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ABSTRACT
Secret-dependent timing behavior in cryptographic implementa-
tions has resulted in exploitable vulnerabilities, undermining their
security. Over the years, numerous tools to automatically detect
timing leakage or even to prove their absence have been proposed.
However, a recent study at IEEE S&P 2022 showed that, while many
developers are aware of one or more analysis tools, they have ma-
jor difficulties integrating these into their workflow, as existing
tools are tedious to use and mapping discovered leakages to their
originating code segments requires expert knowledge. In addition,
existing tools focus on compiled languages like C, or analyze bi-
naries, while the industry and open-source community moved to
interpreted languages, most notably JavaScript.

In this work, we introduce Microwalk-CI, a novel side-channel
analysis framework for easy integration into a JavaScript devel-
opment workflow. First, we extend existing dynamic approaches
with a new analysis algorithm, that allows efficient localization and
quantification of leakages, making it suitable for use in practical
development. We then present a technique for generating execution
traces from JavaScript applications, which can be further analyzed
with our and other algorithms originally designed for binary analy-
sis. Finally, we discuss how Microwalk-CI can be integrated into
a continuous integration (CI) pipeline for efficient and ongoing
monitoring. We evaluate our analysis framework by conducting a
thorough evaluation of several popular JavaScript cryptographic
libraries, and uncover a number of critical leakages.

1 INTRODUCTION
Collection of sensitive data is common in today’s cloud and Inter-
net of Things (IoT) environments, and affects everyone. Protecting
this private and sensitive data is of utmost importance, therefore
requiring secure cryptography routines and secrets. However, espe-
cially the cloud allows attackers to observe the execution of victim
code using side-channels in co-located environments [26]. These
attacks range from Last Level Cache (LLC) [35] and de-duplication
attacks [34] to the observation of memory access patterns [64] or
main memory access contention [44]. The spatial resolution de-
pends on the granularity of the attacked buffer and the temporal
resolution on the capabilities of the attacker, meaning either the
ability to achieve a sufficiently high measurement frequency [65]
or to interrupt and pause the victim code [14, 64].

To avoid side-channel vulnerabilities, programmers should write
constant-time code, i.e., software which does not contain input
or secret-dependent control flow or memory accesses. Depending
on the problem at hand, this can be achieved by different means:
For example, a secret-dependent data access may be replaced by
accessing every element of the target array and then choosing the
correct one with a mask. Conditionals can be adjusted by always
executing both branches and then selecting the result.

However, for complex projects like large cryptographic libraries,
finding such vulnerabilities is a difficult and time-intensive task.
Thus, the research community has developed a number of analysis
strategies [5, 13, 16, 17, 33, 46, 60, 62, 63], that aim at automating
the detection of side-channel leakages in a given code base. How-
ever, a recent study [29] that conducted a survey between crypto
library developers found that while most developers were aware
of and welcome those tools, they had major difficulties using them
due to bad usability, lack of availability and maintenance or high
resource consumption. The authors worked out a number of rec-
ommendations for creators of analysis tools: The tools should be
well-documented and easily usable, such that adoption requires low
effort from the developer. Another focus is on compatibility: The
analysis shouldn’t require use of special languages or language sub-
sets. Finally, the tools should aid efficient development, i.e., quickly
yield results with less focus on completeness, making them suitable
for inclusion in a continuous integration (CI) workflow.

In this work, we study how these challenges can be addressed,
and adapt the existing Microwalk [63] framework to fit the given
objectives. Microwalk was originally designed for finding leakages
in binary software, for which it generates a number of execution
traces for a set of random inputs and then compares them. The
dynamic analysis approach of Microwalk is quite fast, as it does
only run the target program several times, and then compares the
resulting execution traces with a simple linear algorithm. However,
due to the simplistic leakage quantification, the resulting analysis
reports contain a lot of potential vulnerabilities, with little or even
misleading information about their cause. This makes it difficult
to assess their severity and address them efficiently, especially for
complex libraries. Finally, the initial setup can be time-consuming,
as the different components need to be compiled from source.
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We mitigate these issues by designing Microwalk-CI , which fea-
tures a new leakage analysis algorithm that combines the perfor-
mance benefits of dynamic analysis with an accurate leakage local-
ization and quantification, easing the assessment and investigation
of the reported leakages. In addition, we add support for running
Microwalk-CI in an automated environment like a CI pipeline, and
create a Docker image that contains Microwalk-CI and its depen-
dencies for easy use. Finally, we create simple templates that allow
quick adoption of Microwalk-CI ’s analysis capabilities into a cryp-
tographic library’s CI workflow with little effort by the developer.

During the research on leakage detection tools, as part of their
evaluation, many vulnerabilities in popular cryptographic libraries
have been uncovered and fixed. However, the developer commu-
nity is moving away from compiled languages like C or C++ and
instead embraces interpreted scripting languages like JavaScript
or Python. In fact, the 2021 Stack Overflow developer survey and
the January 2021 Redmonk programming language ranking found
that those two languages are the most popular, both for private and
professional contexts [45, 56]. JavaScript was originally designed
as a client-side language for web browsers, but, with the arrival of
Node.js [40], it has seen growing adoption for server-side software
as well. Consequently, the community has come up with a number
of cryptographic libraries written in pure JavaScript. However, due
to the lack of appropriate tooling and attention of the research com-
munity, these libraries have never been vetted for their robustness
against side-channel attacks, which is worrying given the fact that
the servers using them may be hosted in IaaS cloud environments.

To address this, Microwalk-CI offers a novel method for apply-
ing Microwalk’s original binary analysis algorithms to JavaScript
libraries by using the Jalangi2 [48, 55] source code instrumentation
library to generate compatible traces. The new tracing backend
comes with a simple code template and supports full automation,
such that the analysis can be easily added to the CI workflows of
respective libraries. We evaluate several popular JavaScript crypto-
graphic libraries, uncovering a number of high-severity leakages.

By supporting the analysis of JavaScript, we strive to improve
the security of software and rise awareness for the importance of
constant-time cryptographic code in the community of web and
cloud developers. The underlying concepts of our source-based
trace generator can be used for building analysis support for other
programming languages as well, making side-channel leakage anal-
ysis available for all common platforms and at a low barrier.

1.1 Our Contribution
In summary, we make the following contributions:

• We introduce a novel call tree-based analysis method, which
allows efficient and accurate localization and quantification
of leakages.

• We show the first dynamic leakage analysis tool for JavaScript
libraries.

• Wepropose a new approach for integrating a fully automated
timing leakage analysis into the crypto library development
workflow, which requires low effort from the developer and
immediately reports newly introduced vulnerabilities.

• We evaluate the new analysis frameworkwith several widely-
used JavaScript libraries and uncover a significant number
of previously unaddressed leakages.

The source code of Microwalk-CI is available at https://github.
com/microwalk-project/Microwalk.

1.2 Disclosure
We contacted the authors of the affected libraries, informed them
about our findings and offered to aid in fixing the vulnerabilities.

The author of elliptic acknowledged the discovered vulner-
abilities, but noted that the package is no longer maintained and
that fixing the vulnerabilities would require major changes, as
side-channel resistance wasn’t part of the underlying design con-
siderations. There was no response from the other library authors.

2 BACKGROUND
2.1 Microarchitectural Timing Attacks
Implementations of cryptographic algorithms are often run on
hardware resources that are shared between different processes. If
the code exhibits secret-dependent behavior, malicious processes
can use the resulting information leakage to extract secrets like
private keys through side-channel analysis. Cache attacks are a
prominent example for exploiting resource contention with a victim
process: By measuring the time it takes for repeatedly clearing and
accessing a specific cache entry, the attacker can see whether the
victim accessed a similar cache entry in the meantime [1, 10, 42, 53,
65]. Other attack vectors include the translation lookaside buffer
(TLB) [22] and the branch prediction unit [2].

The most widely used software countermeasure against these
attacks is writing constant-time code that does not contain secret-
dependent memory accesses or branches, and that uses instruc-
tions that do not come along with operand-dependent runtime [12].
There exists a variety of tools [5, 13, 16, 17, 33, 46, 60, 62, 63], that
feature different analysis approaches. Some of these tools are open-
source, with varying performance and usability [29].

2.2 Microwalk
Microwalk [63] is a framework for checking the constant-time prop-
erties of software binaries in an automated fashion. It follows a
dynamic analysis approach, i.e., it executes the target program with
a number of random inputs and collects execution traces, which
contain branch targets, memory allocations and memory accesses.
This is done through a three-stage pipeline, where traces are gener-
ated, preprocessed, and analyzed. Each stage has various modules,
which are chosen by the user depending on their application. Fur-
thermore, Microwalk has a plugin architecture, that allows easy
extension by loading custom modules.

