
56

Patching Locking Bugs Statically with Crayons

JUAN CRUZ-CARLON and MAHSA VARSHOSAZ, IT University of Copenhagen, Denmark

CLAIRE LE GOUES, Carnegie Mellon University School of Computer Science, USA

ANDRZEJ WASOWSKI, IT University of Copenhagen, Denmark

The Linux Kernel is a world-class operating system controlling most of our computing infrastructure: mobile

devices, Internet routers and services, and most of the supercomputers. Linux is also an example of low-level

software with no comprehensive regression test suite (for good reasons). The kernel’s tremendous societal

importance imposes strict stability and correctness requirements. These properties make Linux a challenging

and relevant target for static automated program repair (APR).

Over the past decade, a significant progress has been made in dynamic APR. However, dynamic APR

techniques do not translate naturally to systems without tests. We present a static APR technique addressing

sequential locking API misuse bugs in the Linux Kernel. We attack the key challenge of static APR, namely, the

lack of detailed program specification, by combining static analysis with machine learning to complement

the information presented by the static analyzer. In experiments on historical real-world bugs in the kernel,

we were able to automatically re-produce or propose equivalent patches in 85% of the human-made patches,

and automatically rank them among the top three candidates for 64% of the cases and among the top five for

74%.

CCS Concepts: • Software and its engineering→ Software defect analysis;

Additional Key Words and Phrases: Automated repair, static program repair, api misuse

ACM Reference format:

Juan Cruz-Carlon, Mahsa Varshosaz, Claire Le Goues, and Andrzej Wasowski. 2023. Patching Locking Bugs

Statically with Crayons. ACM Trans. Softw. Eng. Methodol. 32, 3, Article 56 (April 2023), 28 pages.

https://doi.org/10.1145/3548684

1 INTRODUCTION

Automatic Program Repair (APR) aims to repair buggy programs by automatically constructing
source-level patches [1]. A large proportion of the techniques proposed over the past decade use
test cases to guide repair. That is, the correctness of a program for APR purposes is defined as pass-
ing tests in a provided automated test suite (e.g., References [2–10]). At a high level, these types
of techniques begin by applying a fault localization mechanism to the provided tests and buggy
program to identify likely locations for repair, and then generate or synthesize candidate patches

This work is supported by Independent Research Fund Denmark under Grant Agreement 8022-00326B and by National

Science Foundation, Grant No. CCF-1750116.

Authors’ addresses: J. Cruz-Carlon, M. Varshosaz, and A. Wasowski, IT University of Copenhagen, Copenhagen, Denmark;

emails: {alcr, mahv, wasowski}@itu.dk; C. Le Goues, Carnegie Mellon University School of Computer Science, Pittsburgh,

PA, USA.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

1049-331X/2023/04-ART56

https://doi.org/10.1145/3548684

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

https://orcid.org/0000-0002-1987-8361
https://orcid.org/0000-0002-4776-883X
https://orcid.org/0000-0002-3931-060X
https://orcid.org/0000-0003-0532-2685
https://doi.org/10.1145/3548684
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548684
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548684&domain=pdf&date_stamp=2023-04-26

56:2 J. Cruz-Carlon et al.

for these locations seeking those that cause all tests to pass (called plausible patches) [2, 8]. Careful
algorithm design typically aims to increase the probability that a plausible patch will generalize
reasonably to other test sets [11]. The tests, and the ability to run them efficiently and automati-
cally, are thus key to the expressive power, quality, applicability, and efficiency of these methods.

However, efficient and fully automated test suites are not always available. Tests can be inher-
ently hard to write or automate for certain classes of systems (e.g., long-lived systems with long
accumulated legacy code), and even if automated at high cost, the benefits can be limited. This cate-
gory of software includes systems-level software and embedded control software in cyber-physical
systems and robotics. A good example is the Linux Kernel (the subject system of this article): Since
a very substantial part of its codebase interacts directly with hardware, it contains very few auto-
mated tests. As thousands of hardware components cannot possibly coexist on a single computer
system, it would not be possible to execute a test suite for all of them and would be practically
impossible to maintain (the list of supported hardware is changing rapidly). Moreover, tests for
core kernel components must be run virtually, since the test infrastructure requires an operating
system to run. Even if feasible, such a setup would still leave many properties untestable or dif-
ficult to diagnose. For these reasons, the kernel project famously and effectively relies on code
review for accepting new contributions, and on specialized tools supporting manual bug triaging.
Operating system kernels and drivers are also ripe targets for static analysis tools [12], which are
well-positioned to find property violations that are often critical in such systems (e.g., resource
leaks, concurrency errors) but particularly difficult to test for deterministically.

How do we build APR tools for systems with hard-to-find bugs, and limited access to test
execution? One promising answer is static APR [13, 14]. Static program repair relies on static
analyzers to identify bugs and to localize, construct, and reason about candidate patches. The
main challenge with using static analyzers to guide program repair, however, is that they reason
about programs via abstraction. As a result, they typically ignore finer grained details of program
state, as well as overall notions of correctness, in the interest of tracking only sparse general
properties. In addition to posing practical challenges for patch construction (which must contend
with actual source code), this poses additional challenges to patch correctness. Put simply,
many scalable static analyzers explicitly disregard concerns about whole-program functional
correctness, and thus “overfitting” patches can be particularly easy to construct. For instance,
consider a double-lock bug finder applicable to Linux Kernel code. Such an analyzer can detect
locking errors in real-world code (two consecutive lock operations on the same lock in the same
thread). However, trivially, such a detector will also happily declare a program correct if all locks
were removed! Such a repair is almost never correct, as it introduces race conditions, even though
the analyzer in question is satisfied. Instead, additional reasoning is required.

Our insight is that, following the philosophy of certain classic APR techniques [15], it can be
possible to learn just enough additional correctness specifications from other places in the same
code base. Our patch ranking tool uses both statically recovered information (memory regions and
effects) and syntactic information (types and identifiers) as features.

In this article, we attempt to realize this idea for locking API misuse bugs. We develop a special-
ized repair technique based on coloring the program control flow graph to synthesize a set of repair
candidates. We apply information retrieval techniques to analyze the other places in the code that
use the incriminated lock and learn an estimation of the critical resource being protected by the
lock. Finally, we use this estimator to rank different repair proposals with respect to how well they
protect the critical resource. Overall, the contributions of this work are:

• A formal characterization of possible API misuses for a two-function resource reservation
API (such as lock–unlock),

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

Patching Locking Bugs Statically with Crayons 56:3

Fig. 1. A double-lock bug example with two ways to fix it.

• A static APR method and implementation that synthesizes repairs for locking API misuses,
by graph coloring and ranking,
• A method to approximate the criticality of a line of code (i.e., likelihood of the line being in

a critical section) given a lock object, which can be applied to learn about code criticality in
an error trace reported by a static analyzer,
• An evaluation on the actual Linux Kernel codebase demonstrating that the APR method

synthesizes and prioritizes patches that are identical to those created by humans.

The technique does not require manual interventions or human written specifications, and
works directly on the Linux Kernel code. The key significance of these contributions lies in
demonstrating how even an extremely coarse grained, fast, and imprecise static analyzer can be
used as a basis for an APR procedure by supplementing it with (also static) learning capabilities.

The technique is implemented in a prototype tool, Crayons. We evaluated Crayons on
several versions of the Linux Kernel code. We were able to automatically re-produce or propose
equivalent patches for 85% of the human-made patches, and automatically rank 63% of them
among the top three candidates and 74% among the top five. Moreover, the experiments show
that the contribution of the static analysis-based features is more significant than that of syntactic
features (program text) for effective ranking of patches.

While we restrict attention to the Linux Kernel project, we note that this project is of critical
importance and scale (over 20 million lines of code, over 4,000 contributors, and over 400 con-
tributing companies). From a methodological perspective, the kernel contains a large diversity of
systems code, more than a collection of smaller evaluation subjects could cover. At the same time
it imposes serious scalability and maturity requirements on our tools. So, while the techniques
are not limited to the kernel code, the kernel does appear as a challenging benchmark: If we can
effectively repair bugs here, then we should be able to extend the tool to handle other projects.

2 OVERVIEW

Figure 1 presents a simple illustrative example of a double-lock error inspired by a historical bug
from the Linux Kernel commit history (ca9fe1588427).1 We are using the Unix diff notation, so the
buggy version is shown by the lines without plus prefixes. Consider the version before patching,
on the left-hand side. Execution begins by entering the while loop in Line 3, and then takes the lock
(b->l) for the first time on Line 4. The lock is held for the entire iteration. At the second iteration, a
double-lock occurs in Line 4; the thread thus hangs indefinitely, as mutex locks are non re-entrant.

1Commit hashes in this article can be used to access the kernel history as follows: https://github.com/torvalds/linux/

commit/ca9fe1588427.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

https://github.com/torvalds/linux/commit/ca9fe1588427
https://github.com/torvalds/linux/commit/ca9fe1588427

56:4 J. Cruz-Carlon et al.

The original code was fixed by the patch shown in the left-hand side of Figure 1, moving the
lock acquisition before the loop. An alternative repair, shown in the right-hand side of the fig-
ure, moves the lock release inside the loop. The choice between these two repairs depends on
which resources in the program are protected by the lock, i.e., which lines constitute a critical
section. In the example, if the lock b->l protects only the variable b, then the unlock call can be
moved to a point in the loop after which b is not manipulated anymore (the right-hand side). If
the lock protects a data structure iterated on by the loop, of which b is just a single link, then
the left-hand code is preferable, as it makes the entire traversal atomic. Although it is tempting to
conservatively select a larger critical section, a smaller critical section allows interleaving of loop
iterations with another thread accessing the resource. Which of these is preferred is application
specific.

We use this example throughout this section for illustration of the key ideas behind our tech-
nique for static repair of lock API misuses. We begin by describing EBA, the static analyzer
on which we build our repair technique (Section 2.1) before providing a problem statement
(Section 2.2) and an overview of our approach (Section 2.3). We elaborate technical details of the
approach in subsequent sections.

