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ABSTRACT
Software supply chain compromises are on the rise. From the effects
of XCodeGhost to SolarWinds, hackers have identified that target-
ing weak points in the supply chain allows them to compromise
high-value targets such as U.S. government agencies and corporate
targets such as Google and Microsoft. Software signing, a promising
mitigation for many of these attacks, has seen limited adoption in
open-source and enterprise ecosystems.

In this paper, we propose Sigstore, a system to provide wide-
spread software signing capabilities. To do so, we designed the sys-
tem to provide baseline artifact signing capabilities that minimize
the adoption barrier for developers. To this end, Sigstore leverages
three distinct mechanisms: First, it uses a protocol similar to ACME
to authenticate developers through OIDC, tying signatures to exist-
ing and widely-used identities. Second, it enables developers to use
ephemeral keys to sign their artifacts, reducing the inconvenience
and risk of key management. Finally, Sigstore enables user authenti-
cation by means of artifact and identity logs, bringing transparency
to software signatures. Sigstore is quickly becoming a critical piece
of Internet infrastructure with more than 2.2M signatures over
critical software such as Kubernetes and Distroless.

CCS CONCEPTS
• Security and privacy → Key management; Digital signa-
tures; Security services; Usability in security and privacy; • Net-
works→ Security protocols.
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1 INTRODUCTION
Software supply chain compromises have garnered wide attention
in recent years. Actors in the SolarWinds [65] and Codecov [62]
compromises caused significant damage by attacking the chain
of custody associated with developing, building, and distributing
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software. In other words, securing the supply chain is crucial to the
overall security of a software product. An attacker able to control
any step in this chain can introduce backdoors into source code or
include vulnerable libraries in binaries or packages. Hence, attacks
on the software supply chain are a high-impact mechanism for an
attacker to affect many users at once. Moreover, attacks against the
software supply chain are currently difficult to identify because they
abuse processes that are normally trusted. Of particular importance
is the last mile: the software delivery pipeline. Despite the existence
of work documenting different mechanisms to protect the link
between software users and software repositories, attacking the
software delivery step still remains a common attack vector.

Perhaps surprisingly, software signing, one technique for miti-
gating the effect of software repository compromise, has not expe-
rienced widespread adoption. In fact, the vast majority of packages
in popular software repositories that support signatures, such as
the Python Package Index (PyPI), are unsigned [72]. Various efforts
have been advanced to prepare signing infrastructure for these
communities, yet there are often contentious issues related to ease
of use, key management, and increased friction for maintainers.

In this paper we introduce Sigstore, a new open-source service
that makes software signing part of an invisible and ubiquitous
infrastructure. Drawing inspiration from Let’s Encrypt and its ef-
fect on the adoption of HTTPS, Sigstore uses existing identity
providers to issue short-lived certificates for individual package
signing workflows. This way, users can sign using ephemeral keys
(“keyless signing”), which allows developers to sign packages with-
out managing their own cryptographic material; ephemeral keys, to
our knowledge, have not been used for software signing. This not
only allows for regular package upload processes, but also allows
for automated workers (e.g., GitHub Actions) to sign and release a
package on behalf of a developer.

By applying building blocks used by web public key infrastruc-
ture (PKI) and transparency log systems such as Golang’s sumdb to
the problem of artifact signatures, Sigstore enables linking software
artifacts and identities. Like other transparency-log-backed pack-
age delivery security mechanisms, Sigstore uses a transparency
log for signatures on packages, but it also publishes claims about
identity in this log. The effect is that Sigstore not only prevents
attackers without proper access from injecting new, malicious pack-
ages into a repository, but also enables auditors to detect repository
tampering and account compromise.

Sigstore is gaining traction as a package signing solution and
one approach to satisfying the software supply chain security
controls associated with frameworks like Supply chain Levels for
Software Artifacts (SLSA) [24]. Following adoption by GitHub Ac-
tions [39], popular Linux distributions such as Arch Linux [40] and
Red Hat [37], and projects such as Google’s Distroless [81], Sigstore
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hosts more than two million (as of April 2022) different package
signatures over more than 450 GitHub repositories.

This paper makes the following contributions:
(1) We identify limitations of prior approaches to artifact sign-

ing.
(2) We introduce a new signing mechanism using a protocol

similar to Let’s Encrypt and describe its threat model.
(3) We give applications of this mechanism and analyze package

repository signing.
(4) We evaluate the performance and usage of Sigstore, and

describe lessons learned in its deployment.
(5) We analyze the motivations and experiences of several projects

and developers that have adopted Sigstore.

2 BACKGROUND
Sigstore relies on three technologies: artifact signing, transparency
logging and identity providers.

2.1 Artifact and Repository Signing

Artifact signing. To sign an artifact, a signer generates a pri-
vate/public keypair and uses the secret key to sign an arbitrary
piece of data. In the context of package management, this is usually
a signature over the package metadata, including the name of the
package, the hash of the contents, and instructions for installation
(such as pre-install hooks). Traditionally, the signer must keep the
private signing key secure but accessible; this is the source of many
usability issues [82].

Repository signing. Cappos et al. [12] show that attackers can
tamper with repository metadata to conduct attacks even if pack-
ages are signed (for instance, delivering an out-of-date, vulnerable
version of a legitimate package). In order to avoid these attacks,
package repository administrators must also sign metadata about
the repository’s state. To resist compromise of the repository it-
self, a repository can delegate ownership of packages to individual
package maintainers [43]. These maintainers would then need to
manage keys; consequently, adoption of such systems has been low.

2.2 Transparency Logs and Web PKI
Web public key infrastructure (PKI) is a mature and widely deployed
trust ecosystem. At its core, web PKI uses X.509 certificates [17]
to pin the trust of web servers to a “certificate authority” (or CA).
These CAs verify that an operator of a web server owns a particular
domain, then issues them a certificate. Commonly, server operators
use automated DNS challenge-response protocols to prove that
they control a domain of choice.

One limitation of web PKI is the lack of top-level namespacing:
multiple CAs can issue certificates to the same domain. For this rea-
son, major CAs proposed and implemented certificate transparency
(CT). Certificate Transparency keeps a public transparency log of
issued certificates so that a third-party could notice if two CAs were
to issue a certificate to the same domain (typically, a CA monitors
the domains for which it issues certificates). Similarly, CT provides
auditability and detection: domain owners can monitor the log, so
that even the correct CA could be detected if it was compromised
and issued a malicious certificate.

A transparency log ecosystem contains four main parties. First,
clients submit entries. Second, the log server uses a historical Merkle
tree [57] (which keeps records of past states) to record entries
in the log, after a preliminary validation step. Third, a series of
auditors monitor the log to avoid forking attacks and ensure that
log server never removes any entries. Finally, verifiers can check
that given entries are in the log (which forces other participants
to publish entries) As a general construction, transparency logs
provide an append only, global, non-forkable view (through the
use of auditors [54]) of the state of a trust ecosystem. Various
uses for these logs have been proposed by academics [41] and
industry (e.g., Go’s sumdb [30] or Firefox’s binary transparency [6]).
These logs are similar to a blockchain, in which entries added
cannot be removed and, as further entries are performed, it is harder
for an attacker to replace them. However, unlike a blockchain, a
transparency log does not use an expensive consensus mechanism
to support decentralization.

2.3 Identity Providers
Lastly, Sigstore uses identity providers to authenticate signers. We
use OpenID Connect (OIDC) as the current construction used in
production (the integration is modular, and other, similar systems
could be used instead).

OIDC [61] is a widely-supported protocol allowing relying parties
(applications) to verify the identity of resource owners (end users) as
confirmed by identity providers (such as Google, Facebook, GitHub,
or Okta). For example, an IniTech employee (resource owner) may
use their Google (identity provider) account to log in to internal
IniTech applications (relying party) by presenting an identity to-
ken issued by Google. Built from OAuth 2.0 [34], OIDC provides
interoperability and wide language support, security against large
classes of attack [49, 51], a well-defined identity specification, sup-
port for multi-factor authentication, and “workload identities” for
non-interactive authentication (for example, by a build service).

