crowds or have weak interpretability due
to ignoring the key information in the dot annotation maps. Nowa-
days, density-map-estimation-based approaches [2, 25, 29, 32, 36,
39, 41, 46, 58, 60], which we focus on, have been widely used due to
their better performance. They take images or videos as inputs and
predict the crowd density maps to estimate the number of people.
Formally, given an input image x, a model 𝑓Θ is designed to ap-
proximate the ground truth density map I by solving the following
optimization problem:

argmin
Θ

1

2𝑁

𝑁∑︁
𝑖=1

| |𝑓Θ (x𝑖 ) − I𝑖 | |22, (1)

where 𝑁 denotes the number of input samples.
Several methods have been proposed as solutions to this prob-

lem. For instance, [60] designed a Multi-column Convolutional
Neural Network (MCNN) utilizing three network branches with
different kernel sizes to map the image to its density map. [25]
replaced the multi-branch structure with dilated convolution and
proposed an end-to-end Congested Scene Recognition Network

(CSRNet). Further, [29] introduced an adaptively Context-Aware
Network (CAN) to capture the contextual information. From an
optimization view, [32] designed a Bayesian Loss (BL) to construct
a density contribution probability model and [46] proposed optimal
transport loss and total variation loss for Distribution Matching
(DM-Count). Recently, [41] proposed a Scale-Adaptive Selection
Network (SASNet) which can automatically learn the internal cor-
respondence between the scales and the feature levels and further
proposed a pyramid region awareness loss to fix the most hard
sub-regions. These estimation-based methods can be roughly di-
vided into two categories based on the branches used for feature
extraction: multi-column strategies, e.g., [2, 36, 41, 58, 60], and
single-column strategies, e.g., [25, 29, 32, 39, 46].

Though having achieved promising results, [17] pointed out that
current crowd counting models still suffer from multiple challenges.
Specifically, current methods show unsatisfactory generaliza-
tion across datasets. The overfitting problem has always been the
hot potato in the field of deep learning. As for the estimation-based
crowd counting methods, the performance of the predictor will in-
evitably reduce when generalizing the model trained on the specific
data distribution to unseen scenes with non-uniform distributions.
The reduction will cause sub-optimal results, though it may not
lead to a collapse of the model. Moreover, they have weak robust-
ness for complex backgrounds. That is, it is easily influenced
by natural noises, e.g., adverse weather (rain, snow, haze, etc.), and
objects with similar densities, e.g., hard samples that are similar to
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crowds (leaves, birds, etc). These drawbacks inject potential risks
into real-world crowd counting systems.

2.2 Adversarial Attacks
Adversarial examples are inputs intentionally designed to mislead
DNNs but are imperceptible to humans [18, 42]. A long line of work
has been devoted to performing adversarial attacks in different
scenarios by generating imperceptible perturbations [1, 3, 9, 11, 13–
15, 18, 21, 33, 54]. These adversarial attacking methods are mainly
divided into white-box and black-box manners. For white-box at-
tacks, adversaries have complete knowledge of the target model
and can fully access it. For example, [42] first introduced the L-BFGS
method to generate adversarial examples. Subsequently, [18] pro-
posed the Fast Gradient Sign Method (FGSM), and [33] improved it
and proposed the Projected Gradient Decent (PGD) method, which
is currently the strongest first-order attack. All of them depend on
access to the gradients of target models. For black-box attacks,
adversaries have limited model knowledge and can not directly
access the model. Black-box attacks can be divided into three cat-
egories, i.e., score-based, decision-based, and transfer-based. The
score-based [9, 21] and decision-based [3, 15] attacks rely on query-
ing either the output scores or labels of the target network, which
limits their usability in the physical world. The transfer-based at-
tacks generate adversarial perturbations on a source model and
then transfer them to the unknown target model. A series of ap-
proaches [13, 14, 54] have been proposed to improve the attack
transferability among different models and achieve substantial re-
sults in the digital world. However, their attacking abilities will
degenerate significantly when introduced into the physical world.

Besides perturbations, adversarial patches [4], where noises are
confined to a small and localized patch region, have emerged for its
easy accessibility in real-world scenarios. They have been widely
studied and applied to attack different real-world applications. [16]
mixed the attacking noises into the black and white stickers to
attack the stop sign recognition devices. [28] proposed the PS-
GAN framework to generate scrawl-like adversarial patches to
fool autonomous-driving systems. Recently, adversarial patches
have been used to attack automatic checkout systems [48] and
surveillance cameras [43].

In this paper, we aim to generate an adversarial perturbation 𝛿 ,
constrained to a localized patch, to fool the crowd counting model
𝑓Θ for wrong predictions. Specifically, given the crowd counting
model 𝑓Θ, we generate adversarial patch perturbation 𝛿 by maxi-
mizing the model loss as

argmax
𝛿
| |𝑓Θ (x𝑎𝑑𝑣) − I| |22, (2)

where an adversarial example x𝑎𝑑𝑣 is composed of a clean image x,
an additive adversarial patch perturbation 𝛿 ∈ R𝑧 , and a location
mask𝑀 ∈ {0,1}𝑛 . It can be formulated as

x𝑎𝑑𝑣 = (1 −𝑀) ⊙ x +𝑀 ⊙ 𝛿, (3)
where ⊙ is the element-wise multiplication.

In the crowd counting scenario, rare attempts have been made
to perform adversarial attacks. [30] generated adversarial pertur-
bations using FGSM and studied the defense against them in the
digital world. [51] proposed the first and the only method APAM
for adopting adversarial patches to attack crowd counting models.

It aims to directly fit the target density map values, which are many
times larger than the ground truth. However, it will overfit the
specific model perception and thus tend to fall into local minima.
For example, the multiplicative will not work for regions where
the density value is 0. Through experiments, we found it fails to
generate adversarial examples with strong transferability, which
shows limited abilities for evaluating the black-box crowd counting
models in practice. Instead, we do not constrain the target values,
that is, they are expected to be infinitely far from the ground truth,
and utilize scale and position perceptual properties to generate
strongly transferable adversarial patches.

3 THREAT MODEL
In this section, we aim to give a detailed description correlated to
our proposed perceptual adversarial patches from several aspects,
i.e., the possible attacking scenarios, the detailed attacking goal, the
constraints to attackers, and the capabilities of attackers, therefore
better benefiting the understanding of the proposed method at a
practical level.

3.1 Possible Attacking Scenarios
As for adversarial attacking tasks, one of the most important ques-
tions that should be answered is whether they are practical or not.
More precisely, the existence of the potential threats or benefits
associated with the attacking method decides its value and signifi-
cance.

When it comes to our proposed perceptual adversarial patches,
we claim that they are applicable to multiple crowd-counting cor-
related scenarios, such as crowd monitoring in a particular place,
population warning in a traffic scenario, and other similar scenar-
ios. Note that we generate the adversarial patches with printing
papers in this paper. However, besides utilizing paper patches as
attacking vectors, we can also perform attacks by printing those
adversarial textures on slogans, as shown in Figure 1 (a) and Figure
5, which strongly indicates the diverse attacking pathways of this
novel perceptual adversarial patch generation framework.

3.2 Detailed Attacking Goal
Overall, we consider generating adversarial patches to attack density-
map-estimation-based crowd counting models. As mentioned in
Section 2, given a crowd counting model 𝑓Θ that takes an image
x as input, attackers aim to mislead 𝑓Θ into making wrong pre-
dictions, therefore outputting an inaccurate density map far from
the ground-truth density map. And the achievement of this goal
depends on the design of the adversarial patches.

Further, there are two directions for misleading the crowd count-
ing model 𝑓Θ into wrong density maps. One is leading it to output
more crowd counting values, i.e., to increase the predicted crowd
numbers. Another is leading it to output fewer crowd counting val-
ues, i.e., to decrease the predicted crowd numbers. In this paper, we
respectively investigate both the increasing approach and decreas-
ing approach to comprehensively demonstrate the strong attacking
ability of the proposed perceptual adversarial patch generation
framework. The experimental results of the increasing approach
are mainly shown in Section 5.2 and 5.3 and those of the decreasing
approach are shown in Section 5.4.
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Figure 3: Perceptual Adversarial Patch (PAP) generation framework. The adversarial patch is updated by jointly optimizing the
scale perception loss L𝑠 based on adaptive density and the position perception loss L𝑝 based on guided attention. Finally, PAP
can successfully attack the crowd counting models and further improve the model performance through adversarial training.

3.3 Attackers’ Constraint
With full consideration of the crowd counting scenarios in the phys-
ical world, we have to take note of the complexity and dynamics of
the real-world conditions, such as unknown model architectures,
unknown parameters, and unknown crowd densities. Therefore, it
is necessary for us to simulate the real conditions as far as possible.
To this end, we consider the more comprehensive experimental
conditions, which consist of white-box and black-box settings.

In white-box experiments, we take target models, i.e., the mod-
els that might be attacked, as source models during the training
process. That is, the attackers could totally access the model in-
formation, including middle-layer features, output density maps,
gradient information, etc. In black-box settings, we impose the
strictest constraint on attackers, which means that the attackers
could acquire little knowledge about the target models. To be more
practical, we consider the transfer-based attack. More precisely,
we just generate adversarial patches based on a certain model and
then perform attacks without any other additional actions, e.g., fine-
tuning or query. Therefore, an essential guarantee for successful
attacks is strong inter-model transferability. Based on that, we could
guarantee that all the information of target models is unavailable to
the attackers in black-box settings, which helps us to conduct the
strictest measures for simulating the physical scenarios. Besides,
since we aim to generate adversarial patches, it is important for us
to constrain the perturbed ratio, i.e., the ratio of perturbed pixels to
all pixels. In this paper, we only perturb 81 × 81 pixels (i.e., nearly
0.83% of a certain image) and constrain their shapes by the mask
𝑀 in Equation (3).

3.4 Attackers’ Capability
Most attackers who perform typical adversarial attacks (i.e., ad-
versarial examples) could be classified into two categories:, adver-
sarial perturbations and adversarial patches. The adversarial per-
turbations always have an invisible appearance to human beings,
whereas they also show weak attacking ability in real scenarios

due to the domain gap during re-sampling. Therefore, in this pa-
per, we aim to generate adversarial patches, which are confined to
patch-like textures without 𝜖−ball constraint. These kinds of ad-
versarial noises could be more threatening in our crowd counting
tasks, especially in the physical world.

As for the attack workflow, we basically follow a classic attack-
ing paradigm. Specifically, an attacker needs to first generate an
adversarial patch by training it on certain datasets. Then, one can
produce these adversarial textures by printing them out in the
physical world. Also, adversaries could clip or shear the printed
adversarial patches into particular shapes, such as the “human-
head-like patch” that is shown in Figure 1 (a). Finally, attackers
could simply stick the handled adversarial patches into a target ob-
ject and attack the deployed model in the corresponding scenarios.
To sum up, the attacking paradigm of attacking with our percep-
tual adversarial patches can be simply described as a “generating-
producing-processing-attacking” approach.

4 PERCEPTUAL ADVERSARIAL PATCH
GENERATION FRAMEWORK

4.1 Overview
Existing studies reveal that the model-invariant characteristics
largely influence the transferability of attacks [14, 22]. Thus, we
aim to find the model-shared characteristics that highly influence
model performance and then learn model-invariant features from
them to generate transferable adversarial patches across models.
Driven by this belief, we propose the Perceptual Adversarial Patch
(PAP) generation framework by introducing adaptive density and
guided attention to help adversarial patches exploit the model’s in-
trinsic perceptual characteristics, i.e., scale perception and position
perception, so as to capture the model-invariant features. Thus, our
generated adversarial patches could enjoy better transfer attacking
abilities. The overall framework is shown in Figure 3.
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4.2 Scale Perception via Adaptive Density
[60] illustrated that the variation of crowd scales highly challenges
the design and performance of crowd counting models. It is difficult
for a single model to well recognize crowd features at all scales, and
different models, more or less, tend to show different crowd scale
perception preferences. Therefore, capturing the scale-invariant fea-
tures could benefit the adversarial patches for better adaptation to
models with different crowd scale perceptions, resulting in stronger
transferability. In order to achieve the objective, we introduce the
adaptive density during patch generation to dynamically adjust the
contribution of features with different scales.