Currently, Microwalk only has one trace generation module,
which is based on Intel Pin [27] and produces traces for binary
software. Correspondingly, there is a preprocessor module that
converts the raw traces generated by Pin into Microwalk’s own
format. Finally, these preprocessed traces can be fed into a number
of analysis modules, e.g., for computing the mutual information
between memory access patterns and inputs, or for dumping the
preprocessed traces in a human-readable format.
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2.3 Mutual Information and Guessing Entropy
Mutual information (MI) quantifies the interdependence of two
random variables, i.e., it models how much information an attacker
can learn about one variable on average by observing the other
one [23]. It has been widely used for quantifying side-channel
leakages [9, 28, 63, 67].

The mutual information of the random variables 𝑋 : 𝐾 → X and
𝑌 : 𝐿 → Y is defined as

𝐼 (𝑋,𝑌 ) =
∑︁
𝑥 ∈X
𝑦∈Y

Pr[𝑋 = 𝑥,𝑌 = 𝑦] · log2
(

Pr[𝑋 = 𝑥,𝑌 = 𝑦]
Pr[𝑋 = 𝑥] · Pr[𝑌 = 𝑦]

)
.

The information is measured in bits. In our setting, the random
variable 𝑋 represents a secret and 𝑌 the information that can be
gathered by observing the system state through a side-channel.

The guessing entropy (GE) of a random variable 𝑋 : 𝐾 → X
quantifies the average number of guesses that have to be made in
order to guess the value of 𝑋 correctly [32]. If X is indexed such
that Pr[𝑋 = 𝑥𝑖 ] ≥ Pr[𝑋 = 𝑥 𝑗 ] for 𝑥𝑖 , 𝑥 𝑗 ∈ X and 𝑖 ≤ 𝑗 , the guessing
entropy is defined as

𝐺 (𝑋 ) =
∑︁

1≤𝑖≤ |X |
𝑖 · Pr[𝑋 = 𝑥𝑖 ] .

The conditional guessing entropy (conditional GE) 𝐺 (𝑋 |𝑌 ) for ran-
dom variables 𝑋 and 𝑌 is defined as

𝐺 (𝑋 |𝑌 ) =
∑︁
𝑦∈Y

Pr[𝑌 = 𝑦] ·𝐺 (𝑋 |𝑌 = 𝑦) .

𝐺 (𝑋 |𝑌 ) measures the expected number of guesses that are needed
to determine the value of 𝑋 for a known value of 𝑌 .

A variant of the conditional GE, theminimal conditional guessing
entropy (minimal GE), determines the lower bound of expected
guesses. It is defined as

𝐺 (𝑋 |𝑌 ) = min
𝑦∈Y

𝐺 (𝑋 |𝑌 = 𝑦),

i.e., it outputs the minimal number of guesses that are needed to
find out one of the possible values of 𝑋 .

2.4 JavaScript Instrumentation
JavaScript code can be instrumented in different ways, each coming
with their own benefits and drawbacks.

FoxHound [49] modifies Firefox’s JavaScript engine. While this
allows many optimizations, it comes with the downside of being
constrained to one specific JavaScript engine and requiring constant
maintenance to keep up with the upstream project. OpenTeleme-
try [41] and Google’s tracing framework [21] create program traces
to monitor and profile software, but require the developer to insert
instrumentation calls into their source code manually. While being
very specific and thus only introducing the necessary overhead,
they are not generally applicable without a lot of manual effort.

Lastly, the JavaScript code can be dynamically instrumented in
a source-to-source fashion. Jalangi2 [48, 52, 55] wraps the loading
process of JavaScript files and injects instrumentation code into the
source code. The user of the instrumentation framework can write
and register custom callback routines, which are supplied with
the current execution state. This approach comes with a certain

overhead, but it is flexible and works with arbitrary JavaScript code
without manual adjustments.

3 A FAST LEAKAGE ANALYSIS ALGORITHM
We propose a new leakage analysis algorithm that is optimized for
quickly delivering detailed leakage information, aiding developers
in efficiently locating and fixing issues. Before we dive into the
algorithm, we define the leakage model and discuss the objectives
a thorough leakage analysis must meet. Then, we describe how
the traces are processed to build a call tree, which in a final step is
broken down to compute leakage metrics for specific instructions.

3.1 Leakage Model
To ensure that we detect all leakages which may be exploited by cur-
rent and future attack methods, we choose a strong leakage model:
An attacker tries to extract secret inputs from an implementation
through a side-channel attack, which allows them to get a trace of
all executed instructions and all accessed memory addresses. They
also have access to all public inputs and outputs.

Under certain conditions, a hypervisor/OS-level adversary can
single step instructions [4, 38, 54], or have below cache-line resolu-
tion [37, 66]. However, for more relaxed adversarial scenarios like
cross-VM attacks, granularities of 32 or 64 bytes and hundreds of in-
structions may be more appropriate. Adjusting the processing of the
leakage accordingly allows an analysis under such a leakage model
as well, but, we believe that the most conservative approach should
be applied, i.e., assuming a maximum resolution attacker. Attacks
exploiting speculative execution are considered off-scope, as we
focus on leakages caused by actual secret-dependent control flow or
memory accesses, i.e., code paths that are reached architecturally.

This leakage model and the following analysis approach are
consistent with the models used by Microwalk [63] and DATA [62].

3.1.1 Analysis approach. The leakage model can be turned into a
dynamic analysis approach by making the following observation:
Since the attacker tries to infer a secret solely by looking at an
execution trace and public inputs/outputs, they can only succeed
if the trace depends on the secret. I.e., if changing the secret does
never influence the observed trace, the implementation does not
leak the secret and is constant-time.

We model this by giving the attacker a number of secret inputs
and corresponding execution traces, and asking them to map the
inputs to the respective traces. If they perform better than guessing,
we consider the implementation as leaking. If all traces are identical,
the implementation is considered constant-time.

3.2 Objectives
For an efficient and useful dynamic leakage analysis, we identi-
fied three major objectives: Accurate localization of leakages, a
quantification of leakage severity, and performance.

Localization. While varying address traces for a memory read
instruction are a clear sign that there is leakage, which can be
extracted by monitoring that particular instruction [63], they do not
indicate where the leakage is actually caused. E.g., a non-constant-
time functionmay be called two times, oncewith a secret-dependent
parameter, and once a varying number of times in a loop, but with a
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1 int func(int secret) { // func+0

2 lookup(secret ); // func+1

3
4 int result = 0;

5 for(int i = 0; i < secret; ++i) { // func+4

6 result += lookup (1); // func+5

7 } // func+6

8 return result; // func+7

9 }

10 int table[] { ... };

11 int lookup(int index) { // lookup +0

12 return table[index]; // lookup +1

13 }

Figure 1: A sample program illustrating different kinds of
leakages: The lookup function is not constant-time, since it
does an input-based array lookup, so the memory access to
table[index] would be marked as leaking if index is secret.
Another cause of leakage is in func, which calls lookup a
varying number of times depending on a secret value.

constant parameter (Figure 1). A correct analysis should distinguish
the two invocations of lookup and mark the table access in line 12
as leaking for the first invocation (line 2); for the second invocation
(line 6), the secret-dependent branch in line 5 should be reported,
as the table access in line 12 itself does not add any leakage.

Quantification. In addition to an accurate localization, there is
a need for a rough quantification of the severity of leakages. For
example, a chain of nested if statements may only leak a few
bits of the secret each, but the leakage aggregates up to a point
which allows an attacker to easily distinguish different secrets
just by looking at the resulting sequence of branch instructions.
At the same time, a lone if statement which merely handles a
special case during key file parsing (e.g., whether a parameter has
some additional byte) does not necessarily pose an urgent problem.
The analysis should assign each leakage with a score allowing the
developer to prioritize between findings.

Performance. Finally, for integrating the leakage analysis into a
development workflow, performance is important: When checking
whether a proposed change impacts security, or whether a given
patch fixes a previously discovered leakage, the developer should
not need to wait several ten minutes or hours until analysis results
are available. The analysis should be efficient enough to run it both
on a standard developer machine and in a hosted CI environment.

3.3 Algorithm Idea
In order to find leakages, we need to compare the generated traces,
and find sections where they diverge and, later, merge again. How-
ever, due to the performance requirements and the immense size
of traces, especially for asymmetric primitives, we cannot afford
running a traditional diff or trace alignment algorithm, which usu-
ally have quadratic complexity. At the same time, we do not want
to lose information, as we want to accurately pinpoint the detected
leakages. Thus, we opt for a data structure that preserves all neces-
sary information in an efficient way, and which allows to conduct
a thorough leakage analysis which can discover and quantify trace
divergences in linear time.

For that, we merge the traces into a call tree, where each func-
tion call and a few other trace entries form the nodes, and where
subsequent function calls and trace divergences generate branches.
Each node holds the IDs of the traces which reach that node. The
tree can be built on-the-fly while the traces are processed, so it can
be integrated into a leakage analysis pipeline like the one offered
by Microwalk. After the traces have been processed, a final step tra-
verses the tree and evaluates for each instruction in each call stack,
whether it caused a divergence and how severe that divergence is.
In the following sections, we elaborate on the respective steps.

