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ABSTRACT 
Dealing with global on-chip memory allocation/de-allocation in a 
dynamic yet deterministic way is an important issue for upcoming 
billion transistor multiprocessor System-on-a-Chip (SoC) designs. 
To achieve this, we propose a new memory management hierarchy 
called Two-Level Memory Management. To implement this 
memory management scheme – which presents a paradigm shift in 
the way designers look at on-chip dynamic memory allocation – we 
present a System-on-a-Chip Dynamic Memory Management Unit 
(SoCDMMU) for allocation of the global on-chip memory, which 
we refer to as level two memory management (level one is the 
operating system management of memory allocated to a particular 
on-chip processor). In this way, heterogeneous processors in an SoC 
can request and be granted portions of the global memory in twenty 
clock cycles in the worst case for a four-processor SoC, which is at 
least an order of magnitude faster than software-based memory 
management. We present a sample implementation of the 
SoCDMMU and compare hardware and software implementations. 

Keywords 
System-on-a-Chip, dynamic memory management, real-time 
systems, embedded systems, SoCDMMU, two-level memory 
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1. INTRODUCTION  
In the next five years it will be possible to fabricate integrated 
circuits with close to one billion transistors on a single chip [11]. 
Such chips will no longer be individual components of a system but 
“silicon boards.” A typical System-on-a-Chip (SoC), as shown in 
Figure 1, will consist of multiple Processing Elements (PE's) of 
various types (i.e., general purpose processors, domain-specific 
CPU's such as DSP's, and custom hardware), large memory, analog 

components and digital interfaces [1][5]. Architecture such as this 
will be suitable for embedded real-time applications. Such 
applications – especially multimedia – require great processing 
power and large volume data management [6][12]. 
Management of the memory of a large SoC with heterogeneous 
processing elements and significant on-chip memory requires 
sophisticated analysis and optimization. One of the issues that the 
designer must take care of in an SoC is the allocation of the large 
global on-chip memory between the PE's. Will the allocation be 
static (i.e., determined at compile time), or dynamic (decided at run-
time and capable of being changed from one moment to another 
during operation)? Most previous research in embedded systems has 
focused on static allocation and how to synthesize memory 
hierarchies for an SoC [12]. For applications whose memory 
requirements change significantly during run-time, static allocation 
of memory makes the on-chip memory utilization inefficient and 
makes system modification after implementation very difficult 
[2][10]. On the other hand, dealing with memory allocation between 
the PE's in a dynamic way can make the memory utilization more 
efficient. Also, the memory allocation will be programmable and can 
be changed at any moment depending on the system load. From the 
general-purpose end of the spectrum, there has been significant 
research in shared memory multiprocessing [8]. However, in shared 
memory multi-processing, dynamic memory allocation is not 
deterministic and typically requires hundreds or thousands of clock 
cycles in the worst case [7], which makes satisfaction of real-time 
constraints on such shared memory architectures difficult if not 
impossible. 

Example 1 Consider a handheld device that can be used for 
communication as well as other personal applications (e.g., an 
Audio Player) like the example that is described in [9]. This device 
may be based on a multiprocessor SoC like that shown in Figure 1. 
Assume the device uses Orthogonal Frequency Division 
Multiplexing (OFDM) for communication. When used for comm-
unication, the OFDM processing is performed by the on-chip 
processors (e.g., DSP1 performs an FFT and DSP2 performs the rest 
of the OFDM processing). If the user switches from an audio player 
application (that does not use OFDM) to a communication 
application (that does use OFDM), then the switching time should 
be fast enough to receive the incoming data packets. Specifically, 
memory has to be rearranged (dynamically de-allocated and re-
allocated) fast enough for the OFDM application to properly 
interpret the incoming OFDM symbols.□ 
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Figure 1. Example of A Billion-Transistor SoC 