2.1 EBA Bug Finder

We build our static bug repair tool on an existing static analyzer, EBA. EBA is a static finder for
resource manipulation bugs, i.e., bugs that can be specified as misuses of an API captured by a
finite state monitor of a resource that is represented as a pointer in a C program [16]. EBA is
fast but relatively imprecise; it approximates the efficiency of linters while adding a lightweight
semantic abstraction in the analysis. This allows it to scale to the Linux Kernel code base. EBA
reasons about a program using its control-flow graph annotated with computational effects and
aliasing information. A region is an abstraction of a memory location in which program values are
stored. If two variables are (potentially) aliased, then they are represented by the same abstract
region. A computation is summarized by the effects it may produce, e.g., read or write a memory
location, acquire or release a lock. An effect is typically parameterized by a memory region, so
that the tool knows which variable is read, which lock is acquired, and so on. Let r(i) be the region
of variable i . Then, we can summarize the entire program in Figure 1 (repaired or not) by the
following unordered set of effects:

{readr(a), writer(a), readr(b), readr(b->l), readr(&b->l),

readr(b->head), readr(&b->head), lockr(&b->l),

unlockr(&b->l), readr(c), readr(f), . . . } (1)

EBA can track other resources and APIs beyond locks, which brings the potential of generalizing
our static repair method to other kinds of bugs; however, in this article, we only consider locking
problems. EBA calculates summaries per node in the control flow graph, so the sets tend to be
small, with the exception of function call sites (where the set summarizes the entire function body).
Table 1 shows example Control Flow Graph (CFG) nodes generated from the left-hand side of
Figure 1.

As we describe in subsequent sections, our technique requires labeled datasets for a learning
component. We therefore extend EBA to print CFGs accordingly (specifically mapping colors to
CFG nodes, as described in Section 2). We implement this via a monitor automaton applied while
traversing a CFG; extending our approach to different types of bugs therefore requires only pro-
viding a suitable such monitor.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

Patching Locking Bugs Statically with Crayons 56:5

Table 1. An Annotated CFG Entry for the Example of Figure 1

Line# Source code Effect[Regions] Variable name/type

1 int a=0 read[reg23],write[reg23] a/int, const
2 mutex_lock(&b->l); !?f136, read[reg152,reg161], lock[r731] mutex_lock/function,

b/struct debug_list*

3 while (a == 0) read[reg23] a/int

5 if (b->head != Null) read[reg152] b/struct debug_list*

6 a=c+a; read[reg23,reg349], write[reg349] a/int, c/int

8 f(a) !?f4598, read[reg23], write[reg23] a/int, f/function

10 mutex_unlock(&b->l); !?f67, read[reg152,reg161],unlock[r731] mutex_unlock/function,
b/struct debug_list*

Four features are maintained in a CFG: effects, regions, variable names, and types. The identifiers in square brackets

refer to regions assigned by EBA.

2.2 Problem Statement

We focus on generating repairs for sequential lock manipulation bugs in C programs. We assume
no tests, but generate the repair entirely statically, assuming that a static analyzer has detected the
bug and that we have access to the analyzer’s internal representation of the program to understand
how locks are used in the code base. In particular, we assume a report issued by the EBA static
analyzer identifying such a bug. To produce acceptable patches for lock API misuse defects, a
static APR tool needs to “understand” which resources are being protected—a piece of information
that we do not have a priori. C has no explicit annotations defining critical resources. This lack

of information guiding the repair strategy is inherent to static program repair. Static analyzers track

specific generic properties and do not reason about complete program specifications. An APR tool based

solely on abstractions available in a particular static analyzer operates with very sparse information.

While a generated candidate repair might satisfy the static analyzer, the tool is left in the dark
regarding whether other errors have been introduced, especially in the absence of comprehensive
test suites.

We consider two types of errors in static repair: (i) errors tracked by the static analyzer and
(ii) errors opaque to the analyzer. Atomicity violation is the example of the latter, because critical
sections are not explicit in C code. An example of the former is an unlock-without-lock.

The goal of this article is to generate patches for these statically detected tracked bugs,
minimizing the possibility of introducing opaque bugs. We do this by combining a static reasoning
approach to determine patch candidates, supplemented with information retrieval techniques, to
infer knowledge about the correct uses of locks in the program under repair.

2.3 The Approach

Our solution consists of two high-level components: static reasoning to generate patches that
can tackle the API misuse bug in question, and an information retrieval-based analysis to provide
information on critical sections based on available usage data.

Patch synthesis. We designed our patch generation model to be unbiased, making no assumption
on what should be protected, and simple; translating to the model and back from it must be as
simple as possible. We achieve this by translating lock manipulation API calls and lock states to
colors on vertices of the CFG and expressing bugs as ill-colored edges. These errors are fixed by
manipulating the graph and the coloring until no errors are present or until a maximum repair

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

56:6 J. Cruz-Carlon et al.

Fig. 2. The CFG of the code in Figure 1.

Fig. 3. The two initial colorings (a, b), their three induced colorings (c–e), and their corresponding repairs

(f–h) for the code snippet in Figure 1. Edges linking vertices with inconsistent colors are dotted.

threshold is reached. Let us discuss the example of Figure 1 to develop the key intuitions. We
describe the technical details in Section 3.

Figure 2 shows the statement CFG of the code snippet in Figure 1. We decorate it with four
colors: red (R), green (G), orange (O), and black (B), representing the lock state along a potential
execution. We color all the vertices in which the lock &b->l is being taken with red, and all the
vertices in which it is being released with green. Since the entry vertex in the CFG is not a lock
operation, it can only be colored with one of the other colors: black or orange, meaning that the
vertex is outside, respectively, inside, a critical section. This gives rise to the two initial colorings

for our example, shown in Figures 3(a) and 3(b).
The next step is to induce total colorings, where all vertices have a color assigned, following

two rules: If a vertex is red (green), then all its uncolored successors are colored orange (black). If a
vertex is colored orange (black), then we just propagate the same color to successors. Figures 3(c)–
3(e) show all the induced colorings for the initial colorings of Figures 3(a) and 3(b).

Every orange vertex is reachable with the lock held, and every black vertex is reachable with the
lock released (assuming all paths are feasible in the program). Consequently, Figure 3(a) specifies
that the CFG is entered with the lock free, and Figure 3(b) assumes that the CFG is entered with
the lock held. Similarly, the existence of the back edge in Figures 3(c) and 3(d) implies that in a set
of possible executions, the branching vertex can be reached both with the lock released and held.

In Figure 3(c), the back edge is ill-colored, because the control flow reaches the same vertex
with the lock taken and free. Independently, the other dotted edge in the figure is also ill-colored,
this time because the vertex labeled G can be reached in a state in which the lock is not taken
(a black to green shift). All the ill-colored edges in Figures 3(d) and 3(e) are dotted as well.

To repair the back (O → B) edge in Figure 3(c), we remove it, insert a green vertex, and add the
O → G,G → B edges (i.e., insert a lock release at the end of the loop); to repair the left dotted

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

Patching Locking Bugs Statically with Crayons 56:7

edge, we can remove the green color (see Figure 3(f)). With an analogous analysis, we can derive
the repairs shown in Figures 3(g) and 3(h). We do not consider addition nor removal of orange or
black vertices, because they do not modify the coloring of their successors.

To report a repair to the developer, every graph and coloring manipulation performed is trans-
lated to lock operations. For example, the edits in Figure 3(f) are reported to the developer as:
(i) Remove unlock operation at x (ii) Insert lock operation between u and v . Where x ,u, and v are
CFG nodes identifiers.

Patch ranking. The patch generator returns many patch proposals for each buggy function. We
subsequently rank them to produce the order in which they are to be presented to the developer.

We use a simple logistic regression model to choose among possible repair patches (possible
critical sections in our example), aiming at minimizing the opaque errors. The model approximates
criticality for lines of code. It is trained on code from the same project that shows no locking
errors, but where the same resources (i.e., the same variables) are manipulated. If we observe that
certain resources are protected with the same lock elsewhere, then we gain confidence that lines
manipulating them in the problematic code should also be protected. We estimate the level of
confidence into a repair as a real number, depending on how well the regression model trained
on other uses of code agrees with the coloring produced by the patch generator. Then, we rank
the patch proposals according to these estimates.

To learn a model of criticality—that is, that predicts whether a line belongs to a critical section or
not—we use EBA to generate a dataset of CFGs. The CFGs are generated from correct code, with no
tracked errors, that uses the lock participating in the bug under repair. Each CFG contains features

that are either syntactic (e.g., variable names) or statically recovered information (e.g., memory
regions) about statements in lines of code. The ground truth for parameter fitting is obtained by
coloring the vertices in the CFG following the policy explained above.

We use a statistical measure that represents how critical resources are with respect to a lock.
For each feature, we estimate how characteristic (or discriminating) its value is for the critical
section. We consider a term possibly critical if it appears in a critical section, and non-critical if it
appears outside the critical section in non-buggy code. For example, in Table 1, if variable name a

appears exclusively within a critical section for the buggy lock, regardless of how often it appears,
then the probability that it is a critical resource is high. As a result, lines including this variable
name such as Lines 3, 6, and 8 in the code on the left side of Figure 1 should be protected with
higher probability, since they contain this critical feature. However, if a has not appeared in any
critical section in the reference corpus, then this lowers the probability that these lines need to be
protected. The criticality of a line is estimated from a linear combination of the criticality values
calculated for the features (e.g., variable names and variable types) in the line, with weights for
each features fit against the ground truth in the non-buggy code.

Once the regression model is trained on the non-buggy code, we use it to infer criticality between
0 and 1 for all lines of code in the synthesized repair candidates. Then, we compare this number
with the color associated by the repair synthesis algorithm. Intuitively, a candidate patch scores
higher, if its criticality score is consistent with the coloring, and lower if they disagree. Consider the
two patches in Figure 1. Assume that for Lines 3, 6, and 8 a very high criticality score is calculated
while the rest of the lines have lower criticality score, and that 1 and 0 are associated with black
and orange vertices, respectively. Hence, after comparison, the patch on the left is scored higher
than the one on the right (e.g., 0.9 versus 0.5). As a result, the patch on the left-hand side will be
ranked above the one on the right-hand side.

3 REPAIR SYNTHESIS

We now delve into the technical details of Crayon’s repair synthesis mechanism.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

56:8 J. Cruz-Carlon et al.

Fig. 4. Locking API correct and incorrect uses. Red (R) represents a lock call, green (G) an unlock call, orange

(O) represents a third statement in a critical section, and black (B) a statement outside.

