
A Dynamic Memory Management Unit for Embedded
Real-Time System-on-a-Chip

Mohamed Shalan
Georgia Institute of Technology

School of Electrical and Computer Engineering
801 Atlantic Drive

Atlanta, GA 30332-0250
(770) 757-6772

shalan@ece.gatech.edu

Vincent J. Mooney III
Georgia Institute of Technology

School of Electrical and Computer Engineering
801 Atlantic Drive

Atlanta, GA 30332-0250
 (404) 385-0437

mooney@ece.gatech.edu

ABSTRACT
Dealing with global on-chip memory allocation/de-allocation in a
dynamic yet deterministic way is an important issue for upcoming
billion transistor multiprocessor System-on-a-Chip (SoC) designs.
To achieve this, we propose a new memory management hierarchy
called Two-Level Memory Management. To implement this
memory management scheme – which presents a paradigm shift in
the way designers look at on-chip dynamic memory allocation – we
present a System-on-a-Chip Dynamic Memory Management Unit
(SoCDMMU) for allocation of the global on-chip memory, which
we refer to as level two memory management (level one is the
operating system management of memory allocated to a particular
on-chip processor). In this way, heterogeneous processors in an SoC
can request and be granted portions of the global memory in twenty
clock cycles in the worst case for a four-processor SoC, which is at
least an order of magnitude faster than software-based memory
management. We present a sample implementation of the
SoCDMMU and compare hardware and software implementations.

Keywords
System-on-a-Chip, dynamic memory management, real-time
systems, embedded systems, SoCDMMU, two-level memory
management.

1. INTRODUCTION
In the next five years it will be possible to fabricate integrated
circuits with close to one billion transistors on a single chip [11].
Such chips will no longer be individual components of a system but
“silicon boards.” A typical System-on-a-Chip (SoC), as shown in
Figure 1, will consist of multiple Processing Elements (PE's) of
various types (i.e., general purpose processors, domain-specific
CPU's such as DSP's, and custom hardware), large memory, analog

components and digital interfaces [1][5]. Architecture such as this
will be suitable for embedded real-time applications. Such
applications – especially multimedia – require great processing
power and large volume data management [6][12].
Management of the memory of a large SoC with heterogeneous
processing elements and significant on-chip memory requires
sophisticated analysis and optimization. One of the issues that the
designer must take care of in an SoC is the allocation of the large
global on-chip memory between the PE's. Will the allocation be
static (i.e., determined at compile time), or dynamic (decided at run-
time and capable of being changed from one moment to another
during operation)? Most previous research in embedded systems has
focused on static allocation and how to synthesize memory
hierarchies for an SoC [12]. For applications whose memory
requirements change significantly during run-time, static allocation
of memory makes the on-chip memory utilization inefficient and
makes system modification after implementation very difficult
[2][10]. On the other hand, dealing with memory allocation between
the PE's in a dynamic way can make the memory utilization more
efficient. Also, the memory allocation will be programmable and can
be changed at any moment depending on the system load. From the
general-purpose end of the spectrum, there has been significant
research in shared memory multiprocessing [8]. However, in shared
memory multi-processing, dynamic memory allocation is not
deterministic and typically requires hundreds or thousands of clock
cycles in the worst case [7], which makes satisfaction of real-time
constraints on such shared memory architectures difficult if not
impossible.

Example 1 Consider a handheld device that can be used for
communication as well as other personal applications (e.g., an
Audio Player) like the example that is described in [9]. This device
may be based on a multiprocessor SoC like that shown in Figure 1.
Assume the device uses Orthogonal Frequency Division
Multiplexing (OFDM) for communication. When used for comm-
unication, the OFDM processing is performed by the on-chip
processors (e.g., DSP1 performs an FFT and DSP2 performs the rest
of the OFDM processing). If the user switches from an audio player
application (that does not use OFDM) to a communication
application (that does use OFDM), then the switching time should
be fast enough to receive the incoming data packets. Specifically,
memory has to be rearranged (dynamically de-allocated and re-
allocated) fast enough for the OFDM application to properly
interpret the incoming OFDM symbols.□

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’00, November 17-19, 2000, San Jose, CA.
Copyright 2000 ACM 1-58113-338-3/00/0011…$5.00.