In this paper we describe a novel approach for memory 
allocation/de-allocation between PE's in an SoC that is suitable for 
real-time applications. Such systems require fast deterministic 
behavior that cannot be provided by general-purpose computer 
systems. The approach focuses on implementing a special hardware 
SoC Dynamic Memory Management Unit (SoCDMMU) to 
dynamically allocate the large global on-chip memory between the 
PE's. Note that after the SoCDMMU allocates a portion of the large 
global on-chip memory to a particular PE, the PE itself manages the 
use of this memory by its processes/threads. The SoCDMMU allows 
fast and deterministic dynamic memory allocation/de-allocation of 
the large global on-chip memory between the PE's. 
The paper is organized as follows: Section 2 will describe the 
programming model. Section 3 describes the SoCDMMU. Section 4 
discusses experimental results of our approach. Finally, the paper 
will be concluded in Section 5. 

2. THE PROGRAMMING MODEL 
We propose a programming model and memory management 
scheme, which we call Two-Level Memory Management. Two-Level 
Memory Management assumes that the SoCDMMU handles the 
allocation of the global on-chip memory while each PE handles the 
local dynamic memory allocation among the threads/processes 
running on the PE, for example with a Real-Time Operating System 
(RTOS) (a hardware accelerator can be used to accelerate the 
memory allocation/de-allocation at the threads/processes level [4]). 
The SoCDMMU manages distribution of memory between the PE's. 
On the other hand, each PE manages the usage of memory by the 
processes that run on that PE. So, typically, if a process requests a 
memory allocation it will request it from the RTOS. If the PE has 
currently allocated enough extra global memory to satisfy the 
request, the RTOS will simply allocate the memory right away; 
otherwise, the RTOS will request more memory from the 
SoCDMMU. Thus, there are two levels: the process/thread level 
managed by the RTOS (local allocation), and the PE level (global 
allocation) managed by the SoCDMMU. Before going further 
through the rest of the paper we will first state some assumptions on 
which we base our approach:  

• The application running on the SoC fits (instruction and 
data) in the global on-chip memory. 

• The global memory is divided into a fixed number of equally 
sized blocks (for example, 16KB or 64KB). 

• Global memory allocation done by the SoCDMMU is 
referred to as G_allocation; global memory de-allocation 
done by the SoCDMMU is referred to as G_deallocation. 

• A page consists of one or more blocks. 

• Each memory block has one physical address and one or 
more virtual addresses. The block virtual address may differ 
from one PE to another. 

• The block virtual address is referred to as PE-address. 

• Each PE may request dynamic G_allocation of a page. 

• Multiple PE's may issue G_allocation or G_deallocation 
commands simultaneously. 

• The PE's can G_allocate three types of memory pages: 
o Exclusive Memory: Only the owner (the PE that 

G_allocates it) can access the G_allocated memory. 
No other PE can access the page. We will refer to the 
command that G_allocates this type of pages as 
G_alloc_ex. 

o Read/Write: The PE which G_allocates the page can 
read from or write to the memory. Another PE can 
read from the page if that PE G_allocates the page as 
read only. No other PE may G_allocate the same 
memory as Read/Write or as Exclusive Memory. 
This limitation significantly reduces cache coherency 
problems. We will refer to the command that 
G_allocates this type of pages as G_alloc_rw. 

o Read Only: The PE can read from (but not write to) 
the page. The page must be G_allocated as 
read/write by a different PE. We will refer to the 
command that G_allocates this type of pages as 
G_alloc_ro. 

