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ABSTRACT

The domain of natural language processing (NLP), which has greatly evolved over the last years, has
highly benefited from the recent developments in word and sentence embeddings. Such embeddings
enable the transformation of complex NLP tasks, like semantic similarity or Question and Answering
(Q&A), into much simpler to perform vector comparisons. However, such a problem transformation
raises new challenges like the efficient comparison of embeddings and their manipulation. In this work,
we will discuss about various word and sentence embeddings algorithms, we will select a sentence
embedding algorithm, BERT, as our algorithm of choice and we will evaluate the performance of
two vector comparison approaches, FAISS and Elasticsearch, in the specific problem of sentence
embeddings. According to the results, FAISS outperforms Elasticsearch when used in a centralized
environment with only one node, especially when big datasets are included.

Keywords sentence embeddings, vector performance comparison, FAISS, Elasticsearch

1 Introduction

Natural language processing (NLP) focuses on the interactions between computers and human language and, in
particular, on how to program computers to efficiently process language data. NLP has greatly evolved the latest
years making the processing of millions of web pages by Google and its rivals to seem like a trivial task which can be
completed in less than a second, while a few years ago, the analysis of one sentence could last several minutes [1]. This
great improvement in NLP performance makes it possible to use computers for various complex tasks like machine
translation, dialogue systems, sentiment analysis, part-of-speech tagging and many more.

In this work we will investigate the problem of natural language processing using word and sentence embeddings in the
big data era. We present various embedding algorithms and we select one of the most prominent algorithms, BERT, to
investigate the problem of efficient comparison of sentence embeddings. We will focus on two infrastructure choices for
such a comparison. The available approaches will be analyzed and their performance on sentence embedding selection
will be presented and compared against a third, baseline approach. The approaches will also be compared among them
and conclusions will be drawn given the available datasets and resources.
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2 Word and sentence embeddings

One of the biggest challenges in NLP is the problem of high-di-mensionality and data sparseness which can be addressed
with the use of distributed vectors of word embeddings. The key idea of this approach is that words with similar
meaning tend to appear in a similar context. Therefore, the vectors are constructed in a way that they encapsulate
the characteristics of the neighbors of a word. Comparison among vectors is performed using metrics such as cosine
similarity, demonstrating the similarity of the words that the vectors correspond to.

These embeddings can be used as the first data processing step in a deep learning model. They are usually pre-trained
in an unlabeled corpus [2, 3] where they can capture syntactical and semantic information. Because of their small
dimensionality and due to the fact that these are dense vectors, they can be ideal for processing core NLP tasks.

Shallow neural networks have been the models to create such embeddings over the years with good performance. Deep
learning NLP models use them also to represent their words, phrases and sentences, making these embeddings one of
the key differences between traditional word-based models and deep learning-based models. Word embeddings have
been used for a wide range of NLP tasks with significant results [4, 5, 6, 7].

2.1 Word-level encodings

Mikolov et al. [2, 3] transformed word embedding algorithms by proposing the CBOW and skip-gram models. Both
of these models work on a window of words, but they follow different approaches. CBOW calculates the conditional
probability of a target word given the context words around it within a window of specific size. On the contrary, the
skip-gram model predicts the context words within a window of words given a specific target word. Word2vec uses a
large corpus of text as its input, creating a vector space that typically has several hundred dimensions, with each unique
word being assigned a vector in the space. As a result, word vectors in the vector space are positioned so that words
sharing the same context in the corpus are close to one another.

FastText [8] is exploring ways to make linear text classifiers like[9, 10, 11] to train to billion of words within a few
minutes and to achieve performance comparable to the state-of-the-art models. It is inspired by Word2Vec [2] with its
main difference being that it focuses on n-grams instead of words to make more fine grained representations.

GloVe [12] is another algorithm creating word vectors. The authors have developed a global log-bilinear regression
model combining the benefits of two major families of models in the literature: global matrix factorization and local
context window models. They claim that matrix factorization methods manage to outperform shallow window-based
methods like Word2Vec in scenarios where there is a vast amount of data repetition.