Simply generating perturbations via Eqn (3) will spontaneously
capture features that overfit the specific scale perception of the
source model, which leads to weak transferability. Therefore, we
aim to enhance its scale capture among different models, especially
scales that the source model does not perceive well. Given an in-
put image x, we generate the ground truth density map I by the
geometry-adaptive kernels for the highly congested scenes, follow-
ing the method in [60]. The geometry-adaptive kernel is defined
as:

𝐹 (x) =
𝑁∑︁
𝑖=1

δ(x − x𝑖 ) ×𝐺𝜎𝑖 (x) 𝑤𝑖𝑡ℎ 𝜎𝑖 = 𝛽𝑑𝑖 , (4)

For the input image x, if there is a head at the pixel x𝑖 , it can be
represented as a delta function δ(x − x𝑖 ). 𝑁 is the number of heads
contained in x. Then we convolve it with a Gaussian kernel with the
standard deviation 𝜎𝑖 , where 𝑑𝑖 indicates the average distance of 𝑘
nearest neighbors. In practice, we set 𝛽 = 0.3 and 𝑘 = 3, following
the configuration in [60]. For the sparse scenes, we use a constant
𝜎 = 15 to blur all the annotations.

By smoothing each head annotation with a Gaussian kernel, the
ground truth density map I considers the spatial distribution of all
input images and thus contains the full crowd scale information of
the scenario. We, therefore, propose the density weights matrix𝑊
as follows:

𝑊 = 𝑆𝑖𝑔(I − 𝑓Θ (x𝑎𝑑𝑣)), (5)

where 𝑆𝑖𝑔(·) = 1/(1 + 𝑒−( ·) ) denotes the Sigmoid function. Appar-
ently, for the crowd region with specific scales that are included in
the ground truth while not perceived by the source model based
on the density map,𝑊 will be increased to a higher value. In other
words, the crowd scales perceived weakly by the model will be
granted higher weights, which will help the patches to better adapt
to them.

Since our goal is to mislead the model to wrong predictions,
we intuitively ought to force the model to recognize the adversar-
ial patches as crowds to a large extent. Therefore, based on the
weighted predicted density map, we introduce the scale perception
loss L𝑠 as follows:

L𝑠 =
∑︁
𝑖, 𝑗

𝑊𝑖, 𝑗 𝑓Θ𝑖, 𝑗 (x𝑎𝑑𝑣), (6)

where𝑊𝑖, 𝑗 and 𝑓Θ𝑖, 𝑗 are the value at (𝑖, 𝑗) of the𝑊 and the pre-
dicted density map. Through the density weights, our adversarial
patch could capture the scale-invariant features and better adapt
to the scale perceptions of different models, which will benefit the
transferability.

Algorithm 1 Perceptual Adversarial Patch Generation
Input: Initial patch noise 𝛿0, image set X = {x𝑖 |𝑖 = 1, · · · , 𝑛},

target model 𝑓Θ, hyperparameters 𝜆, 𝛼,𝑇
Output: Adversarial patch perturbation 𝛿

generate the ground truth density map set I = {I𝑖 |𝑖 = 1, · · · , 𝑛}
Initialize 𝛿 ← 𝛿0
for the number of epochs do

select𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ images from X
for𝑚 = 𝑛/𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ steps do

randomly generate a location mask𝑀
𝑡 ← 0, 𝛿𝑡 ← 𝛿

for 𝑡 < 𝑇 do
#generate adversarial examples:
𝑥𝑎𝑑𝑣 ← (1 −𝑀) ⊙ x +𝑀 ⊙ 𝛿𝑡
#clip to the normal range:
𝑥𝑎𝑑𝑣 ← 𝑐𝑙𝑖𝑝 (𝑥𝑎𝑑𝑣, [0, 1])
#get the density weights matrix:
𝑊 ← 𝑆𝑖𝑔(I − 𝑓Θ (x𝑎𝑑𝑣))
#get the attention map:
𝑆 ← A(x𝑎𝑑𝑣, 𝑓Θ)
#compute the loss:
L𝑠 ←

∑
𝑖, 𝑗𝑊𝑖, 𝑗 𝑓Θ𝑖, 𝑗 (x𝑎𝑑𝑣), L𝑝 ←

∑
𝑖, 𝑗 𝑆𝑖, 𝑗 ,

L𝑡𝑜𝑡𝑎𝑙 ← L𝑠 + 𝜆L𝑝
#update the adversarial perturbation:
𝛿𝑡+1 ← 𝛿𝑡 − 𝛼 · 𝜕L𝑡𝑜𝑡𝑎𝑙

𝜕𝛿𝑡

end for
𝛿 ← 𝛿𝑡

end for
end for

4.3 Position Perception via Guided Attention
Previous work reveals that different models share similar positional
perceptions towards the same image [49]. As for crowd counting
models, we find that they also have similar spatially dispersed at-
tention patterns at the same crowd positions. Therefore, we disturb
the position perception of the target model by attracting the model-
shared attention patterns to the adversarial patch region through
salient map aggregation. In this way, the generated adversarial
patches can capture the position-invariant features and perform
better transferable attacks.

In particular, several visual attention mechanisms [6, 38, 62] have
been proposed to explain deep learning behaviors. Grad-CAM [38]
is a class-discriminative localization technique that can generate
visual explanations from any CNN-based network. Given an input
image and a model, the method could produce a salient map with
hot regions where the pixel values are higher. It reveals that the
model will pay more attention to the regions which are meaningful
to the final predictions. When it comes to crowd counting tasks,
the density map of a certain image to be predicted also shows
significant differences among diverse sub-parts, which inspires
us to regard this observation as the density perception of models.
Therefore, by introducing the idea of the Grad-CAM, we elaborately
design to calculate the density-guided attention map for helping
the generated adversarial patches to disturb the position perception
and capture the position-invariant features in turn, leading to better
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transferable attacks. Specifically, given the image x𝑎𝑑𝑣 and a target
model 𝑓Θ, we compute the attention map S by introducing a density
attention module A as:

𝑆 = A(x𝑎𝑑𝑣, 𝑓Θ)

= ReLU( 1
𝑍

∑︁
𝑖, 𝑗,𝑘

𝜕𝐶

𝜕𝐴𝑘
𝑖 𝑗

· 𝐴𝑘 ), (7)

where𝐶 =
∑
𝑖, 𝑗 𝑓Θ𝑖, 𝑗 (x𝑎𝑑𝑣),𝐴𝑘𝑖 𝑗 is the pixel value at position (𝑖, 𝑗) of

the𝑘th featuremap, ReLU(·) =𝑚𝑎𝑥 (0, ·) denotes the ReLU function,
and 𝑍 is for global average pooling. The conventional Grad-CAM
computes the gradients of the scores for specific classes, while we
utilize the summary of density values, i.e., the people number, to
obtain the gradients. Thus, we can generate the salient map, which
can be used to explain the decision basis of the crowd counting
models.

In order to successfully attack a crowd counting model, we draw
the model’s attention to our adversarial patches and thus distract it
from other crowds. We introduce the position perception loss as
follows, which directly increases the attention values in the patch
region:

L𝑝 =
∑︁
𝑖, 𝑗

𝑆𝑖, 𝑗 (x𝑎𝑑𝑣), (8)

where 𝑆𝑖, 𝑗 is the pixel value at (𝑖, 𝑗) of the attention map. Thus,
different models with similar salient attention areas will focus on
the adversarial patches and make the wrong predictions.

4.4 Overall Optimization
In this section, we aim to give a brief operation procedure of our
proposed perceptual adversarial patches, therefore establishing an
integral cognition of the novel crowd counting attacking method
for readers.

In general, given a target model 𝑓Θ, hyperparameters 𝜆, 𝛼 , 𝑇 ,
dataset X, and initial patch noise 𝛿0, we generate the adversarial
patches by jointly optimizing the scale perception loss L𝑠 and
position perception lossL𝑝 . The overall optimization for generating
the transferable adversarial patches 𝛿 could be formulated by the
following equation:

argmax
𝛿

L𝑠 + 𝜆L𝑝 , (9)

where 𝜆 controls the contributions of each term. Specifically, we to-
tally employ the gradient-based iteration algorithm to optimize our
adversarial patches. In each iteration, we first generate adversarial
examples with an initial adversarial patch at a random position;
then we conduct the forward pass to obtain the predicted density
map; next, we derive the density weights matrix𝑊 and attention
map 𝑆 , and subsequently compute the scale perception loss and
position perception loss; finally, we update the adversarial patch
through the back-propagation algorithm [37] to lead the model to
wrong density predictions and enhance the model-shared attention
towards the patch region. By strictly conducting the described op-
eration procedures, we can efficiently generate adversarial patches
with strong transferability by exploiting the model-shared percep-
tual features, i.e., scale perception and position perception. The
overall detailed training algorithm can be described as Algorithm
1.

5 EVALUATION OF PAP ATTACK
In this section, we first outline the experimental settings and then
illustrate the effectiveness of our proposed attacking method by
thorough evaluations in both the digital and physical world. Finally,
we provide some additional discussions.

5.1 Experimental Settings
Datasets. Following [51], we conduct experiments on the Shang-

hai Tech dataset [60], a commonly used large-scale crowd counting
dataset. It consists of 1198 annotated crowd images with 330,165
annotated people. The dataset is divided into Part A and Part B. Part
A contains 300 samples for training and 182 samples for testing,
where images were collected from the Internet. Part B contains
400 samples for training and 316 samples for testing, where images
were collected on the busy streets of Shanghai.

Targetmodels. Weemploy six commonly-used and SOTAdensity-
map-estimation-based crowd counting models to attack: MCNN
[60], CSRNet [25], CAN [29], BL [32], DM-Count [46], and SASNet
[41]. Among them, [41, 60] are multi-column methods while the
others are single-column methods. In addition to the vanilla model,
we also conduct attacks towards the empirical defensive method
based on adversarial training [33] and certified defense against
crowd counting based on randomized ablation [51] 2.

Evaluation metrics. We use the widely-used crowd counting
metrics Mean Absolute Error (MAE) and Mean Squared Error (MSE)
following [25] for evaluation, which are defined as:

𝑀𝐴𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

|𝐶𝑖 −𝐶𝐺𝑇𝑖 |, 𝑀𝑆𝐸 =

√√√
1

𝑁

𝑁∑︁
𝑖=1

|𝐶𝑖 −𝐶𝐺𝑇𝑖
|2, (10)

where N is the size of the test set, 𝐶𝐺𝑇
𝑖

is the ground truth of
counting and𝐶𝑖 represents the estimated count. For attacks, higher
MAE and MSE values indicate stronger adversarial attacks.

Baselines. We compare with the only adversarial patch gen-
eration method for crowd counting, i.e., APAM [51]. We use the
officially released codes and keep the same settings (size, shape,
position, etc) for fair comparisons. Besides, we also compare with
several plug-and-play transferable attacks (MIGM [13], NIGM [26],
TI-NIGM [14], NAA [59]) and ensemble-based attacks (Avg-Dens,
MGAA [56]).

