
On the Analysis and Evaluation of Proximity Based Load
Balancing Policies

NITISH K. PANIGRAHY, University of Massachusetts Amherst

THIRUPATHAIAH VASANTAM, Durham University

PRITHWISH BASU, Raytheon BBN Technologies

DON TOWSLEY, University of Massachusetts Amherst

ANANTHRAM SWAMI, Army Research Laboratory

KIN K. LEUNG, Imperial College London

Distributed load balancing is the act of allocating jobs among a set of servers as evenly as possible. The static

interpretation of distributed load balancing leads to formulating the load balancing problem as a classical balls

and bins problem with jobs (balls) never leaving the system and accumulating at the servers (bins). While

most of the previous work in the static setting focus on studying the maximum number of jobs allocated to a

server or maximum load, little importance has been given to the implementation cost, or the cost of moving a

job/data to/from its allocated server, for such policies.

This paper designs and evaluates server proximity aware static load balancing policies with a goal to reduce

the implementation cost. We consider a class of proximity aware Power of Two (POT) choice based assignment

policies for allocating jobs to servers, where both jobs and servers are located on a two-dimensional Euclidean

plane. In this framework, we investigate the tradeoff between the implementation cost, and load balancing

performance of different allocation policies. To this end, we first design and evaluate a Spatial Power of two
(sPOT) policy in which each job is allocated to the least loaded server among its two geographically nearest

servers. We provide expressions for the lower bound on the asymptotic expected maximum load on the servers

and prove that sPOT does not achieve classical POT load balancing benefits. However, experimental results

suggest the efficacy of sPOT with respect to expected implementation cost. We also propose two non-uniform

server sampling based POT policies that achieve the best of both implementation cost and load balancing

performance.

We then extend our analysis to the case where servers are interconnected as an n-vertex graphG(S,E). We

assume each job arrives at one of the servers, u, chosen uniformly at random from the vertex set S .We then

assign each job to the server with minimum load among servers u and v where v is chosen according to one of

the following two policies: (i) Unif-POT(k): Sample a server v uniformly at random from k-hop neighborhood

of u (ii) InvSq-POT(k): Sample a server v from k-hop neighborhood of u with probability proportional to the

inverse square of the distance between u and v . An extensive simulation over a wide range of topologies

validate the efficacy of both the policies. Our simulation results show that both policies consistently produce a

load distribution which is much similar to that of a classical POT. Depending on topology, we observe the

total variation distance to be of the order of 0.002 − 0.08 for both the policies while achieving a 8% − 99%

decrease in implementation cost as compared to the classical POT.

1 INTRODUCTION
The past few years have witnessed an increased interest in the use of large-scale parallel and

distributed systems for database and commercial applications. An important design goal in such a

system is to distribute service requests or jobs among servers or distributed resources as evenly

as possible. While the optimal server selection problem can be solved centrally, due to scalability

Authors’ addresses: Nitish K. Panigrahy, University of Massachusetts Amherst, Amherst, MA 01003, USA, nitish@cs.

umass.edu; Thirupathaiah Vasantam, Durham University, Durham, DH13LE, UK, thirupathaiah.vasantam@durham.ac.uk;

Prithwish Basu, Raytheon BBN Technologies, Cambridge, MA 02138, USA, prithwish.basu@raytheon.com; Don Towsley,

University of Massachusetts Amherst, Amherst, MA 01003, USA, towsley@cs.umass.edu; Ananthram Swami, Army Research

Laboratory, Adelphi, MD 20783, USA, ananthram.swami.civ@mail.mil; Kin K. Leung, Imperial College London, London

SW72AZ, UK, kin.leung@imperial.ac.uk.

2
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

concerns, it is often preferred to adopt distributed randomized load balancing strategies to distribute

these jobs among servers. This interpretation leads to formulating a randomized load balancing
problem for the distributed systems with the goal to make the overall user-to-server assignment

as fair as possible. Many previous works [1, 25] have used randomization as an effective tool to

develop simple and efficient load balancing algorithms in non-geographic settings. A randomized

load balancing algorithm can be described as a classical balls and bins problem as follows.