2.2 Contextualized Word Embeddings

Traditional word embedding methods did not take into account the fact that a given word can have completely different
meaning in different contexts. Being able to understand and differentiate among different senses of a word increases the
quality of the produced results. Therefore, taking into account syntactical information and handling polysemic behavior
leads to better word representations. Recent approaches take the above into account and calculate word representations
as a function of the word’s contexts.

Word2Vec algorithm, which was mentioned in the previous section, as well as other traditional word embedding
methods, create a global vector representation of a word, considering all the sentences where the word is present. New
models, like Embedding from Language Model (ELMo) [13], propose contextual word embeddings. More specifically,
for every context where a word is used, ELMo produces a word embedding allowing to have different representations
for different senses of the same word.

2.3 Sentence Embeddings

BERT algorithm that has been recently proposed by Devlin et al. [14] introduces the idea of relationship among
sentences. It uses a transformer network to pre-train a language model to extract contextual word embeddings. Its
language modeling is based on different tasks. In one task, BERT randomly masks a percentage of words in the
sentences and only predicts the masked words while in another task, it tries to predict the next sentence given a specific
sentence. The latter task tries to model the relationship among sentences. BERT outperforms state-of-the-art techniques
by a large margin on key NLP tasks such as Question answering (QA) and Natural Language Inference (NLI) where
understanding relations among sentences is very important.

Roberta [15] focuses on improving the training of the BERT model. Its authors claim that BERT is under-trained
and propose four modifications to improve its performance and outperform many models published since it. They
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Figure 1: An architecture overview. We have highlighted three different modules corresponding to the three different
phases of our experimental setup: (a) a document enrichment module which enriches the documents and their
corresponding queries with embeddings retrieved from the BERT server, (b) an indexing module that contacts the
Elasticsearch server and the FAISS index for document and embedding indexing and (c) a semantic search module
which uses the query embeddings, and the document embeddings in the case of the naive/brute-force approach, to
retrieve the needed results.

propose to train the model longer with bigger batches and longer sequences, to remove the next sentence objective and
to dynamically change the masking patters applied to the training data.

A sentence-BERT [16] algorithm may well be a modification of the BERT algorithm that uses siamese and triplet
networks to derive semantically meaningful sentence embeddings. Additionally to semantic similarity comparisons,
clustering and knowledge retrieval via semantic search can be very efficiently performed on modern hardware, making
SBERT suitable for innovative tasks not previously possible for BERT.

Two of the limitations of BERT is that it assumes that the predicted tokens are independent of each other given the
unmasked tokens and that it suffers from pretrain-finetune discrepancy. XLNet [17] is proposed to overcome these
limitations. It enables learning bidirectional context which maximizes expected likelihood over all permutations of the
factorization and it overcomes BERT with regard to auto-regressive formulation. It also integrates into its pre-training
ideas from Transformer-XL, a state-of-the-art autoregressive model. The result is that XLNet outperforms BERT in
various tasks like question answering, natural language inference, sentiment analysis, and document ranking.

ALBERT [18] proposes two optimizations to address memory limitations and training times that occur because of
necessary model increases of BERT. Both of the optimizations focus on the reduction of BERT parameters without
affecting performance: (1) they decompose the large vocabulary embedding matrix into smaller matrices and (2) they
share parameters across different layers. Their result is an increased training performance, a great reduction in number
of used parameters (18x) and a more stable training phase.

3 Embedding comparison frameworks

The construction of high-quality word and sentence embeddings is crucial to achieve good results in various NLP tasks.
However, an efficient and scalable way of comparing them is also very important. In this section, we will investigate
two different frameworks (two different approaches) to compare large number of such embeddings.

3.1 Elasticsearch

Elasticsearch [19] is an open source, highly scalable, full-text search engine which is written in Java. An Elasticsearch
cluster can be comprised of one or more Elasticsearch nodes, which are Elasticsearch server instances.

The Elasticsearch engine was initially written in Java to support free and open-source information retrieval from
software libraries. As a Java library it was cumbersome to be used and therefore an abstraction layer called Compass
was developed. In later years, the libraries were rewritten to ensure real-time performance and a standalone Elasticsearch
server was released.

