
Experimental Evaluation of Low Code development, Java Swing
and JavaScript programming

André Calçada
Department of Systems and Computer Engineering,

Polytechnic of Coimbra, Coimbra Institute of Engineering
(ISEC), Rua Pedro Nunes, 3030-199 Coimbra,

+351239790200
a21250156@isec.pt

Jorge Bernardino
Department of Systems and Computer Engineering,

Polytechnic of Coimbra, Coimbra Institute of Engineering
(ISEC), Rua Pedro Nunes, 3030-199 Coimbra,

+351239790200, Centre for Informatics and Systems of the
University of Coimbra (CISUC), Polo II, Pinhal de
Marrocos, 3030-290 Coimbra, +351239790000

jorge@isec.pt

ABSTRACT
Low Code is a technology that has been gaining popularity over the
years, due to its potential and simplicity. But so far there has not
been an experimental evaluation with other programming methods.
This paper aims to introduce Low Code development technology
and compare it with Java Swing programming and manual develop-
ment with HTML (HyperText Markup Language), CSS (Cascading
Style Sheet), and JavaScript. These technologies are compared using
the following metrics: development time, execution time, and the
number of written code lines. In this evaluation, two applications
are implemented, a simple calculator, and a text editor, developed in
all technologies. It is concluded that it is faster to develop applica-
tions in Low Code but in terms of execution time, these are usually
slower. Although the Low Code development is still at a somewhat
embryonic stage which leads to some bugs and errors, Low Code
development is better in general than Java Swing programming,
and somewhat similar to manual programming with HTML, CSS,
and JavaScript. Another benefit is that Low Code generates HTML
and CSS automatically.

CCS CONCEPTS
• General and reference → Cross-computing tools and tech-
niques; Evaluation; Cross-computing tools and techniques; Experi-
mentation; • Software and its engineering→ Software notations
and tools; General programming languages; Language features.

KEYWORDS
Java Swing, Low Code, JavaScript
ACM Reference Format:
André Calçada and Jorge Bernardino. 2022. Experimental Evaluation of Low
Code development, Java Swing and JavaScript programming. In International
Database Engineered Applications Symposium (IDEAS’22), August 22–24, 2022,
Budapest, Hungary. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3548785.3548792

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IDEAS’22, August 22–24, 2022, Budapest, Hungary
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9709-4/22/08. . . $15.00
https://doi.org/10.1145/3548785.3548792

1 INTRODUCTION
Low Code development is a technology that facilitates program-
ming by diminishing the handwritten code and allowing non-
programmers to build and have a more active presence in the de-
velopment process of the application. Low-code is a collection of
tools that enables developers to avoid hand-coding and reduces the
development effort of having an application ready for production.

There are many ways of developing an application but when it
comes to programming, users sometimes have difficulties in choos-
ing the language and the type of programming. For Low Code
development, Neptune Planet 9 is used, a Low Code Development
Platform (LCDP), for Java Swing programming NetBeans IDE (Inte-
grated Development Environment), and for manual development
with HTML, CSS, and JavaScript Visual Studio Code is applied.

Java is one of the most recognized and used programming lan-
guages, and Swing is a Java toolkit that allows programmers to eas-
ily build a User Interface (UI) for their Java applications. JavaScript is
a lightweight, interpreted, object-oriented programming language
mostly used to program web pages.

These technologies are chosen, Java Swing and JavaScript to
compare with Low Code because Java Swing has a similar way of
making the UI but runs on the operating system, unlike Low Code
applications that run on a browser. JavaScript is chosen because
it is the same type of programming that LCDPs use, but the UI
development is manual.

These technologies can use database systems as external ser-
vices, where the communication with the database is made through
an API (Application Programming Interface) or another commu-
nication protocol, where a request is sent to the database and an
answer is given in response. Depending on the database it is possi-
ble to manage the database through these requests, facilitating the
development work.

In this paper, Low Code development, Java Swing programming,
and manual development with HTML, CSS, and JavaScript are com-
pared, by developing two applications in all types of programming,
which has not been done before according to [1]. The platforms
chosen to develop the apps are based on our experience with these
types of platforms and because they are free of charge. The objective
of this study is to help users to know what type of programming
to choose through the comparative evaluation of the developed
applications.

The rest of this paper is structured as follows. Section 2 intro-
duces background concepts and the methodology applied. Section 3

103

https://doi.org/10.1145/3548785.3548792
https://doi.org/10.1145/3548785.3548792
https://doi.org/10.1145/3548785.3548792
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548785.3548792&domain=pdf&date_stamp=2022-09-13

IDEAS’22, August 22–24, 2022, Budapest, Hungary André Calçada and Jorge Bernardino

Figure 1: Low code app development process. Source: [6].

exhibits the results. Section 4 presents the discussion of the results.
Section 5 describes the open problems. Finally, section 6 presents
the main conclusions and future work.