In the classical balls-and-bins model of randomized load balancing,m balls are placed sequentially

into n bins. Each ball samples d bins uniformly at random and is allocated to the bin with the least

number of balls, ties broken arbitrarily. It is well known that when d = 1 andm = n, this assignment

policy results in a maximum load of O(logn/log logn) with high probability [3]. However, if d = 2,

then the maximum load is O(log logn) w.h.p. [3]. Thus, there is an exponential improvement in

performance from d = 1 to d = 2. This policy with d = 2 is widely known as Power of Two (POT)
choices and the improvement in maximum load behavior is known as POT benefits [25]. Many

subsequent works have studied assignment policies that generalize POT policy to account for

correlated and non-uniform sampling strategies [6], [10], [35].

1.1 Spatial Load Balancing
While classical balls and bins based randomized load balancing can directly be used for user/job to

server assignment in a geographic setting, it is oblivious to the spatial distribution of servers and

users. For example, in applications like Internet of Things [2], a large number of computational and

storage resources are deployed in a physical space. These resources/servers are heavily accessed

by various end users/applications that are also distributed across the physical space. The spatial

distribution of servers and users is vital in determining the overall performance of the service

network. We define the cost of moving jobs/results to/from their allocated servers as the imple-
mentation cost associated with a given policy. The implementation cost generally increases with

the Euclidean distance between the user and its allocated server, also known as allocation distance.
For example in wireless networks, signal attenuation is strongly coupled to allocation distance,

therefore developing allocation policies that minimize allocation distance can help reduce energy

consumption. Thus the following natural question arises.

How should we design proximity aware load balancing policies that also reduce
overall policy implementation cost?

In this work, we aim to answer this question. To this end we propose a spatially motivated POT

policy: spatial POT (sPOT) in which each user is allocated to the least loaded server among its two

geographically nearest servers. We assume both users and servers are placed in a two-dimensional

Euclidean plane. When both servers and users are placed uniformly at random in the Euclidean

plane, we map sPOT to a classical balls and bins allocation policy with bins corresponding to

the Voronoi regions associated with the second order Voronoi diagram of the set of servers. We

show that sPOT performs better than POT in terms of average allocation distance. However, a

lower bound analysis on the asymptotic expected maximum load for sPOT suggests that POT load

balancing benefits are not achieved by sPOT. Inspired by the analysis of sPOT, we further propose

two assignment policies and empirically show that these policies achieve the best of both allocation

distance and maximum load behavior.

1.2 Load Balancing On Graphs
While designing load balancing policies on a plane is important, load balancing algorithms for

other settings such as arbitrary graphs have been studied and have applications in many fields

including bike-sharing systems, World Wide Web, peer-to-peer networks, vehicular wireless ad-hoc

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 3

networks. Also, load balancing can prolong the lifetimes of battery-powered wireless sensor and

actuator networks where energy is a limited resource [21].

Load balancing algorithms for certain fixed-degree deterministic graphs, in particular ring

topologies, have been studied in [17], [34] and have applications in bike-sharing systems. While

many complex networks like the World Wide Web or peer-to-peer networks can be modeled as

scale free or random regular graphs [12], little is known about load balancing policies on such

random networks. Moreover, other complex systems such as transportation and mobility networks

are often best represented as spatial graphs where nodes and edges are embedded in Euclidean

space. For example, the communication network resulting from radio transmitters and wireless

devices can be described by a random geometric graph [27]. Such networks have natural notions

of distance and the cost of assigning a job scales with distance. Hence it is important to take into

account this geographical aspect when designing load balancing policies.

In the graph model, servers are represented as vertices of an arbitrary graphG(S,E).When a job

arrives at a server u (origin server), it is assigned to the server with the least load among server u
and d − 1 servers sampled uniformly at random from its neighborhood in G [22]. In order to make

the graph model more tractable for theoretical analysis, many simplified assumptions have been

made over the graph structure. For example, Kenthapadi et al. [22] studied the scaling of maximum

load for the case d = 2 by allowing G to be regular or almost regular with degree nϵ . However, in
practice, real world networks are highly irregular. Moreover, state-of-the-art lacks a comprehensive

study on characterizing the implementation cost associated with load balancing policies on real

world networks.

More often previous work only considers developing theoretical framework to characterize

the scaling of the maximum load behavior. In some applications, studying distribution of load

may be more important than the maximum load since it yields a better resolution into the load

characteristics of the network. Also in some cases, the peak of the load distribution may be

significantly lower than the maximum load for a given allocation policy. Similarly, while designing

proximity aware load balancing policies, one may try to balance between two performance metrics:

load and implementation cost. Therefore, while the maximum load can end up being higher in such

policies than classical POT, if the distribution is nearly the same as POT one could consider such a

policy to be better than POT in the sense of implementation cost, and almost as good as POT in the

sense of load balancing. These discussions bring us down to the following research questions.