Elasticsearch uses the REST API to carry out its operations and is multitenant [20]. The lightweight JSON (JavaScript
object notation)-queries are accessed using the basic HTTP interface. Elasticsearch shares many analogies with RDBMS.
It stores documents in JSON format which is the equivalent of a row of a RDBMS table. Each document consists of
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fields which can be primitive types or complex structures. Even if documents are considered schema-free, they have
a document type associated with them. Document type is the equivalent of a table of a RDBMS since it describes
the fields that can be specified for a particular document. However, documents of the same type may have different
schemas. All the documents in Elasticsearch are stored in indices permitting to store, update and query them. The index
is the equivalent of a RDBMS database.

Elasticsearch index consists of one or more Apache Lucene [21] indexes which are called shards. While the number of
shards of an index is predefined before index creation, documents mapping to shards, responsible for their storage and
indexing, depends on load. This load balancing permits all shards to be used simultaneously improving performance.
Elasticsearch improves even more its performance and scalability by the automatic re-distribution of shards based on
the available nodes. Irrespectively of the number of shards of an index and its internal load balancing, it is visible to the
client as a single structure.

One of the advantages of Elasticsearch is its horizontal (sharding) and vertical (powerful servers) scalability. Horizontal
scalability is ensured by distributing automatically index shards across nodes and ensures that are loaded equally.

Elasticsearch outstands also for its flexibility. Since it doesn’t impose any schema to the documents stored, it can easily
accommodate data that changes over time. When a new document is added with more fields than the already loaded
documents, Elasticsearch will update the index mapping without affecting what has already been loaded. Moreover,
Elasticsearch’s index design, which is based on a collection of shards, ensures correct load balancing of index update
tasks that happen when new data arrives. RDBMS have a predefined schema that can not be easily updated after data
loading. Moreover, index updates in the presence of large amount of data is not a trivial task.

Last but not least, since Elasticsearch operates on documents, it doesn’t need to perform any normalization process of
the data. Normalization process facilitates the create, update and remove operations. However, it is very likely to result
to more costly read operations since statements may need data from different tables that should be combined (joined) to
provide the final result.

3.2 FAISS

FAISS [22] addresses the problem of efficient comparison and similarity search of high-dimensional vectors (500 to
1,000+ dimensions). Such vector representations are frequently used in classification of images, videos or text. In the
context of text comparison, word and sentence embeddings are represented as large vectors of numbers. One of the
most expensive operations in this setting is to compute a k-NN (k-Nearest Neighbor) graph, which is a directed graph
where each vector of the database is a node and each edge connects a node to its k nearest neighbors.

The authors of [22] focus on how GPUs can be efficiently utilized in the problem of high-dimensional similarity
comparison. They have developed and present a GPU k-selection algorithm which performs approximate and exact
k-neighbor search. They make a complexity analysis and present a range of experiments showing that the proposed
improvements outperform the state of the art algorithms in exact and approximate search comparisons.

More specifically, in the exact search setting, they compare against other algorithms in k-selection performance where
FAISS outperforms competitors for various values of k. Another exact-search comparison performed is k-means
clustering where, in a large scale setup, they perform comparable performance to the competition but without any
pre-processing. The authors also present good results in exact nearest search. Another domain where FAISS excels is
the approximate nearest neighbor search on large datasets where they demonstrate better accuracy and lower execution
times against other implementations [23].

4 Embedding comparison setup

In this section we will perform benchmarks using Google’s Natural Questions (NQ) dataset [24]. We will first give an
overview of the dataset and then we will present two different benchmarks: (a) We will compare the performance of
three different approaches for vector comparison: naive/brute-force, FAISS and Elasticsearch. (b) Then we will perform
an evaluation of the quality of the embeddings based on the questions asked and the documents that correspond to these
questions.