Implementation details. We randomly initialize a square ad-
versarial patch with a fixed size and conduct training with batch
size 1 by 𝑇 = 25 iterations every epoch with an attack step size 𝛼
of 0.01, and a maximum of 2 epochs. The position and orientation
of the patch are randomly chosen, which makes our adversarial
patches able to universally attack all scenes. We set the position per-
ception loss weight 𝜆 as 0.01. We give a detailed discussion related
to the effect of 𝜆 and different patch shapes in Section 5.4. All of
our codes are implemented in PyTorch. We conduct all experiments
on an NVIDIA Tesla V100 GPU cluster.

2Implementation details and results can be found in appendix section B
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Table 1: Results of different patch attacks for crowd counting on the Shanghai Tech dataset. The results on the diagonal are in
white-box settings while the others are in black-box settings. Higher MAE and MSE values indicate a stronger attack.

MAE / MSE Target Model

Source model Method MCNN CSRNet CAN BL DM-Count SASNet

Part A

Clean 108.0 / 165.0 67.0 / 105.2 59.9 / 94.1 61.8 / 94.1 58.2 / 93.2 52.8 / 86.2

MCNN APAM 317.7 / 378.5 68.9 / 107.2 62.9 / 99.3 63.7 / 96.2 61.4 / 96.4 54.2 / 87.9
Ours 908.7 / 989.1 69.6 / 109.3 62.9 / 101.3 64.1 / 96.9 62.0 / 96.8 54.3 / 89.9

CSRNet APAM 124.6 / 174.8 312.5 / 396.4 71.3 / 100.9 250.8 / 265.2 131.1 / 151.4 53.7 / 87.9
Ours 147.0 / 190.8 568.4 / 613.8 212.5 / 242.8 388.1 / 401.4 249.1 / 263.6 56.3 / 89.5

CAN APAM 133.5 / 180.5 99.9 / 128.8 386.5 / 500.0 272.1 / 285.6 144.6 / 165.1 53.9 / 88.5
Ours 147.6 / 191.5 321.0 / 341.7 513.3 / 545.3 412.7 / 424.8 218.8 / 233.9 56.2 / 88.8

BL APAM 115.1 / 168.6 69.9 / 106.2 62.9 / 97.0 138.3 / 160.0 103.5 / 130.3 54.0 / 88.0
Ours 119.0 / 170.7 79.6 / 111.5 73.1 / 106.6 1090.9 / 1171.6 519.7 / 541.6 54.5 / 90.0

DM-Count APAM 115.0 / 169.0 69.6 / 107.3 62.2 / 98.4 81.2 / 113.7 112.5 / 147.5 54.1 / 88.1
Ours 115.6 / 169.6 87.6 / 119.3 82.8 / 115.0 747.5 / 793.6 751.3 / 784.9 56.5 / 90.8

SASNet APAM 110.5 / 169.1 68.3 / 108.4 61.7 / 99.3 63.6 / 98.4 62.3 / 99.7 58.8 / 99.8
Ours 112.8 / 169.4 69.5 / 109.0 62.6 / 100.3 69.9 / 99.8 75.1 / 105.4 200.0 / 220.3

Part B

Clean 28.3 / 38.7 9.2 / 14.7 7.5 / 11.9 7.6 / 12.0 7.3 / 11.8 6.4 / 9.9

MCNN APAM 29.1 / 39.7 10.8 / 16.0 8.4 / 12.5 7.7 / 12.8 7.7 / 12.1 7.0 / 10.6
Ours 442.6 / 445.2 11.0 / 16.9 26.6 / 28.8 7.8 / 13.3 7.7 / 12.5 7.2 / 10.9

CSRNet APAM 66.7 / 72.8 83.3 / 87.4 21.7 / 24.1 21.4 / 25.0 8.3 / 13.0 6.9 / 10.5
Ours 162.8 / 167.9 948.2 / 961.3 112.0 / 113.8 48.4 / 50.7 27.4 / 37.3 7.2 / 10.9

CAN APAM 28.9 / 42.3 10.6 / 15.9 8.3 / 12.5 7.7 / 12.9 7.6 / 12.0 6.9 / 10.5
Ours 29.0 / 42.7 11.2 / 17.3 37.0 / 39.4 7.8 / 13.3 7.8 / 12.6 7.2 / 11.0

BL APAM 53.5 / 59.6 10.9 / 16.1 9.8 / 13.5 13.9 / 18.8 7.7 / 12.1 6.9 / 10.5
Ours 69.3 / 75.0 28.4 / 32.9 81.0 / 82.4 146.5 / 147.5 58.3 / 69.9 7.2 / 10.9

DM-Count APAM 47.9 / 54.4 15.6 / 20.5 12.0 / 15.3 7.9 / 13.1 9.8 / 16.7 6.9 / 10.5
Ours 65.2 / 71.1 162.6 / 167.0 72.7 / 74.2 83.6 / 84.9 295.6 / 297.1 7.2 / 10.9

SASNet APAM 33.9 / 41.8 10.4 / 16.5 10.7 / 14.7 9.4 / 14.6 7.7 / 12.7 7.0 / 10.9
Ours 95.3 / 101.2 177.2 / 180.5 114.9 / 116.2 39.7 / 42.3 10.4 / 16.1 293.0 / 295.3

Table 2: Black-box results of various methods designed for transferable attacks on the Shanghai Tech dataset Part A. Higher
MAE and MSE values indicate a stronger attack.

MAE / MSE Target Model

Method MCNN CSRNet CAN BL DM-Count SASNet

MIGM 145.2 / 188.9 255.6 / 273.9 104.2 / 128.8 703.9 / 713.2 491.9 / 504.9 55.9 / 90.3
NIGM 146.9 / 190.2 267.2 / 285.3 87.4 / 110.7 701.0 / 731.2 511.7 / 526.5 55.8 / 90.0

TI-NIGM 111.2 / 169.3 74.5 / 109.8 65.4 / 98.1 75.8 / 104.3 77.9 / 107.3 54.5 / 89.9
NAA 139.3 / 184.5 257.3 / 276.9 93.8 / 120.4 737.7 / 746.0 508.9 / 522.1 56.4 / 90.8

Avg-Dens 136.0 / 182.6 220.2 / 238.9 128.8 / 158.5 650.7 / 660.4 403.3 / 417.4 58.1 / 90.9
MGAA 135.3 / 181.2 205.4 / 225.6 118.1 / 148.7 685.5 / 695.7 416.2 / 430.8 56.5 / 90.3
Ours 147.6 / 191.5 321.0 / 341.7 212.5 / 242.8 747.5 / 793.6 519.7 / 541.6 56.5 / 90.8

Figure 4: Percentage of overestimation of crowd counting
models under black-box PAP attack aiming to increase the
crowd numbers on Shanghai Tech Part A.

5.2 Digital World Attack
We evaluate the performance of our adversarial patches in the
digital world under both white-box and black-box settings. Due to

the limited space, we hereby only report the results of adversarial
patches with the size of 81×81which only accounts for 0.83% of the
size of images in the Shanghai Tech dataset 3. For a fair comparison
with APAM, we here report the results of attacks that increase the
counting number. Besides, we can also generate adversarial patches
that decrease the crowd counting number and defer the results in
Section 5.4.

White-box attacks. For the white-box attack, we generate ad-
versarial patches using the specific targetmodel and perform attacks
on it accordingly. As shown in Table 1 (diagonal), in contrast to
APAM, our method achieves higher MAE and MSE in the white-
box settings on different models (up to +1029.1 MAE and +1077.5
MSE on BL). Therefore, our method is able to generate adversarial
patches with a much stronger white-box attacking ability.

Black-box attacks. In the black-box setting, we first generate
adversarial patches based on one specific source model, and then
transfer the attacks to other models and test their attacking ability.
3For other patch sizes, please refer to appendix section A
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Figure 5: Physical world attack in the real-world scenario. Our adversarial patches can mislead the crowd counting model
under different scenes in practice.

Tables 1 and 2 list the black-box attacking results with a series of
patch attacks and transferable attacks. Regarding MIGM, NIGM,
TI-NIGM, and NAA and Ours in Table 2, we select the highest
MAE/MSE of a target model from the results of five source models4.
In Figure 4, we plot the model overestimation curves with a sweep
of 𝛾 . Specifically, for each target model, we consider the source
model which possesses the best black-box attacking performance
referring to Table 1, and calculate the percentage of the samples on
which the model overestimation value, i.e., 𝐶𝑎𝑑𝑣𝑝𝑟𝑒 −𝐶𝑐𝑙𝑒𝑎𝑛𝑝𝑟𝑒 , exceeds
the 𝛾 . Through the results, we can draw some observations:

(1) Compared with APAM, we achieve stronger black-box attack-
ing ability for different models and outperform it by large margins
(up to +685.7 MAE, +699.5 MSE from DM-Count to BL). Accord-
ing to Figure 4, almost all model overestimation values achieve
above 100 for 80% of the samples.

(2) Compared with other transferable attacks, we significantly
beat them except for being slightly worse thanAvg-Dens on SASNet.
We note that TI-NIGM has a much weaker attacking ability, which
illustrates that the translation-invariant method may not be well
suitable for the crowd counting task.

(3) We found that adversarial attacks could hardly transfer be-
tween multi-column (e.g., MCNN and SASNet) and single-column
models. We conjecture the reasons might be those multi-column
models have more complex architectures with several branches
and more information redundancy [25]. These architectures might
cause the weak black-box transferability of adversarial attacks, and
we leave the detailed analyses as future work.

5.3 Physical World Attack
Here, we further evaluate the practical performance of our adver-
sarial patches in the physical world, which is more challenging
and meaningful. We first generated an adversarial patch using the
CSRNet model and printed it. Then, we took 110 pictures with an
iPhone 11 mobile phone by holding them or sticking them as a
flag or poster. To prove its effectiveness in the complex real-world
scenario, we took photos in various settings, including:

4Implementation details and more results can be found in appendix section C

• patch sizes: resizing the generated 81×81 patches to [5cm×5cm,
40cm×40cm];
• distances: placing the camera [1m, 5m] away from the patch;
• view angles and heights: considering special view angle offsets,

e.g., left or right deflection, and special view heights, e.g., top or
bottom view;
• patch shapes: cutting the patch into the shape of a cat, bird,

plane and so on;
• illuminations: considering special illumination conditions such

as dusk and darkness;
• crowd densities: considering various density conditions, in-

cluding scenes with no people and very congested scenarios.
For each setting, we took photos in different places (schools,

cafes, subway stations, etc.). All pictures were taken with the same
patch texture, that is, there is no need to re-generate the adversarial
patch for different scenes. We evaluate the performance using a
black-box SoTA crowd counting model DM-Count and the error
caused by our adversarial patch is able to achieve 135.4 for MAE
and 178.9 for MSE. As shown in Figure 5, the generated adversarial
patches are quite natural in the real world and will pose safety
problems when deployed in practice.

5.4 Discussion
In this section, we first analyze the effectiveness of the two losses.
Then, we discuss the influence of different patch shapes and at-
tacking effects across datasets. Finally, we propose the method
that utilizes our PAP to maliciously decrease the predicted crowd
counting numbers.

The effect of the two loss functions. We conduct ablation stud-
ies to further investigate the contributions of scale perception and
position perception, i.e., L𝑠 and L𝑝 . Thus, we generate adversarial
patches with or without these two losses from one specific model
and then perform transfer attacks to other models on the Shanghai
Tech Part A. Due to the limited space, we here only report the
results of the source model CSRNet 5.