3 SYSTEM GOALS AND THREAT MODEL
We base our threat model on historical attacks on the software
delivery pipeline, especially account takeovers not linked to a com-
promised OIDC provider account [28, 85, 85] and registry compro-
mises [31, 48, 79]. See data sets of supply chain compromises for
additional examples [12, 15, 27, 43].

3.1 Parties and Roles
The Sigstore ecosystem consists of the following roles:
Signers Individuals vouching for the authenticity of content.
Verifiers Individuals checking that content is authentic.
Artifact Log Record of artifact metadata created by signers.
Identity Log Record of mappings from identities to signing keys.
OIDC Provider Mechanism vouching that an entity (individual)

controls an identity (e.g., email account)
Certificate Authority Entity verifying OIDC identity tokens and

issues cryptographic certificates to signers.
Monitors Independent service ensuring neither log lies about the

content held (to avoid fork attacks [53]).
Package Repository Independent service hosting the artifacts ref-

erenced in the Artifact Log (e.g., PyPI).
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Package Repositories are not essential to Sigstore, but are a core
part of the specific use case we describe in Section 5.

3.2 System Goals
Borrowing from prior literature [4, 43, 67, 75], we envision the
following security goals:

(1) Bind signatures over artifacts to OIDC identities.
(2) Provide a global, consistent view of the signing ecosystem.
(3) Provide an audit trail for compromise detection and post-

incident analysis.

For the package signing case study (Section 5), we have the follow-
ing additional goals:

(4) Bind software packages to the OIDC identities that can sign
for them (maintainers).

(5) Provide a mechanism to ensure data is “fresh” (i.e., so as to
avoid replay and freeze attacks).

3.3 Attacker Capabilities and Motivations
Attackers targeting the software supply chain are able to both
compromise a server (e.g., a software package repository like Dock-
erHub) and perform man-in-the-middle attacks on Internet com-
munications. However, we assume that an attacker is unable to
control cryptographic material or passwords from developers and
packagers. We also assume that an attacker is unable to control a
server for a prolonged period of time.

Attackers can attempt to impersonate a packager or developer
to introduce malicious code. As such, they often target overlooked
package dependencies. In addition, an attacker may perform tar-
geted attacks by compromising packages used by a specific target.

In regards to Sigstore, we envision several types of compromise:

(1) An attacker is able to compromise a single identity provider
used to perform OIDC authentication.

(2) An attacker is able to perform targeted man-in-the-middle at-
tacks between a package repository and the client, a packager
and a package repository, and identity provider. However,
we assume that the attacker cannot intercept all traffic.

(3) Likewise, an attacker can compromise a package repository.

We assume secure distribution of the verification client itself, in-
cluding public keys for an ecosystem trust root. This is analogous
to secure distribution of a web PKI certificate bundle.

Key Compromise. We assume that verifiers know the public keys
of project owners and that the attacker is not able to compromise
the corresponding secret key. In addition, private keys of develop-
ers, continuous integration (CI) systems and other infrastructure
public keys are known to a project owner and their corresponding
secret keys are not known to the attacker. In Section 6 we explore
additional threat models that result from different degrees of at-
tacker access to the supply chain, including access to infrastructure
and keys (both online and offline).

3.3.1 Implementation and Security Goals. To build a secure soft-
ware supply chain that can combat the aforementioned threats, we
design a system with the following properties:

Implementation transparency Sigstore should not require ex-
isting supply chains to change their practices in order to
secure them; rather, it augments existing signature systems.

Graceful degradation of security properties Sigstore should not
lose all security properties in the event of key compromise.
That is, even if certain supply chain steps are compromised,
the security of the system is not completely undermined.

In addition to these security goals, Sigstore is also geared towards
practicality and, as such, it should maintain minimal operational,
storage and network overheads and use widely-available crypto-
graphic primitives.

4 SYSTEM DESIGN
In order to provide signatures over arbitrary artifacts, Sigstore
performs three major operations (see Fig. 1 for an overview). The
first, OIDC Issuance, vouches that a client is in control of an identity
(e.g., an email account). The second associates short-lived public key
certificates with these identities (from a Certificate Authority), and
publishes these certificates to an Identity Log. The third publishes
a long-lived signature over an artifact (or artifact meta-data) to an
Artifact Log, allowing verifiers to check its validity.

The first and second operations are performed by a system called
Fulcio, which functions as a Certificate Authority and transparency
log for a namespace of OIDC identities (Identity Log). The third
operation is performed by a system called Rekor, a transparency
log for artifact signatures (Artifact Log). Cosign is the reference
Sigstore client implementation, but Fulcio and Rekor have public
API specifications and can be used by any client. With these compo-
nents, Sigstore has three major phases: Trust Setup, Signing Flow
and Verification Flow.

 ① OIDC Challenge Start

④ Signed Certificate

⑥ Update
Root of trust 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Identity Log
(Fulcio) 

② OIDC Response

OIDC Provider

…

UUID:b76141

SAN: user@name.io

UUID: 7a40cf

SAN: user2@github.com

UUID: 5a88c7

SAN: user@github.com

⑦ Fetch Artifact Signature

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Artifact Log
(Rekor) 

…

UUID:b76141

SAN: dev.client.artifact

UUID: 7a40cf

SAN: com.aws.xxx

UUID: 5a88c7

SAN: io.github.pytorch

③ Issuance Request

⑤ Sign and publish Artifact ⑤ Sign and publish Artifact  Signer  

  Verifier  

⑧Download the artifact 

Artifact
Repository 

Figure 1: The Sigstore key issuance flow

4.1 Trust Setup: Root-of-trust via The Update
Framework

Sigstore relies on The Update Framework (TUF) [4, 67] as a root-
of-trust. TUF allows for efficient key rotation, key freshness and
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delegation mechanisms. Web PKI does provide most of these bene-
fits, but TUF also supports thresholds of signatures, and provides
protection against subtle “freeze” or “replay” attacks in which an
adversary prevents a client from updating its bundle to the latest
set of certificates. It also handles revocations natively without any
requirement for revocation lists. This is possible because all delega-
tions within this framework fit in a file that clients can download,
which is not the case at the scale of web PKI.

Sigstore uses TUF with 5 offline root keys, held by stakeholders
in open-source, academia and industry. Once this root of trust
is issued, it is published through various means. The trust root
was created in a live-streamed key ceremony, with the root data
published in real-time to public Git repositories and other services
controlled by different entities. Once issued, this root of trust is
included on client libraries for verification (described below).

In the Sigstore ecosystem, TUF manages key material, rather
than artifacts themselves (the typical use of TUF). Sigstore uses
TUF to distribute the root certificate for Fulcio and Rekor. This
allows clients to ship with TUF root metadata containing the root
keys, which can then be used to verify all future CA certificates.

4.2 Signing Flow
Signing in Sigstore requires interacting with three different online
systems: an OIDC Provider, the Identity Log/Certificate Authority,
and the Artifact Log. This process minimizes the amount of key
management performed by signers while maintaining reasonable
security properties on the signatures generated. To do so, we rely
on short-lived certificates (with a validity period of 10 minutes)
whose corresponding private keys are used to produce a single
signature. This way, signers can generate signatures over arbitrary
artifacts. Afterwards, they discard any private key material, which
minimizes the likelihood of key compromise.

4.2.1 Public Key Infrastructure without Key Management. While
web PKI has seen near-universal adoption over the last decade [13,
35] due in large part to services such as Let’s Encrypt [1], most open-
source developers, who may not control a domain or have spare
money for an X.509 certificate from a commercial CA, have not
adopted secure code-signing identities. Further, even if developers
obtain such certificates, they will be faced with the well-known
usability and security issues surrounding key management [26, 66].