2 BACKGROUND
This section introduces Low Code development, LCDPs, Java Swing,
HTML, CSS, JavaScript, Node.js, IDEs, and the methodology used
in the experiments.

2.1 What is Low Code?
The term ‘Low Code’ was introduced by Forrester market research
company in June 2014, where these platforms are described as
extraordinarily disruptive [2].

Low Code applications are developed using model-driven engi-
neering principles and taking advantage of cloud infrastructures,
automatic code generation, declarative, high level, and graphical
abstractions to develop entirely functioning applications, meaning
that these applications are mostly made through drag and drop of
objects [3].

2.2 Low Code Development Platform
LCDPs emerged in the early 2000s helping development teams work
faster. The Low Code Development Platform market started back
in 2011, speeding up the development and maintenance processes.

An LCDP is set on a cloud or locally [3], allowing the develop-
ment of Low Code applications using minimal code writing. Its
objective is to give, to different types of users, the possibility to
create applications in an easy, simple, and fast way [4].

Each LCDP has its programming language, such as Java,
JavaScript, Python, and others [2]. LCDPs allow the development
of distinct types of applications such as web apps and mobile apps
[5].

The development of a Low Code application has the following
processes: API Setup, App Creation, LaunchPad, Security Setup,
Mobile Client Build, and Deploy/Transport, as shown in Figure 1.

API setup is a process where the developer creates APIs, which
can be made in an LCDP or imported. The App Creation process
is where the developer creates the app/module. In this process,
LaunchPad is used to transform a module or various modules into
a suitable application. The Security setup process is where is set

up who has access to the application or which parts of it. Mobile
Client Build process is where the application is prepared to become
a mobile app, and at last Deploy. It should be mentioned that not all
of these processes are required to implement an application, which
depends on the type of application that is developed [6].

2.3 Java Swing
Java is an object-oriented language, and Swing is a widget toolkit
GUI (Graphic User Interface). Swing started to be developed in 1996,
supports multithreading, and allows Java programmers to easily
create a UI for an application.

Some of the Swing components are labels (text), text areas, but-
tons, tables, frames (application page), combo box, scroll pane (ob-
ject to scroll page), file chooser, (to get a file for reading or to save),
menus, toolbars, and others [7].

2.4 HTML
HTML is the standard markup language for documents displayed
in a web browser, defining their meaning and structure. There are
also other technologies used to describe a web page’s appearance
(CSS) or behaviour (JavaScript). “Hypertext” refers to links that
allow users to create, store, and view text, connecting web pages
directly so that “travelling” from one to another is quicker. Links
are a fundamental characteristic of the Web.

HTML uses “markup” to distinguish text, images, and other con-
tent for display in a Web browser. An HTML element is detached
from other text in a document by “tags”, which consist of the el-
ement name surrounded by “<” and “>”. HTML markup includes
special “elements” such as <head>, <title>, <p>, <button>, andmany
others. The name of an element inside a tag is not case-sensitive,
that is, it can be written in uppercase, lowercase, or a combination.
For example, the <title> tag can be written as <Title>, <tItle>, or in
any other style [8].

2.5 Cascading Style Sheet (CSS)
CSS is a stylesheet language for describing the presentation of ele-
ments in a HTML or XML (eXtensible Markup Language) document,
including XML dialects such as SVG (Scalable Vector Graphics),
MathML (Mathematical Markup Language) or XHTML (eXtensible
HyperText Markup Language). CSS describes colours, layout, and
fonts of Web pages, allowing to adapt the presentation to different
types of devices. CSS is independent of HTML and can be used with
any XML-based markup language.

CSS is one of the core languages of the web and is standardized
across Web browsers according toW3C specifications [9]. Formerly,
the development of various parts of CSS specification was synchro-
nous, which allowed the versioning of the latest recommendations.
There are new versions of CSS such as CSS1, CSS2.1, and CSS3.
However, CSS4 has never been released.

Since CSS3, the scope of the specification increased considerably
with CSS modules differing significantly. Therefore, it became more
efficient to develop and release recommendations separately per
module. Currently W3C, as an alternative of versioning the CSS
specification, takes periodically a snapshot of the latest stable state
of the CSS specification [10], [11].

104

Experimental Evaluation of Low Code development, Java Swing and JavaScript programming IDEAS’22, August 22–24, 2022, Budapest, Hungary

2.6 JavaScript
JavaScript is a dynamic and lightweight scripting language, and
it has broad participation in website and web application services.
JavaScript has become one of the most widely used languages
for Web development, however, many non-browser environments
also use it, such as Node.js, Apache CouchDB, and Adobe Acrobat.
JavaScript is a prototype-based, multi-paradigm, single-threaded,
dynamic language, which is used in web pages interface design,
creating cookies, mobile apps, games, and so on.