(1) How should one evaluate the performance of proximity aware load balancing policies for

non-regular graph models, such as random, scale free or spatial graph structures?

(2) What is a good performance metric to characterize the implementation cost associated with

real world complex networks?

(3) What is the effect on load and implementation cost if d − 1 servers are sampled from a k-hop
neighborhood instead of a one hop neighborhood with k ≥ 2?

(4) How close is the performance of a proximity based policy to POT with respect to load

distribution instead of maximum load metric?

One of the primary motivations behind this work is to address these questions. The key challenge

in developing theoretical frameworks to answer these questions is that the notion of neighborhood

for each job heavily depends on the choice of graph topology. Thus even asymptotic results for

load balancing policies under generic graph model are scarce and techniques like witness tree

methods [22] are not applicable. There is little hope of analyzing the graph model in this generality

4
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

and generating analytical insights seems difficult to achieve. For this reason we investigate this

model through detailed and extensive computer simulations across a variety of graph topologies in

Section 4.

We first propose a server proximity aware policy, Unif-POT(k), as follows. For each job, a serverv
is sampled uniformly at random from the k-hop neighborhood of the origin serveru . The job is then
allocated to the server with the smallest load among u and v . Since a POT policy is stochastically

optimal with respect to maximum load among all online policies that sample two servers uniformly

at random (Corollary 8, [3]), we thus compare Unif-POT(k) policy to that of POT policy. We also

propose another proximity based load balancing policy: InvSq-POT(k) as follows. For each job, a

server v is sampled from the k-hop neighborhood of origin server u with probability proportional

to the inverse square of the shortest path distance measured in number of hops between u and v .
The job is then allocated to the server with the smallest load among u and v . Through extensive

simulations we verify that such a simple modification in the sampling technique, produces load

distribution behavior very similar to that of POT policy while drastically reducing the average

implementation cost across a variety of network topologies.

1.3 Contributions
One of the main contributions of this paper is to study and develop load balancing policies that

account for policy implementation cost when servers are placed on a plane and on vertices of a

graph. Our contributions are summarized below.

• Proximity based load balancing on a plane
(1) We analyze sPOT yielding lower bound expressions for asymptotic expected maximum

load.

(2) We prove that no POT benefit is observed when servers are placed either on a two dimen-

sional square grid or uniformly at random on a plane.

(3) We develop two non-uniform server sampling based POT policies on a plane to improve

load and allocation distance behavior.

• Proximity based load balancing on a graph
(1) Our simulations demonstrate a total variation distance as low as 0.002 − 0.005 between

load distributions of classical POT and proposed proximity based policies across a wide

range of network topologies.

(2) We achieve a significant reduction in implementation cost on the order of 20% − 99% for

proposed proximity based policies as compared to classical POT.

(3) We observe that InvSq-POT(k) with k = O(logn) achieves the best of both the worlds, i.e.

it is better than Unif-POT(k) in terms of implementation cost but only slightly worse than

classical POT in terms of load distributions. To our surprise, even a very local sampling,

i.e., InvSq-POT(k) with k = O(1) achieves a load balancing performance almost similar to

that of classical POT for certain random network topologies.

The rest of this paper is organized as follows. The next section contains some technical prelimi-

naries. In Section 3 we formally analyze the load behavior of sPOT for different server placement

settings on an Euclidean plane and propose two non-uniform server sampling based POT policies

that achieve both better load and allocation distance behavior. In Section 4, we evaluate the perfor-

mance of our proposed proximity based load balancing policies on arbitrary graphs. A summary

of related literature is given in Section 5. Finally, the conclusion of this work and potential future

work are given in Section 6.

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 5

2 TECHNICAL PRELIMINARIES
In this section, we introduce the system model used in the rest of the paper. We denote the

users/jobs
1
in the system as the set J with |J | =m. Similarly, denote S as the set of servers with

|S | = n. Let π : J → S, denotes a load balancing policy for assigning users/jobs to servers. We

generally assumem = n. However, in Section 4.6 , we also consider the case whenm > n and

m < n.