Instead, Sigstore relies on existing digital identity providers that
manage far more identities than PGP, comparable to DNS (1B [14])
or certificate transparency (1.5B certs [71] for 100M domains [33]).
For instance, as of 2019, Google had 1.5B users for Gmail, their
email service. OIDC [61], which Sigstore uses for authentication, is
a standard used throughout the Internet to provide identity claims
for people enrolled in popular services such as Gmail, GitHub,
Facebook and more.

One fundamental difference exists between Let’s Encrypt and
Sigstore: while TLS connections are momentary, binaries are long-
lasting. That is, in TLS, a certificate is valid if the current time is
within its validity period. Traditional approaches to code signing tie
the lifetime of the artifact to the lifetime of the certificate. This typi-
cally requires periodic re-signing, which is difficult in a community
setting with actors that may come and go. This means that signing
keys must periodically come online, which risks compromise.

Based on this insight, Sigstore introduces ephemeral keys: one-
time-use key pairs and corresponding short-lived certificates. To
sever the link between certificate lifetime and artifact lifetime, Sig-
store introduces Rekor, an artifact log. In combination with Fulcio,
this allows clients to validate that the signatures were made while a
certificate was valid (even after it expires). Together, these services
allow signers to remove reliance on key management (they get cer-
tificates by authenticating via OIDC, and destroy keys after a single
use) and minimize the risk of key takeover (even if a single-use key
is compromised, it cannot be reused after the short validity period).
As we will explore in the security analysis, a compromise of an
account does not fully subvert the trust on already-signed packages.
Further, the logs make account compromise and maliciously issued
certificates public, and they aid in investigation after an incident.
Monitors can verify correct behavior in these logs to ensure the
honesty of Rekor and Fulcio.

Finally, Sigstore proposes new mechanisms for signature and
certificate distribution. While these are not technically complex,
they enable new use cases by simplifying workflows for maintainers
and end-users (see Section 5.2).

4.2.2 Signing Flow Operation. Algorithm 1 describes the client
flow performed to generate a signature. This includes obtaining
an OIDC identity token (Line 2) and generating a key pair and
corresponding certificate signing request (Lines 3 and 4). With
this information, the client will submit a signing request to Fulcio
(the Identity Log and Certificate Authority) which will return a
certificate signed by its root key (Line 5). This certificate will have
Subject and Issuer fields associating it with the OIDC identity from
the token. If successful, the client may now sign the data, and submit
the signature to Rekor (the Artifact Log; Lines 6 to 8). Lastly, the
same client tools can submit the artifact signed to a discoverable
location, such as a package registry (Line 9).

Algorithm 1 Client flow to generate a signature
Require: provider, an OIDC provider

1: procedure Sigstore.Sign(artifact)
2: tok← OIDC.GetToken(provider)
3: sk, pk← GenerateKeyPair()
4: chal← Signsk (tok.sub) ⊲ certificate self-signature
5: cert← Fulcio.RequestCertificate(pk, tok, chal)
6: sig← Signsk (artifact)
7: Discard sk
8: Rekor.SubmitSignature(sig, pk)
9: SubmitArtifact(artifact) ⊲ to repository

We outline the operations performed by the server in Algorithm 2.
These primarily include checks for correctness on the challenge-
response. These include verifying (1) that the OIDC token was
generated by a trusted provider and has a valid signature (Lines 2
to 3) and (2) that the subject field matches the claimed identity in
the certificate (Lines 4 to 5). If these checks are all correct, Fulcio
signs the certificate request, and the signed certificate returned to
the client, who can now sign and submit a signature to Rekor.
As described above, once a short-lived certificate is created, a signer
can submit a signature to the Rekor log. In order to submit a trusted
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Algorithm 2 Server flow to accept a signature
Require: providers, a list of trusted OIDC providers

1: procedure Fulcio.RequestCertificate(pk, tok, chal)
2: if ¬OIDC.Verify(tok) or tok.iss ∉ providers then
3: return Err(“OIDC signature invalid”)
4: if ¬Verifypk (tok.sub, chal) then
5: return Err(“invalid self-signature: chal”)
6: cert← X509.NewCertificate(tok.iss, tok.sub, pk)
7: Signsk (cert)
8: Fulcio.PublishCertificate(cert)
9: return cert

signature into Rekor, a signer must provide both a public key and
the signature itself. While this is not used by clients to correctly
verify a signature, it is used to check for the entry’s correctness.
Note that while the signing verification procedure involves many
steps and interactions with external systems, the interface for end
users is simple: to sign using the cosign tool (see Section 7), a user
simply invokes cosign sign-blob on the artifact and uses their
browser to “log in to Sigstore” via OIDC.

These logs are architected for eventual consistency, and it may
be hours before a submitted certificate appears in the log. To handle
this case, since many artifacts are used shortly after publication,
Rekor returns to users a signed certificate timestamp (SCT), which
represents a timestamped promise (signed with the key in Rekor’s
root certificate) to incorporate the certificate into the log within a pe-
riod known as the maximummerge delay (MMD). A typical MMD in
certificate transparency is 24 hours. Sigstore has no published MMD,
but currently only completes a request after it finishes merging a
new log entry. These SCTs can act as signed timestamps to verify
the signature generation time, instead of making an online query
to the log. As in web PKI, clients accept SCTs indefinitely [16]).

4.2.3 Monitoring both logs. By moving certificates into the public
view, any party can verify that Fulcio and Rekor act correctly. To
do this, different actors within the Sigstore community run moni-
tors that verify the log for consistency (that neither log creates a
fork). The monitors can also look at semantic information within
entries that may raise alarms. For example, monitors can take note
of cases in which a signer changes OIDC providers, as this could
be a case of somebody trying to impersonate them. Another ex-
ample of such a check can be identifying typo-squatted identities
(user1234@gmail.com and user1234@outlook.com) signing for
different versions of the same package.

4.3 Verification Flow
In order to verify an artifact, a client runs Algorithm 3. First, a
verifier ensures that the trusted keys are fresh by performing a TUF
key update. With an updated root-of-trust, the first check ensures
that the identity claimed was correctly verified by the identity log,
and that the signature provided matches the content of the signed
artifact. A final check verifies that the signature was created during
the time window in which the certificate was valid.

To verify, a user runs cosign verify-blob and inspects the
output to see the identity of the verifier (cosign also supports
user-provided verification policies).

Algorithm 3 Verifier Flow
Require: root, a TUF root

1: procedure Sigstore.Verify(sig, artifact, cert)
2: ca← TUF.UpdateTrust(root)
3: if ¬X509.Verifyca (cert) then
4: return Err(“invalid certificate”)
5: if ¬Fulcio.VerifyInclusion(cert) then
6: return Err(“certificate missing from Identity Log”)
7: inclusion← Rekor.VerifyInclusion(sig, artifact, cert)
8: if inclusion is Err then
9: return Err(“signature missing from Artifact Log”)

10: if inclusion.time ∉ cert.validityWindow then
11: return Err(“invalid time for signature”)
12: if ¬Verifycert.pk (artifact, sig) then
13: return Err(“invalid signature”)

5 CASE STUDY: SECURING PACKAGE
MANAGERS WITH SIGSTORE

Sigstore is a generic system for signing artifacts and linking those
signatures to OIDC identities in an auditable way. Using the con-
struction above, it is possible to build a system to provide package
and repository signing with minor changes to existing infrastruc-
ture, and reducing the need for users to manage cryptographic
material. In order to do so, some elements in Sigstore that were
described in the abstract are replaced with concrete details; we also
introduce another party, the Package Repository.