JavaScript should not be confused with the Java programming
language. The two programming languages have very different
syntax, semantics, and uses [12]. The main difference between
JavaScript and Java is that JavaScript code is written completely
in text and needs only to be interpreted, while Java, on the other
hand, must be compiled.

2.7 Node.js
Node.js is an increasingly popular event-driven architecture, open-
source, cross-platform, back-end JavaScript runtime environment,
widely used in server-side and desktop applications. Node.js ex-
ecutes JavaScript code outside a web browser and provides an
effective asynchronous programming model. In Node.js, time-
consuming IO operations, e.g., file access operations, can be del-
egated as asynchronous tasks, running in the dedicated threads.
Thus, Node.js applications are not blocked by these time-consuming
IO operations.

Node.js provides an effective asynchronous event-driven pro-
gramming model and supports asynchronous tasks allowing devel-
opers to use JavaScript to write command-line tools and produce
dynamic web page content before the page is sent to the user’s
browser. Node.js represents a “JavaScript everywhere” paradigm,
unifying web application development around a single program-
ming language, rather than different languages for server-side and
client-side scripts. These design choices aim to optimize through-
put and scalability in web applications with many input/output
operations [13].

2.8 Integrated Development Environment
(IDE)

IDEs provide a convenient standalone solution that supports de-
velopers during various phases of software development and are
designed to include all programming tasks in one application. One
of the main benefits of an IDE is that they offer a central interface
with the tools that a developer needs, including the following [14]:

• Code editor: Designed for writing and editing source code,
these editors are distinguished from text editors because their
function is to simplify and enhance the process of writing
and editing code for developers.

• Compiler: Compilers transform source code that is written
in a human-readable language into a machine-readable lan-
guage.

• Debugger: Debuggers are used during tests and can help
developers debug their application code.

• Build automation tools: These tools help developers to auto-
mate common developer tasks to save time.

Additionally, some IDEs may also contain [14]:
• Class browser: Used to study and reference properties of an
object-oriented class hierarchy.

• Object browser: Used to inspect objects instantiated in a
running application program.

• Class hierarchy diagram: This allows developers to visualize
the structure of object-oriented programming code.

An IDE can be a stand-alone application, despite the fact it could
be also included as part of one or more compatible applications
[14].

2.9 Methodology
To compare Low Code development, Java Swing, and JavaScript
programming, two applications are developed in all technologies.
These applications are developed and tested on a computer with an
Intel i5-8250U CPU, Windows 10, 512 GB SSD, and 8 GB of RAM
(Random Access Memory).

The first application is a calculator with the basic math opera-
tions, sum, subtraction, multiplication, and division. The second is a
simple text editor, like a simple notepad. In the implementations of
these applications, the following metrics are assessed: development
time, in minutes; execution runtime, in milliseconds (ms), this is
the time that the application takes to set up the UI; the number of
written code lines; and the operations execution time, in millisec-
onds. The execution runtime and operations execution time that
is considered is the average of five executions of the application.
To ensure that the results are viable, in JavaScript and Low Code,
since an LCDP and its applications run on a browser, Brave browser,
introduced in subsection 2.9.3 is used in incognito mode to get the
execution time the browser cache is cleared before each run. Also,
in Java Swing, before each run, CachemanXP program is executed
to clean the RAM.

The calculator has a text area to show the input and results, and
alongside the basic operation buttons, mentioned above, it has the
numbers, from 0 to 9, the equal, the delete, the decimal point “.”,
and the clear buttons. The calculator doesn’t give any errors, when
inserting two operations it must do the first operation and with its
result do the second (when introduced 5+2*10, the first operation
is computed, 5+2=7, and then the second operation, 7*10=70), this
may lead to mathematical miscalculation but it’s not important for
the evaluation. When there is an operation character in the text
area, and another is inserted the first one must be replaced (if there
is have “2+” in the text area and a “-“ is entered, the result is “2-“).
To get a valid operation, a number must be entered followed by an
operation and another number and then press the equal button to
get the result or add another operation.

The text editor is a simple text area with two buttons, one to
load and the other to save the text. The text editor must give the
user the possibility to choose where to save or load the file. The
load and save functionalities must only allow .txt files.

The Low Code applications are implemented using Neptune
Planet 9 LCDP, version 2.3.1, which will be introduced in subsection
2.9.1. In the Java Swing applications, NetBeans IDE is used, version
12.5, which is described in subsection 2.9.2.