4.1 Dataset overview

In Artificial Intelligence and more specifically, in Information Retrieval, the goal is to create systems that can read the
web and answer complex questions on any topic. Question-answering systems can have a significant impact on how we
interact with information. The ability to understand and answer questions about a given content is also something we
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{
"document_embeddings": [0.178529500961, ...],
"document_text": "Email marketing - Wikipedia

<H1>Email marketing</H1>
Jump to...",

"example_id": 5655493461695504401,
"question_embeddings": [-0.051026359897,

...],
"question_text": "which is the most common

use of opt-in e-mail
marketing"

}

Listing 1: An example of an enriched JSON dictionary with BERT embeddings of the Google NQ dataset.

generally associate with intelligence, which is why open-domain question answering is one of the benchmark tasks
for Artificial Intelligence development. As part of the natural questions corpus, query answering systems are required
to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. What
differentiates Google’s Natural Questions (NQ) [24] dataset from previous Query Answering (QA) datasets is the fact
that it includes real user questions that may need the full document to be read to return a valid answer. This fact makes
it a more realistic and challenging dataset to evaluate compared to previous efforts. It contains real questions and
answers gathered from Google search, as well as annotations from Wikipedia. NQ was designed for testing and training
automated question answering systems.

In the sequel, we will focus on the simplified version of the dataset that is composed of 307,373 examples that contain a
simplified version of a Wikipedia web-page, a question/query that should be answered from the web-page, long answer
candidates and the answer of one annotator on the query asked based on that specific page. The annotator provides a
long and short answer based on the document, wherever possible. In [24] the authors have established high human
upper bounds for long and short answers (90% precision, 85% recall and 79% precision, 72% recall respectively).

4.2 Dataset enrichment using sentence embeddings

We use the Google NQ dataset presented above for our benchmarks which we enrich with vector embeddings. More
specifically, the simplified version of the dataset is composed of 307,373 lines where each line is a separate JSON string.
The latter is a dictionary with the following keys: annotations (containing the proposed long and short answers by the
annotator), document_text, document_url, example_id, long_answer_candidates and question_text. From these keys, we
retain the document, the corresponding query and, for reference reasons, the id of the example. We create embeddings
for the document and the query using BERT and the model uncased_L-12_H-768_A-12. We do not pre-train the
model before generating the needed embeddings. The resulting embeddings are vectors containing 768 numbers and a
dictionary of the procedure described above is depicted at Listing 1.

The Google NQ dataset contains hundreds of thousands of lines and the processing described above needs special care
since it is a time and resource consuming procedure. Therefore, the dataset is read in batches of lines, and each batch is
processed independently. The documents and queries of each batch are transferred to BERT which runs as a service in a
docker container. For efficiency reasons, we have defined the maximum length of a sequence to 256. The number of
workers is set to 1. As soon as the document and query embeddings of a batch are generated, then lines as presented
at Listing 1 are constructed and stored in a separate file resulting to the enriched dataset which will be used in the
following benchmarks.

Following the aforementioned procedure, we generated 100,000 lines (similar to the one presented at Listing 1) in 24
hours. For the dataset generation we used a virtual machine with 8GB of RAM and 6-cores of an AMD Ryzen 7 PRO
5850U CPU. The BERT serving instantiation used was at version 1.9.8.

4.3 Efficient vector comparison

We use three different approaches to efficiently compare the pre-calculated vectors described at Section 4.2. We choose
one of the queries of the dataset and we use the corresponding embedding of the query to search for semantically similar
documents. To achieve this, a cosine similarity comparison is needed between the vector of the query Vq and the vector
of a document Vd:
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(a) Log scale comparison of the Naive, FAISS and
Elasticsearch approaches.
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(b) Normal scale comparison of FAISS and Naive approaches.

Figure 2: Performance of three vector comparison approaches. For FAISS and Elasticsearch we show the indexing
and querying performance for various dataset sizes while for the naive/brute-force search, we only show the querying
performance.

cos(Vq,Vd) =
VqVd

‖Vq‖‖Vd‖
=

∑n
i=1 VqiVdi√∑n

i=1 (Vqi)
2
√∑n

i=1 (Vdi)2
(1)

Available approaches:

• In the naive/brute-force approach, we perform in-memory all possible comparisons between a given Vq and
the Vds of all the documents. This has a complexity of O(n). The final result should be sorted based on the
similarity which will involve an additional O(nlog(n)), resulting to a total complexity of O(nlog(n)).

• When using the Elasticsearch framework, we firstly index the documents with their pre-calculated vector
embeddings and then we issue the query, using the vector of the query embeddings. We measure the time
needed for the indexing and the query answering. We use version 7.17.0 of Elasticsearch which runs as a
service in a docker container with one node.