180

http://crossmark.crossref.org/dialog/?doi=10.1145%2F354880.354905&domain=pdf&date_stamp=2000-11-01

Figure 1. Example of A Billion-Transistor SoC

In this paper we describe a novel approach for memory
allocation/de-allocation between PE's in an SoC that is suitable for
real-time applications. Such systems require fast deterministic
behavior that cannot be provided by general-purpose computer
systems. The approach focuses on implementing a special hardware
SoC Dynamic Memory Management Unit (SoCDMMU) to
dynamically allocate the large global on-chip memory between the
PE's. Note that after the SoCDMMU allocates a portion of the large
global on-chip memory to a particular PE, the PE itself manages the
use of this memory by its processes/threads. The SoCDMMU allows
fast and deterministic dynamic memory allocation/de-allocation of
the large global on-chip memory between the PE's.
The paper is organized as follows: Section 2 will describe the
programming model. Section 3 describes the SoCDMMU. Section 4
discusses experimental results of our approach. Finally, the paper
will be concluded in Section 5.

2. THE PROGRAMMING MODEL
We propose a programming model and memory management
scheme, which we call Two-Level Memory Management. Two-Level
Memory Management assumes that the SoCDMMU handles the
allocation of the global on-chip memory while each PE handles the
local dynamic memory allocation among the threads/processes
running on the PE, for example with a Real-Time Operating System
(RTOS) (a hardware accelerator can be used to accelerate the
memory allocation/de-allocation at the threads/processes level [4]).
The SoCDMMU manages distribution of memory between the PE's.
On the other hand, each PE manages the usage of memory by the
processes that run on that PE. So, typically, if a process requests a
memory allocation it will request it from the RTOS. If the PE has
currently allocated enough extra global memory to satisfy the
request, the RTOS will simply allocate the memory right away;
otherwise, the RTOS will request more memory from the
SoCDMMU. Thus, there are two levels: the process/thread level
managed by the RTOS (local allocation), and the PE level (global
allocation) managed by the SoCDMMU. Before going further
through the rest of the paper we will first state some assumptions on
which we base our approach:

• The application running on the SoC fits (instruction and
data) in the global on-chip memory.

• The global memory is divided into a fixed number of equally
sized blocks (for example, 16KB or 64KB).

• Global memory allocation done by the SoCDMMU is
referred to as G_allocation; global memory de-allocation
done by the SoCDMMU is referred to as G_deallocation.

• A page consists of one or more blocks.

• Each memory block has one physical address and one or
more virtual addresses. The block virtual address may differ
from one PE to another.

• The block virtual address is referred to as PE-address.

• Each PE may request dynamic G_allocation of a page.

• Multiple PE's may issue G_allocation or G_deallocation
commands simultaneously.

• The PE's can G_allocate three types of memory pages:
o Exclusive Memory: Only the owner (the PE that

G_allocates it) can access the G_allocated memory.
No other PE can access the page. We will refer to the
command that G_allocates this type of pages as
G_alloc_ex.

o Read/Write: The PE which G_allocates the page can
read from or write to the memory. Another PE can
read from the page if that PE G_allocates the page as
read only. No other PE may G_allocate the same
memory as Read/Write or as Exclusive Memory.
This limitation significantly reduces cache coherency
problems. We will refer to the command that
G_allocates this type of pages as G_alloc_rw.

o Read Only: The PE can read from (but not write to)
the page. The page must be G_allocated as
read/write by a different PE. We will refer to the
command that G_allocates this type of pages as
G_alloc_ro.

To handle the G_allocation and G_deallocation in programming
languages (C/C++, etc.), the normal functions for G_allocation and
deallocation (malloc() and free()) will be used without any change in
the syntax. The only modification is to add a comment after the
memory G_allocation function to distinguish between the different
G_allocation commands discussed before. Figure 2 shows how that
can be done in the C language. A preprocessor analyzes the source
code and replaces the memory management functions with suitable
code according to the comment inserted in the source code. The
preprocessor also generates unique ID's to handle the G_alloc_rw
and G_alloc_ro commands. These ID's are stored in the
SoCDMMU and are used to resolve the addresses of the shared
blocks at run-time.