The JavaScript applications are implemented with Visual Stu-
dio Code, version 1.63.2, which is presented in subsection 2.9.4. It

105

IDEAS’22, August 22–24, 2022, Budapest, Hungary André Calçada and Jorge Bernardino

should be noted that in pure JavaScript, it is not possible to let the
user choose where to save a file, because it is always saved in the
Downloads folder [15]. These platforms are chosen considering
our knowledge about these types of platforms. NetBeans is chosen
because it is one of the most user-friendly IDE, however, it does not
support JavaScript. Due to this fact, with JavaScript, Visual Studio
Code is chosen, which is one of the best IDEs, based on their usage
and popularity [16].

The description of tests execution is presented in Tables 1 and 2
for the calculator and text editor, respectively. The tests are based
on the following operations:

• “Add number” operation includes adding a number and the
“.” to the text area.

• “Add operation” adds a mathematical operator like “+” to
the text area.

• “Add operation (S)” is the same as “Add operation”. However,
when there is already an operation character this is substi-
tuted, for example, when there is “1+” in the text area and a
“-“ is introduced, the result is “1-“.

• “Add operation (R)” is the same as “Add operation”. However,
when there is already a valid equation its result is calculated.
For example, “1+1+” turns “2+“.

• ”Delete” operation deletes a character of the text area.
• “Delete (N)” operation is when the text area is empty and
the delete button is pressed.

• “Clear” operation clears the whole text area.
• “Result” operation calculates the result of the equation in
the text area.

• “Result (N)” is the same as the result operation but when the
equation is not valid, for example when there is a “1+” in the
text area the equation is not altered, the value “1+”, in the
text area stays unchanged.

• “Load” operation loads the text from a .txt file to the text
area

• “Save” operation saves the text in the text area into an ex-
isting .txt file. This is not possible to evaluate on JavaScript
text editor, because when trying to save on an existing file,
the browser creates a new file by adding “(1)” to the new file
name.

• “Save (N)” operation saves the text in the text area into a
new .txt file.

Some observations: 1) The calculator tests start with the calculator
clear of values. 2) In the calculator tests the time to select a button
is not considered, only the time of the operation. 3) The text editor
tests do not take into consideration the time to write a text, and the
same text is used for all tests. 4) In the text editor tests the time to
select a file is not considered, only the time to save/load a file.

2.9.1 Neptune Planet 9. Neptune Planet 9 is an LCDP that uses as
core technologies HTML, and CSS, and uses Node.js as the program-
ming language. Its architecture is shown in Figure 2 and Figure
3.

The development of applications is done in the App Designer
component, where data and resources from the Store, ODATA,
Media Library, API Designer, and Server Scripts are used. Table
Definition is used to define data types, which is not always neces-
sary, as these types can be automatically imported from an external

database. The LaunchPad serves as a Modules portal, where each
developed module is added, which is possible with the use of Tiles
that allows navigation for each module. Tiles are organized into
groups through Tiles Groups. Users are configured in the Users
component and can be created in the LCDP or obtained externally.
In the LaunchPad each user has access to the modules depending
on their role. Finally, the LaunchPad can run on the Web or in an
APK (Android Package) that can be generated in the Mobile Client
component for mobile devices [6].

Modules can be created from a workflow using the Workflow
Designer component and the Theme Designer component can be
used to create a predefined theme for the entire LaunchPad to
visually enhance it [6].

2.9.2 NetBeans IDE.. NetBeans is a free IDE where a programmer
can develop applications in languages like Java, C, C++, PHP, and
others. This IDE supports many platforms such as Windows, Linux,
Solaris, and macOS, and it supports many types of API services.
NetBeans like many other IDEs allows a programmer to develop
many kinds of applications, from a plain text editor to a complex
web app [17], [18].

2.9.3 Brave Browser. Brave is a free and open-source web browser
developed by Brave Software, Inc. based on the Chromium web
browser. Brave’s popularity is on the increase, driven by privacy-
by-default functionality, which automatically blocks online adver-
tisements and website trackers. Brave is developed upon the open-
source Chromium browser project which promotes faster and safer
browsing. As the project is open source, Brave can make use of
the code for their product, adding additional features on top. Pri-
vacy features include ad-blocking, antitracking functionality, and
cryptocurrency offerings [19].

2.9.4 Visual Studio Code. Visual Studio Code is a cross-platform
editor implemented by Microsoft for Windows, Linux, and macOS.
In 2016, Visual Studio Code has progressed from the public preview
stage and was released to the Web. Then, it has quickly become
one of the top editors in terms of the popularity.

Visual Studio Code is a very powerful code-focused development
environment expressly designed to make it easier to write web, mo-
bile, and cloud applications using languages that are available to
different development platforms and to support the application de-
velopment lifecycle with a built-in debugger and integrated support
for the popular Git version control engine [20].