3.1 Characterizing Sequential Locking Bugs

Throughout this article, we assume a lock l has two states, openl and closedl. The statement lock(l)
will set the state of l to closedl iff l is in the openl state. Analogously unlock(l) sets the state of l
to openl iff l is in the closedl state. Any other statement s does not modify the lock state. We can
formalize this specification using Hoare triples as follows:

{ openl } lock(l) { closedl }

{ closedl } unlock(l) { openl }

{ closedl } s { closedl }

{ openl } s { openl } .

To construct all possible API misuses, we assign a vertex to each Hoare triple R (ed),G (reen),
O (ranдe),B (lack) and draw an arrow between two vertices iff the precondition of the target
matches the post-condition of the source (see Figure 4(a)). By construction, any arrow not in
Figure 4(a) violates the composition of our Hoare triples. The complement of Figure 4(a) character-
izes all possible locking API misuses (see Figure 4(b)). We say two colors are consistent if there is
an arrow between them in Figure 4(a), we say they are inconsistent otherwise. Consequently, two
colors are inconsistent if they are adjacent in Figure 4(b).

Let Ge be the single exit node CFG of a function f such that e is the entry vertex. We define a
partial initial coloring C to be such that, for a vertex u:

C (u) =
⎧⎪⎨
⎪
⎩

R iff the vertex u is a lock operation on the lock l,

G iff the vertex u is an unlock operation on the lock l.
(2)

If the above equation does not define C for the entry vertex e , then we split the coloring in two,
CB and CO , equal to C everywhere, but CB (e) = B and CO (e) = O . Figures 3(a) and 3(b) show the
two initial colorings for the example of Figure 1.

We subsequently construct the set of all total induced colorings as a fix point (Figure 5). Each
induced coloring is constructed iteratively selecting an already colored node u and its uncolored
neighbors. Ifu’s color is B orO, then its neighbors will have the same color. Ifu’s color isR (G), then
its neighbors will be colored O (B). This color assignment is how our Hoare triplets composition
is translated into a coloring problem on the CFG. In Figures 3(c)–3(e), we show the three colorings
induced by Figures 3(a) and 3(b).

An induced coloring is buggy if an inconsistent edge uv exists such that the colors of its vertices
are inconsistent in the sense of Figure 4(b). In Figures 3(c)–3(e) all inconsistent edges are dotted.
Table 2 summarizes inconsistent colorings and the locking bugs they represent.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

Patching Locking Bugs Statically with Crayons 56:9

Fig. 5. A non-deterministic completion of an initial coloring, marking protected (orange) and unprotected

(black) code.

Table 2. Classification of Inconsistent Colors (Edges

in Figure 4(b)) into Lock API Misuses

Bug Type Witness [color trace]

lock without unlock O → R, R → R
unlock without lock B → G, G → G

missing lock B → O , G → O
missing unlock O → B, R → B

The notation x → y means that a CFG node is colored y

and its predecessor has color x .

Table 3. Summary of Repairs Considered by Our Tool

Bug Type Witness Repair Interpretation

lock without unlock O → R,R → R
Remove (last) R color Remove (last) lock taking call
Replace (last) R by G Replace (last) lock taking call by lock release call

unlock without lock B → G,G → G
Remove (last) G color Remove (last) lock release call
Replace (last) G by R Replace (last) lock release call by lock taking call

missing lock
B → O Insert R vertex Insert lock taking call
G → O Replace G by R Replace lock release call by lock taking call

missing unlock
O → B Insert G vertex Insert lock release call
R → B Replace R by G Replace lock taking call by lock release call

3.2 Generating Fixes

We combine Figures 4(a) and 4(b) to derive the repairs we consider. Table 3 summarizes all
considered repairs. If the error is a lock-without-unlock, then two repairs are possible: the last R
color (lock) can be removed from the induced coloring or replaced by G (unlock) in the induced
coloring. If the error is a missing-lock with the witness B → O, then since the only possible path
from B to O in Figure 4(a) is through an R vertex, we insert a new vertex colored R between the
vertices colored B and O . If the witness is G → O , then we replace the color G by R, or change
an unlock for a lock call. A lock-without-unlock is symmetric to an unlock-without-lock, and a
missing-lock is symmetric to a missing-unlock.

We define a coloring problem as a directed graph G, a coloring of G, a list of repairs, and a list
of inconsistent edges. To start the repair process, we create a coloring problem for each induced

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

56:10 J. Cruz-Carlon et al.

Fig. 6. Example of the repairs performed on the induced coloring in Figure 3(c). The ill-colored edges in panel

(a) (dotted edges) are annotated with the corresponding bug type. Panels (b) and (c) are the two calculated

repairs according to Table 3; the previously ill-colored edges are annotated with the corresponding repair.

coloring. We repair every inconsistent color pair in all coloring problems. Per each repair, we ex-
tract the initial coloring and the graph to create new coloring problems of all the new induced
colorings. The list of new problems is sorted greedily with respect to the number of inconsistent
edges in ascending order and only a predefined number, called candidate threshold, of top candi-
dates are considered for further repair. This pruning does not compromise coverage as the initial
coloring is preserved, but it helps with termination and convergence on a repaired CFG. If the
problem under repair has no inconsistent pairs, then we report the repairs as a candidate patch.
If the number of repairs exceeds a predefined threshold, then we give up the exploration of that
particular problem.

As far as we know, the number of correct initial colorings for an arbitrary CFG, that is, initial
colorings that induce a unique coloring without incorrect edges, is unknown (an open problem).
However, it is possible to construct directed graphs isomorphic to CFG graphs that accept an
exponential number of initial colorings all of which induce correct colorings. To construct them,
we consider a base graph consisting of six nodes such that it resembles an if-else with entry and
exit nodes. There exist four initial different colorings such that the entry and exit nodes are both
black. We can paste k copies of this base graph to create a bigger (CFG) graph, which will have 4k

different correct initial colorings with the root colored black. Thus, we do not aim at exploring all
colorings in Crayons.

Figure 6 shows the induced coloring in Figure 3(c) annotated with the type of bug as well as
the repairs obtained according to Table 3. Interestingly, Figure 6(c) introduces an opaque error,
cf. Figure 1, making the critical section too small. We minimize the possibility of showing this
kind of repairs to the developer by ranking the generated repairs using a model of code criticality,
discussed next.

3.3 Ranking Patch Proposals

The patch generator may produce more than one patch candidate. This motivates a mechanism to
rank them, such that the approach ultimately presents a small number of most likely patches to a
developer. If patch generation terminates successfully, then the patched candidate CFG contains
no ill-colored edges, and its coloring shows which nodes are assumed to be critical by the patch
candidate. To avoid introducing opaque errors, we aim to assess the correctness of this assumption,
and use this assessment to rank the patches.

Assume that we could obtain an oracle that for each node in the CFG can estimate criticality
as a real number between 0 and 1. We will explain how to construct such an oracle in detail in

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

Patching Locking Bugs Statically with Crayons 56:11

Section 4. Given such an oracle, we reduce the ranking problem for patches to computing the
agreement (via distance) between the patch’s conception of the critical section and the oracle’s.
We map the color ci of a node si to xi = 1 if it is critical, and to xi = 0 if it is non-critical. Let
wi ∈ [0, 1] be the criticality weight assigned by the oracle to si . We ignore the lock and unlock
nodes and compute the absolute value of the difference between the patch coloring and the oracle:

r =
∑

i

|xi −wi |. (3)

We rank higher the patches with a smaller error r .

4 LEARNING AND PREDICTING CRITICAL SECTIONS

We now detail the design of the Crayons’ criticality model for lines of code, that is, whether they
should be protected by a lock. We use this information to rank the produced patches (Section 3.3).

4.1 Learning Metrics

The criticality of a line (and consequently of each CFG vertex) is not explicit in C. However, we
intuit that, in a large project, competent programmers are likely to have written correct code using
the same lock elsewhere. We therefore learn an approximate model of criticality from functions
that use the lock involved in our bug, but that do not contain tracked bugs themselves. This re-
quires a metric that can numerically describe which program terms are typically used under the
protection of a lock, and not used without it. This is reminiscent of a similar idea used in document
summarization to identify natural language terms specific to a summarized document. We thus
adapt Term Frequency–Inverse Document Frequency (TF-IDF), a classic metric for identify-
ing the most characteristic terms from a document, to our domain. In natural language processing,
TF-IDF measures the importance and relevancy of a word to a document with respect to a collec-
tion of other documents, a reference. The TF-IDF of a word is directly proportional to the number
of its occurrences in the document of interest, and inversely proportional to the number of docu-
ments in the reference collection that contain the word. In our application, a resource is critical if it
is specific to the critical sections in the code base, and it is not critical if it appears in the collection
of other code, outside known critical sections. The feature values (respectively, effects and regions,
names, and types) are the terms, and we use TF-IDF to estimate how discriminating each feature is
for the critical section; this information in turn is used to train a model to estimate line criticality.

Generating a training corpus. Given a buggy function and a lock l participating in the bug, we
first obtain a corpus of presumably correct intra-procedural CFGs from the system under repair.
By presumably correct, we mean that the static analyzer does not flag lock usage on this code. We
use other functions in the same file or in files nearby in the project’s source tree (for the Kernel,
we choose files in the same subsystem). The CFGs are decorated with the static abstraction of
resources and colored as described in Section 2. Every vertex in a labeled CFG contains a reference
to the original line, the computational effects and memory regions involved (aliasing information),
as well as types and names of the variables occurring in the line. The entire training corpus is
constructed automatically during repair, given the program code base and the involved lock l . It
has to be done in the same run of the static analyzer that found the bug, so that the used abstract
memory regions are the same in the CFG, and the region assigned to l during bug finding can be
used to detect when the incriminated lock is manipulated in a CFG.

Terms (features). We use the following features as terms for TF-IDF. Each feature describes an
aspect of statements/resources in a line si in the code.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

56:12 J. Cruz-Carlon et al.

Regions R (si). All memory regions read and modified by a line. The set of participating regions
abstractly characterizes the resources affected by a line (possibly protected by the lock). Table 1
shows regions embedded into effects, but we treat them as a separate feature during learning.
For example, reg23, reg153 in Lines 1 and 2 are regions.

Effects & Regions ER (si). All effects produced in the line of code, parameterized by the affected
regions. Effects provide an abstract characterization of the semantics of the line. Shown in the
third column of Table 1, right after the source code.