To handle the G_allocation and G_deallocation in programming 
languages (C/C++, etc.), the normal functions for G_allocation and 
deallocation (malloc() and free()) will be used without any change in 
the syntax. The only modification is to add a comment after the 
memory G_allocation function to distinguish between the different 
G_allocation commands discussed before. Figure 2 shows how that 
can be done in the C language. A preprocessor analyzes the source 
code and replaces the memory management functions with suitable 
code according to the comment inserted in the source code. The 
preprocessor also generates unique ID's to handle the G_alloc_rw 
and G_alloc_ro commands. These ID's are stored in the 
SoCDMMU and are used to resolve the addresses of the shared 
blocks at run-time. 

p1=malloc(2*BLK_SZ); /*DMMU G_alloc_ex(2)*/ 

p2=malloc(4*BLK_SZ); /*DMMU G_alloc_rw(4,XBUF)*/ 

p3=malloc(4*BLK_SZ); /*DMMU G_alloc_ro(XBUF)*/ 

Figure 2. How to use the SoCDMMU in the C language 
 

We deal with the cache coherency problem that may exist in the 
pages that are G_allocated as read/write using a simple cache 
invalidation scheme. Note that, since only one processor may 
allocate any memory as read/write (with other processors only 
allowed to allocate the memory as read only), the only time a cache 
line needs to be invalidated is when PE writes read/write memory 
which other PE's – which have allocated the memory as read only – 

181



have cached. In this case, the write through from the PE with 
read/write will cause the cache lines in the read only PE's to be 
invalidated.  

3. THE SoCDMMU 
As Figure 1 showed, the System-on-Chip consists of multiple PE's 
connected to a large memory block. Figure 3 shows the memory 
configuration and connections in greater detail. Each PE can be a 
microprocessor, a micro-controller, a DSP, or application specific 
hardware. The large global memory is dynamically G_allocated 
between the PE's. While we assume the global memory is SRAM, 
the memory management scheme here is equally applicable to 
DRAM.  

 
Figure 3. System with SoCDMMU 

Notice that we have a separate bus for each PE. This is possible 
since all PE's are on the same piece of silicon. We hypothesize that 
this architecture will dramatically improve performance over an 
architecture with only one bus connecting all PE’s to the 
SocDMMU. 

 

 
Figure 4. SoCDMMU-PE Interface 

3.1 The PE-SoCDMMU Interface 
As mentioned in the previous section, the SoCDMMU controls PE 
access to the global memory and executes the G_allocate and  

G_deallocate commands issued by the PE's. Figure 4 shows how a 
PE is connected to the SoCDMMU. 
The PE's memory bus is connected to the SoCDMMU to allow the 
SoCDMMU to control all of the global memory access. This enables 
the SoCDMMU to convert the PE-address to physical address. The 
PE can map any allocated block to any memory location inside its 
address space (as shown in Figure 5). This feature allows the 
allocation of non-contiguous memory blocks, so there is no need for 
memory compaction. 

Figure 5. Mapping of physical memory blocks to PEs  
address spaces. 

Example 2 Consider an SoC like that of Figure 1. Assume the total 
memory is 16MB, which is divided into 256 blocks of 64KB each. 
Figure 5 and Tables 1 and 2 show the mapping of the physical 
memory blocks into the address space of PE1 and PE2 respectively.□ 
 

Table 1. Physical to Virtual address mapping  
for PE1 in Figure 5. 

 
 
 
 

Physical Memory Block No. Virtual Block No. 

0 0 

5 1 

3 2 
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Table 2. Physical to Virtual address mapping  
for PE2 in Figure 5. 

 
At the same time the SoCDMMU is mapped into a location in the 
I/O space of the PE. This I/O port (or memory mapped location) to 
which the SoCDMMU is mapped is used to send commands to the 
SoCDMMU (write data to the mapped location) and to receive the 
status of the command execution (reading from the mapped 
location). 
 

 
Figure 6. Format of G_allocate commands 

There are three types of commands that the SoCDMMU can 
execute: 

• G_allocate Commands: 
Figure 6 shows the command word format for the 
G_allocate commands. There are three types of G_allocate 
commands as mentioned earlier: G_alloc_ex, G_alloc_rw, 
and G_alloc_ro. The first part of the command word 
specifies the command type. The second part specifies the 
location at which the PE wants to map the requested blocks 
on. The other fields depend on the type of the G_allocate 
command: 
o G_alloc_ex needs the size of the memory to be 

allocated in blocks. 
o G_alloc_rw needs the size of memory and the 

software assigned ID of that page. 
o G_alloc_ro needs the software assigned ID of that 

page. 