3.4 Step 1: Building the Call Tree
We merge the traces into a tree in a greedy way, i.e., we simulta-
neously iterate over a trace and the current tree entries, and add
the trace entries to the tree. In order to save memory and get a
readable representation of the traces with little tree depth, we can
exploit the fact that traces of constant-time implementations tend
to have long shared sequences without any differences, and thus
use a radix trie instead of a plain tree, such that each node holds an
as long as possible sequence of consecutive trace entries.

The resulting tree for the example code in Figure 1 is illustrated
in Figure 8 in Appendix A.

3.4.1 Types of trace entries. In order to address the leakage model,
the execution traces used by Microwalk contain information about
branches, memory allocations and memory accesses.

Branches cover call, return and jump instructions. A branch trace
entry has a source address, a target address and a taken bit that
denotes whether the branch was taken or skipped (e.g., due to a
failed comparison). The source and target addresses consist each
of an image ID (i.e., the binary which contains the corresponding
instruction) and an offset.

Memory allocations are used to keep track of memory blocks on
the heap and stack. Each time the analyzed program calls malloc
or a similar function, a new allocation block is registered with a
unique ID and the allocation block size.

Memory accesses contain the image ID and offset of the corre-
sponding instruction and the allocation block ID and offset of the
accessed address. This relative addressing allows to compare traces
even when they each operate on their own allocated memory re-
gions, which have different absolute addresses.

3.4.2 Tree layout. As mentioned above, we chose a radix trie-like
representation of the merged trace entries, as this reduces tree
depth, speeds up analysis and enhances readability of tree dumps.

A tree node consists of two parts: The consecutive trace entries
which are present for all traces hitting this node, and a list of (edges
to) split nodes (Figure 2), which represent divergences between the
different traces. The trace entry list may contain call nodes (Figure 3)
which open their own sub tree, but always return back into the
current node and may be followed by other trace entries.

Edges start from within the trace entry list (for calls) or from the
split node list. If an edge leads to a split node, it is annotated with
the trace IDs taking this specific edge.

3.4.3 Inserting trace entries into the tree. The handling of equal
and conflicting trace entries depends on the respective type. Split
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<...trace entries...>

... node
Trace entries

Splits

jump A -> B

split node
Trace entries

Splits

<...trace entries...>

jump A -> C

split node
Trace entries

Splits

<...trace entries...>

1, 3

2, 4

1, 2, 3, 4

Figure 2: A generic trace divergence with two split nodes.
While traces 1 to 4 share the entries in the left node, they dif-
fer at the jump statement at location A: Traces 1 and 3 jump
to location B, while traces 2 and 4 jump to C. Here, each case
gets its own split node, and processing of trace entries is re-
sumed there.

<...trace entries...>

<...trace entries...>

call A -> B

... node
Trace entries

Splits

<...trace entries...>

call node
Trace entries

Splits

return C -> D

Figure 3: A generic function call with a call node. When a
function call entry is encountered, a new call node is cre-
ated, that subsequently receives the trace entries for the
given function. Once the function ends (return statement),
the trace entry list of the prior call node is continued. Note
that the return statement may also end up in the split node
tree of the call node, if there are trace divergences within
the function.

nodes are only created when a function call or a jump targets a
different instruction than the already existing trace entry, as the
resulting sub tree may be fairly different. Other differences like
varying memory access offsets are only recorded in the respective
trace entry, as they don’t affect control flow and the current entry
is thus likely followed by other, non-conflicting entries.

A function call is handled by creating a new tree node at the
current position in the list of consecutive trace entries of the current
tree node. Afterwards, the current node is pushed onto a stack and
the new call node is set as the current node, such that subsequent
trace entries are stored in the new node. When encountering a
return statement, the last node is popped from the stack, and inser-
tion of trace entries is resumed after the earlier created call node.
If the target address of the current call entry does not match the
target address recorded in an existing call node, a split is triggered.

If a conflict between an existing and a new trace entry is detected,
the algorithm generates two new split nodes: One node receives

void f1(int secret) { f2(secret ); } // f1+0

void f2(int secret) { f3(secret ); } // f2+0

void f3(int secret) { // f3+0

int tmp = 0;

for(int i = 0; i < 2; ++i) { // f3+2

if(secret & (1 << i)) { // f3+3

++tmp;

}

} // f3+6

}

(a) Program

Call stack:

main+X -> f1+0

f1+0 -> f2+0

f2+0 -> f3+0

Instructions:

jump at f3+2

jump at f3+3

jump at f3+6

(b) Call stack and
instruction info

0,1,2,3,4,5

20,4 31,5

1,3,50,2,4

(c) Trace ID tree for jump at f3+3

Figure 4: Example for call stack and trace ID generation. The
program in (a) counts the number of 1s in the two least-
significant bits of a secret variable by repeatedly executing a
secret-dependent if statement. When calling f1 from main
with secret values from 0 (trace ID 0) to 5 (trace ID 5), we
get the call stack as shown in (b), with three detected jump
instructions. The secret-dependent jump at f3+3 leads to di-
vergence of traces, as is visible in the resulting trace ID tree
in (c). Traces sharing a tree node at tree level ℎ ≥ 0 are iden-
tical for at least ℎ consecutive executions of the instruction.

the original conflicting trace entry, the remaining consecutive trace
entries and the split node list of the current node; the other node
is initialized with the new conflicting trace entry and an empty
split node list. The branches to both nodes are annotated with the
corresponding trace IDs. The current node is then set to the new
split node, such that the new trace entries end up in the new node.
The call node stack is not updated, i.e., the next return statement
ends the divergence and restores the state before the last call node.
This way, we can recover from a trace divergence and discover
additional leakages in other function calls.

Cases where there are more than two possible targets for an
instruction (e.g., an indirect jump) are handled appropriately, by
generating further split nodes at the same level.

3.5 Step 2: Leakage Analysis
After trace processing has concluded, we have a call tree that en-
codes the similarities and differences of all traces. We now perform
a final step that collects this information and computes leakage
measures, such that we can assign leakage information to each
instruction, meeting our localization and quantification objectives.

3.5.1 Building call stacks with trace ID trees per instruction. First,
we consolidate the call tree into a number of call stacks, and store
the trace split information for each instruction in the corresponding
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call stack. The split information consists of trace ID trees, which en-
code how multiple executions of the given instruction for a certain
function invocation led to trace divergence. This greatly simplifies
the computation of leakage measures for individual instructions,
and allows to display expressive information about the leakage
behavior of a given instruction to the developer. If a function is
called multiple times (i.e., the same call stack occurs repeatedly),
additional trace ID trees are created (no merging).

When a split is encountered, new child nodes for each edge of the
split are added to the trace ID tree for the responsible instruction.
Figure 4 illustrates the resulting trace ID tree for a simple program
counting bits in a secret variable: When the jump instruction in
question is encountered first, all traces are identical (tree level 0). At
that point, execution diverges for traces with an even versus an odd
secret. After the second iteration, traces are again split depending
on the second bit of the secret. In the end, there are four different
possible traces for the given function call.

3.5.2 Computing leakage measures. After recording the divergence
behavior of instructions per call stack, we can compute various
measures to quantify the corresponding leakage. We feature three
efficiently computable metrics that give the developer an indica-
tion of the severity of each detected leakage: Mutual information,
conditional guessing entropy and minimal conditional guessing
entropy. If the function containing the analyzed instruction is in-
voked multiple times for the same call stack and thus produces
multiple trace ID trees, the algorithm computes the metrics for
each tree separately and outputs the mean, minimum, maximum,
and standard deviation for each metric.

All metrics depend on the size of leaves in the trace ID tree. For
𝑛 traces, let 𝑇 = {0, 1, . . . , 𝑛 − 1} be the set of trace IDs. The set of
leaves 𝐿 for a given trace ID tree is then defined as 𝐿 = {𝐿𝑖 | 𝐿𝑖 ⊆
𝑇 ∧ 𝐿𝑖 ≠ ∅} with 𝐿1 ∪ 𝐿2 ∪ . . . ∪ 𝐿ℓ = 𝑇 and 𝐿𝑖 ∩ 𝐿𝑗 = ∅ for
𝐿𝑖 , 𝐿𝑗 ∈ 𝑇 and 𝑖 ≠ 𝑗 . This can be read as the tree having ℓ leaves 𝐿𝑖
(𝑖 = 1, . . . , ℓ), where each 𝐿𝑖 holds the trace IDs ending up in this
particular leaf. Those traces are considered identical.

Let 𝑋 : 𝑇 → N be a random variable for picking a trace ID. The
trace IDs are uniformly distributed, hence Pr[𝑋 = 𝑘] = 1

𝑛 for each
𝑘 = 1, . . . , 𝑛. Let 𝑌 : 𝐿 → N be a random variable for observing a
particular trace, with Pr[𝑌 = 𝑖] = |𝐿𝑖 |

|𝑇 | =
|𝐿𝑖 |
𝑛 for 𝑖 = 1, . . . , ℓ .