Variable NamesVN (si). Names that appear in a line. The feature provides a different character-
ization of resources than regions. Names are oblivious to aliasing but carry meaning in the text
of the name, which is absent from abstract regions identifiers. Shown in the rightmost column
of Table 1, before each slash.

Variable TypesVT (si). Types of variables that appear in a line. Type names carry information
about the resources, too. For instance, modifications of a linked list are likely to be protected to
get thread safety. Shown after each slash in Table 1.

Estimating criticality. We first explain how to calculate TF-IDF for a single value of a single
feature. The goal is to obtain a metric that increases proportionally with the number of times
that the value appears in critical sections. Additionally, it is discounted by the number of times
that it appears outside the critical section in the reference collection. Let critical(t), respectively,
non-critical(t), represent the number of occurrences of the feature value t (a token) appearing in a
line labeled as critical, respectively, non-critical, in the corpus. Let N be the total number of lines
in the corpus and n is the number of lines in which t appears in. Then,

TF-IDF(t) =
critical(t)

critical(t) + a · non-critical(t)
· N
n
, (4)

where a is a parameter controlling the importance of appearance in non-critical vertices of CFGs.
When a is large, even a small number of occurrences of the feature value outside critical vertices,
makes the score low. In this article, we use a = 1, 10, 100, 1, 000, but exploring other values is
potentially interesting in the future.

After computing the TF-IDF values for each valuation of each feature separately in each line,
we calculate the weight (criticality) of the lines. The criticality of a line depends on the criticality
of the valuations of regions, effects, variable names and types that appear in the line. To obtain
a single value representing the criticality of the entire line with respect to a single feature, say a
variable name, we either (i) sum the criticality values of all variable names in the line (an additive
superposition) or (ii) take the maximum value of criticality among the variable names appearing
in the line (winner-takes-all). The intuition behind considering the sum of values is that if there
are several variable names that have a positive criticality this means that the line has a higher
probability to be critical. The intuition behind considering the maximum value is that the criticality
of a line is directly proportional to the most critical variable name (and other features) in that line.
This criticality value is calculated for all four features in the same way. After calculating these
four values that represent the criticality for the four features, we combine these values to obtain
a weight for each line. But the contribution and influence of each feature in the weight of a line is
not obvious and should be estimated using a learning method such as linear regression.

The following equation shows the calculation of criticality of a line as a linear combination of the
TF-IDF value of the features present in the line. The criticality of line si , denoted wi , is estimated
as

wi = α
⊕

t ∈R(si)

TF-IDF (t) + β
⊕

t ∈ER(si)

TF-IDF (t) + γ
⊕

t ∈VN(si)

TF-IDF (t) + ω
⊕

t ∈VT(si)

TF-IDF (t), (5)

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

Patching Locking Bugs Statically with Crayons 56:13

where we use two operations: ⊕ = {+,max}. Intuitively, using + takes into account the combined
importance (TF-IDF) of terms and using max means taking into account only the strongest terms in
each line—so a line is critical as soon as a single resource in a line is critical. In the above formula, α ,
β , γ , andω are coefficients that determine the contribution of each feature in the weight calculated
for each line. These coefficients are tuned using logistic linear regression. Note that the TF-IDF of
feature values that do not appear in any critical section is zero (cf. Equation (4)). Hence, these
values do not contribute to the weight of the line. Logistic regression guarantees that wi ∈ [0; 1].

5 EXPERIMENTAL EVALUATION

We implemented the above repair synthesis, criticality learning, and proposal ranking in an APR
tool Crayons. We used EBA [16] as the static analyzer. The repair synthesis is implemented in
OCaml. The maximum repair threshold is set to 6, and the candidate threshold to 3, that is, the
tool will suggest repairs with at most six edits and in each round of repair, it will keep the three
coloring problems with the fewest inconsistently colored edges. Given the nature of the bugs
we are targeting, six edits per repair is a good heuristic upper bound. A six-edit patch means that
the developer has forgotten to release the lock on at most six distinct error paths. In practice most
bug-fixing patches are short, fewer than five edits [17]. Keeping the top three coloring problems
allow us to explore our search space without committing to a particular path. We used parallel
map functions to calculate patch candidates when possible.

We use the regression and scaling algorithms from sci-kit (https://scikit-learn.org/) to imple-
ment the criticality estimation component, in Python. As regression tends to perform better when
numerical input variables are normalized, we scale the input term values to zero mean and unit vari-
ance, before feeding them into the regression algorithm. Since the data for training is imbalanced
(there are many more non-critical than the critical lines), we use a variant of regression with class
weighting. The model is fined tuned for best AUC-ROC [18], which measures how well the model
distinguishes between critical and non-critical lines. We pick the best performing hyper-parameter
values (max iterations, tolerance for stopping criteria and choice of solver for the LogisticRegres-
sion model in the library) on the training corpus, before we use it to predict line criticality.

We used ten intra-procedural double-lock bugs from the work of Abal [16] to guide the design
process. Once we were satisfied with the results, we selected 100 locking bugs from the Linux
Kernel git history to evaluate its performance (Section 5.1). The key research question of interest
are:

RQ1. To what extent does Crayons suggest and prioritize plausible patches similar to those pro-
posed by developers (Section 5.1)?

We complemented the above main research question, with two additional ones, aimed at each
of Crayons’ main components:

RQ2. To what extent does Crayons synthesize high quality repair proposals (Section 5.2)?
RQ3. How effective is the learnt oracle at discriminating critical and non-critical code

(Section 5.3)?

5.1 RQ1: Quality of the Patch Synthesis and Ranking

This first research question evaluates Crayons as a whole, seeking to establish how well Crayons

construct and rank patch candidates for real-world bugs in the Linux Kernel.

Experiment design. To empirically validate Crayons as a whole, we selected historical bugs in
the Linux Kernel git history, ran them through an implementation of our approach, and compared
the generated patches and their ranking against the historical ground truth.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

https://scikit-learn.org/

56:14 J. Cruz-Carlon et al.

Table 4. Statistics of Commits Discarded from Consideration in the Evaluation Data Set Design Process

Discard class Count

Bugs outside the targeted group

Duplicated commits 1
Fix interfunctional bug 2
Fix interaction between two locking APIs 5
API misuse was about what was protected 4
Locking API not supported by EBA 7
EBA crashes 10

Limitations of implementation of Crayons

Locking API not supported by Crayons 4
Crayons failed to construct a single root CFG 3
Crayons failed to construct the initial coloring 1

Data selection. Locking is ubiquitous in operating systems, particularly in the Linux Kernel (e.g.,
the string lock appears in more than 124,000 git commits). Selecting a test set would be difficult
if we approached it by manually reviewing 124,000 commits. Moreover, we are unaware of any
particular name for the handled bugs within the Linux Kernel community that could be used as a
more narrow search term. Instead, we decided to select our test set from the commits authored by
Dan Carpenter, an independent (from us) expert contributor known for fixing bugs of this kind.
He is also the original author of the Linux-specific bug finding tool Smatch.2

We started by identifying 935 commits authored by Carpenter and including the word lock

within the header, summary, or the patch. We preprocessed all the files modified by these com-
mits using a “mid-life” version of GCC compiler: GCC 6.2.1 on a Fedora Workstation 25. Files from
711 commits were preprocessed correctly. We manually selected random commits out of these
until we collected 100 bugs. The commits were not selected by any particular ordering, not even
git timestamps, and the filtering criterion was that the bugs involved lock manipulation. Table 4
summarizes the reasons used to discard commits during sampling. Bugs were chiefly discarded for
reasons outside control of Crayons (29), but some were also removed because of limitations in
our prototype, which could not complete execution (8). In three cases, the parsing component, on
which Crayons and EBA rely, did not create a single rooted CFG. Crayons contains checks in its
translation from CFG to directed graph such that when the constructed graph contains more than
one root it discards the function. In one other case, this interaction with the parser component is
responsible for Crayons not being able to construct an initial coloring, in this case several control
structures were removed and an artificial double lock bug was introduced using statements origi-
nally present in the function; once this modifications were made, Crayons was able to construct
an initial coloring.

Among the 100 commits selected for testing, we chose to include 19 that patch locking API-
misuse errors using no-busy wait locking (e.g., mutex_lock_interruptible), that is, the calling thread
gets a return code indicating whether it holds the lock or not instead of spinning until the lock is
acquired. These kind of APIs do not conform precisely with our specification described in Section 3,
but they are close enough; hence, we included them to study the precision of the suggested patches
modulo the predicted imprecision. We call this set of bugs non-blocking API bugs.

In total our test set is composed of 76 missing lock/unlock bugs, 12 double lock bugs and 12
unlock without lock bugs. Table 5 shows further statistics on the selected commits.

Execution and results. Crayons were run for each of the 100 bugs. We divided the synthesized
patches into the following categories by closeness to the developer patch:

2https://repo.or.cz/w/smatch.git.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

https://repo.or.cz/w/smatch.git

Patching Locking Bugs Statically with Crayons 56:15

Table 5. Descriptive Statistics for Commits Included in the

Evaluation Data Set

Measurement #LOC |CFG| #CNodes

Mean 67.8 61.2 14.8
Median 53 49 11
Mode 53 23 6
Standard Deviation 57.43 47.73 12.94
Min 12 10 1
Max 414 265 59

Total 6,509 5,876 1,425

The column labeled #LOC are the number of lines of code in the buggy files.

The |CFG | column show the test suite commits CFGs size statistics. Finally,

the #CNodes column shows the statistics of the number of control nodes in

the selected commits.

• Developer patch. The lock API call changes suggested by Crayons are the same as the ones
the developer applied.
• Equivalent patch. The edits suggested by Crayons in lock API calls are not the same as the

developer applied, but the colorings of both solutions are the same.
• Close patches for non-blocking APIs. The edits suggested by Crayons include a predicted

lock release instruction that arises from imperfect dealing with non-blocking APIs (e.g.,
mutex_lock_interruptible). If these predicted instruction is removed, then the remaining edits
give the Developer or equivalent.
• Over-protects. The colorings of both solutions are not the same, but the critical section of the

developer’s solution is contained within the critical section suggested by Crayons.
• Possibly patched. The original C code does not manipulate locks directly; they are introduced

as part of macro expansion or inlining. Hence, we cannot be sure of Crayons correctness.
• Incorrect. The colorings of both solutions are not the same and the critical section of the

developer’s solution overlaps with the critical section suggested by Crayons.