Though there is plenty of interest in providing signing capa-
bilities for package managers, the uptake of these mechanisms in
practice has been limited. For example, a 2020 analysis of RubyGems,
which allows optional signing with SSL certificates, found that only
1.6% of the latest versions of packages were signed [84]. This may
be caused by the difficulty of managing cryptographic material
effectively, as well as the burden of operating certain cryptographic
toolkits. This relatively small-scale adoption of PGP-based package
signing mirrors the broader experience of PGP, which has struggled
to achieve a wide user base [52, 78]. A 2016 analysis of PyPI found
that only 4% of projects even list a signature and only 0.07% of users
downloaded these signatures for verification [43]. Consequently, a
system that allows for signatures without key management, like
Sigstore, can popularize signing packages in this setting.

5.1 TUF Integration and Repository Federation
Sigstore acts as an signing overlay over existing package repositories
so that packagers can sign artifacts without having to change exist-
ing infrastructure in popular package managers. However, client
side tooling package managers (e.g., pip [63]) need to be Sigstore-
aware so that can verify the signatures. When doing so, these tools
need to check whether the subject name in the certificate generated
is trusted to sign a particular package. This seems simple, as the
package repository itself can provide the mapping. This, however,
opens an avenue of attack in which a compromised package server
lies about associations between package names and identities.

The traditional solution to this problem for software repositories
is The Update Framework (TUF) [43, 67]. This provides protection
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Table 1: Taxonomy of compromises and associated attacks when using Sigstore to publish to a package repository which
implements The Update Framework (TUF).

Attacker controls: Attacker can:

Forge signatures Distribute packages Reuse keya Denial-of-service

Package repository No Yes No Yes
Rekor No No Yes Yes
Network (MITM) Targeted userb,c Targeted user N/A Targeted user
Signer Signer onlyb Signer only N/A Signer only
OIDC provider Some identitiesb,d No N/A Yes
Fulcio Any identityb No N/A Yes

a Given a previously-used signing key, can forge signatures.
b Signer/OIDC issuer can detect this activity in the log.
c With proposed OAuth 2.0 proof-of-possession enhancement [22], becomes “No.”
d Any identity associated with this OIDC provider.

from compromised package repositories by requiring that packages
be signed by their maintainers and securing the mapping from
package name to maintainer. However, TUF requires that users (in-
cluding package managers) manage their own keys. Instead, using
Sigstore, TUF can be modified to delegate to identities, combining
in the tamper-resistance of TUF and the convenience of Sigstore.

Rather than run their own instance of TUF, repository opera-
tors who already rely on Sigstore can use repository federation to
root trust for their packages in the Sigstore ecosystem. A package
repository is able to participate in an interactive protocol with the
Sigstore infrastructure to claim a namespace within the Sigstore
Artifact Log (e.g. pypi.org/*). Then, after a package repository
claims a namespace, it can further delegate to particular packages
names within the repository.1

Beyond being able to commit these username mappings to clients
in the Sigstore ecosystem, this also allows the package reposito-
ries to configure the trust relationships between identity providers
(e.g., by blocklisting or adding new identity providers), as well as
signing repository metadata (so as to avoid freeze and mix-and-
match attacks [12]). As a consequence, package repositories can use
Sigstore to provide a signing overlay that provides TUF-like guar-
antees, while at the same time minimizing the need for packagers
to maintain their own cryptographic material.

5.2 Sigstore user interviews
To complement the technical evaluations presented above, we also
conducted interviews with seven individual users of Sigstore. Two
of the individuals integrated Sigstore into the open source Kuber-
netes project, a popular container management platform. Another
two individuals, both staff at Shopify, have been involved in a pro-
posal to integrate Sigstore into RubyGems, a registry for Ruby pro-
gramming language packages. The fifth individual has conducted
design work and prototyping on a Java client for Sigstore. The sixth
and seventh individuals are both open source software develop-
ers, creators of popular projects, and were only solely end-users of
1Currently, federation in Sigstore uses the Secure Production Identity Framework
for Everyone (SPIFFE) [73], which operates on similar principles to the construction
described here, rather than using TUF directly.

Sigstore (the other interviewees participated to varying extents as
contributors to the project). All interviews were semi-structured,
conducted via an online interview format and lasted between thirty
minutes to an hour. We focused on what problems the user sought to
solve with Sigstore, alternatives considered, and the interviewee’s
perceptions about the security benefits of Sigstore.

The individuals involved with Kubernetes initially sought to
verify the base container images consumed by Kubernetes. These
individuals were attracted to Sigstore over alternative signing solu-
tions such as Notary [60] or PGP because of their view that Sigstore
made signing relatively easy and the simplicity of key management
for developers. To these individuals, many of the security benefits
described elsewhere in this paper were secondary to immediate
concerns about usability and speed of implementation.

The Shopify staff became interested in Sigstore as a means of
protecting the open source software commons upon which their
software development teams and business rely. These individuals
identified the integrity of open source software packages and reg-
istries as a central concern, which eventually led to their proposal
to integrate Sigstore into RubyGems, the Ruby package repository.
Skeptical of PGP and notions such as web-of-trust, these individuals
preferred to “trade a key management problem for an identity prob-
lem.” In other words, Sigstore alleviated the traditional difficulty
of binding an entity and a public key, leaving only the problem of
deciding which identities to trust for a given software package. The
interviewees also expressed strong support for Sigstore’s use of a
public ledger that “forces attackers to move in the open.”

The software developer working on a Java client for Sigstore aims
to provide tooling that makes integration of Sigstore into language
ecosystems easier. While the developer noted that “getting rid of
key management is nice,” the interviewee was quick to emphasize
that the security guarantees of Sigstore depend upon the security
policies of downstream verifiers. The developer opined that Maven
Central’s current use of PGP “seems like it has reached the limit
of what PGP was intended to be used for.” The interviewee then
expressed hope that Sigstore would enable a richer set of security
policies related to artifact verification.
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The interview sample also included two open source software
developers who participate in the Sigstore project only as end-users
of the tools. One of these developers hoped to sign a container
image he published and found the GitHub integration and keyless
signing features of Sigstore attractive. Interestingly, this Sigstore
user was relatively uncertain about the security benefits of digital
signatures for software artifacts and yet still believed he “ought”
to sign the image he publishes. The other open source software
developer diligently explored alternative code signing approaches,
concluding that acquiring a digital code signing certificate from a
traditional certificate authority is onerous and expensive. For this
user, Sigstore was much easier and had no direct costs. This user
was also motivated by a need to help the Windows users of his open
source project; these users sometimes faced issues from Windows
Defender antivirus software when using the project he created and
he hoped that Sigstore could one day help verify the integrity of his
project and prevent these false positives (currently, the Windows
antivirus software does not include Sigstore in its trust root).

In sum, factors such as ease of integration, reduced difficulties
with key management, and the tight connection between identity
and cryptographic material attract developers to use Sigstore over
traditional package-signing solutions.

6 SECURITY ANALYSIS
In Section 3, we described a powerful adversary who can control
Internet traffic between entities, as well as compromise actors in
the ecosystem. However, we assume that attackers will not control
servers for a long period of time, or control a majority of the servers
on the Sigstore ecosystem at once.

With this in mind, we set forth to study the security properties
of the system under normal operating conditions. After, we explore
the impact of different types of compromises that are possible were
an attacker to control the various elements of the system. Table 1
summarizes the following taxonomy of attacks.

6.1 Normal Operating Conditions
Under normal operating conditions, a verifier knows that a software
package signed by a Sigstore identity is legitimate; the following is
an argument that this guarantee holds:

First, an identity is trusted to sign a package if it controls that
package’s namespace within a repository. To verify this, a client
performs a lookup for that package as in The Update Framework
(TUF) [67]. Then, the client is convinced that the given identity is
trusted to sign the package; otherwise, this violates the security of
TUF delegations as presented by Kuppusamy et al. [43].