• As with the Elasticsearch framework, in the FAISS approach, we index the document embeddings before
issuing the query and it takes advantage of this indexing to provide fast answers. We use a Flat index which
allows us to perform exact search. The version of FAISS used is 1.5.3 and it runs on CPU (faiss-cpu 1.7.1).

The Python implementation of the above ran on a virtual machine with 20GB of RAM and 10-cores of an AMD Ryzen
7 PRO 5850U CPU. We compared the indexing and the querying time for FAISS and Elasticsearch. For the naive/brute-
force implementation, we only measured the querying time, since it doesn’t perform any pre-processing or indexing.
It is worth mentioning that for FAISS and Elasticsearch we asked the top-100 results while the naive/brute-force
implementation returned all the results ordered by their similarity search score.

Figure 2 shows the results of these experiments for different dataset sizes. All experiments ran three times and we report
the average time. On the left sub-figure we demonstrate the time needed for indexing and querying for datasets ranging
from 1,000 documents to 80,000 documents. It is worth noting that the y-axis is in logarithmic scale and that the time
needed for Elasticsearch to index the document embeddings and to query them is orders of magnitude higher than the
other two approaches. Moreover, the largest dataset that we could index with Elasticsearch was 20,000 documents
while for the other two approaches we started to have problems for datasets bigger than 80,000 documents. Even in that
case, the bottleneck seemed to be the initial loading of the dataset in memory and not necessarily the vector comparison.

Since Elasticsearch performance is worse than the performance of the other two approaches, on the right sub-figure, we
focus on FAISS and the naive/brute-force approach. We observe that FAISS querying is faster than the naive approach.
Moreover, if we add the indexing time of FAISS to its querying time, it is still faster than the naive approach. It also
scales better than naive when the size of the dataset increases. We expect even better performance if we use the GPU
implementation of FAISS.
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Dataset size Avg. errors

500 0
1,000 1
5,000 2

10,000 1

Table 1: Average number of differences between FAISS,
Elasticsearch and naive/brute-force approaches when
retrieving the top-100 results for different dataset sizes.

Top-k Expected results in top-k

50 16
100 17
500 21

1,000 26

Table 2: Number of expected results that are in the top-k
results.

4.4 Result quality assessment

In this section we investigate the quality of the results in two different settings: (a) We verify if the top-k results returned
by each vector comparison approach differ and (b) we check if the queries return meaningful results.

To verify (a), we run all approaches against different dataset sizes and we ask for the top-k results of a given query
(embedding). We have chosen to return the top-100 results. We compare the returned results from all approaches,
one-by-one, and we count how many times any of the approaches returns a different result at a specific position i of
the top-100 results. Table 1 shows the average number of errors found when searching for the top-100 results of a
given query for various dataset sizes (from 500 to 10,000 documents). The results were averaged after performing two
executions.

In (b), we evaluate the quality of the embeddings based on the queries asked, the results retrieved and the documents
that correspond to these queries. More specifically, we used the first 10,000 documents of the dataset described in
Section 4.2 and we asked 100 queries that correspond to the first 100 rows of the dataset. Please note that each line
of the dataset contains a document and a query that is related to that document. Then, for every query we verified if
the corresponding document of the query is in the top-k of the documents retrieved as answers. The results of this
experiments can be found at Table 2 for different values of k.

5 Conclusion and future work

In this paper we have discussed about various word embedding and sentence embedding algorithms. We have selected
BERT as our sentence embedding method of preference and we used it to create embeddings for the documents and the
questions found at the Google Natural Question dataset. We used the resulting embeddings to evaluate the performance
of three vector comparison approaches: FAISS, Elasticsearch and a naive/brute-force approach. The results have shown
that FAISS outperforms the other two approaches and that Elasticsearch fails to keep up, especially when bigger datasets
are used in a centralized scenario with one node.

As further research, we would like to investigate the performance of Elasticsearch with a cluster of nodes where it can
show its benefits against the other two in-memory approaches. Moreover, we would like to examine other efficient
vector comparison approaches, like spatial and vector databases. Last but not least, we would like to experiment with
different ways of document indexing and query evaluation, like a more fine-grained, paragraph-based, indexing.
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