We consider the patches in the first three groups as successful results for Crayons. Figure 7 shows
how the patch proposals in the first three categories were ranked by Crayons; the lower the rank
the higher on the position of suggestions presented to the developer the patch is. Hence, the higher
the left-hand side bars in Figure 7 the better.

The median of the ranks for patches that match the developer’s version as well as patches that
we classified as equivalent to the human-provided solution is 1, that is the majority of these kinds of
patches were suggested first. For the non-blocking API bugs, the median rank of the corresponding
Close patches for non-blocking APIs suggestions was 3. (Recall that this bugs are not strictly within
the scope of the tool, but nevertheless the produced results are reasonable.) For 15 evaluation cases
no successful patch was generated—these cases are not included in Figure 7.

It is possible that the specific characteristics of a set of repairs leads the Developer/Equivalent
patch to get the same rank as other suggestions. Currently, we do not perform any tie-breaking.

We consider a Crayons generated patch to be unsuccessful when it is within the category Over-
protects, Possibly Patched, or Incorrect. The commit 79d753209245 (double unlock) is an example
of the former. Crayons proposes a critical section three statements bigger than the developer solu-
tion. In addition, our learning infrastructure correlated a variable representing a file system inode
with taking the buggy lock. Thus the model wrongly learns that each time the variable is read or
written, the lock must be held. Since the function opens with assigning the variable in question,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

https://github.com/torvalds/linux/commit/79d753209245

56:16 J. Cruz-Carlon et al.

Fig. 7. Ranking results, the red line shows the median: for 51 of 100 evaluation bugs the highest or second-

highest ranked patch is identical or equivalent to the developer patch.

patches that assumed the function to be called with the lock held (orange entry vertex) were
ranked higher than the patches that did not, resulting in mis-ranking of most of the proposals.

In response to RQ1, we note that for 63% of evaluation cases, a successful repair proposal (iden-
tical or similar to the one already merged into the kernel) has been synthesized and ranked within
the top three and 74% within the top five. It appears, thus, that Crayons is able to suggest and
prioritize plausible patches well, which means that a tool like Crayons could reasonably be used
as part of interactive patching interface, even if only three patch proposals were to be presented
to the user.

5.2 RQ2: Feasibility of Static Template-based Patch Generation

We now turn our attention only to the synthesis part of Crayons. In particular, we seek to evaluate
the quality of the repair proposals generated.

Experiment design. We want to assess whether Crayons’ patch generation method presented
in Section 3 scales for real files and whether it is able to produce patches that human developers
would use. We focus purely on the feasibility of producing a good patch, ignoring ranking and
ordering patches. This part of the experiments is performed on C files (in the git history of the
Linux Kernel) with known locking API bugs that have been fixed by kernel developers (using the
same dataset as for RQ1).

Each C file is first pre-processed, and the patch generator is given the function name and the lock
details for the bug in question. After the patch candidates have been constructed, we check if they
contain the human solution from the git history (our ground truth); in the case that it is not found,
we look for an equivalent or the closest one. We say a repair is equivalent to the developer’s patch
when the lock behavior is the same in both solutions. In the case that the patches suggested by
our tool are neither, we look for the one with the closest locking characteristics to the developer’s
solution; we elaborate on our definition of “close” in the results, below. Because our analysis is path
insensitive, Crayons may introduce more modifications than the developer, e.g., when a function
is meant to terminate with the lock acquired in some branches but released in others Crayons

will commit to a solution with the same lock state on all branches.

Data selection. We used the same data set as for RQ1.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

Patching Locking Bugs Statically with Crayons 56:17

Table 6. Classification of the Patches Generated by Crayons and the Number of Patches in Each Category

Class name Description Patch count

Developer patch The proposed fix matches the developer’s solution 28
Equivalent patch The induced colorings of the developer solution matches the

ones from the suggested patch
38

Close patches for non-
blocking APIs

The proposed repair includes manipulations arising from anal-
ysis imprecisions

19

Over-protecting The critical section of the suggested patch is bigger than the
human-made solution

8

Possibly patched We cannot be sure of the correctness of this patch as the original
(non-preprocessed) code does not manipulate locks directly

3

Incorrect The proposed solution induces an inter-functional bug 4

For each bug the best result (the most similar to human patch) synthesized by Crayons is classified.

Execution and results. The experiments were performed on a ThinkPad x250 with a 2.3 GHz
dual core i5-5300U CPU and 8 GB RAM running Fedora 32 (Workstation). The average time for
generating patches per file is 23.14 s. For most bugs, we produce seven repair candidates but the
distribution is heavily skewed to the right with the median number of candidates per bug being
12, and the mean 20.86 ± 25.81 (note the high variance). The furthest outlier received 143 repair
candidates.

To understand the characteristics of the synthesized patches, we classify them into six broad
categories, attempting to describe the closeness of the proposed repair to the one provided by
a developer. The classes range from identical with the human-made patch to introducing an
inter-functional locking bug. Table 6 list all the categories, their descriptions (for quick reference),
and patch counts.

Equivalent patches arise when the developer introduced a goto label with the fix (e.g., unlock call)
and then fixed various paths with a jump to the newly introduced label. In other cases, the label
was already present, but not all execution paths would reach it, then the developer introduced the
missing goto jumps; in all these cases Crayons proposes introducing the correct locking API call at
each branch. Close patches for non-blocking APIs suggestions are the proposals that Crayons gen-
erated for the non-blocking API bugs set (Section 5.3). These bugs use a non-busy wait locking API,
such API is not precisely modeled by our specification, because when a lock function is called (e.g.,
mutex_lock_interruptible) a status code is returned indicating whether the lock was successfully
acquired or not instead of performing a busy wait. Crayons assume the lock acquiring function
performs a busy wait, so the code that actually checks for lock acquisition is marked as protected,
hence when repairing such bugs an unlock after this code is inserted by Crayons, however, if this
extra unlock is removed then the patch is equivalent or identical to the human-made solution. We
discuss how to address this limitation in Section 6.1. Patches that over protect are primarily due to
Crayons introducing an API call as the last statement before a control flow join point while the
developer introduced it before. In a few cases (Possibly patched), we cannot be sure if the patch
is correct as the original code does not manipulate locks directly, but they are introduced as part
of macro expansions. Finally, incorrect patches are those calculated by Crayons such that if ap-
plied, they would introduce an inter-functional bug; it could be an inter-functional API misuse or
a critical section breaking bug, that is, the lock should not be released on some control paths and
Crayons introduces unlocks on those.

The Equivalent patch class is further divided into five classes depending on what control flow
mechanism the developer employed in the solution. The most common repair was the introduction

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

56:18 J. Cruz-Carlon et al.

Table 7. Equivalent and Close Patches for Non-blocking APIs Sub-classes and their Count

Repair Class Repair sub-class Count

Equivalent Patch

Equivalent 1
Equivalent (goto jmp) 18
Equivalent (goto label + jmp) 16
Equivalent (break) 3

Close patches for non-blocking APIs

Equivalent 9
Equivalent (break) 1
Equivalent (goto label + jmp) 7
Equivalent (goto jmp) 1
Developer 1

of goto jumps to existing labels, followed by repairs that introduce a goto label and a jump to it.
The Close patches for non-blocking APIs suggestions are subdivided similarly, except that they
include an an extra unlock due to the analysis imprecision of our tool when handling non-busy
wait locking APIs. Table 7 lists the Equivalent and Close patches for non-blocking APIs sub-classes
and their sizes.

Over-protecting repairs emerge when the developer, using criticality knowledge, rearranges the
lock acquisition or release (as in commit 79d7532 in Section 5.3) to make the critical section smaller
but overlapping with the original one. In contrast Crayons suggest a conservative repair inserting
API calls at join points.

In four cases (4%) Crayons proposed patches that, if adopted, would introduce inter-functional
bugs. These bugs are of two types, locking API misuse and inter-functional critical section break-
age. Inter-functional API misuses are introduced in one case (1%) when the proposed repair sug-
gests to insert an unlock after a function call, however the function being called reacquires the
buggy lock. However, critical section breakage errors are introduced when a function should re-
turn with the lock held in some paths and with the lock released in others. Crayons uses a single
virtual sink node to which all exit nodes are redirected and detects this lock state difference as a
coloring problem at the sink. To fix it, Crayons transforms the graph and the coloring so that all
paths leave the control with the lock held or released but not both. In Section 6.1, we discuss how
we can address this limitation.

5.3 RQ3: The Quality of the Learnt Oracle

Experiment design. We want to evaluate how well the learned models predict criticality. To
answer RQ3, we simulate training and criticality evaluation on a set of labeled CFGs, with types,
names, regions, and effects, generated from 1,000 non-buggy files in the Linux Kernel source tree
for release 5.6.19.

We split the generated set into the training evaluation sets, ensuring that there is no information
flow between the two to avoid overfitting. We only consider files in which at least one lock is used.
For each identified lock, we select for evaluation one function f that manipulates or uses it. The
CFGs from the remaining functions in the same file then serve as the training set F . If there is no
function in the C file that uses the same lock, then we explore files in the same subsystem to find
a function that uses the same lock, i.e., a lock with the same name and type. We grow the training
set with CFGs from other files that belong to the same subsystem in the Linux Kernel.

We calculate the TF-IDF for features in the body of the evaluation function f and in all code in
the training set F . Tokens are extracted with respect to each of the four features listed in Section 4.1,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

https://github.com/torvalds/linux/commit/79d7532

Patching Locking Bugs Statically with Crayons 56:19

Table 8. The Average AUC-ROC Calculated Over 100 Iterations for Seven Subsystems, under Different

Choices of the TF-IDF Parameter a, and Two Modes of Criticality Superposition (Additive Versus

Winner-takes-all)

mode = sum (additive) mode = max (winner-takes-all)
Subsystem #LOC a = 1 a = 10 a = 100 a = 1000 a = 1 a = 10 a = 100 a = 1000
drivers 245928 0.75 0.75 0.76 0.76 0.76 0.77 0.77 0.77
fs 14555 0.72 0.72 0.72 0.72 0.74 0.74 0.74 0.74
sound 27948 0.75 0.76 0.76 0.76 0.75 0.78 0.78 0.78
kernel 6112 0.71 0.71 0.71 0.71 0.72 0.72 0.72 0.72
net 10816 0.76 0.76 0.76 0.76 0.77 0.78 0.78 0.78
lib 1024 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74
arch 6195 0.73 0.73 0.77 0.78 0.73 0.73 0.80 0.80

#LOC is the total number of lines in the bodies of functions in each subsystem after preprocessing; header files are not

counted except if containing functions.

and we calculate TF-IDF per line, summing over or taking max of multiple feature values like in
Equation (5). This is congruent with how the learning component is used for ranking in our static
repair method.