3 EXPERIMENTAL RESULTS
This section presents the experimental results of the developed
applications.

Figures 4, 5 and 6 presents the user interface of the calculator
using Java Swing, Low Code, and JavaScript, respectively.

Figures 7, 8 and 9, presents the user interface of the text editor
using Java Swing, Low Code, and JavaScript, respectively.

Figure 10 presents the text editor example of the fileChooser
window for load operation.

Table 3 presents the results of the development of each applica-
tion concerning development time, execution runtime, and hand-
written code lines. In Tables 3, 4, and 5, Java Swing is referred to as
JSW, Low Code as LC, and JavaScript as JSC.

106

Experimental Evaluation of Low Code development, Java Swing and JavaScript programming IDEAS’22, August 22–24, 2022, Budapest, Hungary

Table 1: Calculator test execution

Operation Description

Add number 1. Click on a number (random)
2. Read time of operation (1)

Add operation 1. Click on an operation (random)
2. Read time of operation (1)

Add operation (S) 1. Click on an operation (random)
2 Click on another operation (random)

2. Read time of operation (2)
Add operation (R) 1. Click on a number (random)

2. Click on an operation (random)
3. Click on a number (random)

4. Click on an operation (random)
5. Read time of operation (4)

Delete 1. Click on a number/s or operation/s (random)
2. Click on delete

3. Read time of operation (2)
Delete (N) 1. Click on delete

2. Read time of operation (1)
Clear 1. Click on a number/s or operation/s (random)

2. Click on clear
3. Read time of operation (2)

Result 1. Click on a number (random)
2. Click on an operation (random)
3. Click on a number (random)

4. Click on equal
5. Read time of operation (4)

Result (N) 1. Click on a number/s or operation/s (random)
2. Click on equal

3. Read time of operation (2)

Table 2: Text editor test execution

Operation Description

Load 1. Click on Load
2. Select a file

3. Read time of operation (2)
Save 1. Write the text

2. Click on save
3. Select an existing file

4. Read time of operation (3)
Save (N) 1. Write the text

2. Click on save
3. Choose file and name location
4. Read time of operation (3)

Table 4 presents the average runtime of each operation of the
calculator, in milliseconds.

Table 5 presents the runtime for each operation of the text editor
in milliseconds.

4 DISCUSSION OF THE EXPERIMENTAL
RESULTS

This section presents the discussion of the results of the previous
section. To discuss these results it must be considered that LowCode
and manual programming with HTML, CSS, and JavaScript are
similar except Low Code generates HTML and CSS automatically.

4.1 Discussion of the Results: Comparing Low
Code with Java Swing and JavaScript

As shown in Table 3 Java Swing and JavaScript applications have
a better performance but at a bigger cost in terms of development
time and hand-written code, compared to Low Code applications.
Nevertheless, in a deeper analysis:

• In terms of development time, developing in Low Code is in
average, 1.74 times faster than programming in Java Swing
and 1.10 times faster than programming in JavaScript:
⃝ In the Low Code calculator, development is 1.73 times

faster than Java Swing.
⃝ In the Low Code text editor, the development is 1.75 times

faster than Java Swing.
⃝ In the Low Code calculator, development is 1.06 times

faster than JavaScript.

107

IDEAS’22, August 22–24, 2022, Budapest, Hungary André Calçada and Jorge Bernardino

Figure 2: Neptune Planet 9 architecture, resources and tools. Source: [6].

Table 3: Results of the experiments

Application / Property Development time (minutes) Execution runtime (ms) Hand-written code lines

Calculator (JSW) 57 156.34 72
Calculator (LC) 33 1082.60 64
Calculator (JSC) 35 37.40 106
Text Editor (JSW) 14 790.63 39
Text Editor (LC) 8 1494.60 12
Text Editor (JSC) 10 33.00 27

108

Experimental Evaluation of Low Code development, Java Swing and JavaScript programming IDEAS’22, August 22–24, 2022, Budapest, Hungary

Figure 3: Neptune Planet 9 architecture, run, manage & secure and administrate. Source: [6].

Table 4: Results of the calculator operations in ms using JSW, LC, and JSC

Operation Calculator (JSW) Calculator (LC) Calculator (JSC)

Add number 3.14 0.56 0.14
Add operation 3.25 0.52 0.16

Add operation (S) 1.05 0.74 0.06
Add operation (R) 1.78 0.80 0.48

Delete 0.42 0.26 0.10
Delete (N) 0.10 0.44 0.12
Clear 0.10 0.38 0.22
Result 1.26 0.22 0.60

Result (N) 0.21 0.44 0.16

Table 5: Runtime results for the text editor (inms) using JSW,
LC, and JSC

Operation Text editor
(JSW)

Text editor
(LC)

Text editor
(JSC)

Load 37.33 0.30 0.34
Save 5.66 0.92 Not possible

Save (N) 7.13 0.86 1.02

⃝ In the Low Code text editor, the development is 1.25 times
faster than JavaScript.