5More results can be found in appendix section D
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Figure 6: The ablation study on the influence of 𝜆. The “red circle" and “red square" means the MAE and MSE when 𝜆 = 0. We
show the MAE/MSE for the black-box attack on Shanghai Tech Part A (based on the source model CSRNet). Higher MAE and
MSE values indicate a stronger attack.

Table 3: The ablation study on loss functions. We show the
MAE/MSE for the black-box attack on Shanghai Tech Part A
(based on the source model CSRNet). Higher MAE and MSE
values indicate a stronger attack.

Loss MCNN CAN BL DM-Count SASNet

None 108.0 / 165.0 59.9 / 94.1 61.8 / 94.1 58.2 / 93.2 52.8 / 86.2
L𝑠 w/o𝑊 138.4 / 184.1 185.4 / 216.6 374.0 / 386.9 239.4 / 254.9 54.6 / 88.8
L𝑠 143.3 / 188.3 190.4 / 223.6 385.5 / 397.4 240.3 / 255.8 54.8 / 88.9
L𝑝 116.2 / 167.9 94.6 / 121.5 251.9 / 266.3 152.9 / 169.8 54.3 / 87.0

L𝑠 + 𝜆L𝑝 147.0 / 190.8 212.5 / 242.8 388.1 / 401.4 249.1 / 263.6 56.3 / 89.5

As shown in Table 3, compared with the clean scenario, the MAE
and MSE values for attacking all target models increase after adding
the perception lossL𝑠 . This proves that the patch could successfully
mislead the model under the drive of the loss item. Furthermore,
we removed the adaptive density weight matrix𝑊 from the loss,
i.e., the scale perception loss was represented only by the summary
of predicted density values. We found that the MAE and MSE have
a significant drop, which validates that the density weight matrix
𝑊 plays a key role in benefiting the transferability. Meanwhile,
the transfer attacking ability is also improved after introducing the
position loss L𝑝 . We achieve the highest MAE and MSE values
when two modules are added (𝜆 = 0.01), which illustrates that the
model scale perception and position perception are not completely
independent, and the utilization of both can play a superimposed
role in the attacking transferability. Thus, the above experimental
results demonstrate the effectiveness of our dual perception loss
for improving the transferability of attacks.

Ulteriorly, we analyze the influence of the hyperparameter 𝜆.
Refer to the above, we conduct transfer black-box attacks on the
Shanghai Tech Part A and set the 𝜆 as 0, 10−4, 10−3, 10−2, 10−1,
and 100. As illustrated in Figure 6, the MAE and MSE will mostly
increase after introducing the position perception loss. Nevertheless,
according to the results, we found that excessively small or large
𝜆 values might cause the decline of the transfer attacking ability.
Based on that, we set 𝜆 as 10−2 during patch optimization.

The influence of the patch shapes. We have considered sev-
eral different patch shapes (e.g., cat, bird) in the physical world, and
they show comparable performances. Here, we conduct additional
ablations to further evaluate the influence of various patch shapes.

We conduct a toy experiment on the Shanghai Tech Part A. Specif-
ically, we clip the adversarial patches into three different shapes
including circular, square, and trapezoid under similar patch sizes
(0.83% of the image size). Then we evaluate their transfer attack
performance based on the source model CSRNet. As illustrated in
Table 4, patches with different shapes show similar attacking results.
Thus, we conclude that the shape does not affect transferability.

Table 4: The ablation study on different patch shapes. We
show the MAE/MSE for the black-box attack on Shanghai
Tech Part A (based on the source model CSRNet). Higher
MAE and MSE values indicate a stronger attack.

Shape MCNN CAN BL DM-Count SASNet

Square 147.0 / 190.8 212.5 / 242.8 388.1 / 401.4 249.1 / 263.6 56.3 / 89.5
Circular 154.7 / 196.0 216.8 / 248.9 377.2 / 398.6 251.2 / 264.5 54.6 / 91.1
Trapezoid 151.6 / 193.1 215.2 / 255.8 380.2 / 401.8 250.0 / 266.1 55.8 / 93.1

Effectiveness across different datasets. In practice, it is highly
impossible that an adversary would have access to the training
set used for training the target model. The utility of one attack
will become poor if it does not generalize well across different
datasets. We conduct a toy experiment using the various Parts of
the Shanghai Tech dataset in order to evaluate the effectiveness of
our adversarial patches under different data distributions. Using
CSRNet, we first train our patches on one Part and then test them on
the other. Note that Part A and Part B follow different distributions
and the test models are only trained on data from one part.

As illustrated in Table 5, when tested across datasets, the per-
formance of the black-box attack degrades slightly, however, it is
still adequate to pose a threat to the clean scenes, demonstrating
its potential threats in real-world applications.

Decreasing crowd counting numbers with PAP. In the above
section, we only report the results of attacks that increase the count-
ing numbers. Besides, we can also generate adversarial patches that
decrease the crowd counting numbers. Intuitively, in order to mis-
lead the model to produce the zero-density response, we need to
force the model to hardly recognize the crowd features and pay
more attention to other non-people regions. Thus, we could simply
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Table 5: Results across different Parts of the Shanghai Tech dataset. Higher MAE and MSE values indicate a stronger attack.

(a) Results on the Shanghai Tech Part A

MAE / MSE Target Model

Source Model MCNN CSRNet CAN BL DM-Count SASNet

Clean 108.0 / 165.0 67.0 / 105.2 59.9 / 94.1 61.8 / 94.1 58.2 / 93.2 52.8 / 86.2
CSRNet trained on Part A 147.0 / 190.8 – 212.5 / 242.8 388.1 / 401.4 249.1 / 263.6 56.3 / 89.5
CSRNet trained on Part B 132.1 / 179.1 155.0 / 174.3 200.9 / 216.7 264.7 / 279.4 155.8 / 172.8 53.4 / 86.9

(b) Results on the Shanghai Tech Part B

MAE / MSE Target Model

Source Model MCNN CSRNet CAN BL DM-Count SASNet

Clean 28.3 / 38.7 9.2 / 14.7 7.5 / 11.9 7.6 / 12.0 7.3 / 11.8 6.4 / 9.9
CSRNet trained on Part A 139.5 / 144.5 114.7 / 153.4 60.8 / 67.6 39.1 / 42.4 17.9 / 22.3 7.1 / 11.0
CSRNet trained on Part B 162.8 / 167.9 – 112.0 / 113.8 48.4 / 50.7 27.4 / 37.3 7.2 / 10.9

Table 6: Results of attacks decreasing the crowd counting numbers on Shanghai Tech dataset Part A. The results on the diagonal
are in white-box settings while the others are in black-box settings. Higher MAE and MSE values indicate a stronger attack.

MAE / MSE Target Model

Source model MCNN CSRNet CAN BL DM-Count SASNet

Clean 108.0 / 165.0 67.0 / 105.2 59.9 / 94.1 61.8 / 94.1 58.2 / 93.2 52.8 / 86.2
MCNN 121.5 / 180.7 69.7 / 109.6 63.0 / 101.7 63.3 / 97.4 61.9 / 98.5 54.0 / 90.1
CSRNet 113.5 / 167.6 72.9 / 114.5 65.4 / 105.6 64.2 / 98.1 62.4 / 98.5 55.1 / 92.6
CAN 122.1 / 172.3 70.8 / 110.7 67.2 / 109.3 98.9 / 123.7 72.4 / 108.8 54.8 / 91.2
BL 109.5 / 167.6 70.1 / 110.0 63.6 / 102.3 64.7 / 99.2 62.5 / 99.4 54.7 / 91.1

DM-Count 110.2 / 168.5 70.0 / 110.3 63.8 / 102.7 65.3 / 100.4 66.2 / 104.8 54.1 / 90.8
SASNet 110.5 / 168.1 69.3 / 109.4 61.9 / 98.2 61.9 / 96.3 61.3 / 96.3 55.9 / 91.1

Figure 7: Percentage of overestimation of crowd counting
models under black-box PAP attack aiming to decrease the
crowd numbers on Shanghai Tech Part A.

modify the optimization direction as follows,
argmin

𝛿

L𝑠 + 𝜆L𝑝 , (11)

where L𝑠 is the scale perception loss and L𝑝 is the position percep-
tion loss. By minimizing the scale perception loss, we can generate
our adversarial patches by weakening the model recognition for
the crowds under different scales. As for minimizing the position
perception loss, the crowd density guided model-shared attention
will be suppressed while the attention towards the other objects
will be enhanced. Therefore, based on the two loss items, our ad-
versarial patches may also successfully lead the model to wrong
estimations by decreasing the counting numbers.

To evaluate the effectiveness, we conduct experiments on the
Shanghai Tech Part A. Except for the optimization direction, we

followed all the settings in Section 5.1. Table 6 lists the attacking re-
sults. From the table, we found an interesting phenomenon that the
black-box attacks may be stronger than the white-box for decreas-
ing the predicted density (such as for BL and DM-Count, generating
adversarial examples using CAN is more reliable). Further, we plot
the overestimation percentage in Figure 7. Compared with Table 1
and Figure 4, adversarial patches aiming to decrease the counting
numbers have relatively weaker attacking ability than those for
increasing the density. We will study how to expand the adversarial
impact in future work.

6 IMPROVING CROWD COUNTINGWITH
PERCEPTUAL ADVERSARIAL PATCHES

6.1 Overview
Recent studies have revealed the fact that crowd counting models
are still facing several challenges, including weak generalization
abilities across datasets and robustness on complex backgrounds,
which cast a shadow over the applications in practice [17]. Some
studies [10, 53] have shown that adversarial examples can also
be used to improve model performance if harnessed in the right
manner. Inspired by them, we aim to take the advantage of our
perceptual adversarial patches and use them to improve the per-
formance of crowd counting models. However, to improve image
recognition and object detection models, current studies [10, 53]
adopt multiple Batch Normalization (BN) branches to respectively
handle clean and adversarial examples during adversarial training,
which modifies the model architectures. They cannot be simply
implemented in the crowd counting task, where most models do
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Table 7: MAE/MSE in cross-dataset evaluation. Lower MAE
and MSE values indicate better generalization.

(a) Results of the models trained on Shanghai Tech Part A

Method Shanghai Tech Part B UCF-CC-50 Crowd Surveillance

Vanilla 22.8 / 34.3 417.7 / 664.2 24.9 / 52.2
Cutout 18.0 / 27.9 396.7 / 615.0 19.5 / 40.0
Cutmix 22.1 / 34.1 416.9 / 632.6 19.7 / 37.9
Augmix 17.9 / 29.0 467.2 / 672.3 13.6 / 35.4
PAT 23.7 / 35.1 443.0 / 625.5 30.6 / 69.1

APAM-AT 23.6 / 35.1 421.9 / 664.9 25.0 / 53.2
Ours 17.5 / 27.5 382.0 / 594.9 12.7 / 30.9

(b) Results of the models trained on Shanghai Tech Part B

Method Shanghai Tech Part A UCF-CC-50 Crowd Surveillance

Vanilla 142.4 / 241.3 1093.9 / 1405.6 11.2 / 22.7
Cutout 153.1 / 272.3 1135.0 / 1454.5 11.5 / 23.9
Cutmix 147.5 / 241.9 1129.4 / 1437.1 12.0 / 22.6
Augmix 145.3 / 243.2 1060.2 / 1385.2 11.0 / 23.5
PAT 145.7 / 249.6 1112.6 / 1445.9 13.5 / 25.8

APAM-AT 142.6 / 243.4 1145.3 / 1459.6 13.1 / 24.8
Ours 129.8 / 220.5 717.9 / 1050.7 10.8 / 22.6

not have BN layers. Therefore, we adversarially train crowd count-
ing models with our perceptual adversarial patches to improve the
model performance without modifying architectures.