Performance evaluation. Area Under The Curve (AUC) Receiver Operating Characteris-

tics (ROC) (in short AUC-ROC) is an established evaluation metric for checking classification
model performance. The metric indicates how well a model distinguishes between classes. The
range of values for this metric is [0,1]; higher is better. The value of 0.5 indicates that the
model has no class separation capacity and values of 0 and 1, respectively, represent perfect
misclassification and perfect classification for a classifier. We use this metric to evaluate the
performance of the models that are learned for each sub-system as explained above. It allows us
to avoid selecting a specific classification threshold, which is consistent with the ranking method
described in Section 3.3—our patch prioritization does not use a threshold either, but rather uses
the real number from the classifier directly.

Data selection. The search in the kernel codebase (version 5.6.19) gives 3,352 candidate files
that have a lock acquired in at least one function (restricted to the files that are processed by EBA
within a 60-min time limit and within 24 h total time limit for seven subsystems). We used 1,000
random files, of the search results, from seven subsystems: Drivers, Net, Fs, Sound, Kernel, Lib,
and Arch. The labeled CFGs for these files are generated using EBA (Section 4), separately per
each lock in the file. The average size of the files included in the experiments is 1.5 KB. We hold
out 20% of the set for evaluation. We run the experiments in 100 iterations for each subsystem
and report the average AUC-ROC. The average time for each iteration is 2.59 s.

Execution and results. The calculation of TF-IDF for all files is performed on a cluster of Linux
machines with eighty 2.20 GHz CPU nodes. We parallelized this calculation per file. Depending
on the size of the input a single file is processed in few minutes, but it can take up to hours (due
to the sheer number of features involved). There are plenty of opportunities to optimize this part
that we have not explored. The actual regression and evaluation are relatively fast (they take ca.
9 minutes). We do not report the precise times, as we used a time shared machine with other
users for this experiment.

Figure 8 shows the obtained AUC-ROC curve for the seven kernel subsystems and Table 8
details the values obtained. The performance of the best tuned classifiers varies between 0.71–0.80
(the fraction of correctly ordered positive and negative cases). This is consistent with the overall

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

56:20 J. Cruz-Carlon et al.

Fig. 8. ROC curve calculated for data from seven sub-systems in the Linux Kernel (with a = 1,000 and mode =

max).

performance of Crayons discussed in Section 5.1, so it is likely responsibly for the quality of the
obtained ranking.

We were also interested in how the different features contribute to the quality of the classifier,
and, in particular, whether there is any benefit of using the static analyzer’s memory and effect
abstractions, over the syntactic information in the names of variables and types. The regression
mechanism captures this information in the fitted coefficients of the linear Equation (5). The aver-
age weight value calculated for the four features (assuming a = 1,000 and mode = max, which are
the values used in patch ranking) is as follows:

regions: −0.1, effects (with regions): 1.0, variable type: 0.2, variable name: 0.3,

showing that the effects with regions embedded are the feature that has the most influence on
correct prediction, and it is considerably more informative than the syntactic features. Indeed, the
influence of the other features is minimal.

To conclude, the results of the experiments show that we can obtain models constructed by
the learning method, with performance 0.71–0.80, which can effectively predict criticality of
lines, largely thanks to the semantic information about effects and regions produced by the static
analyzer.

6 DISCUSSION

6.1 Limitations of Crayons APR

We want to briefly reflect on the limitations of our APR method. The Close patches for non-
blocking APIs patch problem (Section 5.2), arising for no-busy-wait locks, is not an inher-
ent issue with the method, but more of an implementation issue. To handle these patches
first class, the semantic part of a tool implementing our approach must be able to distin-
guish when such an API is used and create an initial coloring that only assigns orange to
the first statement inside the critical section. According to our test cases, it seems a no
busy wait locking API, like mutex_lock_interruptible, is used within the condition of an
if as follows: if(mutex_lock_interruptible(l)) return v; pstmt1; such that v is a default
error code and pstmt1 is the first protected statement. Hence, instead of assigning red to
mutex_lock_interruptible(l), the initial coloring should only assign orange to pstmt1.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

Patching Locking Bugs Statically with Crayons 56:21

Fig. 9. Lock order model for two locks i and l when lock l must be taken after i has been acquired and

released before i . The left-hand side of the dotted line models the correct API use for the lock l while the

right-hand side models it for the lock i . The crossing black arrows define the acquisition order.

The Over-protecting class (Section 5.1) exposes a limitation of Crayons’ understanding of crit-
ical sections. In the patch generator, we determine a critical section by the placement of the API
calls in the initial coloring. Then repair transformations are performed at the latest valid point, e.g.,
at control flow join points. Patches in this class propose a larger than necessary critical section,
and the tool is not attempting to synthesize smaller proposals. A compelling alternative would be
to integrate the criticality model and the synthesizer more tightly, so that a more refined initial
coloring is produced, e.g., assigning black to statements that surely are not critical, and orange

to statements that surely should be protected. This would let our synthesis machinery construct
candidates that respect those constraints. Exploring these possibilities is left to the future work.

Presently Crayons do not handle functions where the state of the lock is different at different
exit points. To address this issue, at some extent, we could classify the exit points according to
their lock state and the available semantic information (e.g., successful or failed execution) and
make sure the classes do not intersect (i.e., all successful executions leave the function holding the
lock and only the failed executions release the lock).

Our repairs may introduce deadlocks between threads, if they change the order of operation be-
tween distinct locks. Our approach could be modified to handle lock order as well. Figure 9 shows
how the use of two locks i and l could be expressed when the acquisition of lock l must happen after
lock’s i . The construction of this model can be automatized once the lock order is defined, which
we would like to add as an additional learning objective. However, as we generate human-made
patches for many cases now, this is unlikely to improve results practically (while reasoning about
concurrent deadlocks statically requires an entirely different machinery, e.g., Reference [19]).

Finally, Crayons does not serialize patches to the diff format applicable to the source files in
C. This is because patches need to be applied to code before preprocessing, and reversing the
preprocessing is a difficult problem, which requires dedicated research effort.

6.2 Threats to Validity of the Evaluation Experiments

Internal Validity. In the experiments for RQ3, we generate the corpus of labeled CFGs without
knowing that the subject source files do not contain double-lock bugs. This is a reasonable assump-
tion. Bugs are rare and an odd file containing a bug should not influence the results much. In fact,
this setup reflects the way the oracle is later used for ranking: Since EBA is incomplete, we cannot
be sure that when ranking bug candidates we will not be learning from buggy functions as well.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

56:22 J. Cruz-Carlon et al.

EBA generates CFGs including line numbers, the set of effects, regions, variable names and
types for each line, for all lines except for the branching points, where only the information about
the regions and effects is presented. This reduces the accuracy in learning the criticality model
in comparison to having the full range of features in all lines. Similarly, in some places the name
and type of a struct used in the line is included without the name and the type of the accessed
member. These problems do not invalidate the results. Resolving them would likely lead to a
better ranking of the patches.

External Validity. The development of Crayons has been guided by the 10 double-lock bugs
in the Linux Kernel described by Abal et al. [16]. To avoid bias in evaluation, the experiments
of Section 5 have been executed on 100 different cases of lock manipulation bugs fixed by Dan
Carpenter in the Linux Kernel history. There is a risk of the tool performing particularly well on
Carpenter’s bugs by accident. However, constructing suitable sets of confirmed bugs for a system
of complexity and scale of the Linux Kernel is extremely difficult and requires expert knowledge.
Thus to avoid construct validity issues, we rely on known historical bugs that have been fixed by an
expert. The design of the tool has followed broad semantic principles, not the work of this expert,
though. Furthermore, we used a rather generic metric (sum of errors) for creating the ranking to
avoid biasing the design towards the evaluation set. At the same time, being able to evaluate on
real examples gives us confidence that the method is scalable and sophisticated enough for real
problems.

6.3 Beyond Locking API Misuses

An interesting question is: To what extent can Crayons be generalized/adapted to automatically

suggest patches for misuses of other APIs? To address this question, we focus on Crayons’ main
components.

The labels on Figure 4(a) reflect how the pre-conditions and post-conditions of our Hoare triples
relate. This means that we can replace them by any other Hoare triples as long as the graph depicts
their relation, that is, the post-condition of any arrow source matches the pre-condition of its head.
The graph in Figure 4(a) neither imposes any restriction to the type or form of the statement of
the Hore triple. It can be a function call in the way we use it in the present article or a block of
statements; it can even be expressed not as a C statement but as an intermediate representation
statement. This allows more complex statements to be considered (e.g., as in bug c202e2ebe1dc).
The misuse graph in Figure 4(b) is defined in terms of the graph in Figure 4(a) and the repairs in
Table 3 are defined by considering the colors of the nodes in Figure 4. It is only when we interpret
the colors of the nodes back to the Hoare triplets’ functions (lock, unlock) that we give the repairs
a meaning in terms of a locking API.

Crayons’ learning component is also driven by labeling. To learn other APIs the labeling needs
to be consistent with the one used on the synthesis part. In learning, we use Equation (4) as our
criticality heuristic and Equation (5) as a measure for our line labeling. The general from of the
equation for calculating the weight of lines can be considered as

wi (h) = α
⊕

t ∈R(si)

h(t) + β
⊕

t ∈ER(si)

h(t) + γ
⊕

t ∈VN(si)

h(t) + ω
⊕

t ∈VT(si)

h(t). (6)

Equation (6) suggests that to generalize Crayons’ learning component only designing a new
learning heuristic (h) is required. For example, in case of a K-function APIs, this heuristic can be
a weight obtained using a multilabel classifier. Furthermore, this observation also suggest a future
work research question: to what extent Crayons learning component can be API agnostic?

We hypothesize that if the tracking characteristic (criticality, memory management) is ex-
pressible in the language’s grammar (e.g., variable assignment and use in the case of memory

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

https://github.com/torvalds/linux/commit/c202e2ebe1dc

Patching Locking Bugs Statically with Crayons 56:23

Fig. 10. Memory management API correct and incorrect uses.

management) then learning can be reduced to a form of liveness analysis. However, when the
tracking characteristic is not expressible in the language’s grammar (e.g., which statements must
be protected by a given lock), then our learning proposal is applicable out-of-the-box considering
the modifications we discussed earlier.