Mutual informationmeasures the average amount of information
an attacker learns when observing a trace.

The MI of the trace ID 𝑋 and the observed trace 𝑌 is defined as

𝐼 (𝑋,𝑌 ) =
|𝑇 |∑︁
𝑘=1

|𝐿 |∑︁
𝑖=1

Pr[𝑋 = 𝑘,𝑌 = 𝑖] · log2
(

Pr[𝑋 = 𝑘,𝑌 = 𝑖]
Pr[𝑋 = 𝑘] · Pr[𝑌 = 𝑖]

)
.

With

Pr[𝑋 = 𝑘,𝑌 = 𝑖] =
{
0 if 𝑘 ∉ 𝐿𝑖
1
𝑛 if 𝑘 ∈ 𝐿𝑖

we get

𝐼 (𝑋,𝑌 ) =
|𝐿 |∑︁
𝑖=1

|𝐿𝑖 |
𝑛

· log2

( 1
𝑛

1
𝑛 · |𝐿𝑖 |

𝑛

)
=

1
𝑛

ℓ∑︁
𝑖=1

|𝐿𝑖 | · log2
(
𝑛

|𝐿𝑖 |

)
.

The value of 𝐼 (𝑋,𝑌 ) can be interpreted as bits: In the best case,
there is only one leaf containing all trace IDs, such that the attacker

learns nothing (0 bits). In the worst case, with one leaf for each
trace ID, the attacker learns log2 (𝑛) bits. The MI of the example in
Figure 4 is 1

6
(
2 · 2 · log2 (3) + 2 · 1 · log2 (6)

)
≈ 1.33 bits.

This metric has a few drawbacks: Due to its logarithmic nature,
with an increasing number of traces it only grows slowly. Another
shortcoming is the averaging, i.e., a high leakage in a few cases may
get suppressed by the smaller leakage of all other cases. Finally,
it may be mistakenly interpreted as additive due to its “bits” unit
(i.e., 10 instructions leaking 3 bits each does not mean that there is
a leakage of 30 bits). However, it does perform well for small and
balanced leakages, e.g., when an instruction constantly divides the
traces into two groups of similar size.

Conditional guessing entropy measures the expected number
of guesses an attacker needs for associating a given trace with a
secret input. The conditional GE 𝐺 (𝑋 |𝑌 ) for determining a trace
ID, modeled as random variable𝑋 , for a known value of an observed
trace (random variable 𝑌 ) is calculated as

𝐺 (𝑋 |𝑌 ) =
|𝐿 |∑︁
𝑖=1

Pr[𝑌 = 𝑖] ·𝐺 (𝑋 |𝑌 = 𝑖)

=

|𝐿 |∑︁
𝑖=1

Pr[𝑌 = 𝑖] ·
|𝑇 |∑︁
𝑘=1

𝑘 · Pr[𝑋 = 𝑘 |𝑌 = 𝑖] . (1)

Since

Pr[𝑋 = 𝑘 |𝑌 = 𝑖] =
{

0 if 𝑘 ∉ 𝐿𝑖
1
|𝐿𝑖 | if 𝑘 ∈ 𝐿𝑖 ,

we can simplify (1) to

𝐺 (𝑋 |𝑌 ) =
ℓ∑︁

𝑖=1
Pr[𝑌 = 𝑖] · 1

|𝐿𝑖 |

|𝐿𝑖 |∑︁
𝑘=1

𝑘 =
1
2𝑛

ℓ∑︁
𝑖=1

|𝐿𝑖 | · ( |𝐿𝑖 | + 1).

Note that the value of 𝐺 (𝑋 |𝑌 ) is upper-bounded by 𝑛+1
2 , which is

the best case where there is only one leaf which contains all trace
IDs, i.e., all traces are identical. For the example in Figure 4, we get
𝐺 (𝑋 |𝑌 ) = 1

2·6 (6 + 2 + 6 + 2) ≈ 1.33 guesses.
Small values for the conditional GE convey that an instruction

sequence leads to almost unique traces, implying that there is wide-
spread leakage affecting most to all traces. On the other side, a high
value means that most traces are similar and do not leak much
information. However, this being an average measure just like MI,
there may well be special cases where there is a very high leakage.
Those risk being obscured by this metric, thus we add an additional
worst-case metric designed for catching these cases.

Minimal conditional guessing entropy measures the minimal
number of guesses an attacker needs for associating a given trace
with a secret input. It is calculated similarly to the conditional
GE, but takes the minimum of all individual outcomes instead of
weighting them:

𝐺 (𝑋 |𝑌 ) = min
𝑖=1,..., |𝐿 |

𝐺 (𝑋 |𝑌 = 𝑖) = min
𝑖=1,...,ℓ

|𝐿𝑖 | + 1
2

.

For the example in Figure 4, we get𝐺 (𝑋 |𝑌 ) = min{1.5, 1, 1.5, 1} = 1
guesses, i.e., there is at least one trace that is unique.

Minimal GE is the most definite leakage measure; it gives the
number of guesses needed for the trace which leaks most. A high
value for the minimal GE affirms that there is no outlier with high

6



Microwalk-CI: Practical Side-Channel Analysis for JavaScript Applications , ,

leakage. We thus recommend using this metric when evaluating
the severity of a detected leakage.

3.5.3 Leakage severity and score. While the full analysis report
provides detailed information about each leakage, we also seek
to condense this information into a single, uniform score, such
that the developer can quickly prioritize. That score should require
little context: The developer should not need to be familiar with
entropy, nor know analysis details like the particular number of test
cases, which determines the upper bounds for the various metrics.
Additionally, providing a single score allows easy integration of
the leakage report into the user interface of modern development
platforms like GitLab. The platform can then use that score for
sorting and assigning a severity to the leakage.

We chose minimal GE for computing the leakage score, as it
represents the worst-case leakage. Instead of reporting the minimal
GE value directly, we map it onto a linear scale of 0 to 100, where
0 corresponds to a minimal GE of 𝑛+1

2 (i.e., no leakage), and 100
corresponds to a minimal GE of 1 (i.e., maximum leakage). If there
are multiple trace ID trees for a given instruction (see Section 3.5.1),
we show the mean and the standard deviation over the individual
minimal GE values.

3.6 Implementation
We implemented the described algorithm as a new analysis module
inMicrowalk-CI ’s source tree. It integrates directly into the leakage
analysis pipeline, i.e., it receives and handles preprocessed traces
from the previous pipeline stage, the trace preprocessor. The tree is
implemented as a recursive data structure, where each node holds
a list of successor and split nodes. We do not store the consecutive
non-diverging trace entries as a plain ITraceEntry list (as is sug-
gested in the algorithm description), but as full-featured tree nodes
as well. Apart from making the code more readable, this simplifies
adding new divergences and storing temporary data for the final
leakage analysis step, at the cost of additional memory overhead
(we discuss this trade-off in Section 6.2).

Our implementation offers functionality for generating leakage
reports and other detailed analysis result files optimized for read-
ability, including an optional full call tree dump for debugging
purposes. All features can be controlled via the Microwalk-CI con-
figuration file infrastructure, allowing easy adoption of the new
analysis module. In total, the module has 1,363 lines of C# code.

4 JAVASCRIPT LEAKAGE ANALYSIS
We now show how we can apply Microwalk-CI ’s generic analysis
methods to JavaScript libraries, despite them being originally de-
signed for binary analysis. First, we present a simple trace generator
relying on the Jalangi2 instrumentation framework. Then, we show
how these traces can be preprocessed such that they use the generic
trace format from Microwalk-CI .

4.1 Instrumenting JavaScript code
Microwalk-CI expects multiple execution traces with varying secret
input for the analyzed target function. These execution traces are
then fed into various analysis modules for finding non-constant-
time behavior, i.e. control flow or data flow-dependencies from
secret input. A trace needs to contain the following information:

• Address and size of all loaded programmodules (e.g., binaries
or source files, called “images” internally);

• the control-flow of the analyzed program, encoded as a se-
quence of branch source and target addresses;

• address and size of all heap memory objects; and
• the instructions and target addresses of all memory accesses.

We translate this to JavaScript by collecting a trace of all executed
code lines, and recording access offsets to any object or array. For
instrumentation, we use Jalangi2 [48]. Jalangi2 instruments the
code at load time by inserting callbacks before and after certain
source tokens, e.g., conditionals, expressions or return statements.

First, we register the provided SMemory analysis module, which
assigns a shadow object to each object, that contains a unique ID
and the object value, allowing us to map accesses to known objects.
We then create an own analysis front-end, called tracer, which
registers some callbacks to record the necessary information and
write it to a file for further processing. The tracer has 252 lines of
code, and is chained after the SMemory analysis, which supplies
the means for memory access tracking.