Specifically, we modify the standard adversarial training scheme
[33] to adapt our PAP framework, which can be defined as follows:

min
Θ
E(x,I)∼D

{
max
𝛿
L(𝑓Θ (x𝑎𝑑𝑣), I)

}
, (12)

where x𝑎𝑑𝑣 is the adversarial example (combined by x and 𝛿 via
Eqn (3), I is the ground truth density map, and Θ is the crowd
counting model parameters. In the max manner, L refers to the
loss for patch generation while it represents the loss for model
optimization in the min manner. In practice, instead of solving the
min-max optimization problem iteratively, we simply generate all
the adversarial examples via the pre-trained model at the beginning,
which could achieve better performance and take less time 6.

Our perceptual adversarial patches can attack models under
different crowd scale perceptions and disturb them to focus on the
wrong position perception regions. Adversarial training with our
patches is able to further enhance the model for the tolerance of
perturbations brought from scales and positions. In other words,
the enhanced crowd counting model with our adversarial patches
could increase the perception generalization for multiple crowd
scales and rectify their perceptions by better focusing on the crowd
itself under noises. Therefore, it will better generalize to unseen
scenarios with different crowd scales and pay more attention to
crowd regions rather than complex backgrounds in natural scenes.

In the following sections, we aim to prove the effectiveness of our
perceptual adversarial patches in benefiting the model performance.
Specifically, we evaluate the generalization ability across datasets
and robustness towards complex backgrounds of the enhanced
crowd counting models.

Experimental settings. Following the settings in Section 5.1,
we first generate adversarial patches on each image in the original
training set and mix them to obtain the new training set (the ratio

6More analyses can be found in appendix section E

of adversarial examples and clean examples is 1:1). Then, we train
the crowd counting model using the new training set. We select
the multi-column based model MCNN and single-column based
model DM-Count for evaluation and compare with two adversar-
ial training methods: adversarial training with APAM generated
adversarial patches (APAM-AT), PGD-𝐿∞ adversarial training [33]
(PAT, 𝑖𝑡𝑒𝑟 = 20, 𝛼 = 0.002, 𝜖 = 8/255), and three data augmen-
tation methods: Cutout [12], Cutmix [57], and Augmix [19]. We
faithfully follow the original settings for better implementation of
the mentioned strategies. Moreover, we conduct the above methods
on the same samples and use the same amount of extra data to train
models for fair comparisons. Due to limited pages, we here only
report the results of DM-Count 7.

6.2 Generalization across Datasets
As images in different parts of the Shanghai Tech dataset were taken
from different scenarios in different ways, we use Part A and Part
B to conduct the cross-dataset performance evaluation. Besides,
we also test the model performance on two other commonly-used
crowd counting datasets, i.e., UCF-CC-50 [20] and Crowd Surveil-
lance [55].

As shown in Table 7, models trained with our PAP can signifi-
cantly improve the generalization ability across datasets by large
margins (at most -376.0 MAE and -354.9 MSE). We also outper-
form the adversarial training baselines (e.g., APAM-AT and PAT)
which deteriorate the model generalization and the data augmenta-
tion techniques (e.g., Cutout, Cutmix, and Augmix).

6.3 Robustness for Complex Backgrounds
Following [17], we validate the model performance using three test
sets including: 100 distractors and 191 adverse weather samples
in JHU-CROWD++ [40], and 351 negative samples in NWPU [50].
Specifically, distractors are densely arranged other objects which
may be confused for the crowd; adverse weather samples were
taken under special weather conditions such as rain, snow, and
haze; and negative samples do not contain any persons.

Figure 8 shows the estimation errors on the mentioned three
types of samples. Models trained with our PAP could improve
robustness on all test sets (-3.9 MAE and -2.8 MSE on distractors,
-10.3 MAE and -16.4 MSE on adverse weather samples, and -2.7
MAE and -4.5 MSE on negative samples), and also outperform
other methods. Intuitively, adversarial training with our patches
can help models to resist the crowd-like noises and focus on the
real crowd patterns, resulting in stronger robustness on negative
samples. As the visualization shown in Figure 9, many non-target
areas are highlighted on the density map of the vanilla model, such
as the region of bicycles in the second row, whereas the enhanced
model is significantlymore robust to these distractors. The attention
of the models trained with our PAP could focus on the human areas
more accurately and thus the number of people predicted by the
enhanced model is much closer to the ground truth. Therefore,
our method can effectively facilitate the crowd counting model to
perform better in the real world.

7More results can be found in appendix section F
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(a) Distractors (b) Adverse Weather (c) Negative Samples

Figure 8: Model performance on images with complex backgrounds (i.e., distractors, adverse weathers, and negative samples).
Lower MAE and MSE values indicate better robustness.

Figure 9: The density map for models on the scenes with complex backgrounds. The model trained with our adversarial patch
focus on the crowd more precisely, leading to better robustness.

7 CONCLUSION AND ETHICS STATEMENT
The premise of our work is that automated crowd counting is con-
sidered valuable, though, it may expose privacy risks in the ap-
plication and data collection process. We oppose its application
for malicious surveillance; instead, we focus on scenarios that are
beneficial to humans. For instance, traffic monitoring and public
safety are significantly meaningful use-cases for automated crowd
counting. This technology can be utilized for crowd flow monitor-
ing which promises better traffic planning for automated driving
systems. Besides, effective crowd counting can prevent stampede
accidents caused by excessive crowd density. Therefore, we believe
that automated crowd counting is developed for the better. In ad-
dition, we have made every effort to protect personal information
during the collection and use of data. All images used in this paper
are from public datasets or collected legally. We seek the consent of
the subject when capturing images in the physical world and mask
the face information in our paper for privacy protection.

Adversarial attacks, as an effective way to discover security
vulnerabilities in practice, will facilitate researchers to pay more
attention to the robustness of the models. Given this, to generate
strong transferable attacks for crowd counting models, this paper
proposes the Perceptual Adversarial Patch (PAP) generation frame-
work to learn the model-invariant features by exploiting both the
model scale perception and position perception. To validate the
effectiveness of our proposed method, we conduct extensive exper-
iments in both the digital and physical world, which shows that
PAP achieves state-of-the-art performance. Through our attack,
it is demonstrated that existing adversarial defense strategies on
the regression task are not infallible. Moreover, it is worthwhile
to further explore how to effectively define robustness metrics on

the crowd counting task. We believe this paper will inspire future
research on these aspects.

Additionally, our attack can be utilized to protect privacy. We
can successfully disrupt malicious surveillance systems to protect
crowd information, thus preventing the infringement of the right
to a public meeting. In this case, we still have a lot of obstacles to
overcome, such as how tomake our adversarial patch appear natural
enough to go undetected and how to efficiently cover all observation
locations. Evenwhile our work suggests putting patches on clothing
or posters, we anticipatemore effectivemethods of patch generation
to prevent anomalous warnings brought on by human perception.

From another perspective, we expect that the automated crowd
countingmodels have a strong generalization to copewith changing
real-world conditions. However, existing deep learning methods do
suffer from overfitting known data distributions. Nevertheless, the
deep crowd counting approach based on density map estimation
has been the most accurate and efficient way. In contrast to most
previous studies, we surprisingly find that adversarial training
with our patches can benefit model performance, revealing another
approach to exploit adversarial attack techniques for social positive.
We utilize our adversarial patches as beneficial enhancement data
to enhance the model generalization to unknown crowd scales
and robustness towards complex backgrounds, leading to better
application in reality. Though providing a preliminary explanation,
we are interested in investigating the nature and mechanism of the
observation, and we leave it as future work.

ACKNOWLEDGMENTS
This work was supported by The National Key Research and De-
velopment Plan of China (2020AAA0103502), and National Natural
Science Foundation of China (62022009 and 61872021).



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Shunchang Liu, Jiakai Wang, Aishan Liu, Yingwei Li, Yijie Gao, Xianglong Liu, and Dacheng Tao

REFERENCES
[1] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial examples.
In International conference on machine learning. PMLR, 274–283.

[2] Lokesh Boominathan, Srinivas SS Kruthiventi, and R Venkatesh Babu. 2016.
Crowdnet: A deep convolutional network for dense crowd counting. In Proceed-
ings of the 24th ACM international conference on Multimedia. 640–644.

[3] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2017. Decision-based
adversarial attacks: Reliable attacks against black-box machine learning models.
arXiv preprint arXiv:1712.04248 (2017).

[4] Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.
2017. Adversarial patch. arXiv preprint arXiv:1712.09665 (2017).

[5] Antoni B Chan and Nuno Vasconcelos. 2009. Bayesian poisson regression for
crowd counting. In 2009 IEEE 12th international conference on computer vision.
IEEE, 545–551.

[6] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasub-
ramanian. 2018. Grad-cam++: Generalized gradient-based visual explanations
for deep convolutional networks. In 2018 IEEE winter conference on applications
of computer vision (WACV). IEEE, 839–847.

[7] Ke Chen, Shaogang Gong, Tao Xiang, and Chen Change Loy. 2013. Cumulative
attribute space for age and crowd density estimation. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2467–2474.

[8] Ke Chen, Chen Change Loy, Shaogang Gong, and Tony Xiang. 2012. Feature
mining for localised crowd counting.. In Bmvc, Vol. 1. 3.

[9] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
Zoo: Zeroth order optimization based black-box attacks to deep neural networks
without training substitute models. In Proceedings of the 10th ACM workshop on
artificial intelligence and security. 15–26.

[10] Xiangning Chen, Cihang Xie, Mingxing Tan, Li Zhang, Cho-Jui Hsieh, and Boqing
Gong. 2021. Robust and Accurate Object Detection via Adversarial Learning. In
CVPR.

[11] Francesco Croce and Matthias Hein. 2020. Reliable Evaluation of Adversarial
Robustness with an Ensemble of Diverse Parameter-free Attacks. In ICML.

[12] Terrance DeVries and Graham W Taylor. 2017. Improved regularization of
convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552
(2017).

[13] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting adversarial attacks with momentum. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 9185–9193.

[14] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. 2019. Evading defenses to
transferable adversarial examples by translation-invariant attacks. In CVPR.

[15] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and
Jun Zhu. 2019. Efficient decision-based black-box adversarial attacks on face
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 7714–7722.

[16] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust physical-
world attacks on deep learning visual classification. In CVPR.

[17] Guangshuai Gao, Junyu Gao, Qingjie Liu, Qi Wang, and Yunhong Wang. 2020.
Cnn-based density estimation and crowd counting: A survey. arXiv preprint
arXiv:2003.12783 (2020).

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples (2014). arXiv preprint arXiv:1412.6572 (2014).

[19] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and
Balaji Lakshminarayanan. 2019. Augmix: A simple data processing method to
improve robustness and uncertainty. arXiv preprint arXiv:1912.02781 (2019).

[20] Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak Shah. 2013. Multi-
source multi-scale counting in extremely dense crowd images. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 2547–2554.

[21] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. 2018. Black-
box adversarial attacks with limited queries and information. In International
Conference on Machine Learning. PMLR, 2137–2146.

[22] Max Lennon, Nathan Drenkow, and Philippe Burlina. 2021. Patch Attack Invari-
ance: How Sensitive are Patch Attacks to 3D Pose? arXiv preprint arXiv:2108.07229
(2021).

[23] Alexander Levine and Soheil Feizi. 2020. (De) Randomized smoothing for certifi-
able defense against patch attacks. Advances in Neural Information Processing
Systems 33 (2020), 6465–6475.

[24] Min Li, Zhaoxiang Zhang, Kaiqi Huang, and Tieniu Tan. 2008. Estimating the
number of people in crowded scenes by mid based foreground segmentation
and head-shoulder detection. In 2008 19th international conference on pattern
recognition. IEEE, 1–4.