Figure 10(a) depicts how a memory management API can be modeled by relabeling the nodes in
Figure 4(a). This model assumes an infinite amount of memory, that is, malloc never returns NULL;
modeling NULL return is equivalent to modeling non-busy-wait locks. Figure 10(b) shows what
memory management API misuses are derived from Figure 10(a). The main technical difference
between a locking API and a memory management API is that critical sections are significantly
smaller compared to live sections, e.g., a memory location reservation can live through a series
of function calls before its release. This difference implies that to have a more precise view of
the program, using a strong alias analysis is required as well as a constraint solver. The former
is needed, because the likelihood of introducing aliases (e.g., function pointers) increases with
the size of the code. The latter is needed to keep track of functions that return different states
(return codes) in which the tracked property (memory management) is not consistent among them.
However, we believe it can be possible for Crayons to tackle simpler intra-functional memory
bugs, e.g., 1b9dadba5022.

6.4 A Static APR Architecture

Our previous discussion suggests an architecture for static APR that we depict in Figure 11. It is
composed of five main modules: Static Analysis, Learning Oracle, Fault Localization, Patch Gener-
ation, and Patch Ranking. The Static Analysis module is responsible for collecting and providing
static analysis(es) results. The Learning Oracle module generalizes the information provided by the
Static Analysis module; if the Static Analysis module is precise enough to properly rank sugges-
tions for the repairs under consideration, then the Learning Oracle can be reduced to an identity
module.

The Fault Localization module is responsible for bug finding while the Patch Generation module
generates patch candidates; both obtain their program information from the Static Analysis mod-
ule. Finally, the Patch Ranking module, aided by the Learning Oracle, ranks the patches generated
by the Patch Generation module to be presented to the user.

Figure 12 shows how we realized our architecture proposal in Crayons. We use the EBA Bug
Finder (Section 2.1) as the Static Analysis and Fault Localization modules. Our coloring algorithm
(Section 3.2) conforms the Patch Generation module. Our technique for learning and predicting
critical sections in Section 4 composes the Learning Oracle module and finally the difference

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

https://github.com/torvalds/linux/commit/1b9dadba5022

56:24 J. Cruz-Carlon et al.

Fig. 11. Static Automatic Program Repair Architecture. The boxes represent the main components and the

arrows how the information flow between them.

Fig. 12. Crayons realization of the architecture in Figure 11.

between the oracle’s prediction and the critical sections of the proposed repair in Equation (3)
is our Patch Ranking module.

7 RELATED WORK

Program repair concerns the general problem of automatically producing source-level patches for
bugs in programs [1]. Much of the research in APR focuses on dynamic repair, which uses test
cases to identify bugs and validate patches. Techniques vary in patch construction methodology,
from heuristic application of mutation operators [2, 7, 8], to use of inductive program synthesis
over inferred specifications to construct replacement code [9, 10, 20], to combinations of both
semantic and heuristic approaches [21]. Certain classes of dynamic repair have seen adoption in
industry contexts [22, 23]. However, tests are only suitable for identifying certain types of bugs
in certain classes of software. Some bugs are difficult to test for deterministically, like resource
leaks or concurrency errors, while certain types of software (like many parts of the Linux Kernel)
are not amenable to widespread automated testing. Most general-purpose, test-based, dynamic
approaches do not readily apply to our domain.

Static analysis techniques are growing in popularity to find such bugs in practice [24]. The fact
that fixing statically identified bugs remains a largely manual process is a barrier to widespread
adoption of such tools [25, 26]. To that end, some static analyzers have begun suggesting light-
weight “quick fixes” [27], but these tend to not be very semantically deep (e.g., inserting the final

modifier). Researchers have recently sought to develop more complex templates for such warn-
ings, either manually [28, 29] or using machine learning over source control histories [30, 31].

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

Patching Locking Bugs Statically with Crayons 56:25

Machine learning over source control histories is a promising route for learning richer or more
semantically meaningful static bug repairs, as demonstrated by Getafix [14] (which targets bugs
flagged by Infer [32]) and Phoenix [33] (which integrates with Findbugs [34]). Deepfix applies a
sequence-to-sequence model to learn fixes for compiler errors in student programs [35].

Although we also use static analysis to flag the bug under repair and to validate its removal, we
do not rely on clustering or machine learning to suggest patches, and all training data required for
our technique is taken from the program under repair. Our technique is perhaps more conceptually
similar to FootPatch [13], which uses a separation logic-based static analysis to find heap-related
bugs, and then identify (and syntactically contextualize) fixing code from elsewhere in the same
program callgraph. We target a different class of bugs, and do not used logic-based inference to
identify fix code, but do rely on analysis of resource and API usage in the rest of a given program
to inform patch construction.

More formal methods for static repair include verification-based approaches, using LTL speci-
fications [36, 37], SAT [38], deductive synthesis [39], model checking for Boolean programs [40],
or abstract interpretation [41]. Although theoretically more rigorous in their guarantees, such
verification-based program repair techniques have not been shown to scale or apply to bugs in
real-world programs like the Linux Kernel.

Other closely related works include dynamic techniques that focus specifically on concurrency
errors or atomicity violations, including Afix [42], Axis [43], Grail [19], PFix [44], HFix [45], and
AFixer [46], and Cai and Cao’s work [47], among others. Despite making use of some degree of
static reasoning, this class of techniques typically either assume the provision as input of a bug
report identifying a particular atomicity violation to be repaired, and are built on top of dynamic
bug finders, or make use of runtime analysis explicitly (e.g., to analyze memory access patterns).
Since we do not have access to runtime analysis of our test suite subjects, we are unable to compare
against these tools. A broader class of concurrency bugs, including deadlocks, have been addressed
using constraint solving and bounded model checking [48, 49]. These techniques provide strong
guarantees, and can be guided to produce patches that minimally change the program, but have
not been shown to scale beyond a couple hundred lines of code.

Deadlocks (and atomicity violations [50]) can also be avoided using runtime techniques [51–53],
which instrument or otherwise monitor a program to preempt deadlocks during execution. This
type of self-healing strategy does not seek to patch program source and can be viewed as
complementary to our own approach. It typically imposes runtime overhead.

8 CONCLUSION

Crayons are a new static APR method and tool for bugs in using the lock API. Crayons scale
to the code base of the Linux Kernel. The approach uses a combination of static, template-based
generation of patch candidates with a learning-based model for prioritizing plausible patches.
Our experiments show that the TF-IDF regression model has up to 80% performance in detecting
critical sections, and that the entire repair technique generates a modest number of patches
(it scales), it is able to recover human-made patches for 8 of 10 real Linux Kernel bugs, and it
prioritizes the human-made patches among the top three for 63% of the cases and among the top
five for 74%. To our best knowledge, this is the first static APR tool able to handle a so substantial
and real code base. The prototype implementation of Crayons and the bugs used for testing are
available at https://bitbucket.org/itu-square/crayonstosem.git.

REFERENCES

[1] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Commun. ACM 62, 12

(2019), 56–65. DOI:http://dx.doi.org/10.1145/3318162

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

https://bitbucket.org/itu-square/crayonstosem.git
http://dx.doi.org/10.1145/3318162

56:26 J. Cruz-Carlon et al.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A generic method for automatic software repair.

IEEE Trans. Softw. Eng. 38, 1 (2012), 54–72.

[3] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The strength of random search on

automated program repair. In Proceedings of the 36th International Conference on Software Engineering (ICSE’14). ACM,

New York, NY, 254–265. DOI:http://dx.doi.org/10.1145/2568225.2568254

[4] R. Kou, Y. Higo, and S. Kusumoto. 2016. A capable crossover technique on automatic program repair. In Proceedings

of the 7th International Workshop on Empirical Software Engineering in Practice (IWESEP’16). 45–50.

[5] F. Y. Assiri and J. M. Bieman. 2014. An assessment of the quality of automated program operator repair. In Proceedings

of the IEEE 7th International Conference on Software Testing, Verification, and Validation. 273–282.

[6] Josh L. Wilkerson, Daniel R. Tauritz, and James M. Bridges. 2012. Multi-objective coevolutionary automated software

correction. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation (GECCO’12). ACM,

New York, NY, 1229–1236. DOI:http://dx.doi.org/10.1145/2330163.2330333

[7] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware patch generation for

better automated program repair. In Proceedings of the 40th International Conference on Software Engineering (ICSE’18).

ACM, New York, NY, 1–11. DOI:http://dx.doi.org/10.1145/3180155.3180233

[8] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In Proceedings of the Confer-

ence on Principles of Programming Languages (POPL’16). 298–31.

[9] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable multiline program patch synthesis

via symbolic analysis. In Proceedings of the 38th International Conference on Software Engineering (ICSE’16). ACM, New

York, NY, 691–701. DOI:http://dx.doi.org/10.1145/2884781.2884807

[10] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lamelas Marcote, Thomas Durieux, Daniel

Le Berre, and Martin Monperrus. 2017. Nopol: Automatic repair of conditional statement bugs in Java programs. IEEE

Trans. Softw. Eng. 43, 1 (2017), 34–55.

[11] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure worse than the disease? Overfitting

in automated program repair. In Proceedings of the Joint Meeting of the European Software Engineering Conference and

the Symposium on the Foundations of Software Engineering (ESEC/FSE’15). 532–543.

[12] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2011. LOCKSMITH: Practical static race detection for C. ACM

Trans. Program. Lang. Syst. 33, 1, Article 3 (Jan. 2011), 55 pages. DOI:http://dx.doi.org/10.1145/1889997.1890000

[13] Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair for heap properties. In Proceedings of

the 40th International Conference on Software Engineering (ICSE’18). ACM, New York, NY, 151–162. DOI:http://dx.doi.

org/10.1145/3180155.3180250

[14] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix: Learning to fix bugs automatically.

Proc. ACM Program. Lang. 3, OOPSLA, Article 159 (Oct. 2019), 27 pages. DOI:http://dx.doi.org/10.1145/3360585

[15] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro. 2014. The plastic surgery hypothesis.

In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’14).