4.2 Trace File Structure
Figure 5 illustrates the structure of the trace files for a simple toy
example. The example has an input-dependent branch in line 10
and a secret-dependent memory access in line 11, which should be
detected by our analysis toolchain.

Each trace is structured as follows: The first element defines the
type of the trace event, e.g. Call or Expr (for Expression). This is
followed by the exact source location of the event, meaning the
script file name with start/end line and column number. For a Call,
the first location describing the source of the call is followed by a
second location describing the target, which in turn is followed by
the name of the called function. Expr entries log the locations of
all executed expressions; this information is only needed for recon-
structing control flow edges. Similarly, Ret1 records the occurrence
of a return-statement, which must be tracked due to not being
covered by an expression. Ret2 is generated after a function has
returned, and records the entire ranges of the function call and
the executed function; however, the associated callback does not
know where the control flow originated from, thus the necessity of
tracking expressions and return statements. The same is true for
Cond entries, which mark the execution of a conditional and thus
the begin of a control-flow edge.

To illustrate this, Figure 5b shows the case of a taken else-branch
with the assignment ret = 0 in line 14 of the trace. If we compare
this trace to the Figures 5c and 5d, which both show a taken if-
branch, it becomes apparent that the control-flow deviation only
shows up due to the differences in lines 14 and 15; everything
else is identical. Thus, only tracking all expressions and read/write
operations allows us to reconstruct the entire control flow.

Comparing line 14 of Figures 5c and 5d demonstrates how the
traces enable us to discover secret-dependent memory accesses. The
last two elements of the Get entry represent the ID of the shadow
object, and the accessed property or offset. Both elements differ
between the traces: The object IDs are assigned by Jalangi2 and
thus vary for subsequent invocations of processTestcase, and
the accessed offset depends on the input. The analysis conducted by
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1 /**
2 * Simplified demo test case
3 **/
4 function processTestcase(buffer)

5 {

6 var val = parseInt(buffer );

7 var array = [0, 1, ..., 15];

8 var ret = -1;

9
10 if(val %

11 ret = array[val] + 1;

12 } else {

13 ret = 0;

14 }

15
16 return ret;

17 }

18
19

(a) Source

1 ...

2 Call;/index.js :28:5:28:43;

3 target.js :4:1:17:2:;

4 processTestcase

5 Call;target.js :6:15:6:39;

6 [extern ]: parseInt :; parseInt

7 Ret2;[ extern ]: parseInt :;

8 target.js :6:15:6:39

9 Expr;target.js :6:15:6:39

10 Expr;target.js :7:17:7:71

11 Expr;target.js :8:15:8:17

12 Cond;target.js:10:8:10:21

13 Expr;target.js:10:5:14:6

14 Expr;target.js:13:9:13:17

15 Ret1;target.js :16:12:16:15

16 Expr;target.js :16:5:16:16

17 Ret2;target.js :4:1:17:2:;

18 /index.js :28:5:28:43

19 ...

(b) Trace for buffer = 1.

1 ...

2 Call;/index.js :28:5:28:43;

3 target.js :4:1:17:2:;

4 processTestcase

5 Call;target.js :6:15:6:39;

6 [extern ]: parseInt :; parseInt

7 Ret2;[ extern ]: parseInt :;

8 target.js :6:15:6:39

9 Expr;target.js :6:15:6:39

10 Expr;target.js :7:17:7:71

11 Expr;target.js :8:15:8:17

12 Cond;target.js:10:8:10:21

13 Expr;target.js:10:5:14:6

14 Get;target.js:11:15:11:25;17;0

15 Expr;target.js:11:9:11:30

16 Ret1;target.js :16:12:16:15

17 Expr;target.js :16:5:16:16

18 Ret2;target.js :4:1:17:2:;

19 /index.js :28:5:28:43

20 ...

(c) Trace for buffer = 0.

1 ...

2 Call;/index.js :28:5:28:43;

3 target.js :4:1:17:2:;

4 processTestcase

5 Call;target.js :6:15:6:39;

6 [extern ]: parseInt :; parseInt

7 Ret2;[ extern ]: parseInt :;

8 target.js :6:15:6:39

9 Expr;target.js :6:15:6:39

10 Expr;target.js :7:17:7:71

11 Expr;target.js :8:15:8:17

12 Cond;target.js:10:8:10:21

13 Expr;target.js:10:5:14:6

14 Get;target.js:11:15:11:25;19;2

15 Expr;target.js:11:9:11:30

16 Ret1;target.js :16:12:16:15

17 Expr;target.js :16:5:16:16

18 Ret2;target.js :4:1:17:2:;

19 /index.js :28:5:28:43

20 ...

(d) Trace for buffer = 2.

Figure 5: Traces created byMicrowalk-CI for a JavaScript toy
example. Indented lines are wrapped for readability and are
formatted in a single line in the original trace file.

Microwalk-CI will later match the object IDs belonging to identical
objects between traces, such that it can compare the offsets.

This example shows a very short excerpt of a trace for a toy pro-
gram. Analyzing real world code may result in traces with millions
of events, resulting in huge files. To reduce the storage overhead,
we compress the trace by shortening strings and encoding repeat-
ing lines. For most targets, these measures are sufficient to keep
the trace files within a few ten megabytes. Additional compression
could be achieved e.g. by using LZMA, which due to the high rate of
repetitions and hence low entropy usually manages to bring down
the trace file size to a few hundred kilobytes.

4.3 Trace Preprocessing
These raw traces are not yet suitable for use by Microwalk-CI ; we
need to translate the sequence of executed lines to branch entries,
generate allocation information for the objects showing up in the
traces, and finally produce compatible binary traces, which can be
fed into analysis modules like the one described in Section 3. For
this, we implemented a new preprocessor module, which has 702
lines of code and resides in a plugin. The module iterates through
each entry of the raw trace, generating a preprocessed trace on-the-
fly. It recognizes branches by waiting for the next code location that

is outside the corresponding conditional; if an access to a previously
unknown object is detected, an allocation is created.

Note that our analysis module is designed for binary analysis,
i.e., it works with actual memory addresses and offsets. In fact,
this proves valuable for later analysis, as this simplifies encoding
trace entries and gives clear identifiers for referring to certain
instructions. Thus, we chose to generate a mapping of observed
source locations to dummy addresses, by encoding the line and
column numbers onto a base address belonging to the respective
source file. This mapping is stored in a special map file, such that it
can be mapped back to a human-readable source line after analysis.

In summary, we nowhave a tool chain that instruments JavaScript
programs, generates raw execution traces and converts them into
the Microwalk-CI binary trace format, allowing us to analyze arbi-
trary JavaScript software with the existing and new generic analysis
algorithms, without having to create a dedicated analysis tool.

5 INTEGRATION INTO DEVELOPMENT
WORKFLOW

In this section, we show how one can simplify usage of Microwalk-
CI to a degree that it only needs a one-time effort by the developer
to set it up and register the functions that need to be analyzed. From
that point, the tool is part of the CI pipeline of the respective library,
and runs each time a new commit is submitted. The developer is
then able to easily verify whether a code change introduces new
leakages, without requiring any manual intervention.

5.1 Dockerizing the Analysis Framework
In order to use the analysis framework in an automated environ-
ment, we must ensure that all its dependencies are present and the
environment is configured correctly. For this task, common CI sys-
tems allow the use of Docker containers. When a job starts, a new
container is started from a predefined Docker image. The CI system
checks out the current source code and then executes a user-defined
script within the container. This has the advantage of being indepen-
dent of the host system: The analysis job may run on the developer’s
private server, but also on cloud infrastructure administrated by
external providers. We thus create a pre-configured Docker image
containing the components needed for our JavaScript analysis: The
Jalangi2 runtime, the analysis script and the Microwalk-CI binaries.
The image is uploaded to a Docker registry.

5.2 Analysis Template
Having solved the installation and configuration problem, we now
need to setup the necessary infrastructure to actually run the analy-
sis for the specific library. Instead of requiring the developer to dive
into the proper usage of the analysis toolchain, we designed a tem-
plate that is simple and generic enough to work with most libraries,
and which only needs minimal understanding and adjustment. The
resulting file structure is depicted in Figure 6.

The template features a script file index.js, which serves as
analysis entry point and is responsible for loading test cases and
executing the target implementations. A target is any independently
testable code unit, e.g., a single primitive in a cryptographic library.
The individual microwalk/target-*.js script files consist of a
single function, that receives the current test case data buffer and
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/ # Project source tree

index.js # Analysis entrypoint

package.json

...

microwalk/ # Analysis-specific files

analyze.sh # Script executed by CI

config -preprocess.yml # Microwalk config. for preprocessing

config -analyze.yml # Microwalk config. for analysis

target -aes.js # AES target

target -rsa.js # RSA target

...

testcases/ # Input files for trace generation

target -aes/

0. testcase

1. testcase

...

target -rsa/

0. testcase

1. testcase

...

...