Then, the package is legitimate as long as the signature comes
from a party who holds that identity. Suppose that some party who
does not hold the identity can convince the client to accept their
signature. Then, they must have produced a signature that validates
with the public key in the certificate issued by Fulcio, so they must
hold the corresponding private key (otherwise, this violates the
security of the digital signature scheme). Similarly, the timestamp
on the signature must be in the validity period of the certificate
(as attested by a signed certificate timestamp from Rekor); this is
possible only if the signature was submitted to Rekor during that
window. Additionally, the certificate must have that identity as the

subject, must be valid, and must be signed by Fulcio. This means
that Fulcio must have issued them such a certificate (otherwise, this
violates the security of the signature scheme for Fulcio’s signatures).
It does this only if presented with a valid OIDC identity token
corresponding to the subject in the certificate. To be valid, this token
must bear the signature of the OIDC provider. However, the OIDC
provider only signs identity tokens for users that do authenticate
with the corresponding identity; this is a contradiction.

Additionally, because the client checks both that the signature
is present in the Artifact Log and that the certificate is present in
the Identity log, any valid signature must have both corresponding
entries. Even if a signer does control the corresponding identity,
they cannot issue signatures for artifacts without detection.

Having settled the regular operation conditions, we move on
to explore the cases in which different parts of the system are
compromised.

6.2 Man-in-the-Middle Attacks
An attacker able to man-in-the-middle conversations is able to carry
out attacks on different conversations that make up the protocol. If
the attacker can do both of the following, they can publish packages
as the user (this is analogous to the case of compromising the user
themselves).

Signature submission flow. When a packager submits a package
to the repository, an attacker could replace the package with a
tampered one. However, the client and log will reject the package
if the signature is invalid.

OIDC flow. An attacker able to intercept an OIDC token may
be able to forge a single-short package signature (by requesting a
certificate from Fulcio). A proposed enhancement to OAuth 2.0 [22]
would eliminate this risk, by binding an OAuth token to the private
key corresponding to the public key in the certificate.

6.3 Package Server Compromise
If the package repository is compromised, an attacker will be able
to submit packages to the repository. But without the ability to
generate signatures through the OIDC flow the packages will be
rejected by the client. Instead, an attacker can leverage compro-
mises to remove existing versions from the repository (e.g., to force
users to use downgraded/vulnerable versions of a package). This,
however, can be detected by verifying signatures generated in the
log (i.e., by confirming that new signatures were generated that
do not have a corresponding package in the repository). Further,
by using The Update Framework (TUF) [67] in combination with
Sigstore, clients can detect such attacks.

There is a risk if the identity provider and package server are
controlled by the same party. For instance, GitHub is an identity
provider in Sigstore. If GitHub is used to distribute releases as
well, using GitHub as an identity provider does not provide much
additional security against a compromise of GitHub (however, mon-
itoring the transparency log can detect misbehavior).

6.4 Sigstore Compromise
Similarly, an attacker can compromise Fulcio or Rekor. By com-
promising the Artifact or Identity Log, an attacker can remove
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Table 2: Source code statistics for tools in the Sigstore ecosystem.

Name Description Version Languages Lines of Code

Cosign Client Libraries and Tools 1.8.0 Go 28,236
Fulcio Identity Log and Certificate Authority 0.4.0 Go, Python 5,562
Rekor Artifact Log 0.6.0 Go 16,675
maven-plugin Maven Integration 1.0 Java 819

signatures for packages (e.g., to cause a denial of service). Both of
these attacks are detectable, and can only cause denial of service
attacks when cross-referencing information between the logs and
the package repository.

A more concerning attack is such in which an attacker attempts
to issue certificates for arbitrary OIDC providers in the Identity
Log. However, this attack is detectable by the OIDC providers, who
can cross-reference their logs and notice unaccounted-for identities
in the log. Because OIDC provider public keys are widely available,
future work could extend the protocol to allow for any monitor to
detect unaccounted-for certificates.

If an attacker controls Rekor and a compromised one-time-use
key from a legitimate user, it can reuse this key by injecting a signa-
ture in the transparency log at the time the certificate holding that
key was valid. However, this attack is detectable by any monitor,
as it requires modifying earlier entries in the log.

6.5 Package Maintainer/Publisher Compromise
It is possible that automated signing pipelines (e.g., through the
GitHub action provider) may be compromised by an attacker. In
such a case, an attacker should be able to carry out an OIDC flow,
generate an arbitrary trusted key and submit a maliciously tam-
pered version of the package. However, the compromise is limited
to an individual run of the automated signer. This is because keys
are one-shot and correspond to an individual OIDC flow. As such,
future and previous package signatures (i.e., for other package ver-
sions) are not affected by this compromise.

An attacker could attempt to keep cryptographic material to sign
future versions (as the certificates are trusted by the identity log).
However, the signatures will be rejected after a short time window
(e.g., 30 minutes). This is because the certificates are short-lived,
and the signatures are only trusted if they were generated and
logged within the appropriate time window.

Requiring thresholds of signatures for a package mitigates this
attack, as the attacker would need to control more than one account.

6.6 OIDC Issuer Compromise
An attacker in control of an OIDC provider (e.g., Google or Mi-
crosoft) can impersonate any of their users. In this case, an attacker
can not only generate arbitrary certificates for a user, but may
also be able to authenticate on behalf of the user with the package
repository. As such, an attacker may be able to submit tampered
packages to the repository and generate signatures accordingly. In
this case, Sigstore will not prevent or detect an attack. However,
such attacks can be detected by the impersonated individuals who
did not request certificates for their identity.

Multiple-vantage-point OIDC Verification. It is possible to mit-
igate this attack, however, by using a similar approach used by
technologies like Let’s Encrypt [10]. In this case, Sigstore can re-
quest not one OIDC flow, but multiple flows to authenticate a user.
This is trivially performed at the protocol level (i.e., before admit-
ting a certificate in the identity/packaging log), by requesting proof
that the user can control multiple identities related to the same
package (e.g., a GitHub login and a Google email). In this case, an
attacker needs to compromise multiple OIDC providers at the same
time, which is much more difficult.

7 IMPLEMENTATION AND EVALUATION
We evaluated Sigstore on three dimensions: (1) usage frequency of
the public service, and how the service is used, (2) latency for sign-
ing and verification with Sigstore, and (3) scalability. To perform
these evaluations, we gathered data from the public transparency
log and undertook micro-benchmarking of Sigstore-associated tools.

We find that: (1) Sigstore adoption is increasing, especially for
automated releases via GitHub actions, and (2) Sigstore scales to
real-world loads and requires minimal client-side work.

7.1 Implementation
We implemented the Sigstore infrastructure (Fulcio and Rekor) and
associated client tooling to allow for package signing on popular
package repositories (see Table 2). In order to ease adoption, we built
our primary client tool, cosign, to allow for signing and verifying
container images without relying on repository federation. This tool
is widely used within cloud ecosystems. This tool also includes the
policy-controller webhook to verify the admission of container
images to cloud deployments.

In order to build both transparency log implementations, we built
upon the popular Trillian [29] framework for transparency logs.
Trillian supports logs of arbitrary data; to add additional structure
and validation, developers can implement Trillian personalities. We
developed two personalities for Trillian, one for the Identity Log
(Fulcio), and one for the Artifact Log (Rekor). We deployed public
instances of both logs to allow users of cosign to sign arbitrary
artifacts. We implemented OIDC integration in Fulcio with support
for three providers: Google, GitHub, and Microsoft. We use 10
minutes as the default certificate lifetime.

Notice that while the Fulcio implementation is only ≈5,500 lines
of code, Rekor is almost three times as large. Most of this code
is in support of pluggable entry types for Rekor. This includes
X.509 signing of packages, TUF metadata (as mentioned above),
and in-toto metadata (for supply chain provenance), as well as more
traditional Linux signing formats for Alpine Package Keeper (APK)
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Figure 2: Daily count of new entries in the public Rekor log. December 1, 2021–April 11, 2022.

or RedHat Package Manager (RPM) packages. This code describes
entry formats and sanitization (to ensure entry correctness), and
should require minimal maintenance effort.