• G_deallocate Commands: 
Figure 7 shows the format of the G_deallocate command 
word. The G_deallocate command needs to know the Page 
ID (virtual block number of the first block in the page) to be 
de-allocated. 

 
Figure 7. The G_deallocate command word format 

• Move Command: 
Figure 8 shows the format of the move command. The move 
command is used to re-map allocated memory blocks to 
another location in the PE-address space. This is useful 
because it allows PE address space compaction. The 
command needs two parameters: the first parameter specifies 

the old PE address assigned to that block; the second 
parameter specifies the new PE address to be assigned to the 
block. 

 
Figure 8. The Move command word format 

The possible errors that can be detected at the SoCDMMU level 
during the G_allocation and G_deallocation operation are as 
follows: 

• Not enough memory to G_allocate (G_allocation error). 

• Trying to G_deallocate non-owned memory page 
(G_deallocation error). 

• Trying to move a non-existing memory block (move error). 

• Trying to G_deallocate a non-existing memory page 
(G_deallocation error). 

Example 3 Consider an SoC like that of Figure 1. Assume the total 
memory is 16MB, which is divided into 256 blocks of 64KB each. 
Also, assume the virtual address space of each PE is 4GB. Table 3 
shows the bit width of each field of the G_allocate commands 
(G_alloc_ex, G_alloc_rw, and G_alloc_ro). The command field 
occupies 3 bits. The virtual block number occupies log2 
(4GB/64KB)=16 bits. The size field, which specifies how many 
blocks are being allocated requires log2 (256)=8. The Software ID 
field has 5 bits; this is what remains in a single word (32 – 3 –16 – 8 
= 5). If more than 32 software ID’s are required this field can be 
expanded at the cost of a second word for all SoCDMMU 
commands. Table 4 shows different commands issued by different 
PE's to the SoCDMMU.□ 

Table 3. G_allocate command field widths 

Field Width (bits) 
Command 3 

Virtual Block Number 16 
Size 8 

Software ID 5 
 

Table 4. Different command words for Example 3 

PE Command Size Virtual Block 
Number 

Command 
Word 

1 G_alloc_ex 4 8000h 00240000h 
2 G_alloc_rw 2 9000h 00141001h 
3 G_alloc_ro n/a 8000h 00040002h 

3.2 The SoCDMMU Architecture 
Figure 9 shows the structure of the SoCDMMU. The SoCDMMU 
can accept simultaneous requests and serializes them using the 
scheduler. The block labeled “BASIC SoCDMMU” can handle only 
one request at a time. Multiple requests are handled by having 
multiple commands and status registers. Each PE has its own 
command register and status register. Each PE writes its command 
into its associated command register. When multiple commands are 
received simultaneously, the scheduler determines which command 

Physical Memory Block No. Virtual Block No. 

255 0 

1 1 
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will be executed on the BASIC SoCDMMU according to a priority-
scheduling algorithm, where priorities are dynamically assigned to 
ensure that the G_deallocate commands are always executed first. 

 
Figure 9. The SoCDMMU Architecture 

3.2.1 The Basic SoCDMMU Architecture 
Figure 11 shows the structure of the BASIC SoCDMMU. This unit 
performs G_allocation and G_deallocation commands; it also keeps 
track of block G_allocation status using the Allocation Vector. The 
Allocation Vector is a bit vector where the number of bits equals the 
total numbers of blocks in the global memory. A value of ‘1’ in a 
particular bit of the Allocation Vector indicates that the 
corresponding block in global memory is G_allocated; a value of ‘0’ 
indicates that the global memory block is a available for possible 
allocation. 