p1=malloc(2*BLK_SZ); /*DMMU G_alloc_ex(2)*/

p2=malloc(4*BLK_SZ); /*DMMU G_alloc_rw(4,XBUF)*/

p3=malloc(4*BLK_SZ); /*DMMU G_alloc_ro(XBUF)*/

Figure 2. How to use the SoCDMMU in the C language

We deal with the cache coherency problem that may exist in the
pages that are G_allocated as read/write using a simple cache
invalidation scheme. Note that, since only one processor may
allocate any memory as read/write (with other processors only
allowed to allocate the memory as read only), the only time a cache
line needs to be invalidated is when PE writes read/write memory
which other PE's – which have allocated the memory as read only –

181

have cached. In this case, the write through from the PE with
read/write will cause the cache lines in the read only PE's to be
invalidated.

3. THE SoCDMMU
As Figure 1 showed, the System-on-Chip consists of multiple PE's
connected to a large memory block. Figure 3 shows the memory
configuration and connections in greater detail. Each PE can be a
microprocessor, a micro-controller, a DSP, or application specific
hardware. The large global memory is dynamically G_allocated
between the PE's. While we assume the global memory is SRAM,
the memory management scheme here is equally applicable to
DRAM.

Figure 3. System with SoCDMMU

Notice that we have a separate bus for each PE. This is possible
since all PE's are on the same piece of silicon. We hypothesize that
this architecture will dramatically improve performance over an
architecture with only one bus connecting all PE’s to the
SocDMMU.

Figure 4. SoCDMMU-PE Interface

3.1 The PE-SoCDMMU Interface
As mentioned in the previous section, the SoCDMMU controls PE
access to the global memory and executes the G_allocate and

G_deallocate commands issued by the PE's. Figure 4 shows how a
PE is connected to the SoCDMMU.
The PE's memory bus is connected to the SoCDMMU to allow the
SoCDMMU to control all of the global memory access. This enables
the SoCDMMU to convert the PE-address to physical address. The
PE can map any allocated block to any memory location inside its
address space (as shown in Figure 5). This feature allows the
allocation of non-contiguous memory blocks, so there is no need for
memory compaction.

Figure 5. Mapping of physical memory blocks to PEs
address spaces.

Example 2 Consider an SoC like that of Figure 1. Assume the total
memory is 16MB, which is divided into 256 blocks of 64KB each.
Figure 5 and Tables 1 and 2 show the mapping of the physical
memory blocks into the address space of PE1 and PE2 respectively.□

Table 1. Physical to Virtual address mapping
for PE1 in Figure 5.

Physical Memory Block No. Virtual Block No.

0 0

5 1

3 2

182

Table 2. Physical to Virtual address mapping
for PE2 in Figure 5.

At the same time the SoCDMMU is mapped into a location in the
I/O space of the PE. This I/O port (or memory mapped location) to
which the SoCDMMU is mapped is used to send commands to the
SoCDMMU (write data to the mapped location) and to receive the
status of the command execution (reading from the mapped
location).

Figure 6. Format of G_allocate commands

There are three types of commands that the SoCDMMU can
execute:

• G_allocate Commands:
Figure 6 shows the command word format for the
G_allocate commands. There are three types of G_allocate
commands as mentioned earlier: G_alloc_ex, G_alloc_rw,
and G_alloc_ro. The first part of the command word
specifies the command type. The second part specifies the
location at which the PE wants to map the requested blocks
on. The other fields depend on the type of the G_allocate
command:
o G_alloc_ex needs the size of the memory to be

allocated in blocks.
o G_alloc_rw needs the size of memory and the

software assigned ID of that page.
o G_alloc_ro needs the software assigned ID of that

page.

• G_deallocate Commands:
Figure 7 shows the format of the G_deallocate command
word. The G_deallocate command needs to know the Page
ID (virtual block number of the first block in the page) to be
de-allocated.

Figure 7. The G_deallocate command word format

• Move Command:
Figure 8 shows the format of the move command. The move
command is used to re-map allocated memory blocks to
another location in the PE-address space. This is useful
because it allows PE address space compaction. The
command needs two parameters: the first parameter specifies

the old PE address assigned to that block; the second
parameter specifies the new PE address to be assigned to the
block.

Figure 8. The Move command word format

The possible errors that can be detected at the SoCDMMU level
during the G_allocation and G_deallocation operation are as
follows:

• Not enough memory to G_allocate (G_allocation error).