Figure 6: Generic source tree of a JavaScript project contain-
ing our analysis template.

is expected to call the associated library code. Each target also
needs a number of test cases, which may have a custom format and
thus need to be generated once by the developer. The test cases
are stored in the microwalk/testcases/ subdirectory. Finally, the
microwalk folder has a bash script analyze.sh, that is called by
the CI. The analysis script iterates through the target files, and
runs the Microwalk-CI pipeline. The Microwalk-CI configuration is
located in two generic YAML files, which can be adjusted by the
developer if they wish to use other analysis modules or options
than the preconfigured ones.

The abstractions offered by our template allows the developer to
focus on supplying simple wrappers for their library interface and
generating a number of random test cases; everything else is taken
care of by the existing scripts. We implemented a similar template
for compiled software, so the approach is the same for C libraries.

5.3 Reports
After the CI job has completed, it yields a couple of analysis re-
sult files. As of our analysis objectives in Section 3, these files are
designed to be human-readable and offer as much insight into a
leakage as possible. However, if there are a lot of leakage candidates,
going through this list may be tedious, especially if the result files
are stored separately and need to be inspected manually for each
commit. We thus looked into ways for integrating these results into
the usual development workflow.

For GitLab, there is a Code Quality Reports [20] feature, which
shows up in the merge request UI. It allows to assign a severity,
a description and a source code file and line to each entry, which
makes it suitable to display the results from our leakage analysis.
Microwalk-CI consolidates the analysis result into a report that can
be parsed by GitLab. For this, the leakages must be mapped to their
originating locations in the source code. This is straightforward
for JavaScript, as this information already shows up in the analysis
result file; for binary programs, we resort to parsing the DWARF

Critical - (target-toy-example) Found vulnerable memory access instruction,
leakage score 100.00% +/- 0%. Check analysis result in artifacts for details.

in target.js:11

Major - (target-toy-example) Found vulnerable jump instruction, leakage score
53.33% +/- 0%. Check analysis result in artifacts for details.

in target.js:10

Figure 7: GitLab report for the toy example from Figure 5a.
The leakage score is a relative representation of theminimal
GE as explained in Section 3.5.3.

debug information in order to map offsets to file names and lines.
The code quality report also shows a severity of a given problem,
which can be one of info, minor, major, critical and blocker (a con-
tinuous scale is not supported). Assigning these levels to specific
leakages is somewhat arbitrary and depends on the preferences of
the individual developer; we settled for minor if the minimal GE
is higher than 80% of its upper bound, critical if the minimal GE is
lower than 20% of its upper bound, and major for everything in be-
tween. This ensures that instances with high leakage are displayed
prominently. Figure 7 shows an example report.

6 EVALUATION AND DISCUSSION
To evaluateMicrowalk-CI , we applied it to several popular JavaScript
crypto libraries. In the following, we describe our experimental
setup and discuss the performance and discovered vulnerabilities.

6.1 Experimental Setup
As targets we pulled eight popular JavaScript libraries for cryptog-
raphy and utility functions from NPM, and set up a local GitLab
repository for each. Using the version from NPM instead of the ver-
sion from GitHub allows us to analyze the code deployed to millions
of users. We then applied our template and created target-*.js
files for selected cryptographic primitives and utility functions that
deal with secret data. For each target we generated 16 random test
cases, which were subsequently checked in into the source tree.

The GitLab instance takes care of managing the CI jobs and
visualizing the resulting code quality reports. The analysis jobs
themselves are executed through a Docker-based GitLab Runner on
a separate machine (build server), which has an AMD EPYC 7763
processor with 128 GB DDR4 RAM. We configured the Microwalk-
CI trace preprocessor step to use up to 4 CPU cores. After all CI jobs
had completed, we collected the performance statistics generated
by GitLab and the CI jobs, and went through the leakage reports.
The results are visualized in Table 1.

6.2 Performance
6.2.1 Computation time. The CPU time spent for trace generation,
preprocessing and analysis mostly depends on two factors. First,
it correlates with the complexity of the analyzed targets: For the
investigated libraries, symmetric algorithms and utility functions
performed verywell, while asymmetric primitives took significantly
longer, which is expected. Second, the CPU time scales linearly with
the number of test cases. We discuss the corresponding trade-off
between accuracy and performance in Section 6.4.
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Table 1: Targets analyzed with JavaScriptMicrowalk-CI , performance metrics and the number of detected leakages (total and
unique code lines). “Tr. CPU” shows the CPU time for generating the raw traces, “Prep. CPU” for trace preprocessing, and “An.
CPU” for the analysis step. “Duration” denotes the wall clock time spent for the entire CI job (including setup and cleanup).
Finally, “Prep. RAM” and “An. RAM“ show the peak memory usage for the preprocessing and analysis steps, respectively.

Target Type Tr. CPU Prep. CPU An. CPU Duration Prep. RAM An. RAM # Leakages # Unique
aes-js [3] 3.1.2, ≈ 800k weekly downloads
AES-ECB cipher 1 sec < 1 sec < 1 sec 7 sec 294 MB 180 MB 16 16

base64-js [7] 1.5.1, ≈ 28M weekly downloads
base64-encode utility < 1 sec < 1 sec < 1 sec 6 sec 283 MB 173 MB 7 7
base64-decode utility < 1 sec < 1 sec < 1 sec 6 sec 291 MB 189 MB 7 7

crypto-js [15] 4.1.1, ≈ 4M weekly downloads
AES-ECB cipher 2 sec < 1 sec < 1 sec 8 sec 289 MB 191 MB 44 44
Rabbit cipher 2 sec < 1 sec < 1 sec 8 sec 304 MB 182 MB 0 0
base64-encode utility 4 sec 1 sec 1 sec 10 sec 349 MB 250 MB 0 0
base64-decode utility 3 sec < 1 sec < 1 sec 9 sec 339 MB 225 MB 2 2
pbkdf2 utility 5 sec 1 sec 1 sec 11 sec 384 MB 221 MB 0 0

elliptic [18] 6.5.4, ≈ 13M weekly downloads
secp256k1 signature 110 sec 26 sec 21 sec 139 sec 853 MB 3,123 MB 58 45
p192 signature 237 sec 35 sec 12 sec 261 sec 2,112 MB 1,835 MB 98 57
p224 signature 303 sec 45 sec 14 sec 334 sec 1,700 MB 2,357 MB 76 58
p256 signature 469 sec 84 sec 45 sec 545 sec 3,347 MB 6,674 MB 78 50
p384 signature 977 sec 145 sec 45 sec 1,063 sec 3,383 MB 7,522 MB 391 53
ed25519 signature 175 sec 46 sec 32 sec 222 sec 2,884 MB 4,607 MB 111 40

js-base64 [8] 3.7.2, ≈ 6M weekly downloads
base64-encode utility < 1 sec < 1 sec < 1 sec 6 sec 290 MB 187 MB 0 0
base64-decode utility < 1 sec < 1 sec < 1 sec 6 sec 290 MB 155 MB 0 0

node-forge [19] 1.2.1, ≈ 17M weekly downloads
AES-ECB cipher 5 sec < 1 sec < 1 sec 11 sec 298 MB 193 MB 36 36
AES-GCM cipher 9 sec 2 sec 2 sec 16 sec 387 MB 349 MB 126 52
base64-encode utility 5 sec < 1 sec < 1 sec 11 sec 287 MB 192 MB 0 0
base64-decode utility 5 sec < 1 sec < 1 sec 11 sec 296 MB 198 MB 4 4
rsa signature 62 sec 18 sec 13 sec 82 sec 364 MB 1,926 MB 223 111
ed25519 signature 124 sec 33 sec 9 sec 144 sec 1,145 MB 509 MB 0 0

pbkdf2 [43] 3.1.2, ≈ 13M weekly downloads
pbkdf2 utility < 1 sec < 1 sec < 1 sec 6 sec 298 MB 179 MB 0 0

tweetnacl [58] 1.0.3, ≈ 21M weekly downloads
secretbox cipher 2 sec < 1 sec < 1 sec 8 sec 288 MB 189 MB 0 0
box asymmetric 75 sec 20 sec 7 sec 91 sec 335 MB 487 MB 0 0
ed25519 signature 117 sec 33 sec 9 sec 138 sec 1,137 MB 509 MB 0 0

The computational cost for the trace generation step mainly
stems from the instrumentation itself, as our tracer script is already
quite minimal. Significant optimizations would thus need to target
the Jalangi2 implementation.

The CPU time spent for the preprocessing step correlates with
the size of the raw traces. The implementation is parallelized, so
each trace can be processed independently. Profiling shows a slight
bottleneck in the string parsing code, so switching to a binary trace
format may further improve preprocessing performance, at the cost
of higher code complexity in the trace generation.