• In terms of execution runtime, Java Swing applications are in
average, 2.72 times faster and JavaScript applications 36.61
times faster, when compared to Low Code applications:
⃝ In Java Swing, the calculator, runtime is 6.92 times faster

than Low Code.
⃝ In Java Swing, the text editor runtime is 1.89 times faster

than Low Code.

109

IDEAS’22, August 22–24, 2022, Budapest, Hungary André Calçada and Jorge Bernardino

Figure 4: Java Swing calculator based on NetBeans.

Figure 5: Low Code calculator based on Neptune P9 and
Brave browser.

Figure 6: JavaScript calculator based on Visual Studio Code
and Brave browser.

Figure 7: Java Swing text editor based on NetBeans.

Figure 8: Low Code text editor using Neptune P9 and Brave
browser.

Figure 9: JavaScript text editor using Visual Studio Code and
Brave.

Figure 10: Load operation fileChooser using NetBeans.

⃝ In JavaScript, the calculator, runtime is 28.95 times faster
than Low Code.

⃝ In JavaScript, the text editor runtime is 45.29 times faster
than Low Code.

110

Experimental Evaluation of Low Code development, Java Swing and JavaScript programming IDEAS’22, August 22–24, 2022, Budapest, Hungary

• In terms of hand-written code lines, Low Code applications
have in average, 2.18 times less code, compared to Java Swing
and 1.75 times less code, compared to JavaScript:
⃝ The low Code calculator has 1.13 times fewer code lines

than Java Swing.
⃝ The low Code text editor has 3.25 times fewer code lines

than Java Swing.
⃝ The low Code calculator has 1.66 times fewer code lines

than JavaScript.
⃝ The low Code text editor has 2.25 times fewer code lines

than JavaScript.
As presented in Table 4 Low Code calculator has a better perfor-

mance in terms of operation execution runtime, compared to the
Java Swing calculator, and it is similar to the JavaScript calculator.
Considering all the operations:

• In average the calculator operations are 2.14 times faster in
JavaScript than in Low Code and 2.59 times faster in Low
Code than in Java Swing.

• Java Swing calculator is faster in three operations “Delete
(N)”, “Clear” and “Result (N)”. This is because Java is usually
faster and, in this case, there is only one line of code to
execute (in “Delete (N)” there’s an if, in “Clear” there’s a
set value, in “Result (N) there’s an if), and the difference,
compared to Low Code, is 0.34, 0.28, and 0.23, respectively.
In each operation there exists a negligible difference, thus
considering that it is much slower in other operations.

As shown in Table 5, the Low Code text editor has a better
performance in terms of operation execution runtime. For example:

• “Load” operation is 124.43 times faster in Low Code than in
Java Swing, and 1.13(3) times faster than JavaScript.

• “Save” operation is 6.15 times faster in Low Code than in
Java Swing.

• “Save (N)” operation is 8.20 times faster in Low Code than
in Java Swing and 1.19 times faster than in JavaScript.

The Low Code text editor is in average of execution runtime
of operations, 24.10 times faster than the Java Swing text editor,
and 1.17 times faster than the JavaScript text editor. Low Code and
JavaScript are faster than Java Swing in this case because unlike
JavaScript, Java Swing needs to understand what operating system
it is running on to make a system call, JavaScript does not need
that because it is managed by the browser [21].

Comparing only Java Swing and JavaScript depends on the ap-
plication’s complexity and nature and it is presented in the next
subsection.

4.2 Discussion of the Results: Java Swing with
JavaScript

As presented in Table 3, JavaScript applications have better per-
formance and take less time to develop than Java Swing but need
more handwritten code lines. Making a deeper analysis:

• In terms of development time, developing in JavaScript is, in
average, 1.58 times faster than programming in Java Swing.
⃝ In the JavaScript calculator, development is 1.63 times

faster.

Table 6: Operations average for all experiments

Operation Java Swing Low Code JavaScript

Code lines 55.50 38.00 66.50
Execution
runtime

473.49 1288.60 35.20

Development
time

34.00 20.50 22.50

Operations
runtime

5.12 0.54 0.310

⃝ In the JavaScript text editor, the development is 1.40 times
faster.

• In terms of execution runtime, JavaScript applications are,
in average, 13.45 times faster than Java Swing applications.
⃝ In JavaScript, the calculator, runtime is 4.18 times faster.
⃝ In JavaScript, the text editor runtime is 33.96 times faster.