[25] Yuhong Li, Xiaofan Zhang, and Deming Chen. 2018. Csrnet: Dilated convolutional
neural networks for understanding the highly congested scenes. In CVPR.

[26] Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. 2019.
Nesterov accelerated gradient and scale invariance for adversarial attacks. arXiv
preprint arXiv:1908.06281 (2019).

[27] Sheng-Fuu Lin, Jaw-Yeh Chen, and Hung-Xin Chao. 2001. Estimation of number
of people in crowded scenes using perspective transformation. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and Humans 31, 6 (2001), 645–
654.

[28] Aishan Liu, Xianglong Liu, Jiaxin Fan, Yuqing Ma, Anlan Zhang, Huiyuan Xie,
and Dacheng Tao. 2019. Perceptual-Sensitive GAN for Generating Adversarial
Patches. In AAAI.

[29] Weizhe Liu, Mathieu Salzmann, and Pascal Fua. 2019. Context-aware crowd
counting. In CVPR.

[30] Weizhe Liu, Mathieu Salzmann, and Pascal Fua. 2019. Using depth for pixel-wise
detection of adversarial attacks in crowd counting. arXiv preprint arXiv:1911.11484
(2019).

[31] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2016. Delving into transfer-
able adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770
(2016).

[32] Zhiheng Ma, Xing Wei, Xiaopeng Hong, and Yihong Gong. 2019. Bayesian loss
for crowd count estimation with point supervision. In ICCV.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learningmodels resistant to adversarial attacks.
In ICLR.

[34] Michael McCoyd, Won Park, Steven Chen, Neil Shah, Ryan Roggenkemper, Min-
june Hwang, Jason Xinyu Liu, and David Wagner. 2020. Minority reports defense:
Defending against adversarial patches. In International Conference on Applied
Cryptography and Network Security. Springer, 564–582.

[35] Yurii Nesterov. 1983. A method for unconstrained convex minimization problem
with the rate of convergence O (1/kˆ 2). In Doklady an ussr, Vol. 269. 543–547.

[36] Daniel Onoro-Rubio and Roberto J López-Sastre. 2016. Towards perspective-free
object counting with deep learning. In European conference on computer vision.
Springer, 615–629.

[37] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning
representations by back-propagating errors. nature 323, 6088 (1986), 533–536.

[38] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In ICCV.

[39] Biyun Sheng, Chunhua Shen, Guosheng Lin, Jun Li, Wankou Yang, and Changyin
Sun. 2016. Crowd counting via weighted VLAD on a dense attribute feature
map. IEEE Transactions on Circuits and Systems for Video Technology 28, 8 (2016),
1788–1797.

[40] Vishwanath Sindagi, Rajeev Yasarla, and Vishal MM Patel. 2020. Jhu-crowd++:
Large-scale crowd counting dataset and a benchmark method. IEEE TPAMI
(2020).

[41] Qingyu Song, Changan Wang, Yabiao Wang, Ying Tai, Chengjie Wang, Jilin Li,
Jian Wu, and Jiayi Ma. 2021. To Choose or to Fuse? Scale Selection for Crowd
Counting. In AAAI.

[42] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[43] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. 2019. Fooling automated
surveillance cameras: adversarial patches to attack person detection. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops. 0–0.

[44] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. 2017. Ensemble adversarial training: Attacks and defenses.
arXiv preprint arXiv:1705.07204 (2017).

[45] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. 2019. Robustness may be at odds with accuracy. In ICLR.

[46] Boyu Wang, Huidong Liu, Dimitris Samaras, and Minh Hoai. 2020. Distribution
matching for crowd counting. arXiv preprint arXiv:2009.13077 (2020).

[47] Chuan Wang, Hua Zhang, Liang Yang, Si Liu, and Xiaochun Cao. 2015. Deep
people counting in extremely dense crowds. In Proceedings of the 23rd ACM
international conference on Multimedia. 1299–1302.

[48] JiakaiWang, Aishan Liu, Xiao Bai, and Xianglong Liu. 2021. Universal Adversarial
Patch Attack for Automatic Checkout Using Perceptual and Attentional Bias.
IEEE Transactions on Image Processing 31 (2021), 598–611.

[49] Jiakai Wang, Aishan Liu, Zixin Yin, Shunchang Liu, Shiyu Tang, and Xianglong
Liu. 2021. Dual Attention Suppression Attack: Generate Adversarial Camouflage
in Physical World. In CVPR.

[50] Qi Wang, Junyu Gao, Wei Lin, and Xuelong Li. 2020. NWPU-crowd: A large-scale
benchmark for crowd counting and localization. IEEE TPAMI (2020).

[51] Qimin Wu, Zhikang Zou, Pan Zhou, Xiaoqing Ye, Binghui Wang, and Ang Li.
2021. Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting. In ACM MM.

[52] Chong Xiang, Saeed Mahloujifar, and Prateek Mittal. 2021. PatchCleanser: Cer-
tifiably Robust Defense against Adversarial Patches for Any Image Classifier.
arXiv preprint arXiv:2108.09135 (2021).

[53] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V
Le. 2020. Adversarial examples improve image recognition. In CVPR.



Harnessing Perceptual Adversarial Patches for Crowd Counting CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[54] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren,
and Alan L Yuille. 2019. Improving transferability of adversarial examples with
input diversity. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2730–2739.

[55] Zhaoyi Yan, Yuchen Yuan, Wangmeng Zuo, Xiao Tan, Yezhen Wang, Shilei Wen,
and Errui Ding. 2019. Perspective-guided convolution networks for crowd count-
ing. In Proceedings of the IEEE/CVF international conference on computer vision.
952–961.

[56] Zheng Yuan, Jie Zhang, Yunpei Jia, Chuanqi Tan, Tao Xue, and Shiguang Shan.
2021. Meta gradient adversarial attack. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 7748–7757.

[57] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. 2019. Cutmix: Regularization strategy to train strong classifiers
with localizable features. In ICCV.

[58] Anran Zhang, Jiayi Shen, Zehao Xiao, Fan Zhu, Xiantong Zhen, Xianbin Cao, and
Ling Shao. 2019. Relational attention network for crowd counting. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 6788–6797.

[59] Jianping Zhang, Weibin Wu, Jen-tse Huang, Yizhan Huang, Wenxuan Wang,
Yuxin Su, and Michael R Lyu. 2022. Improving Adversarial Transferability via
Neuron Attribution-Based Attacks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 14993–15002.

[60] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. 2016.
Single-image crowd counting via multi-column convolutional neural network.
In CVPR.

[61] Tao Zhao and Ramakant Nevatia. 2003. Bayesian human segmentation in crowded
situations. In 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003. Proceedings., Vol. 2. IEEE, II–459.

[62] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2921–2929.



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Shunchang Liu, Jiakai Wang, Aishan Liu, Yingwei Li, Yijie Gao, Xianglong Liu, and Dacheng Tao

A ATTACKS WITH DIFFERENT PATCH SIZES
For the limited page sizes, we only show the results of our PAP
with the size of 81×81 in the main body of the paper. Here, we pro-
vide the results on Shanghai Tech Part A with different patch sizes
(40×40, 163×163) following [51] in the digital world. As illustrated
in Table 8 and Table 9, our adversarial patches have strong attack-
ing ability under both white-box and black-box settings, which
outperforms APAM [51] by large margins.

B ATTACKS AGAINST DEFENDED MODELS
To better evaluate our PAP performance, we conduct attacks under
different defensive methods. Due to limited computing resources,
we select five models listed in the main paper, i.e., MCNN, CSRNet,
CAN, BL and DM-Count, as the target models. First, we choose the
adversarial training scheme [33], which has been proved to be the
best empirical defense. In the adversarial patch scene, we iteratively
generate white-box adversarial patches during the model training
loop to improve the robustness. Referring [51], the training loss
can be formulated as follows,

L = 𝜆 · L𝑐𝑙𝑒𝑎𝑛 + (1 − 𝜆) · L𝑎𝑑𝑣 (13)

For the total epochs 𝐸, we set 𝜆 = 1 in [0, 0.25𝐸] to warm up,
and then slowly decrease 𝜆 from 1 to 0.5 in [0.25𝐸, 0.5𝐸], finally,
maintain 𝜆 = 0.5 to finish the remaining epochs. We set 𝛼 = 0.01
and 𝑇 = 5 for our PAP attack. Except as mentioned above, the
training of all models follows the original setup.

As for the certified method, several studies [23, 34, 52] have been
devoted to improving the robustness against adversarial patches
in the classification task. However, these approaches have strict
constraints on the patch size and require classification-oriented in-
formation, e.g., output probabilities and category labels. This leads
to the fact that they cannot be directly applied to the regression
scenario like crowd counting. Therefore, we consider the random-
ized ablation method, a general certified defense method for crowd
counting models proposed in [51] as our target. We follow [51]
re-training the models with the hyperparameter 𝑘 = 45.

Table 10 and 11 list the results for the adversarial training and
randomized ablation, respectively. It can be seen that our PAP still
performs strong attacking ability, which will facilitate research into
better defenses.

C COMPARINGWITH OTHER
TRANSFERABLE ATTACKS

In the main paper, we conduct experiments to compare our PAP
with six other methods designed for transferable attacks (MIGM
[13], NIGM [26], TI-NIGM [14], NAA [59], Avg-Dens, and MGAA
[56]). For a fair comparison, all hyperparameters are set the same as
in the main paper, except for the method-specific ones mentioned
below. We refer to their papers for the settings of these specific
hyperparameters. All additional results are listed in Table 12.

For the Momentum Iterative Gradient-based Method (MIGM)
[13], it integrates momentum into the iterative FGSM [18] and the
update procedure of the adversarial patch 𝛿 can be formalized as

follows,
𝛿𝑡+1 = 𝛿𝑡 + 𝛼 · 𝑠𝑖𝑔𝑛(𝑔𝑡+1),

𝑔𝑡+1 = 𝜇 · 𝑔𝑡 +
∇𝛿 𝐽 (𝛿𝑡 , 𝑦)
∥ ∇𝛿 𝐽 (𝛿𝑡 , 𝑦) ∥1

.
(14)

𝐽 represents the loss function for the source crowd counting model.
We set 𝜇 = 1.0 following [13].

For the Nesterov Iterative Gradient-basedMethod (NIGM) [26], it
utilizes Nesterov Accelerated Gradient [35] to improve the attacking
transferability. Following [26], we can update our patch by slightly
modifying the formula (14) as follows,

𝛿𝑡+1 = 𝛿𝑡 + 𝛼 · 𝑠𝑖𝑔𝑛(𝑔𝑡+1),

𝑔𝑡+1 = 𝜇 · 𝑔𝑡 +
∇𝛿 𝐽 (𝛿𝑛𝑒𝑠𝑡 , 𝑦)
∥ ∇𝛿 𝐽 (𝛿𝑛𝑒𝑠𝑡 , 𝑦) ∥1

,

𝛿𝑛𝑒𝑠𝑡 = 𝛿𝑡 + 𝛼 · 𝜇 · 𝑔𝑡

(15)

We set 𝜇 = 1.0 and 𝛼 = 0.01 referring to [26].
Further, we combine the Translation-Invariant method [26] and

NIGM, named TI-NIGM, which has much stronger transferability.
Specifically, the accumulated gradients 𝑔𝑡+1 observe the following
update rule,

𝑔𝑡+1 = 𝜇 · 𝑔𝑡 +
𝑊 ∗ ∇𝛿 𝐽 (𝛿𝑛𝑒𝑠𝑡 , 𝑦)
∥𝑊 ∗ ∇𝛿 𝐽 (𝛿𝑛𝑒𝑠𝑡 , 𝑦) ∥1

, (16)

where𝑊 is the pre-defined gaussian kernel.
In addition to the method directly manipulating the model out-

put, we also compare with a feature-level transfer-based attack
named Neuron Attribution-based Attack (NAA) [59] which can be
formulated into solving the following constrained minimization
problem,

min
𝛿

𝑓𝛾 ((𝑙 − 𝑙 ′) · 𝐼𝐴(𝑙)), (17)

where 𝑙 and 𝑙 ′ are the activation values of the neuron when the
input is an adversarial image and a black image, respectively. 𝐼𝐴
reflects Integrated Attention proposed in [59]. 𝑓𝛾 is a transforma-
tion function with hyperparameter 𝛾 for distinguishing between
positive and negative neuron attributions. Following [59], we set
integrated step 𝑛 = 30 and 𝛾 = 1.0. We choose MCNN-branch1,2,3-
(9), CSRNet-frontend-(22), CAN-frontend-(22), BL-features-(35), DM-
Count-features-(35), SASNet-features5-(9) as target layers to obtain
𝑙 and 𝑙 ′.