• Trying to G_deallocate non-owned memory page
(G_deallocation error).

• Trying to move a non-existing memory block (move error).

• Trying to G_deallocate a non-existing memory page
(G_deallocation error).

Example 3 Consider an SoC like that of Figure 1. Assume the total
memory is 16MB, which is divided into 256 blocks of 64KB each.
Also, assume the virtual address space of each PE is 4GB. Table 3
shows the bit width of each field of the G_allocate commands
(G_alloc_ex, G_alloc_rw, and G_alloc_ro). The command field
occupies 3 bits. The virtual block number occupies log2
(4GB/64KB)=16 bits. The size field, which specifies how many
blocks are being allocated requires log2 (256)=8. The Software ID
field has 5 bits; this is what remains in a single word (32 – 3 –16 – 8
= 5). If more than 32 software ID’s are required this field can be
expanded at the cost of a second word for all SoCDMMU
commands. Table 4 shows different commands issued by different
PE's to the SoCDMMU.□

Table 3. G_allocate command field widths

Field Width (bits)
Command 3

Virtual Block Number 16
Size 8

Software ID 5

Table 4. Different command words for Example 3

PE Command Size Virtual Block
Number

Command
Word

1 G_alloc_ex 4 8000h 00240000h
2 G_alloc_rw 2 9000h 00141001h
3 G_alloc_ro n/a 8000h 00040002h

3.2 The SoCDMMU Architecture
Figure 9 shows the structure of the SoCDMMU. The SoCDMMU
can accept simultaneous requests and serializes them using the
scheduler. The block labeled “BASIC SoCDMMU” can handle only
one request at a time. Multiple requests are handled by having
multiple commands and status registers. Each PE has its own
command register and status register. Each PE writes its command
into its associated command register. When multiple commands are
received simultaneously, the scheduler determines which command

Physical Memory Block No. Virtual Block No.

255 0

1 1

183

will be executed on the BASIC SoCDMMU according to a priority-
scheduling algorithm, where priorities are dynamically assigned to
ensure that the G_deallocate commands are always executed first.

Figure 9. The SoCDMMU Architecture

3.2.1 The Basic SoCDMMU Architecture
Figure 11 shows the structure of the BASIC SoCDMMU. This unit
performs G_allocation and G_deallocation commands; it also keeps
track of block G_allocation status using the Allocation Vector. The
Allocation Vector is a bit vector where the number of bits equals the
total numbers of blocks in the global memory. A value of ‘1’ in a
particular bit of the Allocation Vector indicates that the
corresponding block in global memory is G_allocated; a value of ‘0’
indicates that the global memory block is a available for possible
allocation.

Example 4 Consider an SoC like that of Example 2. Figure 10
shows the 256-bit allocation vector where blocks 0,1, 5, and 254 are
allocated. □

Figure 10. The Allocation Vector for Example 4

The BASIC SoCDMMU also stores information about the
G_allocated blocks using the Allocation Table. The Allocation
Table is a register file with number of words equal to the total
number of blocks. Each word corresponds to a particular block.
Figure 12 shows the Allocation Table word format. Figure 13 shows
an example of the Allocation Table with some entries.

The G_allocation process is performed using the Allocation Unit.
The Allocation Unit inputs are the page size in blocks and the
information stored in the Allocation Vector. Using this information

Figure 11. The Basic SoCDMMU Architecture

the Allocation Unit allocates the requested page using a first fit
algorithm. The output from the Allocation Unit is used to update the
Allocation Vector and insert a record in the Allocation Table. Also,
the Allocation Unit updates the information stored in the address
converter look up table. The Allocation Unit output is written into
the status word. If there are any errors then the error code will be
written to the status word and no update will be performed.

Figure 12. The Allocation Table word format

To G_deallocate a page, first the page ID is used to read the page
information from the Allocation Table. The page information along
with the information stored in the Allocation Vector are fed to the
de-allocation Unit. The de-allocation unit will then de-allocate the
page by updating the allocation vector and deleting the page entry
from the Allocation Table.

3.2.2 The Address Converter
This unit is used to convert the PE address to a physical memory
address. The Address Converter stores the PE address and physical
address for each memory block. This information is updated using
the different commands of the SoCDMMU. Note that each PE has
its own lookup table to avoid any bottleneck.