GitHub Actions Runner And Automated Signing Pipelines. In De-
cember 2021, GitHub published a mechanism to integrate cosign
into release workflows using GitHub Actions. This interoperates
with GitHub as an OIDC provider, and it allows for automated
pipelines to sign and publish on behalf of users registered in their
platform [39]. This approach links built artifacts to source code
(by its commit hash), preventing attacks in which a malicious user
uploads artifacts containing code that is not present in the public
source repository. As we will see below, this is the most widespread
mechanism used within the Sigstore ecosystem to sign packages.

7.2 Usage Frequency and Details
To understand the usage patterns of the public instance of the
Rekor transparency log, we gathered data on the number of entries
in Rekor, the daily usage pattern, and the relative percentage of
different entry types. As of April 11, 2022, there were 1,969,836
entries in the public Rekor log. Figure 2 below provides a daily
count and moving average of new entries in the Rekor log from
December 1, 2021 to April 11, 2022.

Table 3 displays a breakdown of the type of entries found in Rekor
as of April 11, 2022. Different entry types represent different types
of claims about the associated artifact. For instance, the in-toto
entry represents an attestation about an artifact using the in-toto
framework, an approach to software integrity that emphasizes
transparency. The rfc3161 entry type represents an attestation that
data existed before a particular time. For descriptions of the other
types, see Table 3. Over 99% of entries are rekord, hashedrekord,
and intoto types.

We also calculated the number of Fulcio signatures by OIDC
identity provider. Identity providers are entities that authenticate a
user. Each Fulcio entry represents a pairing of an identity (e.g. an
email address) with a public key. The results are in the following
table:

Issuer Usage (%)

GitHub Actions 80.2
Google 17.5
Kubernetes 1.5
GitHub OAuth 0.7
Other 0.1

Rekor users can encode the public keys in their entries in a
number of different signature formats, allowing interoperability
with existing signing systems like OpenPGP or SSH. We calculated
the percentage of rekord entries using different signature format
types (as of April 11, 2022). Each format requires a specific set of
data fields. The results (as of April 11, 2022) can be found in the
following table:

Signature Format X.509 minisign PGP SSH

Usage (%) 82.8 11.2 6.0 <0.0001

7.3 Performance
Signing and verification latency. The following table presents a

breakdown of the time cosign spends on various phases of sign-
ing and verification. We measured these by modifying the cosign
source to record timings at each stage; the times presented are an
average over 10 trials on a developer workstation (32 GiB RAM,
AMD Ryzen 5 5600G CPU) with about 55 ms round-trip ping times
to the Sigstore infrastructure. The bulk of the time is spent updat-
ing TUF metadata, which (as in the specification) requires several
round-trips to a remote repository. Remote calls to Fulcio and Rekor
take well under a second. Local computation is negligible (about
1 ms total). We omit time performing OIDC sign-in (relevant only
to signing), as this phase requires user interaction.

Time (ms)

Phase Local Fulcio TUF Rekor

Sign 0.5 397.2 1,154.0 509.7
Verify (online) 1.0 - 1,162.2 361.7
Verify (offline) 1.2 - 1,183.9 -
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Table 3: Breakdown of Entry Types in the Public Rekor Log, as of April 11, 2022.

Type Description Count

rekord Signature on arbitrary blob (includes full blob) 1,037,961
hashedrekord Signature on arbitrary blob (only includes hash) 564,138
intoto Attestation on artifact in the in-toto framework [74] 367,229
rfc3161 Response from RFC3161 [2] timestamping authority 187
helm Signature on a package for Helm (Kubernetes package manager) 129
tuf Signed TUF metadata and associated root-of-trust 99
jar Signature on a Java Archive (JAR) package 78
rpm Signature on a RedHat Package Manger (RPM) package 14
alpine Signature on an Alpine Package Keeper (APK) package 1

Scalability. The Sigstore project performed a load test in August
2021 to test its ability to withstand high usage. The Rekor log re-
ceived over 347,000 entries on August 18th. Per-hour usage peaked
at 17,755 requests and per minute usage peaked at 437 requests.
The log service remained healthy throughout the test.

7.4 Lessons Learned
The real-world deployment of Sigstore has surfaced a number of
practical concerns.

First, making key management easier does not solve all identity
problems. Users still need to figure out which identities are trusted
to sign a particular artifact. It’s important to discourage users from
assuming an artifact is secure because it is signed at all, rather than
signed by a specific, trusted party. Identities in Sigstore are more
legible to humans than opaque public keys, but this is a weakness as
well as a strength. Any workflow which requires a human to eyeball
an identity in order to decide whether to trust it is vulnerable to
typosquatting or type confusion attacks. Further, users must look
beyond the “email” string and consider the “issuer” and other fields
as well: a certificate associated with an @gmail.com address based
on an OIDC login with Google as the provider is generally stronger
than a similar certificate based on a login from another provider. We
recommend that systems integrating with Sigstore also implement
a system like The Update Framework (TUF) [67] to help manage
the association between identities and artifacts (for instance, to
specify which maintainers can sign a particular software package).

Like similar systems, Sigstore faces a tradeoff between trans-
parency and privacy. Many code-signing certificates use emails or
other personally identifiable information as the primary identifier.
In an open-source setting, many users value anonymity, and would
prefer not to reveal their email address, even if it is pseudonymous.
This may be for fear of additional requests from the consumers of
their software; enterprises have been known to demand that open-
source maintainers perform security work for free [80]. Sigstore
has implemented support for identities that are not associated with
individuals, and instead refer to public information like the name
of a GitHub repository; it also supports using traditional public
keys in concert with its artifact log. Even if users consent to putting
their information on a log now, they may later want to remove that
information. Any system that hosts user-submitted data is also vul-
nerable to abusive content. Planned work will allow the removal of

log entries, but this may impact the availability of the artifacts from
those entries and may be a vector for denial-of-service attacks and
censorship. Future work should explore ways to mitigate privacy
concerns while providing the usability benefits of ephemeral keys.

Finally, there are practical deployment considerations. Requir-
ing an OIDC login flow per artifact may not be appropriate in all
settings. For instance, Java packages can have thousands of arti-
facts in a single release of a package: a developer would balk at
logging in thousands of times in order to release a package, and
even if credentials are cached, this imposes a large burst of load
on the identity and transparency logs which may lead to perfor-
mance issues. Fortunately, Rekor supports pluggable types, and new
types have been proposed which consolidate signatures over many
artifacts. Similarly, Sigstore has encountered many of the same
scalability and availability concerns as certificate transparency in
web PKI. An indefinitely-growing log leads to slower requests over
time, since operations are super-linear in the number of entries; to
deal with this, we implement temporal sharding, where logs are
retired and replaced periodically (approximately annually). In most
applications, the additional latency incurred by a roundtrip to the
log server is prohibitive, so many clients choose to verify using
Signed Certificate Timestamps (SCTs; see Section 4.2) instead.

8 RELATEDWORK
Sigstore overlaps with various efforts in the systems security space.
Research areas such as Public-Key Infrastructure (PKI), software
supply-chain security, and identity-proof systems overlap with dif-
ferent components of Sigstore. In this section, we describe academic
and industry state-of-the-art in the aforementioned areas.

8.1 Artifact Signing
Signed artifacts enable confidence in the integrity of software de-
pendencies and related code artifacts such as build outputs. Past
efforts from academic and industry include package signing, repos-
itory signing and package transparency.