In addition to attacking with a single source model, we also
consider the ensemble-based method. Referring to [13, 31, 44], we
first conduct an ensemble-based attack by Averaging Density (Avg-
Dens). Specifically, for a target model, we generate adversarial
patches using the other five models by taking the average predicted
count as the loss as follows,

L =
1

5

5∑︁
𝑘=0

∑︁
𝑖, 𝑗

𝑓 𝑘Θ 𝑖, 𝑗
(x𝑎𝑑𝑣) . (18)

Besides, we compare with another ensemble-basedmethod called
Meta Gradient Adversarial Attack (MGAA) [56]. Specifically, we
randomly sample four models from a source model zoo to compose
different meta tasks and iteratively simulate a transfer-based black-
box attack in each task. We set the number of iterations 𝐾 = 5 and
the number of ensemble models 𝑛 = 3 in the meta-train step. To
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Table 8: Results of attacks on Shanghai Tech Part Awith 40×40 patch size. The results on the diagonal are inwhite-box settings
while the others are in black-box settings. Higher MAE and MSE values indicate a stronger attack.

MAE / MSE Target Model

Source model Method MCNN CSRNet CAN BL DM-Count SASNet

Clean 108.0 / 165.0 67.0 / 105.2 59.9 / 94.1 61.8 / 94.1 58.2 / 93.2 52.8 / 86.2

MCNN APAM 111.5 / 170.5 69.5 / 109.7 60.9 / 96.6 62.5 / 95.6 60.3 / 96.2 53.6 / 87.8
Ours 201.0 / 245.9 142.8 / 230.1 141.3 / 230.7 135.5 / 216.6 142.5 / 224.6 110.2 / 195.9

CSRNet APAM 109.6 / 168.0 69.3 / 109.3 61.0 / 96.5 62.4 / 95.5 60.1 / 96.2 53.6 / 87.5
Ours 118.6 / 182.1 116.6 / 192.6 122.4 / 211.7 107.8 / 178.3 110.5 / 189.7 107.3 / 193.6

CAN APAM 109.5 / 167.0 69.1 / 108.9 61.2 / 98.2 64.1 / 96.4 60.0 / 96.0 53.5 / 87.7
Ours 118.4 / 181.7 111.3 / 195.6 116.9 / 199.0 108.9 / 181.6 114.3 / 196.3 107.0 / 193.4

BL APAM 109.6 / 167.6 69.2 / 109.3 60.9 / 96.3 63.1 / 96.4 60.2 / 97.3 53.6 / 87.8
Ours 118.8 / 182.2 134.2 / 222.5 139.0 / 228.4 195.7 / 224.8 125.3 / 179.6 109.3 / 195.3

DM-Count APAM 109.4 / 167.8 69.3 / 109.5 61.0 / 96.6 62.9 / 95.6 62.4 / 98.0 53.5 / 87.8
Ours 119.0 / 182.4 135.3 / 224.3 138.9 / 228.5 148.4 / 189.2 144.5 / 186.6 109.2 / 195.2

SASNet APAM 109.9 / 183.2 69.2 / 108.9 61.1 / 96.1 63.2 / 96.3 62.3 / 98.3 53.7 / 87.6
Ours 119.3 / 183.2 142.1 / 229.4 141.4 / 230.8 133.6 / 214.7 142.0 / 224.3 106.4 / 192.5

Table 9: Results of attacks on Shanghai Tech Part A with 163 × 163 patch size. The results on the diagonal are in white-box
settings while the others are in black-box settings. Higher MAE and MSE values indicate a stronger attack.

MAE / MSE Target Model

Source model Method MCNN CSRNet CAN BL DM-Count SASNet

Clean 108.0 / 165.0 67.0 / 105.2 59.9 / 94.1 61.8 / 94.1 58.2 / 93.2 52.8 / 86.2

MCNN APAM 432.1 / 495.3 80.1 / 126.9 76.2 / 121.6 69.7 / 108.2 70.6 / 108.4 63.2 / 103.4
Ours 4431.8 / 4470.2 80.8 / 127.7 76.9 / 123.9 70.5 / 108.4 71.2 / 109.3 63.3 / 104.9

CSRNet APAM 354.6 / 379.1 463.5 / 589.4 127.4 / 158.1 613.3 / 626.7 368.5 / 384.0 61.8 / 100.8
Ours 463.8 / 484.2 2234.4 / 2268.4 660.5 / 736.2 1246.8 / 1255.0 626.9 / 639.3 63.4 / 101.9

CAN APAM 441.5 / 464.4 330.6 / 346.8 410.2 / 528.4 719.4 / 728.0 439.6 / 453.0 63.7 / 99.5
Ours 530.3 / 551.3 1070.1 / 1083.2 2084.0 / 2142.0 1051.3 / 1058.9 472.3 / 485.5 71.9 / 105.2

BL APAM 230.2 / 262.4 77.9 / 116.8 72.7 / 111.2 290.4 / 313.1 370.0 / 387.0 61.9 / 100.2
Ours 285.7 / 311.3 238.0 / 255.0 213.0 / 261.5 5213.4 / 5300.0 1987.5 / 2003.3 62.0 / 103.2

DM-Count APAM 204.3 / 238.5 67.2 / 111.1 71.1 / 113.4 114.5 / 140.8 207.4 / 236.5 63.9 / 100.1
Ours 249.7 / 278.3 266.9 / 284.5 207.1 / 262.0 2740.0 / 2767.2 3168.0 / 3194.2 73.2 / 103.8

SASNet APAM 111.4 / 171.6 78.9 / 127.6 74.2 / 118.9 68.7 / 107.2 71.1 / 111.4 71.8 / 119.3
Ours 444.4 / 463.7 388.2 / 402.4 142.7 / 167.7 727.8 / 744.0 423.0 / 438.1 1801.9 / 1813.9

Table 10: Results of attacks towards adversarial training on Shanghai Tech Part A. The results on the diagonal are in white-box
settings while the others are in black-box settings. Higher MAE and MSE values indicate a stronger attack.

MAE / MSE Target Model

Source model MCNN CSRNet CAN BL DM-Count

Clean 112.7 / 169.6 71.0 / 109.7 69.4 / 108.7 67.2 / 109.1 73.0 / 117.8
MCNN 1580.9 /1781.1 72.1 / 112.7 70.8 / 110.5 67.7 / 109.2 74.1 / 120.1
CSRNet 171.2 / 215.7 535.7 / 576.5 263.7 / 292.3 372.6 / 387.6 102.2 / 140.5
CAN 168.5 / 214.1 318.9 / 340.7 427.5 / 478.1 319.3 / 335.0 88.6 / 130.6
BL 130.1 / 182.5 120.8 / 146.1 144.7 / 168.9 1075.9 / 1103.3 122.6 / 154.5

DM-Count 116.9 / 172.0 89.9 / 122.2 87.4 / 119.4 230.1 / 257.8 257.8 / 285.1

Table 11: Results of attacks towards randomized ablation on Shanghai Tech Part A. The results on the diagonal are inwhite-box
settings while the others are in black-box settings. Higher MAE and MSE values indicate a stronger attack.

MAE / MSE Target Model

Source model MCNN CSRNet CAN BL DM-Count

Clean 117.3 / 185.4 75.3 / 134.9 74.2 / 117.8 73.7 / 108.1 68.9 / 105.5
MCNN 249.1 /378.3 148.8 / 214.1 167.1 / 258.0 218.4 / 323.9 166.0 / 255.3
CSRNet 247.3 / 376.5 621.3 / 677.7 338.4 / 472.1 228.4 / 321.7 180.9 / 264.3
CAN 249.0 / 378.1 134.0 / 176.5 699.6 / 760.5 225.8 / 322.7 185.0 / 274.3
BL 248.8 / 378.9 181.6 / 268.3 361.1 / 508.1 328.4 / 422.0 183.3 / 275.5

DM-Count 259.0 / 388.2 169.0 / 254.2 365.5 / 510.4 222.9 / 321.7 386.5 / 525.5

keep it comparable, we set the number of sample tasks 𝑇 = 25 and
meta-test step 𝛽 = 0.01.
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Table 12: Results of different transferable attacks on Shanghai Tech dataset Part A. The results on the diagonal are inwhite-box
settings while the others are in black-box settings. Higher MAE and MSE values indicate a stronger attack.

MAE / MSE Target Model

Source model Method MCNN CSRNet CAN BL DM-Count SASNet

Clean 108.0 / 165.0 67.0 / 105.2 59.9 / 94.1 61.8 / 94.1 58.2 / 93.2 52.8 / 86.2

MCNN

MIGM 702.5 / 728.8 69.8 / 109.3 62.2 / 100.9 63.4 / 96.7 60.8 / 95.9 53.5 / 89.3
NIGM 673.0 / 701.9 69.8 / 109.5 62.2 / 100.8 62.9 / 97.0 61.3 / 95.9 54.3 / 89.0

TI-NIGM 182.4 / 220.5 69.5 / 109.0 62.7 / 100.9 63.2 / 97.2 61.0 / 96.8 53.9 / 89.5
NAA 700.5 / 731.3 69.8 / 109.4 62.0 / 100.6 62.9 / 97.0 60.2 / 95.8 53.5 / 89.2
Ours 908.7 / 989.1 69.6 / 109.3 62.9 / 101.3 64.1 / 96.9 62.0 / 96.8 54.3 / 89.9

CSRNet

MIGM 118.5 / 170.3 305.5 / 326.7 104.2 / 128.8 239.8 / 253.1 185.4 / 201.2 54.2 / 89.9
NIGM 125.6 / 175.2 312.3 / 333.4 87.4 / 110.7 267.9 / 281.2 204.4 / 220.4 54.2 / 90.0

TI-NIGM 110.3 / 167.7 107.3 / 133.5 60.7 / 95.2 75.8 / 104.3 72.7 / 103.2 53.8 / 88.7
NAA 119.4 / 171.1 298.6 / 320.7 93.8 / 120.4 201.5 / 222.4 165.1 / 184.2 53.9 / 89.5
Ours 147.0 / 190.8 568.4 / 613.8 212.5 / 242.8 388.1 / 401.4 249.1 / 263.6 56.3 / 89.5

CAN

MIGM 145.2 / 188.9 255.6 / 273.9 426.0 / 453.3 385.9 / 397.7 203.8 / 218.3 54.2 / 88.5
NIGM 146.9 / 190.2 267.2 / 285.3 438.2 / 466.2 395.8 / 407.7 204.0 / 218.3 53.8 / 88.3