Figure 13. Example of an Allocation Table with some entries

The PE address to physical address conversion is required to make
the allocated non-contiguous memory blocks appear as contiguous

184

memory blocks to the PE address space. This prevents memory
fragmentation; hence, no memory compaction is needed for the
global on-chip memory blocks.

The conversion process is done as in Figure 14. First the converter
use the virtual block number part of the block PE address to look up
the physical block number. The physical block number is used along
with the block-offset part of the PE address to construct the physical
address.

Figure 14. PE Address to Physical Address Conversion

4. EXPERIMENTS AND RESULTS
To test the effectiveness of our approach, we simulated a model for
an SoC that utilizes an SoCDMMU using the Synopsys VCSTM

verilog simulator. The simulated system looks like the system
illustrated earlier in Figure 1. The system has four PE's (2 RISC
processors – e.g., MIPS – and 2 DSPs – e.g., Motorola DSP56k –),
16MB SRAM and the SoCDMMU.
The memory is divided into 256 blocks; each block is 64KB. The
SoCDMMU utilizes a 256-bit Allocation Vector and an Allocation
Table with 256 entries. We conducted a number of experiments to
test the quality of our approach. Figure 15 shows a screenshot of the
simulation of the PE-SoCDMMU interface, where four PE's are
connected to the SoCDMMU. The last four signals in the timing
diagram show the commands that are explained earlier in Example 4
being issued by the different PE’s.

Figure 15. Screenshot of the Simulated System

4.1 SoCDMMU Command Execution Times
In this experiment we measured the worst-case execution time of the
SoCDMMU commands. Table 5 summarizes the results. We found
that the worst-case execution time occurs when all PE's issue
G_deallocate commands.

In Table 6, we see the results for the synthesis of the SoCDMMU
using the Synopsys Design CompilerTM. The second column in
Table 4 shows the number of gate equivalents of hardware required
using the AMI 0.5-micron Logic library.

Table 5. Execution Times in Cycles

Command Number of Cycles
G_alloc_ex 4
G_alloc_rw 4
G_alloc_ro 3
G_dealloc 5

Worst-Case Execution Time 20

Table 6. The SoCDMMU Synthesis Results

Lines (RTL Verilog) Area
1,030 41,561.5

Example 5 Consider the handheld device in Example 1. Originally,
the audio player application uses all available memory. When used
for communication, OFDM processing requires memory allocation
to be dynamically changed. Specifically, OFDM uses DSP1 and
DSP2. DSP1 reads the incoming data from the FIFO buffer and
performs a 1024-point FFT for each received symbol to find the
original transmitted spectrum, and then DSP1 stores the results into
a memory buffer that is shared with DSP2. The phase angle of each
transmission carrier is then evaluated and converted back to data
words by demodulating the received phase. The demodulation is
performed by DSP2. The operation is outlined in Figure 16. DSP1
allocates the shared memory buffer as read/write and DSP1 allocates
it as read only.

Figure 16. OFDM sub-System

Assume that the incoming data rate is 10 GBit/Sec and the input
FIFO buffer is 1024 words. The FFT performed by DSP1 must start
before the input FIFO buffer reaches 10% of its capacity (or else
under some conditions the FIFO could overflow). Then, the time for
the device to start processing the incoming packet must be less than
10% x 1024 x 32 / (10 GBit/S) i.e., less than 305ns. For the first
time executed, part of this time is the time consumed to allocate the
required memory buffers. This means that the memory allocation
must be fast and its worst-case execution time must be predictable
and low. If the system involves SoCDMMU to manage the global

185

on-chip memory then the allocation of the two memory buffers will
be 2 x 20 = 40 cycles in the worst case. For a system clock of
400MHz (which can be consider low clock speed compared to the
current clock speeds) the time is 100 ns, which can satisfy the real-
time requirement. Note that a conventional memory allocation
scheme would probably be at least a factor of ten slower in the worst
case, and hence would not meet the real-time requirement.