• In terms of hand-written code lines, Java Swing applications
have, in average, 1.20 times less code, compared to JavaScript.
⃝ In the Java Swing calculator, the number of code lines is

1.47 times less.
⃝ In the Java Swing text editor, the number of code lines is

1.44 times less.
As shown in Table 4, the JavaScript calculator has a better per-

formance in terms of operations execution runtime, compared to
the Java Swing calculator. Considering all the calculator operations:

• In average the calculator operations in JavaScript are 5.54
times faster than in Java Swing.

• Java Swing calculator is only faster in two operations “Clear
and “Delete (N)” and the difference is 0.02 and 0.12 millisec-
onds, respectively, which is a negligible difference, consid-
ering that Java Swing is much slower in other operations.
JavaScript calculator is 5.54 times faster than Java Swing
calculator in average of runtime execution of all operations.

As presented in Table 5 JavaScript text editor has a better perfor-
mance in terms of operation execution runtime. Making a deeper
analysis:

• “Load” operation is 109.79 times faster in JavaScript than in
Java Swing.

• “Save” operation is not comparable because it cannot be
tested in the JavaScript text editor.

• “Save (N)” operation is 6.99 times faster in JavaScript than
in Java Swing.

The JavaScript text editor is 32.69 times faster than the Java
Swing text editor considering the average execution runtime of all
operations.

4.3 Summary of all Results
Table 6 presents the average of the operations, and Table 7 the stan-
dard deviation for all the previous results taking into consideration
the number of code lines, execution runtime (ms), development time
(minutes), and operations runtime (ms). These results are obtained
from Table 3 and from Tables 4 and 5.

111

IDEAS’22, August 22–24, 2022, Budapest, Hungary André Calçada and Jorge Bernardino

Table 7: The standard deviation for all experiments

Operation Java Swing Low Code JavaScript

Code lines 16.50 26.00 39.50
Execution
runtime

317.15 206.00 2.2

Development
time

20.00 12.50 12.50

Operations
runtime

9.95 0.23 0.28

With the results of Tables 6 and 7, the differences between these
technologies can be seen more clearly:

• Low Code is 9.48 times faster than Java Swing and 1.74 times
slower than JavaScript, in terms of operation runtime.

• JavaScript is 16.52 times faster than Java Swing, in terms of
operation runtime.

• JavaScript has the lowest standard deviation compared to
the other technologies, except in the number of code lines,
where Java Swing has the lowest standard deviation.

Note that the values comparing these technologies may vary due
to the application’s complexity and its nature.

5 OPEN PROBLEMS
This section presents the problems addressed in this paper. The
comparison of Low Code, Java Swing, and Java Script technologies
can be addressed in many ways. In this paper, each technology was
compared by looking at some of its application’s metrics, like execu-
tion runtime. This practical approach gives developers a perspective
of how these technologies can help them in their job.

As described in [1], there is no comparison of Low Code with
other technologies, which leaves space for this type of research.
This gap was filled with our research, but there is still significant
work to be done. We identify the following open research problems:

• Comparison with other Low Code technologies.
• Using Low Code with more complex applications including
database development.

• Comparing the frontend UI, backend logic, and data store,
to be developed using Low Code technologies.

• Using machine learning in Low Code vs machine learning
in other technologies.

• Research of Low Code Development Platforms usage for
communication, human behaviour, and decision-making.

6 CONCLUSIONS AND FUTUREWORK
Low Code development is a technology that speeds up the process
of deploying an application version to the production environment.
Low Code facilitates programming by diminishing the handwritten
code and allowing non-programmers to build applications. These
technologies may also simplify the work of database developers.

The LowCode development, Java Swing, and JavaScript program-
ming have been experimentally evaluated and it can be concluded
that Low Code applications are valuable when what is important is

the development time and writing code. However, their runtime exe-
cution for the setup of the application is slower than Java Swing and
JavaScript. Low Code and JavaScript are faster at executing most of
the operations than Java Swing which leads to the conclusion that
Low Code and JavaScript applications have a better performance.
Their performance in terms of operation execution time is very
similar, which occurs because Node.js is based on JavaScript and the
applications of these technologies run on the same environment, a
browser.

Despite the advantages of Low Code, it must be taken into con-
sideration that Low Code has a big learning curve. It should also
be noted that the compared technologies run in different envi-
ronments, Java Swing runs on the operating system, and the other
technologies run on a browser, which directly impacts performance.

It can be concluded that JavaScript is the best programming
method in terms of execution runtime, although it may be the one
with a larger number of code lines, depending on the applications.

As future work is intended to develop a study with other tech-
nologies, like .Net, and with more complex applications, such as a
web app that manages users, so there can have a thorough compar-
ison.