2.1 Load balancing on a plane
We first consider a service network where users and servers are located on a two-dimensional

Euclidean plane D. We assume users are placed on a two-dimensional euclidean plane uniformly at

random. In the service network, each user is assigned to a server from the server set S . We consider

two cases for placing the servers on a two-dimensional euclidean plane, (i) Grid Placement: servers

are placed on a square grid topology embedded in Euclidean space R2. (ii) Uniform placement:

servers are placed uniformly at random on the euclidean plane.

We define the following geometric structures that are useful constructs for analyzing various

load balancing policies on a plane.

Definition 1. Voronoi Diagram: A Voronoi cell around a server s ∈ S is the set of points in D that
are closer to s than to any other server in S \ {s} [5]. The Voronoi diagram VS of S is the set of Voronoi
cells of servers in S .

Definition 2. Delaunay Graph: The Delaunay graph,GS (S,E), is associated with the set of servers
S . Here (u,v) ∈ E iff the Voronoi cells of u,v ∈ S are adjacent.

Definition 3. Higher order Voronoi diagram: A pth order Voronoi diagram, H (p)
S , is defined as

partition of D into regions such that points in each region have the same p closest servers in S .

In this paper, our goal is to analyze the performance of several load balancing policies on a plane

including the two classic policies.

• Power of One (POO): This policy assigns each user to one of the servers chosen uniformly

at random from S .
• Power of Two (POT): In this policy, sequentially each user samples two servers uniformly

at random from S and is allocated to the least loaded server.

In addition we propose new policies to reduce both maximum load and expected allocation distance.

We define them as follows.

• InvSq-POT(k): In this policy each user j samples two servers from a candidate set consisting

of its k geographically nearest servers (without replacement), each with probability propor-

tional to 1/d(j,v)2. Here, d(j,v) denotes the euclidean distance between user j and server v .
The user is then assigned to the least loaded server.

• Unif-POT(k): Each user uniformly at random samples two servers from a candidate set

consisting of its k geographically nearest servers and is assigned to the least loaded server.

For our analysis we consider special cases of Unif-POT(k) policies with k = 2 and k = 1. We

call them Spatial Power of Two (sPOT) and Spatial Power of One (sPOO) policies respectively for

brevity. To be precise these policies are defined as

• Spatial Power of Two (sPOT): Each user is sequentially allocated to the least loaded server

among its two geographically nearest servers.

• Spatial Power of One (sPOO): This policy assigns each user to its geographically nearest

server.

1
We use the terms “users” and “jobs” interchangeably.

6
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

2.2 Load balancing on a graph
For the graph model, we assume servers in the network are nodes of a connected graph G(S,E)
with |S | = n and E a set of edges connecting the servers. We explore various random, deterministic

and spatial graph structures for graph based load balancing systems. We assume that jobs arrive at

one of the servers uniformly at random. Denote u as the arrival (origin) server for a job.

Next we define several network attributes that will be useful in analyzing the simulation results

obtained for different load balancing policies later. We denote d(u,v),u,v ∈ S as the shortest path

distance measured in number of hops between nodes u and v in the network.

Definition 4. k-hop Neighborhood: The k-hop neighborhood of a node u ∈ S is defined as

Nk (u) = {w |1 ≤ d(u,w) ≤ k}.

Definition 5. Graph Density: The graph density of an undirected graph G(S,E) is

ρG =
|E |(n
2

) = 2|E |

n(n − 1)
.

Definition 6. Average Path Length: The average path length of an undirected graph G(S,E) is

lG =
1

n(n − 1)

∑
u,v

d(u,v).

We now introduce the three load balancing policies that we study. Suppose a job arrives at origin

server u ∈ V . Denote Pu = [puv ,v ∈ V] as the server sampling distribution for the job where puv is

the probability u queries server v for its load information with puu = 0. The first policy is the well

known POT policy and the next two are newly proposed proximity based load balancing policies

on a graph G.

• Power of Two (POT): If a job arrives at server u, then

puv =

{
1

n−1 , if v , u,

0, otherwise .
(1)

That is, server v is sampled uniformly at random from the remaining n − 1 servers. The job

is then allocated to the server with the smallest load among u and v .

• InvSq-POT(k): According to this policy, if a job arrives at server u, then

puv =

(

1

d (u,v)2

)
∑

w∈Nk (u)

(
1

d (u,w)2

) , if v ∈ Nk (u),

0, otherwise .