TI-NIGM 111.0 / 169.7 69.5 / 109.1 64.2 / 103.4 63.3 / 97.2 61.6 / 97.6 54.5 / 88.5
NAA 139.3 / 184.5 257.3 / 276.9 417.6 / 445.6 398.8 / 411.8 220.5 / 234.8 54.3 / 88.0
Ours 147.6 / 191.5 321.0 / 341.7 513.3 / 545.3 412.7 / 424.8 218.8 / 233.9 56.2 / 88.8

BL

MIGM 120.4 / 171.6 77.9 / 111.0 72.2 / 105.6 1001.6 / 1023.7 491.9 / 504.9 54.5 / 89.4
NIGM 119.1 / 170.9 74.2 / 107.6 68.1 / 102.3 1023.9 / 1051.3 511.7 / 526.5 53.7 / 89.5

TI-NIGM 109.9 / 167.8 74.5 / 109.8 65.4 / 98.1 111.1 / 130.6 77.9 / 107.3 54.5 / 89.9
NAA 121.0 / 172.6 78.5 / 110.2 69.3 / 103.4 1022.6 / 1044.9 508.9 / 522.1 53.7 / 89.6
Ours 119.0 / 170.7 79.6 / 111.5 73.1 / 106.6 1090.9 / 1171.6 519.7 / 541.6 54.5 / 90.0

DM-Count

MIGM 116.2 / 169.4 70.9 / 106.2 65.8 / 100.8 703.9 / 713.2 742.0 / 779.1 55.9 / 90.3
NIGM 117.8 / 170.0 70.3 / 106.5 64.8 / 100.1 701.0 / 731.2 744.7 / 761.9 55.8 / 90.0

TI-NIGM 111.2 / 169.3 68.9 / 108.7 62.3 / 99.9 63.3 / 96.6 62.4 / 98.1 53.9 / 89.5
NAA 117.0 / 170.1 70.6 / 106.5 65.3 / 101.1 737.7 / 746.0 744.0 / 781.4 56.4 / 90.8
Ours 115.6 / 169.6 87.6 / 119.3 82.8 / 115.0 747.5 / 793.6 751.3 / 784.9 56.5 / 90.8

SASNet

MIGM 123.2 / 173.2 71.5 / 108.3 61.7 / 95.7 65.5 / 95.3 69.0 / 91.3 122.5 / 147.5
NIGM 124.6 / 174.2 71.0 / 106.5 60.5 / 93.9 63.9 / 93.5 72.0 / 92.1 132.0 / 147.0

TI-NIGM 110.4 / 168.7 69.4 / 108.2 61.9 / 99.5 64.1 / 97.5 61.0 / 97.6 56.1 / 89.2
NAA 110.6 / 169.3 69.9 / 109.8 61.0 / 99.5 63.5 / 97.4 62.1 / 98.1 53.8 / 90.1
Ours 112.8 / 169.4 69.5 / 109.0 62.6 / 100.3 69.9 / 99.8 75.1 / 105.4 200.0 / 220.3

D MORE RESULTS FOR THE ABLATION
STUDY RELATED TO THE LOSS
FUNCTIONS

We report the results of CSRNet [25] in our main paper. In this
section, we provide additional model results for the ablation study
on two perception loss functions and the loss weight 𝜆. Table 17
and Figure 10 respectively list the results for MCNN [60], CAN [29],
BL [32], DM-Count [46], and SASNet [41]. All results demonstrate
the conclusions in the main paper.

Table 13: Cross-dataset evaluation (results are shown as
“training dataset→test dataset”). Adversarial training with
once adversarial patch generation (OAT) will lead to better
generalization than an iterative generation (IAT).

MAE / MSE Cross-dataset Evaluation

Method Part A→Part B Part B→Part A

Vanilla 22.8 / 34.3 142.4 / 241.3
IAT 23.5 / 35.1 140.0 / 245.1

OAT(Ours) 17.5 / 27.5 129.8 / 220.5

E DISCUSSION FOR DIFFERENT
ADVERSARIAL TRAINING SCHEMES

In this section, we plan to discuss the influence of different im-
plementations of adversarial training. Specifically, we train two
DM-Count models with our patches in two different adversarial

Table 14: Robustness evaluation towards complex back-
grounds. Adversarial training with once adversarial patch
generation (OAT) will lead to better robustness than an iter-
ative generation (IAT).

MAE / MSE Complex Backgrounds

Method Distractors Special Weathers Negative Samples

Vanilla 42.3 / 63.9 239.2 / 849.5 10.2 / 22.8
IAT 40.4 / 64.2 242.2 / 840.7 7.8 / 21.0

OAT(Ours) 38.4 / 61.1 228.9 / 833.1 7.5 / 18.3

Table 15: MAE/MSE in cross-dataset evaluation. Lower MAE
and MSE values indicate better generalization.

(a) Results of the MCNN models trained on Shanghai Tech Part A

Method Shanghai Tech Part B UCF-CC-50 Crowd Surveillance

Vanilla 50.1 / 62.8 441.8 / 700.9 159.0 / 210.1
Ours 33.1 / 48.8 431.4 / 669.6 87.1 / 148.0

(b) Results of the MCNN models trained on Shanghai Tech Part B

Method Shanghai Tech Part A UCF-CC-50 Crowd Surveillance

Vanilla 178.7 / 265.9 624.0 / 950.9 167.1 / 221.9
Ours 157.8 / 265.0 503.7 / 724.8 33.3 / 55.5

training schemes, i.e., generating all adversarial examples based
on the pre-trained model at the beginning or conducting the min-
max optimization iteratively. Then, we evaluate their performance
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Table 16: MAE/MSE in robustness evaluation towards com-
plex backgrounds.

Method Distractors Special Weathers Negative Samples

Vanilla 151.6 / 199.7 301.0 / 895.8 280.1 / 481.7
Ours 122.1 / 165.8 283.9 / 875.1 167.3 / 330.4

for generalization across datasets and robustness towards complex
backgrounds.

As shown in Table 13 and Table 14, generating adversarial patches
once at the beginning will achieve better performance. We con-
jecture that our patches may fail to capture satisfactory model-
invariant features during the iteratively min-max optimization.
Besides, iteratively generating adversarial examples and training

the model will take obviously more time (622.1h) than once prepar-
ing (33.6h). Thus, we take an adversarial training scheme with once
adversarial patch generation in our framework.

F MORE RESULTS FOR THE MODEL
IMPROVEMENT

In the main paper, we demonstrate the effectiveness of adversarial
training with our PAP for the single-column method DM-Count
[46]. In this section, we use another crowd counting model MCNN
[60], a multi-column method, to evaluate our approach. Specifically,
we conduct experiments to test the model generalization ability
across datasets and robustness on sceneswith complex backgrounds.
Except for the crowd countingmodel, we all follow the same settings
in the main paper. As shown in Table 15 and Table 16, our method
can generally benefit the model performance.
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Table 17: The ablation study on two perception loss functions. We show the MAE/MSE for the black-box attack on Shanghai
Tech Part A. Higher MAE and MSE values indicate a stronger attack.

(a) Results based on the source model MCNN

Loss CSRNet CAN BL DM-Count SASNet

None 67.0 / 105.2 59.9 / 94.1 61.8 / 94.1 58.2 / 93.2 52.8 / 86.2
L𝑠 w/o𝑊 69.3 / 109.0 62.8 / 101.1 63.2 / 96.7 60.2 / 94.4 53.4 / 89.3
L𝑠 69.4 / 109.3 62.9 / 101.1 63.9 / 96.8 61.8 / 96.4 53.4 / 89.4
L𝑝 69.5 / 109.0 62.9 / 101.2 64.0 / 96.0 60.8 / 95.5 53.4 / 89.1

L𝑠 + 𝜆L𝑝 69.6 / 109.3 62.9 / 101.3 64.1 / 96.9 62.0 / 96.8 54.3 / 89.9

(b) Results based on the source model CAN

Loss MCNN CSRNet BL DM-Count SASNet

None 108.0 / 165.0 67.0 / 105.2 61.8 / 94.1 58.2 / 93.2 52.8 / 86.2
L𝑠 w/o𝑊 141.2 / 186.5 303.6 / 317.7 309.4 / 322.7 173.6 / 191.3 55.4 / 88.5
L𝑠 146.0 / 189.1 319.2 / 339.6 409.2 / 421.2 209.7 / 225.3 55.7 / 88.8
L𝑝 146.3 / 189.6 300.0 / 320.1 366.0 / 379.5 210.6 / 225.7 54.8 / 88.5

L𝑠 + 𝜆L𝑝 147.6 / 191.5 321.0 / 341.7 412.7 / 424.8 218.8 / 233.9 56.2 / 88.8

(c) Results based on the source model BL

Loss MCNN CSRNet CAN DM-Count SASNet

None 108.0 / 165.0 67.0 / 105.2 59.9 / 94.1 58.2 / 93.2 52.8 / 86.2
L𝑠 w/o𝑊 117.9 / 169.9 76.8 / 109.7 65.3 / 99.3 492.3 / 509.9 53.0 / 88.5
L𝑠 119.0 / 170.2 78.8 / 110.7 68.2 / 99.4 509.9 / 526.5 54.1 / 89.2
L𝑝 118.3 / 169.4 76.9 / 110.8 69.4 / 104.3 505.7 / 525.1 53.8 / 89.2

L𝑠 + 𝜆L𝑝 119.0 / 170.7 79.6 / 111.5 73.1 / 106.6 519.7 / 541.6 54.5 / 90.0

(d) Results based on the source model DM-Count

Loss MCNN CSRNet CAN BL SASNet

None 108.0 / 165.0 67.0 / 105.2 59.9 / 94.1 61.8 / 94.1 52.8 / 86.2
L𝑠 w/o𝑊 113.9 / 167.0 77.5 / 111.1 78.2 / 109.3 726.7 / 773.6 55.7 / 89.3
L𝑠 115.6 / 169.6 82.1 / 114.2 79.2 / 112.1 739.8 / 772.7 56.0 / 90.5
L𝑝 115.2 / 169.1 81.4 / 111.4 81.6 / 112.4 728.6 / 768.5 56.0 / 89.9

L𝑠 + 𝜆L𝑝 115.6 / 169.6 87.6 / 119.3 82.8 / 115.0 747.5 / 793.6 56.5 / 90.8

(e) Results based on the source model SASNet

Loss MCNN CSRNet CAN BL DM-Count

None 108.0 / 165.0 67.0 / 105.2 59.9 / 94.1 61.8 / 94.1 58.2 / 93.2
L𝑠 w/o𝑊 108.3 / 166.1 68.9 / 106.6 60.9 / 95.2 65.3 / 98.2 65.5 / 96.6
L𝑠 110.0 / 167.5 69.0 / 108.1 61.8 / 96.8 67.5 / 98.9 70.4 / 100.6
L𝑝 109.1 / 167.1 67.2 / 105.5 60.2 / 94.9 62.7 / 96.3 68.2 / 99.1

L𝑠 + 𝜆L𝑝 112.8 / 169.4 69.5 / 109.0 62.6 / 100.3 69.9 / 99.8 75.1 / 105.4
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(a) Results based on the source model MCNN

(b) Results based on the source model CAN

(c) Results based on the source model BL

(d) Results based on the source model DM-Count

(e) Results based on the source model SASNet

Figure 10: The ablation study on the influence of 𝜆. The “red circle" and “red square" means the MAE and MSE when 𝜆 = 0. We
show the MAE/MSE for the black-box attack on Shanghai Tech Part A. Higher MAE andMSE values indicate a stronger attack.
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