ACM, New York, NY, 306–317. DOI:http://dx.doi.org/10.1145/2635868.2635898

[16] Iago Abal, Claus Brabrand, and Andrzej Wąsowski. 2017. Effective bug finding in C programs with shape and effect

abstractions. In Proceedings of the International Conference on Verification, Model Checking, and Abstract Interpretation

(VMCAI’17), Ahmed Bouajjani and David Monniaux (Eds.).

[17] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In Proceedings of the IEEE/ACM 37th IEEE

International Conference on Software Engineering, Vol. 1. IEEE, 913–923.

[18] James A. Hanley and Barbara J. McNeil. 1982. The Meaning and Use of the Area Under a Receiver Operating Characteristic

Curve. Vol. 143. 29–36.

[19] Peng Liu, Omer Tripp, and Charles Zhang. 2014. Grail: Context-aware fixing of concurrency bugs. In Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’14). ACM, New York,

NY, 318–329. DOI:http://dx.doi.org/10.1145/2635868.2635881

[20] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017. S3: Syntax- and semantic-guided

repair synthesis via programming by examples. In Proceedings of the 11th Joint Meeting of the European Software

Engineering Conference and the Symposium on the Foundations of Software Engineering (ESEC/FSE’17). 593–604. DOI:
http://dx.doi.org/10.1145/3106237.3106309

[21] Afsoon Afzal, Manish Motwani, Kathryn T. Stolee, Yuriy Brun, and Claire Le Goues. 2020. SOSRepair: Expressive

semantic search for real-world program repair. IEEE Trans. Softw. Eng. (2020). DOI:http://dx.doi.org/10.1109/TSE.2019.

2944914

[22] Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin Siggeirsdottir. 2017. Fixing Bugs

in Your Sleep: How Genetic Improvement Became an Overnight Success. ACM, New York, NY, 1513–1520. https://doi.

org/10.1145/3067695.3082517

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

http://dx.doi.org/10.1145/2568225.2568254
http://dx.doi.org/10.1145/2330163.2330333
http://dx.doi.org/10.1145/3180155.3180233
http://dx.doi.org/10.1145/2884781.2884807
http://dx.doi.org/10.1145/1889997.1890000
http://dx.doi.org/10.1145/3180155.3180250
http://dx.doi.org/10.1145/3360585
http://dx.doi.org/10.1145/2635868.2635898
http://dx.doi.org/10.1145/2635868.2635881
http://dx.doi.org/10.1145/3106237.3106309
http://dx.doi.org/10.1109/TSE.2019.2944914
https://doi.org/10.1145/3067695.3082517

Patching Locking Bugs Statically with Crayons 56:27

[23] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, and A. Scott. 2019. SapFix: Automated end-

to-end repair at scale. In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP’19). 269–278. DOI:http://dx.doi.org/10.1109/ICSE-SEIP.2019.00039

[24] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. 2019. Effective static analysis of concurrency {use-after-free}
bugs in linux device drivers. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’19). 255–268.

[25] Maria Christakis and Christian Bird. 2016. What developers want and need from program analysis: An empirical study.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE’16). ACM, 332–

343. DOI:http://dx.doi.org/10.1145/2970276.2970347

[26] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bowdidge. 2013. Why don’t software devel-

opers use static analysis tools to find bugs?. In Proceedings of the 35th International Conference on Software Engineering

(ICSE’13). IEEE Computer Society, 672–681. DOI:http://dx.doi.org/10.1109/ICSE.2013.6606613

[27] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan. 2012. Building useful program analy-

sis tools using an extensible Java compiler. In Proceedings of the IEEE 12th International Working Conference on Source

Code Analysis and Manipulation (SCAM’12). IEEE Computer Society, 14–23. DOI:http://dx.doi.org/10.1109/SCAM.2012.

28

[28] Diego Marcilio, Carlo A. Furia, Rodrigo Bonifácio, and Gustavo Pinto. 2020. SpongeBugs: Automatically generating

fix suggestions in response to static code analysis warnings. J. Syst. Softw. 168 (2020), 110671. DOI:http://dx.doi.org/

10.1016/j.jss.2020.110671

[29] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Monperrus, Jacques Klein, and Yves Le Traon.

2019. iFixR: Bug report driven program repair. In Proceedings of the 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering. 314–325.

[30] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and Loris D’Antoni. 2018. Learning quick fixes from code repositories.

Retrieved from http://arxiv.org/abs/1803.03806.

[31] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. Avatar: Fixing semantic bugs with fix

patterns of static analysis violations. In Proceedings of the IEEE 26th International Conference on Software Analysis,

Evolution and Reengineering (SANER’19). IEEE, 1–12.

[32] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter W.

O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. 2015. Moving fast with software verification.

In Proceedings of the Conference on NASA Formal Methods (NFM’15). 3–11.

[33] Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. 2019. Phoenix: Automated data-driven synthesis of repairs for

static analysis violations. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE’19). ACM, New York, NY, 613–624. DOI:http://

dx.doi.org/10.1145/3338906.3338952

[34] David Hovemeyer and William Pugh. 2004. Finding bugs is easy. SIGPLAN Not. 39, 12 (Dec. 2004), 92–106. DOI:http://

dx.doi.org/10.1145/1052883.1052895

[35] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix: Fixing common C language errors by

deep learning. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI’17). AAAI Press, 1345–1351.

[36] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. 2005. Program repair as a game. In Proceedings of the

17th International Conference on Computer Aided Verification (CAV’05). Springer-Verlag, Berlin, 226–238. DOI:http://

dx.doi.org/10.1007/11513988_23

[37] Roopsha Samanta, Oswaldo Olivo, and E. Allen Emerson. 2014. Cost-aware automatic program repair. In Static Anal-

ysis, Markus Müller-Olm and Helmut Seidl (Eds.). Springer International Publishing, Cham, 268–284.

[38] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011. Specification-based program repair using

SAT. In Proceedings of the Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’11).

173–188.

[39] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. 2015. Deductive program repair. In Proceedings of the Confer-

ence on Computer Aided Verification (CAV’15). 217–233.

[40] Andreas Griesmayer, Roderick Bloem, and Byron Cook. 2006. Repair of Boolean programs with an application to C.

In Proceedings of the Conference on Computer Aided Verification (CAV’06). 358–371.

[41] Francesco Logozzo and Thomas Ball. 2012. Modular and verified automatic program repair. In Proceedings of the

Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’12). 133–146.

[42] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated atomicity-violation fixing. In Pro-

ceedings of the Conference on Programming Language Design and Implementation (PLDI’11). ACM, 389–400.

[43] Peng Liu and Charles Zhang. 2012. Axis: Automatically fixing atomicity violations through solving control constraints.

In Proceedings of the 34th International Conference on Software Engineering (ICSE’12). IEEE Press, 299–309.

[44] Huarui Lin, Zan Wang, Shuang Liu, Jun Sun, Dongdi Zhang, and Guangning Wei. 2018. PFix: Fixing concurrency

bugs based on memory access patterns. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering (ASE’18). ACM, New York, NY, 589–600. DOI:http://dx.doi.org/10.1145/3238147.3238198

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

http://dx.doi.org/10.1109/ICSE-SEIP.2019.00039
http://dx.doi.org/10.1145/2970276.2970347
http://dx.doi.org/10.1109/ICSE.2013.6606613
http://dx.doi.org/10.1109/SCAM.2012.28
http://dx.doi.org/10.1016/j.jss.2020.110671
http://arxiv.org/abs/1803.03806
http://dx.doi.org/10.1145/3338906.3338952
http://dx.doi.org/10.1145/1052883.1052895
http://dx.doi.org/10.1007/11513988_23
http://dx.doi.org/10.1145/3238147.3238198

56:28 J. Cruz-Carlon et al.

[45] Haopeng Liu, Yuxi Chen, and Shan Lu. 2016. Understanding and generating high quality patches for concurrency

bugs. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering

(FSE’16). ACM, New York, NY, 715–726. DOI:http://dx.doi.org/10.1145/2950290.2950309

[46] Yan Cai, Lingwei Cao, and Jing Zhao. 2017. Adaptively generating high quality fixes for atomicity violations. In Pro-

ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’17). ACM, New York, NY,

303–314. DOI:http://dx.doi.org/10.1145/3106237.3106239

[47] Yan Cai and Lingwei Cao. 2016. Fixing deadlocks via lock pre-acquisitions. In Proceedings of the 38th International

Conference on Software Engineering. 1109–1120.

[48] Sepideh Khoshnood, Markus Kusano, and Chao Wang. 2015. ConcBugAssist: Constraint solving for diagnosis and

repair of concurrency bugs. In Proceedings of the 2015 International Symposium on Software Testing and Analysis (IS-

STA’15). ACM, New York, NY, 165–176. DOI:http://dx.doi.org/10.1145/2771783.2771798

[49] Yiyan Lin and Sandeep S. Kulkarni. 2014. Automatic repair for multi-threaded programs with Deadlock/Livelock using

maximum satisfiability. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA’14).

ACM, New York, NY, 237–247. DOI:http://dx.doi.org/10.1145/2610384.2610398

[50] Lee Chew and David Lie. 2010. Kivati: Fast detection and prevention of atomicity violations. In Proceedings of the 5th

European Conference on Computer Systems (EuroSys’10). ACM, New York, NY, 307–320. DOI:http://dx.doi.org/10.1145/

1755913.1755945

[51] Yarden Nir-Buchbinder, Rachel Tzoref, and Shmuel Ur. 2008. Deadlocks: From exhibiting to healing. In Runtime Veri-

fication, Martin Leucker (Ed.). Springer, Berlin, 104–118.

[52] Jinpeng Zhou, Sam Silvestro, Hongyu Liu, Yan Cai, and Tongping Liu. 2017. UNDEAD: Detecting and preventing

deadlocks in production software. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software

Engineering (ASE’17). IEEE Press, 729–740.

[53] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane Lafortune, and Scott Mahlke. 2008. Gadara: Dynamic deadlock

avoidance for multithreaded programs. In Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI’08). USENIX Association, 281–294.

Received 29 September 2021; revised 24 May 2022; accepted 24 June 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 56. Pub. date: April 2023.

http://dx.doi.org/10.1145/2950290.2950309
http://dx.doi.org/10.1145/3106237.3106239
http://dx.doi.org/10.1145/2771783.2771798
http://dx.doi.org/10.1145/2610384.2610398
http://dx.doi.org/10.1145/1755913.1755945