(2)

That is, a server v ∈ Nk (u) is sampled with probability proportional to the inverse square of

the distance to u. The job is then allocated to the server with the smallest load among u and

v .
• Unif-POT(k): According to this policy, if a job arrives at server u, then

puv =

{
1

|Nk (u) |
, if v ∈ Nk (u),

0, otherwise .
(3)

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 7

That is, a server v is sampled uniformly at random from the k-hop neighborhood of u2. The
job is then allocated to the server with the smallest load among u and v .

Remark 1. Observe that Unif-POT(k) and InvSq-POT(k) are identical for k = 1. Similarly, POT and
Unif-POT(k) are identical for k = n.

2.3 Performance Metrics
To evaluate and characterize the performance of various load balancing policies, we define the

performance metrics for both plane and graph based systems as follows.

Denote xπ (t) = [xπi (t), i ∈ {1, · · · ,m}] as the state of the system immediately after the t th job is

assigned under policy π . Here xπi (t) denotes the fraction of servers with exactly i jobs immediately

after t th job is assigned. Denote xπ (m) as the load distribution under policy π after all ofm jobs

are assigned.

Definition 7. Maximum Load: The maximum load for policy π is defined as

MLπ = i with xπi (m) , 0 and xπj (m) = 0 for j = i + 1, · · · ,m.

Definition 8. Total Variation Distance: The total variation distance between two load distributions
xπ1 (m) and xπ2 (m) is

TV π1π2 =
1

2

m∑
i=1

|xπ1i (m) − xπ2i (m)|.

TV π1π2
takes values in [0, 1]. The closeness of two load distributions under two different policies

can be measured by the total variation distance, i.e. smaller the total variation distance the closer

the two distributions are to each other.

Definition 9. Average Allocation Distance3: The average allocation distance for policy π is the
average distance (or number of hops) between a random user (or its origin server) and its allocated
server under π , i.e.

RDπ =
1

m

∑
j ∈J

d(j,π (j)).

Since POT is oblivious to inter server distances, RDPOT
is generally large as compared to other

proximity based load balancing policies.

3 PROXIMITY AWARE POT POLICIES ON A PLANE
We now analyze the load behavior of sPOT policy for various server placements on a plane. We

assume users are placed uniformly at random on D .

3.1 sPOT with Grid based server placement
Consider the case where servers are placed on a two dimensional square grid:

√
n ×

√
n on D with

wrap-around. Let B({s1, s2}, r) be the event that the two nearest servers of r are in {s1, s2}. We

prove the following Lemma.

2
While one can sample v from k nearest servers as done for policies on a plane, choosing from the k-hop neighborhood

simplifies the graph based model and does not require tie breaking mechanism to determine the sampling space.

3
We assume the load information is fairly compact, and the overhead of propagating this information is far less than

migrating the job/data from one node/user to the allocated server. Even though we may request the load values from many

servers, distances to servers to whom we ended up not assigning the request matter less.

8
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

Lemma 1. Let GS (X ,E) denote the Delaunay graph associated with S when servers are placed on a
two-dimensional square grid. Then

Pr[B({si , sj }, r)] =

{
1

|E | , (si , sj) ∈ E;

0, otherwise.
(4)

Proof. Let A(s, r , l) denote the event that a random user r ∈ J is l th closest to s ∈ S among all

servers in S . Denote NN (r) as the geographically nearest server of r . Thus we have

Pr[B({si , sj }, r)] = Pr[A(si , r , 1)] Pr[A(sj , r , 2)|NN (r) = si]

+ Pr[A(sj , r , 1)] Pr[A(si , r , 2)|NN (r) = sj]. (5)

It is not difficult to show that all Voronoi cells in VS have equal areas. As Pr[A(s, r , 1)] is propor-
tional to the area of the Voronoi cell surrounding s, we have

Pr[A(s, r , 1)] = 1/|S | ∀ s ∈ S . (6)

Without loss of generality (W.l.o.g.) consider a user r placed uniformly at random onD as shown

in Figure 1. Denote △ABC as the triangle associated with vertices A,B and C . Let NN (r) = s3.We

now evaluate Pr[A(s1, r , 2)|NN (r) = s3]. Clearly, Pr[A(s1, r , 2)|NN (r) = s3] ∝ Area(△WXs3). We

also have

Area(△WXs3) = Area(△WZs3) = Area(△YXs3)