The analysis step took less than one CPU minute for every
investigated target; this underlines the efficiency of the presented
analysis algorithm, and that it is fast enough to be used in a produc-
tive setting. The time spent for the analysis mostly depends on the

trace size, as when building the call tree, each trace entry is con-
verted into a tree node or embedded into an existing one. Another
factor is the number of leakages, as is apparent when comparing
the analysis times of the various ed25519 implementations.

The measured overall duration heavily depends on where most
CPU time is spent: While the trace generation and the analysis are
mostly sequential, the trace preprocessing is heavily parallelized.
Thus, a high CPU time for preprocessing does contribute less to
the overall duration. Apart from one outlier, elliptic’s p384, the
measured times stayed well within a few minutes, which can be
considered acceptable for productive use in a CI pipeline.

6.2.2 Memory usage. The inherently different pipeline steps also
reflect in different memory requirements.
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The trace generation step has a negligible memory footprint,
which mostly depends on the size of the array that is used for
buffering trace entries before writing them to the output file.

The memory consumption of the preprocessing step is mainly
caused by loading chunks of the trace file into memory and decom-
pressing them. Parallelization of the preprocessing step means that
several trace files are being held in memory simultaneously. The
memory usage of the preprocessing can be reduced by decreasing
the number of parallel threads (4 in our experiment).

In the call tree analysis step, the memory demand is driven by
the size of the preprocessed traces and, most notably, their level
of divergence. If the target is constant-time and thus all traces are
identical, the tree does not have any split nodes, so all traces end
up in the same nodes. Adding a trace ID to an existing node does
not involve any significant memory cost, as the trace IDs assigned
to a call tree node are stored as a bitfield.

However, if the traces heavily diverge, the analysis produces
many split nodes with partially redundant subtrees. This distinction
becomes apparent by the implementations of ed25519 in elliptic
and in tweetnacl: While using comparable tracing and preprocess-
ing time, the constant-time implementation in tweetnacl requires
much less memory than the implementation in elliptic, which
relies on the leaking bn.js and hash.js libraries. Through contin-
uously applying Microwalk-CI and mitigating non-constant-time
behavior such that only small leakages pop up during analysis, the
peak memory usage of the analysis step can be kept within the
bounds of a typical CI environment.

Overall, the peak memory usage of Microwalk-CI is on an
acceptable level. The highest memory consumption was observed
when analyzing elliptic’s p384. This is certainly a worst case
example, as large parts of its code are non-constant time, while
Microwalk-CI is optimized for finding mid-level leakages in an
otherwise fairly constant-time software. However, most of p384’s
code is shared with the other curve implementations, which contain
the same leakages, but can be analyzed more efficiently. Also, a
significant part of the identified leakages reside in the the SHA-512
implementation of hash.js, which should be analyzed separately.

As expected, more complex algorithms like asymmetric cryptog-
raphy require more memory in the analysis. But, even those only
require an amount of memory which, today, is commonly available.

6.3 Vulnerabilities
Our leakage analysis identified many leakages in the given libraries.
We evaluated whether those are in fact actual vulnerabilities, and
discuss a few examples in the following. In general, the leakages
were correctly assigned to the respective leaking code lines, and
we did not encounter any false positives (i.e., code lines that don’t
leak by themselves). In addition to the report shown in the user
interface (Figure 7), a detailed leakage report is generated, which
provides the full calling context for each leakage and shows how
the different test cases contributed to tree divergences.

6.3.1 Leakages in AES. All investigated implementations of AES
use table lookups into S-boxes or precomputed T-tables, making
those highly susceptible to timing attacks. The exploitability of such
lookups was previously shown in other work [10]. All leakages
found in aes-js by Microwalk-CI have a maximum leakage score.

Additionally, Microwalk-CI discovers input-dependent behav-
ior in the AES-GCM encryption of node-forge. Manual inspection
shows that these leakages in the tableMultiply function in the
file cipherModes.js occur during the computation of the GHASH
which is used for the final computation of the authentication tag.
The tableMultiply function uses a table precomputed from the
hash key and multiplies by accessing this table with an index which
is an intermediate value computed from the current ciphertext
block and the previous hash value. Learning this intermediate
value potentially allows to gain information about the GHASH
key, compromising the authentication property. The implementa-
tion in node-forge uses 4-bit tables. Whether this implementation
and leakage is exploitable, is left to future work. We recommend
not having any secret-dependent non-constant-time code.

6.3.2 Elliptic curve implementations. node-forge and tweetnacl
feature custom constant-time big number arithmetic that is specif-
ically designed for the supported curves. The elliptic library,
however, relies entirely on arithmetic from the general-purpose
bn.js [11] library, which features a lot of input-dependent control
flow and memory accesses. Thus, we see very high leakage over all
supported primitives. The leakages detected in the big number and
elliptic code itself are mostly assigned scores between 80 and 100.

In addition, for computing the signature, elliptic’s ECDSA
implementation uses the hash.js [24] library, which offers pure-
JavaScript implementations for SHA-1 and SHA-2. For ECDSA and
EdDSA signatures with the curves p384 and ed25519, respectively,
the leakage report points to a significant amount of leakage in
lib/hash/sha/512.js for a variety of call stacks. Here, the im-
plementation works around a limitation of JavaScript, which rep-
resents all numbers in IEEE-754 double precision floating point,
and temporarily converts them to 32-bit signed integers for bitwise
arithmetic. If the most-significant bit ends up being 1, JavaScript
sign-extends it such that the result is negative. The implementation
checks for this in an if statement and adds 0x100000000 to get a
positive number. This leakage may pose a security issue, as ECDSA
and EdDSA use the hash function for generating a nonce from the
private key. Microwalk-CI assigns leakage scores between 60 and
70 for most of the leakages in lib/hash/sha/512.js. Future work
could investigate whether the leakage of the most-significant bit
can be used to learn parts of the private key. The libraries elliptic,
bn.js and hash.js are from the same author.

6.3.3 Base64 encoding. We also found leakages in some of the vari-
ous Base64 implementations. All of them were caused by the use of
lookup tables, where 6-bit chunks are mapped to ASCII characters
and vice versa. The only known attack against Base64 encoding re-
lies on a precise controlled channel that is not available for common
JavaScript deployments [54]. However, depending on the memory
layout of the respective lookup tables, partial information may be
accessible via a cache attack. js-base64 does also feature a vulner-
able Base64 implementation; however, it first checks whether the
Buffer class with native Base64 support is present, which is the
case for our Node.js build.
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6.4 Number of Test Cases
As mentioned in the performance analysis, computation time and,
to a lesser degree, memory consumption, scale with the number of
test cases. A higher number of test cases increases the chance of
triggering uncommon code paths and thus finding more leakages.
In the following, we analyze this trade-off and point out approaches
for striking a good balance between accuracy and performance.

In our performance analysis, we ran 16 test cases for each library.
This number is within the same order of magnitude as the one used
for the evaluation in [62], where the authors recommend running
10 test cases. To check whether the small number of test cases
had impact on the number of detected leakages, we repeated our
analysis with 48 additional test cases (64 total) for each target and
compared the results with those of the first analysis.

6.4.1 Performance. Increasing the number of test cases does not
affect every pipeline step in the same way. Doubling the number of
test cases roughly doubles the CPU time needed for trace generation,
but that does not apply to the analysis step: There, the first test
case takes much longer than subsequent ones, as it needs to build
the tree from scratch, which involves spending a lot of time in
the memory allocator. Later non-diverging test cases only need to
iterate the existing tree, which takes considerably less resources.
We observed that the duration increased by factor 3 to 3.5, although
we ran 4 times as many test cases.

6.4.2 Leakages. Except for targets in the libraries elliptic and
node-forge,Microwalk-CI found the same amount of leakages with
64 test cases as with 16. For elliptic, all targets show a small single
digit increase in the number of overall and unique leakages. For all
new leakages, we determined that these were initially missed due
to a saturation effect (see Section 6.6) and not by lack of coverage,
and would have been found by re-running the analysis after fixing
the preceding leakages.

For node-forge’s RSA implementation, the difference is a bit
larger. While Microwalk-CI finds 223 overall and 111 unique leak-
ages with 16 test cases, it was able to discover 255 overall and 125
unique leakages with 64 test cases. Manual investigation shows
again that most leakages were missed due to a saturation effect.
However, a small number was missed due to insufficient coverage
of the initial 16 test cases.

6.4.3 Recommendations. We recommend the developer to choose
an overall duration that is acceptable during ongoing development
and determine an according test case number. In addition, the cov-
erage of the generated test cases could be checked with a separate
tool to ensure that all relevant code gets executed. Finally, the de-
veloper could add another larger collection of test cases that runs
as a final check before releasing the next version, where a longer
analysis time is acceptable.

6.5 Comparison with Microwalk’s original
Analysis Module

Microwalk originally features two analysis modules that implement
thememory access trace (MAT) analysis method for finding leakages.
The method was first presented in [63]. For each memory accessing
instruction, the modules generate a hash over all accessed offsets.