Package signing. Currently, most software distribution pipelines
(e.g., package repositories) support or plan to support a package
signing solution. Perhaps the most widely-known approach for
package signing is PGP. The Pretty Good Privacy (PGP) standards
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and tooling, along with the GNU Privacy Guard (GPG) implementa-
tion and the related “web-of-trust” model allow users to use digital
signing to enforce content integrity. Some open source software
registries, such as Maven Central, a Java registry, have actually
mandated the use of PGP in order to upload artifacts [84]. How-
ever, the majority of registries that support PGP signatures have
made their use optional. Unsurprisingly, key elements of PGP have
therefore been central to the debate on the merits of code sign-
ing, especially the usability and security assumptions of PGP itself,
including the use of long-lived secret keys and the difficulty of man-
ually finding and verifying developer keys [43]. While Sigstore does
not replace PGP as a package signing solution, it allows developers
to simplify their signing workflow by eliminating cryptographic
key management.

Repository signing. Cappos et al. [12] identified limitations with
individual package signing. In particular, attackers able to compro-
mise a package repository are able to replace non-signed metadata
(usually, repository state information). This allows attackers to ef-
fectively bypass package signing and force developers to install
outdated, vulnerable dependencies, as well as force the installa-
tion of attacker-controlled malicious dependencies. A similar at-
tack, shown by Torres-Arias et al. [75], can be carried out on Git
repositories. Samuel et al. [67] introduced The Update Framework
(TUF), the most widely deployed repository signing model. TUF
has inspired open-source and industry designs, including Docker’s
Notary [60] as well as F-Droid [21], among others. Further designs
for specific use cases, like automotive (Uptane [42, 76]) as well
as IoT devices (SUIT [36]) have been proposed to manage TUF’s
limitations within individual ecosystems. While Sigstore does not
present a repository signing mechanism, it uses TUF metadata to
handle repository and package signing use-cases.

Several deployed repositories do require code signing, including
OS package repositories (like those run for the Debian operating
system), and mobile app stores (for both Android and Apple devices).
However, in all such cases, developers are expected to manage their
own keys and request certificates from the platform. None of these
platforms supports short-lived certificates, so the risk associated
with a leaked key is greater, or timestamping, so end users cannot
check whether a given artifact was signed while the certificate
was active. Finally, the root-of-trust is the same party that hosts
the applications, which means that an app store or repository, if
compromised, could substitute their own binaries.

Supply chain provenance signing & compliance. Beyond individ-
ual artifact and repository signing, there is a widespread push by
industry [23], academia [3], and government [9, 77] to provide
more insightful information about the how a software artifact is
developed. Of particular importance, Torres-Arias et al. [74] in-
troduced in-toto, which allows developers to embed certificates
of supply chain operations (e.g., build provenance). This design
has been widely adopted in industry settings such as Solarwind’s
Trebuchet [65], as well as Tekton Chains [25]. Other initiatives
have attempted to perform automated compliance over this infor-
mation. Of note, the Open Source Security Foundation’s standards
for Supply-chain Levels for Software Artifacts (SLSA) [24] require
granular provenance data, like in-toto attestations, and make trust
over an artifact contingent on the properties therein.

Other efforts in the space attempt to ensure the software-to-
binary mapping is deterministic, which allows third parties to assess
the quality of the software based on the properties of the corre-
sponding software. Of note, the reproducible-builds project [44, 64]
attempt to minimize the effects of host build systems in the output
of a build. Navarro Leija’s DetTrace [58] uses tracing mechanisms
to observe build processes, identify and remove sources of “diver-
gence”. This enables systems such as Trebuchet (mentioned above).

8.2 Public Key Infrastructure and Key
Management

Web PKI. The most commonly used PKI deployment is the sys-
tem used to authenticate and encrypt traffic during web browsing
and related communication, sometimes known as web PKI. In this
model, a trusted third party called a certificate authority (CA) issues
certificates attesting to the identity of the holder of a public key.
Typically, this identity is a domain name in the Domain Name Sys-
tem (DNS); this is the approach favored by Let’s Encrypt [1], a CA
that uses a protocol called ACME (see Section 8.4) to automatically
verify control of a domain. Let’s Encrypt is, in fact, one of the main
inspirations for Sigstore’s design as a solution to increase uptake in
package, repository and supply-chain signing. However, existing
ACME system supports software signatures with ephemeral keys,
as signatures are not timestamped.

The root of trust in web PKI is a set of certificates shipped with an
OS or browser, typically referred to as a CA bundle. A consortium
of CA and browser vendors, called the CA/Browser forum, estab-
lishes requirements and performs vetting for inclusion in standard
bundles. Lowering barriers for domain owners to obtain certificates
has enabled widespread adoption [1] including 94% of the Alexa top
1 million domains [38]. However, web PKI is a poor fit for artifact
signing. First, identities in web PKI correspond to domains, and
users without domains are unlikely to require web PKI certificates;
for artifact signing, many individuals do not own relevant domains,
and obtaining web PKI certificates represents a cost of both money
and effort. Further, encrypting and signing web traffic with these
certificates provides a straightforward guarantee: clients can trust
that they are sending traffic to the domain operator. There is no
such straightforward mapping for artifacts: a mirror might host
artifacts from many different maintainers, each with their own
identity, and domain identities do not help clients make a decision
about whether to trust the artifact. Finally, web PKI certificates are
time-bound: they expire after a fixed period of time (for instance,
Google’s certificates are valid for only three months). However,
software artifacts may go indefinitely without a release. Expiration
requires maintainers to periodically resign, with consequences for
security and availability in the case of lapsed signatures, lost keys,
or transfer of maintainership. Further, domain names are permitted
to transfer between users, and a new owner could sign malicious
artifacts associated with a domain (a resurrection attack).

Certificate transparency (CT). Trust in web PKI hinges on the
certificate authorities. In several high-profile instances, CAs have
issued improper certificates due to malice or failures in proce-
dure [16]. To manage the risk, Laurie et al. [46] propose certificate
transparency: publishing all issued certificates to an append-only
transparency log that can be publicly verified. Then, if clients reject
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certificates that are not in the log, bad actors can only use certifi-
cates available publicly, enabling detection of misbehaving CAs. In
other words, CAs can look for certificates they did not issue, and
domain owners can monitor for certificates they did not request.

Parties called monitors perform verification of these public logs.
The log servers publish short digests of the log, constructed using
Merkle trees [57], which allows end users to efficiently check that
entries are in the log, and monitors to check that new digests contain
all of the records from previous digests. Then, misbehavior by logs
can be detected; for instance, monitors caught a cosmic-ray bit
flip [5] in a log operated by DigiCert. Currently, monitors and log
operators use mailing lists to coordinate, but ideally monitors would
implement a full-fledged gossip protocol (see Meiklejohn et al. [54]
for one proposal).

Since its proposal, many web PKI participants have adopted
certificate transparency. A non-standards-track IETF document
(RFC9162 [47]) describes protocols for CT. In aggregate, deployed
CT logs contain 1.5B certificates for 100M domains [33]. Enough
CAs are posting all certificates to CT logs that Chrome has started
rejecting new certificates without corresponding entries and Safari
also requires CT log submission in some cases.

Web of trust. In contrast to web PKI, PGP supports a relatively
horizontal “web-of-trust” model. In such a model, users can endorse
each others’ keys as belonging to specific identities: for instance,
after Alice has verified Bob’s keys in person, if she sees Bob’s attes-
tation that a public key belongs to Charlie, Alice can trust this key.
However, in the dependency management setting, Alice may want
to use a package published by Dave even if Dave is a perfect stranger
and not connected to her “web.” This has shown some limitations
in handling package signing in major Linux distributions [12, 83]:
decentralized web-of-trust networks do not allow for canonical
ownership of packages in a namespace. Package manager adoption
of PGP tooling typically does not rely on web-of-trust and instead
places the responsibility for key management on repositories. This,
in turn, places complications in system integrators, as they are re-
quired to remove web-of-trust semantics from PGP-enabled signing
solutions using custom tooling.