= Area(△ZYs3),

Therefore Pr[A(si , r , 2)|NN (r) = s3], for i ∈ {1, 2, 4, 5} are all equal. Let NG(s) be the set of

neighboring servers of a server s ∈ S on the square grid. Thus, we have

Pr[A(sj , r , 2)|NN (r) = si] =

{
1

4
, sj ∈ NG(si);

0, otherwise,
(7)

Note that when sj ∈ NG(si), the Voronoi cells corresponding to si and sj share an edge. In this

case, by definition (si , sj) ∈ E. Combining (6) and (7) and substituting in (5) yields

Pr[B({si , sj }, r)] =

{
1

2 |S | , (si , sj) ∈ E;

0, otherwise,
(8)

Also, when servers are placed on a square grid, GS (X ,E) is 4- regular. Thus the total number of

edges is |E | = 2|X | = 2|S |. Substituting |S | = |E |/2 in Equation (8) yields (4) and completes the

proof. □

We consider the following lemma presented in [20].

Lemma 2. Given a ∆-regular graph with n nodes representing n bins, if n balls are thrown into the
bins by choosing a random edge and placing into the smaller of the two bins connected by the edge,
then the maximum load is at least Ω(log logn + logn

log(∆ logn)) with high probability of 1 − 1/nΩ(1).

We now prove the following theorem.

Theorem 1. Suppose servers are placed on a two dimensional square grid :
√
n ×

√
n on D with

wrap-around. Let users be placed independently and uniformly at random on D . Under sPOT, the
maximum load over all servers is at least Ω(logn

log logn) with high probability of 1 − 1/nΩ(1).

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 9

Fig. 1. Second order
Voronoi regions for servers
placed on a grid.

Fig. 2. Delaunay Graph associ-
ated with grid based server place-
ment.

.026

.02
5

.021.028

.025

.007

.0
12

.007

.031

.003

.0

.03

.0
01.00
7

.007.038

.001

.0

.0
18

.011
.015.0

22

.001

.064
.016

.0
08

.006

.0
25

.0
15

.005

.003

.001
.001

.02

.00
7

.0

.028

.027

.017

.0.0

.029

.0

.039

.011

.004
.015

.012

.021

.008

.003 .0
26

.016

.0
06

.0
15

.005

.00
3

.003
.021

.0
32

.02.002

.001

.0

.0
53

.0
22

.003

.016

.00
1

.0
05

.0

.0
08

.023

.03

.03

.03

.03
.03

.03

.04

.03

.03

.03

.04

.03

.03

.03 .03

.03

.03

.03

.03

.02

.03

.02

.03

.03

.03

.03

.03 .03

.03

.03

.03

.02

Fig. 3. Delaunay Graph associated with uni-
form server placement.

Proof. Suppose we map the set of servers to the bins and the users to the balls. The delaunay

graph GS is 4-regular. Let e = (si , sj) be an edge in GS . From Lemma 1, it is clear that each user

(ball) selects an edge e with probability 1/|E | (i.e. uniformly at random) and gets allocated to the

smaller of the two servers (bins) connected by e under sPOT policy. Thus a direct application of

Lemma 2 with ∆ = 4 proves the theorem. □

We verify the results in Lemma 1 through simulation for a 2D square grid under sPOT as shown

in Figure 2. We assign n = 64 and empirically compute Pr[B({si , sj }, r)] and denote it as edge

probability on edge e on the Delaunay graph. We also verify the Pr[A(s, r , 1)] in expression (6)

and denote it as vertex probability on the Delaunay graph. It is clear from Figure 2 that the edge

probabilities are almost all equal and so are the vertex probabilities.

Remark 2. Note that, the maximum load associated with the POO policy is logn
log logn +O(1). Thus,

Theorem 1 concludes that we do not get POT benefits under sPOT and it performs no better than POO
when servers are placed on a two dimensional square grid.

Remark 3. Note that Theorem 1 applies to other grid graphs such as a triangular grid, i.e. we do not
get POT benefits when servers are placed on a two dimensional triangular grid. The delaunay graph
corresponding to a triangular grid based server placement is 6- regular.