REFERENCES
[1] N. Prinz, C. Rentrop, and M. Huber, “Low-Code Development Platforms – A

Literature Review,” AMCIS 2021 Proceedings, 2021.
[2] Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, “Characteristics and Challenges

of Low-Code Development,” 2021, doi: 10.1145/3475716.3475782.
[3] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting the un-

derstanding and comparison of low-code development platforms,” Proceedings -
46th Euromicro Conference on Software Engineering and Advanced Applications,
SEAA 2020, 2020, doi: 10.1109/SEAA51224.2020.00036.

[4] C. Silva, J. Vieira, J. C. Campos, R. Couto, and A. N. Ribeiro, “Development and
Validation of a Descriptive Cognitive Model for Predicting Usability Issues in
a Low-Code Development Platform,” Human Factors, vol. 63, no. 6, 2021, doi:
10.1177/0018720820920429.

[5] “No-code/low-code: why should you be paying attention.” https://venturebeat.
com/2021/02/14/no-code-low-code-why-you-should-be-paying-attention/ (ac-
cessed Nov. 04, 2021).

[6] “Neptune.” https://www.neptune-software.com/ (accessed Feb. 12, 2020).
[7] B. Cole, R. Eckstein, J. Elliott, M. Loy, D. Wood, and O. ’ Reilly, “JavaTM Swing,

2nd Edition,” 2002.
[8] “HTML: HyperText Markup Language | MDN.” https://developer.mozilla.org/en-

US/docs/Web/HTML (accessed Mar. 11, 2022).
[9] “Cascading Style Sheets.” https://www.w3.org/Style/CSS/#specs (accessed Jan.

18, 2022).
[10] “CSS: Cascading Style Sheets | MDN.” https://developer.mozilla.org/en-US/docs/

Web/CSS (accessed Jan. 18, 2022).
[11] H. Wium. Lie and Bert. Bos, “Cascading style sheets: designing for the Web,” p.

396, 1999.
[12] “JavaScript | MDN.” https://developer.mozilla.org/en-US/docs/Web/JavaScript

(accessed Jan. 18, 2022).
[13] “Node.js.” https://nodejs.org/en/ (accessed Jan. 31, 2022).
[14] “What is an IDE or Integrated Development Environment?” https://www.

veracode.com/security/integrated-development-environment (accessed Nov. 30,
2021).

[15] “Mozilla | MDN - downloads.” https://developer.mozilla.org/en-US/docs/Mozilla/
Add-ons/WebExtensions/API/downloads/download (accessed Jan. 24, 2022).

[16] “TOP IDE index.” https://pypl.github.io/IDE.html (accessed Nov. 30, 2021).
[17] Tim Boudreau, Jesse Glick, Simeon Greene, Vaughn Spurlin, and Jack Woehr,

NetBeans: The Definitive Guide: Developing, Debugging, and Deploying Java
Code, 1st ed. O’REILLY, 2002.

[18] “Apache NetBeans.” https://netbeans.apache.org// (accessed Nov. 18, 2021).
[19] “Secure, Fast & Private Web Browser with Adblocker | Brave Browser.” https:

//brave.com/ (accessed Dec. 30, 2021).
[20] “Visual Studio Code - Code Editing. Redefined.” https://code.visualstudio.com/

(accessed Jan. 13, 2022).
[21] “System Calls in Operating System - javatpoint.” https://www.javatpoint.com/

system-calls-in-operating-system (accessed Feb. 16, 2022).

112

https://venturebeat.com/2021/02/14/no-code-low-code-why-you-should-be-paying-attention/
https://venturebeat.com/2021/02/14/no-code-low-code-why-you-should-be-paying-attention/
https://www.neptune-software.com/
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.w3.org/Style/CSS/#specs
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://nodejs.org/en/
https://www.veracode.com/security/integrated-development-environment
https://www.veracode.com/security/integrated-development-environment
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/downloads/download
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/downloads/download
https://pypl.github.io/IDE.html
https://netbeans.apache.org//
https://brave.com/
https://brave.com/
https://code.visualstudio.com/
https://www.javatpoint.com/system-calls-in-operating-system
https://www.javatpoint.com/system-calls-in-operating-system

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 What is Low Code?
	2.2 Low Code Development Platform
	2.3 Java Swing
	2.4 HTML
	2.5 Cascading Style Sheet (CSS)
	2.6 JavaScript
	2.7 Node.js
	2.8 Integrated Development Environment (IDE)
	2.9 Methodology

	3 EXPERIMENTAL RESULTS
	4 DISCUSSION OF THE EXPERIMENTAL RESULTS
	4.1 Discussion of the Results: Comparing Low Code with Java Swing and JavaScript
	4.2 Discussion of the Results: Java Swing with JavaScript
	4.3 Summary of all Results

	5 OPEN PROBLEMS
	6 CONCLUSIONS AND FUTURE WORK
	References