Example 4 Consider an SoC like that of Example 2. Figure 10 
shows the 256-bit allocation vector where blocks 0,1, 5, and 254 are 
allocated. □ 
 

 
Figure 10. The Allocation Vector for Example 4 

 
The BASIC SoCDMMU also stores information about the 
G_allocated blocks using the Allocation Table. The Allocation 
Table is a register file with number of words equal to the total 
number of blocks. Each word corresponds to a particular block. 
Figure 12 shows the Allocation Table word format. Figure 13 shows 
an example of the Allocation Table with some entries. 

The G_allocation process is performed using the Allocation Unit. 
The Allocation Unit inputs are the page size in blocks and the 
information stored in the Allocation Vector. Using this information 

 
Figure 11. The Basic SoCDMMU Architecture 

the Allocation Unit allocates the requested page using a first fit 
algorithm. The output from the Allocation Unit is used to update the 
Allocation Vector and insert a record in the Allocation Table. Also, 
the Allocation Unit updates the information stored in the address 
converter look up table. The Allocation Unit output is written into 
the status word. If there are any errors then the error code will be 
written to the status word and no update will be performed. 

 
Figure 12. The Allocation Table word format 

To G_deallocate a page, first the page ID is used to read the page 
information from the Allocation Table. The page information along 
with the information stored in the Allocation Vector are fed to the 
de-allocation Unit. The de-allocation unit will then de-allocate the 
page by updating the allocation vector and deleting the page entry 
from the Allocation Table. 

3.2.2 The Address Converter 
This unit is used to convert the PE address to a physical memory 
address. The Address Converter stores the PE address and physical 
address for each memory block. This information is updated using 
the different commands of the SoCDMMU. Note that each PE has 
its own lookup table to avoid any bottleneck. 

 
Figure 13. Example of an Allocation Table with some entries 

The PE address to physical address conversion is required to make 
the allocated non-contiguous memory blocks appear as contiguous 
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memory blocks to the PE address space. This prevents memory 
fragmentation; hence, no memory compaction is needed for the 
global on-chip memory blocks. 

The conversion process is done as in Figure 14. First the converter 
use the virtual block number part of the block PE address to look up 
the physical block number. The physical block number is used along 
with the block-offset part of the PE address to construct the physical 
address. 

 
Figure 14. PE Address to Physical Address Conversion 

4. EXPERIMENTS AND RESULTS 
To test the effectiveness of our approach, we simulated a model for 
an SoC that utilizes an SoCDMMU using the Synopsys VCSTM 

verilog simulator. The simulated system looks like the system 
illustrated earlier in Figure 1. The system has four PE's (2 RISC 
processors – e.g., MIPS – and 2 DSPs – e.g., Motorola DSP56k –), 
16MB SRAM and the SoCDMMU. 
The memory is divided into 256 blocks; each block is 64KB. The 
SoCDMMU utilizes a 256-bit Allocation Vector and an Allocation 
Table with 256 entries. We conducted a number of experiments to 
test the quality of our approach. Figure 15 shows a screenshot of the 
simulation of the PE-SoCDMMU interface, where four PE's are 
connected to the SoCDMMU. The last four signals in the timing 
diagram show the commands that are explained earlier in Example 4 
being issued by the different PE’s. 

 
Figure 15. Screenshot of the Simulated System 

4.1 SoCDMMU Command Execution Times 
In this experiment we measured the worst-case execution time of the 
SoCDMMU commands. Table 5 summarizes the results. We found 
that the worst-case execution time occurs when all PE's issue 
G_deallocate commands. 

In Table 6, we see the results for the synthesis of the SoCDMMU 
using the Synopsys Design CompilerTM. The second column in 
Table 4 shows the number of gate equivalents of hardware required 
using the AMI 0.5-micron Logic library. 