4.2 Comparison with a Micro-controller
Implementation
To demonstrate the importance of building the SoCDMMU in
custom hardware, we compared the SoCDMMU performance with
the performance of software running on RISC micro-controller
(Microchip PICTM micro-controller). This software performs the
same function as the SoCDMMU. Table 7 compares the worst-case
execution time of the hardware SoCDMMU with the best-case
execution time for the micro-controller implementation of the
SoCDMMU in software. The comparison is shown in clock cycles.
We assume that the hardware SoCDMMU and the micro-controller
both have the same clock rate (e.g., 400MHz).

Table 7. A comparison between the SoCDMMU and the Micro-

controller Execution Times
SoCDMMU Worst-Case Execution Time 20 Cycles
Micro-controller Best-Case Execution Time 221 Cycles

5. CONCLUSION
In this paper, we described an approach to handle on-chip memory
allocation between PE's in an SoC. Our approach is based on a
hardware SoCDMMU that allows a dynamic, fast way to
allocate/de-allocate the on-chip memory. Moreover, the
SoCDMMU allocation/de-allocation of the memory blocks is
completely deterministic, which makes it suitable for real-time
applications. Thus, this approach fits in the gap between general-
purpose fully shared memory multiprocessor SoCs and application
specific SoC designs with custom memory configurations.

Currently, different types of RTOS's are being modified to extend
their memory management schemes to support the hardware
SoCDMMU. We also plan to extend the SoCDMMU to support
G_alloc_rw of the same block by multiple PE’s, thus providing fully
shared memory blocks. Finally, for future work we plan to carry out
a study comparing our multiprocessor SoC to a SoCDMMU with
fully shared memory multiprocessor SoC like Hydra [5].

6. Yes! Open Hardware Description Language
The verilog code for the SoCDMMU is available at www.yohdl.org
under the YOHDL open source license for downloading

7. ACKNOWLEDGMENTS
The authors would like to thank Kyeong Keol Ryu for his help in
understanding the OFDM system under development at GaTech
Broadband Institute [3].

This research is funded by a fellowship from the Egyptian
government and by NSF under grant numbers INT-9973120 and
CCR-9984808.

8. REFERENCES
[1] C.E. Kozyrakis et al, “Scalable Processors in the Billion-

Transistor Era: IRAM,” IEEE Computer, 75-78 (September,
1997).

[2] D. Verkest et al., “CoWare-A Design Environment for
Heterogeneous Hardware/Software Systems,” Design
Automation for Embedded Systems, 2(4), 357-386 (October
1996).

[3] Georgia Institute of Technology, Broadband Institute,
www.broadband.gatech.edu

[4] J. M. Chang, W. Srisa-an, and C.D. Lo, "Introduction to
DMMX (Dynamic Memory Management Extension)", ICCD
Workshop on Hardware Support for Objects and
Microarchitectures for Java, Austin, TX. (October 10, 1999).

[5] K. Olukotum et al., “The Case for a Single-Chip
Multiprocessor,'' Proceedings of the Seventh International
Symp. Architectural Support for Programming Languages and
Operating Systems (ASPLOS VII), Cambridge, MA, (October,
1996).

[6] P.R. Panda,N.D. Dutt, and A. Nicolau “Mmeory Data
Organization for Improved Cache Performance In Embedded
Processor Applications,'' ACM Transaction on Design
Automation of Electronic Systems, 2(4) (October, 1997).

[7] P.R. Wilson et al., “Dynamic Storage Allocation: A Survey and
Critical Review,'' Proceedings 1995 Int'l workshop on Memory
Management, Scotland (September, 1995).

[8] Proceedings of IEEE, Special Issue on Distributed Shared
Memory Systems, 87(3), 397-532, (March, 1999).

[9] S. Morgan, “Jini to the rescue,'' IEEE Spectrum, 37(4), 44-49
(April, 2000).

[10] S. Wuytack et al., ”Memory Management for Embedded
Network Applications,'' IEEE Transaction On Computer-Aided
Design of Integrated Circuits and Systems, 18(5), (May, 1999).

[11] The International Technology Roadmap for Semiconductors,
edited by SIA Semiconductor Industry Association, 1999.

[12] Y. Li, and W.H. Wolf, “Hardware/Software Co-Synthesis with
Memory Hierarchies,'' IEEE Transaction Computer-Aided
Design of Integrated Circuits and Systems, 18(10), 1405-1417,
(October 1999).

186