The limited uptake of package signing and verification has seen
relatively low exploration. In the wild, the user experience difficul-
ties of using PGP and the tenuous security assumptions of PGP are
well documented [32, 45, 68, 82]. These PGP-specific critiques likely
account for a significant portion of the difficulties that package
signing has faced in gaining wide adoption. While a PGP package
signing user study has, to our knowledge, not been undertaken,
our anecdotal conversations with open source software developers
suggest four particularly important issues. First, the usability of
PGP tools is widely perceived as low. Second, package signing has,
like PGP, generally required the creation and storage of long-lived
private keys. Ensuring this key remains private places a demanding
responsibility on users and creates security risks when a private
key is lost. Third, determining the true public key associated with
a developer requires significant manual work and, unfortunately, is
far from fool-proof given that attackers can distribute fake keys [43].
Fourth, the security benefits of tying an identity to an artifact could
be perceived as uninformative without additional attestations re-
lated to the provenance and properties of the artifact [74]. In other

words, the exact meaning of a signature has been hard to ascertain
in most formulations of artifact signing. This should not be a sur-
prise, however, as the limitations of PGP for encryption have been
widely explored [68, 82]. Of note, in the past decade practical tools
for code signing (other than PGP) and conceptual alternatives to
PGP for artifact signing have emerged [18, 60].

Automatic enrollment and delegation mechanisms. Similar at-
tempts to provide automatic key-management and authentication
have been proposed. For example, Kumar et al. proposed JEDI [41]
to manage automatic issuance and validation of device identity on
dense smart-device deployments (e.g., a smart building). It uses
standard X.509 certificate issuance and transparency logs to enroll
devices, issue certificates in a distributed setting and communicate
key information efficiently. Similarly, CONIKS [55] is a robust key
transparency system that attempts to provide a “best of both worlds”
design between regular web-of-trust and web PKI approaches. In-
stead of using device-based identities, or self-generated identity
claims, Sigstore leverages common proof-of-identity protocols to
allow signers to show that they are who they claim to be.

8.3 Transparency for Software Artifacts
Several recent systems propose using transparency techniques for
software artifacts. Mozilla’s binary transparency [6], for Firefox
binaries, is designed but not implemented. This design inspired
f-droid [21] to make a third-party “transparency log” (a Git repos-
itory, which provides some of the same guarantees) for Google
releases of the Android SDK. Linderud [50] proposes a system sim-
ilar to Trebuchet that uses in-toto evidence in a transparency log
to verify build reproducibility. Nikitin et al.’s CHAINIAC [59] uses
a new structure called a skipchain and reproducible builds to en-
sure a source-to-binary mapping. pacman-bintrans [40], for Arch
Linux packages, uses Rekor internally. All of the above are in a
single-publisher setting, and don’t support community contribu-
tions. Further, none address the problem of linking identities to
keys or support ephemeral signing keys.

8.4 Identity Management
Like all computer security-related systems, Sigstore must also deal
with the notion of identity, by defining a computer’s representation
of a unique entity and binding that representation to an identity
internal to the computer [11, p. 211]. Identity has long been a staple
of computer security research [8, 19]. To tie a user’s identity to
corresponding cryptographic material, Sigstore could use any of
the building block technologies described below (though we limited
the initial implementation to OIDC).

Automatic Certificate Management Environment (ACME). Auto-
matic Certificate Management Environment (ACME) [7] is a suite of
“challenges” for proving ownership of a domain. These challenges
can be based on HTTP, DNS, or TLS, and are used by Let’s Encrypt
to automatically issue HTTPS certificates to hundreds of millions
of domains without user interaction [1]. As such ACME is perfectly
suited to prove the ownership of a particular live domain. However,
for other types of identities (e.g., a user account), ACME may not be
suitable. An extension to ACME [56] allows email-based challenges
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for issuing end-user S/MIME certificates; however, they are not
ephemeral, as there is no authority to timestamp signed artifacts.

OIDC. In contrast to ACME, OpenID Connect (OIDC) can per-
form identity mapping by an identity provider. That is, an individual
server can vouch for the fact that an individual controls an account
with the given “subject.” For example, a Facebook server can claim
to know who owns a particular email address (e.g., because they
engaged in email registration). By engaging in an OIDC proto-
col, a third party server (e.g., Sigstore/Fulcio) can confirm such
claims about a particular email address or GitHub username. To
our knowledge, no system uses OIDC identities for signing cer-
tificates. There is precedent for very short-lived SSH certificates
[69] based on OIDC, but these cannot be used for signing artifacts
unless they are long-lived or they have been timestamped by addi-
tional service. OIDC is a rather restrictive protocol, and it does not
allow for more generalizable identity claims. For example, web3
(i.e., blockchain-based) identity claims may not fully fit the model
originally designed for major web platforms.

DIDs. In contrast with OIDC, Decentralized Identifiers (DIDs) [70]
generalize the generation of identity claims by any provider. To
avoid these restrictions, it allows a loosely-federated protocol in
which identity providers can register their own semantics. As a
consequence, the aforementioned and otherwise hard-to-manage
providers may provide identity mappings by brokering information
on a blockchain to an identity claim transparently. While Sigstore
uses OIDC at this moment due to its widespread deployment (in-
cluding support by Microsoft, GitHub, Meta, Google, and Apple),
replacing OIDC with DIDs would be trivial.

9 DISCUSSION AND FUTUREWORK
Although Sigstore is a mature, production-ready system, there are
plenty of directions in which the ecosystem may grow. In this
section, we present alternative building blocks that Sigstore may
leverage, as well as future extensions to the system.

9.1 Privacy Concerns
A limitation of Sigstore as presented in this paper is privacy: an iden-
tity needs to be made public in order to sign for an artifact. Although
this expectation is standard in many popular package managers,
there is a realistic concern that a signer’s email will be published
in a tamper-evident log. As this may affect privacy conscious users,
it may affect adoption of Sigstore in privacy-sensitive communities.
In prior work, Eskandarian et al. [20] use zero-knowledge proofs
to protect the privacy of users submitting information to a trans-
parency log, and allow for logs to contain private entries for private
use. However, this solution does not support private entries for
public use, as is the case in the private package-signing setting. A
possible solution to tackle this challenge is the use of cryptographic
techniques to hide the identity of the signer, but convince verifiers
of the continuity of the identity. We note that simply using symmet-
ric signing keys achieves this, but gives privacy-conscious users
the burden of key management. Future work related to privacy
might also use pairwise pseudonymous identifiers, an OIDC fea-
ture that gives users a long-lived but pseudonymous identity for
Sigstore. Another construction, which we reserve for future work,

uses zero-knowledge proofs and authenticated data structures to
prove signature compliance with TUF-like delegations.

9.2 Beyond Package Managers
We presented Sigstore as a general-purpose artifact signing solu-
tion not exclusive to package manager. Sigstore can be used as-is
(without the ephemeral signing flow) in any setting that currently
uses symmetric package signatures to provide transparency (e.g.,
Arch Linux [40] or signing container images on DockerHub). Simi-
larly, any ecosystem that currently uses symmetric signatures can
adopt Sigstore to base those signatures on identities, rather than
keys which must be managed. Other possible target ecosystems can
be automated delegation mechanisms, similar to those presented
in JEDI [41], as well as logging automated process (e.g., APIs or
serverless pipelines).

10 CONCLUSIONS
This paper introduced Sigstore, a mechanism to provide a PKI-like
system that associates identity providers with short-lived crypto-
graphic material. Through this system, it is possible to create a
transparency log-backed signing repository with minimal friction
for integration, while maintaining reasonable security guarantees.
Much like Let’s Encrypt, Sigstore allows increased adoption for
package signing, using centralized-but-accountable (using trans-
parency) infrastructure, as in web PKI, to reduce the risk and burden
of key management for users. While Sigstore already boasts wide
adoption among community repositories, further enhancements
(e.g., integration with Distributed Identifiers) remain an open ques-
tion for future work.
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