Table 2: Results of the analysis step of selected targets with
the original Microwalk CMAT module, and its resource us-
age. Time andmemory consumption of the trace generation
and preprocessing steps are identical to those shown in Ta-
ble 1.

Target CPU Duration RAM # Lkgs. # Unique
aes-js
AES-ECB < 1 sec 8 sec 168 MB 16 16
elliptic
p192 4 sec 253 sec 289 MB 4,003 811
tweetnacl
ed25519 5 sec 126 sec 286 MB 0 0

By comparing the hashes between traces, the amount of leakage for
each memory accessing instruction is computed. Due to the focus
on memory accesses, control flow leakages are only discovered
indirectly or may even be missed entirely.

The first module, that was originally published with [63], gen-
erates only one leakage report per instruction. The later added
second module (referred to by us as CMAT module) is an exten-
sion of the first module that additionally distinguishes between
call stacks to achieve a higher accuracy. To compare the existing
analysis method with our new approach, we ran a selection of the
targets with the CMAT module, using the same 16 test cases as for
the initial analysis. The results are shown in Table 2.

Since the CMAT module only stores a single mapping of call
stacks and instructions to hashes, it generally takes less resources
than our new tree-based approach, both in computation time and
memory consumption. However, the preceding trace generation
and preprocessing, which take most of the time, are identical, so
the actual difference in overall duration is limited.

For aes-js’ AES-ECB implementation, the CMAT module re-
ports a number of secret-dependent table accesses with full leakage,
which are identical to the leakages reported by our new analysis
module. This is the kind of leakage that the MAT analysis was
designed for: Through hashing the sequence of memory addresses
that a given instruction accesses, secret-dependent variations are
discovered. Our new analysis detects these leakages through the
address lists stored in the individual memory access trace entries,
which ultimately yields the same result, but takes more memory.

The result from the CMAT module for elliptic’s p192 is very
imprecise and contains many false positives: It reports 811 leaking
lines in total, which includes lines like “this.pendingTotal = 0;”.
As a fixed offset is accessed, this line is a clear false positive. The
leakage in question was in fact caused by a control flow variation
higher up in the call chain, leading to a varying number of execu-
tions of the given instruction, which in turn produced a different
memory access offset hash. The other false positives follow a simi-
lar pattern. Our new tree-based approach handles control flow and
memory access leakages separately, which reduces false positives
and allows accurately attributing a leakage to a specific code line.
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6.6 Limitations of the Analysis Algorithm
As other dynamic analysis approaches, Microwalk-CI needs a good
coverage of the program in order to give an accurate leakage de-
tection result. If a particular path is never executed, it does not
appear in the traces and thus never reaches the analysis modules.
However, for cryptographic code, randomly generated test cases
tend to work very well [62, 63]. For other targets, it may be worth
exploring other methods for generating coverage, e.g., fuzzing.

Finally, in our analysis algorithm, some leakages may be ob-
scured by other leakages at a higher tree level. If leakages on higher
levels cause splits that result in a unique sub tree for each trace, the
lower leakages can not cause any more divergences and thus are
overlooked. This “saturation” is an inherent property of the analysis
approach, and the price payed for having a linear-time algorithm.
We do not believe that this impacts practical usage: After having a
library reach a certain state of “constant-time-ness”, we only expect
few new leakages being reported, as certain functions are touched.
And even if a leakage is not reported in a first pass, it will show up
after committing the fixes for the previously reported leakages. It
is unlikely that a number of unfixed low-severity leakages obscure
a subsequent severe leakage. This would imply a fully split up tree,
which, in itself, signals a high-severity leakage.

Other work tries to find all trace leakages in a single pass, but
uses significantly more resources with every CI run and thus is not
suitable for integration into an everyday-development workflow.

7 RELATEDWORK

Constant-time program analysis has a long tradition as there
are different classes of vulnerabilities that can be found through
various analysis techniques [36]. Some tools for checking constant-
time behavior depend on the availability of source code. Irazo-
qui et al. [28] introduce secret-dependent cache trace analysis,
ct-fuzz [25] specializes fuzzing for timing leakages, ct-verif [5]
describes constant-time through safety properties and CaSym [13]
uses symbolic execution to model the execution behavior of a pro-
gram. Microwalk-CI does not require access to the source code for
compiled languages.

Unlike Microwalk-CI which uses dynamic program analysis
and compares real execution traces, static binary analysis tries
to simulate the execution of every possible program path. BIN-
SEC/REL [16] uses relational symbolic execution of two execution
traces to efficiently analyze binary code, however is limited by the
high performance impact of static analysis. CacheS [59], based on
CacheD [60], combines taint tracking and symbolic execution to find
cache line granular leakage and secret-dependent branches. More-
over, CacheAudit [17] tracks relational information about memory
blocks to compute upper bounds for leakages. In contrast with these
works, Microwalk-CI finds any leakage with byte granularity.

DATA [62] and its (EC)DSA-specific extension [61] find microar-
chitectural and timing side-channels in binaries via dynamic bi-
nary analysis. The trace alignment approach of DATA is based on
computing pairwise differences between traces, leading to a compu-
tation time that is quadratic both in the number of traces and in the
trace length. While it yields more leakage candidates after a single
pass, it needs more computational resources and thus is not a suited
for use in a CI environment. Abacus [6] identifies secret-dependent

memory access instructions using symbolic execution. Then, the
authors use Monte Carlo sampling to estimate the amount of leaked
information. A shortcoming of the approach is that Abacus only
uses one trace and therefore suffers from low coverage. dudect [46]
measures timing behavior in a statistical way without any model
of the underlying hardware, which is fast, but also yields impre-
cise results. ctgrind [33] and TIMECOP [39] search the code for
secret-dependent jump or memory accesses like table-lookups and
variable-time CPU instructions, but are rather manual.

Analysis of JavaScript code recently received more focus in the
research community as it is widely used in browsers includingmany
security-critical workloads. Basic properties of JavaScript regarding
security of code have been widely analyzed [30, 31, 52, 57]. Just as in
other programming languages, various attacks on secret-dependent
behavior have been conducted [51, 53]. A common prerequisite for
exploiting timing-dependent properties of code is having precise
timers [47], though this can be bypassed [53]. Apart from counter-
measures like disabling timers or blocking certain functionality [50],
little work has gone into finding non-constant-time JavaScript code.

8 CONCLUSION
With Microwalk-CI we have shown how one can design a side-
channel analysis framework that is suitable for integration into a
day-to-day development workflow. We have presented a new trace
processing algorithm that merges the recorded traces into a call
tree, allowing us to precisely localize and quantify leakages in a
short time frame. Moreover, by “dockerizing” the analysis, we have
provided the means for easy and fast usage without the necessity
of understanding the details of the framework.

With the design and implementation of a tracer for JavaScript and
the integration with Microwalk-CI , we have built the first compre-
hensive constant-time verifier for JavaScript code and demonstrated
how analysis techniques originally developed for binary analysis
can be used for interpreted or just-in-time compiled languages.
Microwalk-CI is constructed in a modular fashion and allows to add
tracing backends for other languages with limited effort.

Overall, Microwalk-CI carries the potential to increase the side-
channel security for many popular libraries written in potentially
any programming language, and raises awareness for the risks of
non-constant-time code in new communities.
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, , Jan Wichelmann, Florian Sieck, Anna Pätschke, and Thomas Eisenbarth

A CALL TREE DUMP

@root

Trace entries:

#call main+1 -> func+0

Trace entries:

#call func+1 -> lookup +0

Trace entries:

#memory-read at lookup +1

table [1]: 0

table [2]: 1

table [3]: 2

#return lookup +1 -> func+1

#jump func+4 -> <?> (not taken)

#call func+5 -> lookup +0

Trace entries:

#memory-read at lookup +1

table [1]: 0, 1, 2

#return lookup +1 -> func+5

#jump func+6 -> func+4

Splits:

@split: 0

Trace entries:

#jump func+4 -> func+7

#return func+7 -> main+1

@split: 1, 2

Trace entries:

#jump func+4 -> <?> (not taken)

#call func+5 -> lookup +0

Trace entries:

#memory-read at lookup +1

table [1]: 1, 2

#return lookup +1 -> func+5

#jump func+6 -> func+4

Splits:

@split: 1

Trace entries:

#jump func+4 -> func+7

#return func+7 -> main+1

@split: 2

Trace entries:

#jump func+4 -> <?> (not taken)

#call func+5 -> lookup +0

Trace entries:

#memory-read at lookup +1

table [1]: 2

#return lookup +1 -> func+5

#jump func+6 -> func+4

#jump func+4 -> func+7

#return func+7 -> main+1

Figure 8: Call tree dump for the example in Figure 1 and
three different values of secret: 1 (trace ID 0), 2 (trace ID
1) and 3 (trace ID 2). The dump is generated by running a
depth-first search on the tree and printing the individual
nodes with appropriate indentation. Trace entry types are
highlighted with blue color, trace IDs with red color.
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