Table 5. Execution Times in Cycles 

Command Number of Cycles 
G_alloc_ex 4 
G_alloc_rw 4 
G_alloc_ro 3 
G_dealloc 5 

Worst-Case Execution Time 20 

Table 6. The SoCDMMU Synthesis Results 

Lines (RTL Verilog) Area 
1,030 41,561.5 

 

Example 5 Consider the handheld device in Example 1. Originally, 
the audio player application uses all available memory. When used 
for communication, OFDM processing requires memory allocation 
to be dynamically changed. Specifically, OFDM uses DSP1 and 
DSP2. DSP1 reads the incoming data from the FIFO buffer and 
performs a 1024-point FFT for each received symbol to find the 
original transmitted spectrum, and then DSP1 stores the results into 
a memory buffer that is shared with DSP2. The phase angle of each 
transmission carrier is then evaluated and converted back to data 
words by demodulating the received phase. The demodulation is 
performed by DSP2. The operation is outlined in Figure 16. DSP1 
allocates the shared memory buffer as read/write and DSP1 allocates 
it as read only. 

 
Figure 16. OFDM sub-System 

Assume that the incoming data rate is 10 GBit/Sec and the input 
FIFO buffer is 1024 words. The FFT performed by DSP1 must start 
before the input FIFO buffer reaches 10% of its capacity (or else 
under some conditions the FIFO could overflow). Then, the time for 
the device to start processing the incoming packet must be less than 
10% x 1024 x 32 / (10 GBit/S) i.e., less than 305ns. For the first 
time executed, part of this time is the time consumed to allocate the 
required memory buffers. This means that the memory allocation 
must be fast and its worst-case execution time must be predictable 
and low. If the system involves SoCDMMU to manage the global 
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on-chip memory then the allocation of the two memory buffers will 
be 2 x 20 = 40 cycles in the worst case. For a system clock of 
400MHz (which can be consider low clock speed compared to the 
current clock speeds) the time is 100 ns, which can satisfy the real-
time requirement. Note that a conventional memory allocation 
scheme would probably be at least a factor of ten slower in the worst 
case, and hence would not meet the real-time requirement. 

4.2 Comparison with a Micro-controller 
Implementation 
To demonstrate the importance of building the SoCDMMU in 
custom hardware, we compared the SoCDMMU performance with 
the performance of software running on RISC micro-controller 
(Microchip PICTM micro-controller). This software performs the 
same function as the SoCDMMU. Table 7 compares the worst-case 
execution time of the hardware SoCDMMU with the best-case 
execution time for the micro-controller implementation of the 
SoCDMMU in software. The comparison is shown in clock cycles. 
We assume that the hardware SoCDMMU and the micro-controller 
both have the same clock rate (e.g., 400MHz). 
 
Table 7. A comparison between the SoCDMMU and the Micro-

controller Execution Times 
SoCDMMU Worst-Case Execution Time 20 Cycles 
Micro-controller Best-Case Execution Time 221 Cycles 

 
5. CONCLUSION 
In this paper, we described an approach to handle on-chip memory 
allocation between PE's in an SoC. Our approach is based on a 
hardware SoCDMMU that allows a dynamic, fast way to 
allocate/de-allocate the on-chip memory. Moreover, the 
SoCDMMU allocation/de-allocation of the memory blocks is 
completely deterministic, which makes it suitable for real-time 
applications. Thus, this approach fits in the gap between general-
purpose fully shared memory multiprocessor SoCs and application 
specific SoC designs with custom memory configurations. 

Currently, different types of RTOS's are being modified to extend 
their memory management schemes to support the hardware 
SoCDMMU. We also plan to extend the SoCDMMU to support 
G_alloc_rw of the same block by multiple PE’s, thus providing fully 
shared memory blocks. Finally, for future work we plan to carry out 
a study comparing our multiprocessor SoC to a SoCDMMU with 
fully shared memory multiprocessor SoC like Hydra [5]. 

6. Yes! Open Hardware Description Language 
The verilog code for the SoCDMMU is available at www.yohdl.org 
under the YOHDL open source license for downloading  
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