3.2 sPOT with Uniform server placement
We now consider the case when both users and servers are placed uniformly at random on D .
We can no longer invoke Lemma 2. This is due to the fact that the Delaunay graph associated

with the servers is no longer regular. Also, the edge sampling probabilities Pr[B(si , sj , r)] are no
longer equal. This is evident from our simulation results on the corresponding Delaunay graph

as shown in Figure 3. We have n = 32 servers placed randomly in a 2D square and empirically

compute Pr[B({si , sj }, r)] and denote it as edge probability on edge e on the Delaunay graph. Note

that the edge probabilities, i.e. Pr[B({si , sj }, r)], differ from each other. Also the Delaunay graph

is not regular. Thus we resort to using a second order Voronoi diagram to analyze the maximum

asymptotic load behavior.

3.2.1 Majorization Basics. We present a few definitions and basic results associated with majoriza-

tion theory that we apply to analyze sPOT.

10
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

Definition 10. The vector x is said to majorize the vector y (denoted x ≻ y) if
k∑
i=1

x[i] ≥
k∑
i=1

y[i], k = 1, · · · ,n − 1,

and
n∑
i=1

x[i] =
n∑
i=1

y[i] (9)

where x[i](or y[i]) is the ith largest element of x(or y).

Definition 11. A function f : Rn → R is called Schur-convex if

x ≻ y =⇒ f (x) ≥ f (y) (10)

Consider the following proposition.

Proposition 1. (Chapter 11, [24]) Let X be a random variable having the multinomial distribution

Pr[X = x] =

(
n

x1, · · · ,xn

) n∏
i=1

pxii (11)

where x = (x1, ...,xn) ∈ {z : zi are nonnegative integers,
∑
zi = n}. If δ is a Schur-convex function of

X , thenψ (p) = Epδ (X) is a Schur-convex function of p.

3.2.2 Loss of POT benefits under sPOT. Consider the second order Voronoi diagram:H (2)

S associated

with the set of servers S .We have the following Lemma [Chapter 3.2, [26]].

Lemma 3. The number of Voronoi cells in H (2)

S under uniform server placement is upper bounded by
O(3n) .

We also have the following Lemma.

Lemma 4. Consider the following modified version of balls and bin problem. Suppose there are
n balls and n bins. Each ball is thrown into one of the bins according to a probability distribution
p = (p1, · · · ,pn) with pi being the probability of each ball falling into bin i , in an independent manner.
Denote Z to be the random variable associated with the maximum number of balls in any bin. Then
we have

Ep [Z] ≥ k0
logn

log logn
as n → ∞. (12)

where k0 is a scalar constant.

Proof. Denote Xi as the random variable associated with the load for bin i . Clearly X =
[X1,X2, · · · ,Xn] follows multinomial distribution

Pr[X = x] =

(
n

x1, · · · ,xn

) n∏
i=1

pxii (13)

We have Z = max(X1, · · · ,Xn) = δ (X). Clearly, δ (x) = max(x) is a schur convex function since

max(x) = x[1] and if x ≻ y then x[1] ≥ y[1]. Also, we have (Chapter 1, [24]): (p1,p2, · · · ,pn) ≻

(1/n, 1/n, · · · , 1/n). whenever pi ≥ 0 with

∑n
i=1 pi = 1. Thus applying Proposition 1 yields Ep [Z] ≥

E(1/n, · · · ,1/n)[Z] ≥ k0
logn

log logn . □

Theorem 2. Suppose both users and servers are placed independently and uniformly at random on
D. Under sPOT, the expected maximum load over all servers is at least Ω(logn

log logn) with high probability
of 1 − 1/nΩ(1), i.e., we do not get POT benefits.

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 11

sPOO sPOT POO POT

20

40

60

80

100

M
ax

im
um

 L
oa

d

(a) Maximum load
A

vg
. A

llo
ca

tio
n

D
is

ta
nc

e
(b) Expected allocation distance

Fig. 4. Performance comparison of basic allocation policies wrt (a) maximum load and (b) expected allocation
distance for n = 10000 servers.

Proof. Consider the second order Voronoi diagram: H (2)

S associated with the set of servers S .

W.l.o.g. consider a cell {si , sj } in H (2)

S . The probability that a user selects the server pair {si , sj } as
its two nearest servers is proportional to the area of the cell {si , sj }. However, the area distribution

of cells in H (2)

S is non-uniform (say with probability distribution p). We can invoke classical balls

and bins argument on H (2)

S as follows inspired by the discussion in [20]. We treat each cell in

H (2)

S as a bin. Thus by Lemma 3, there are O(3n) bins (or cells). Each ball (or user) choses a bin

(or a cell) from a distribution p and let Lp denote the expected maximum asymptotic load across

the bins. Let LU denote the expected maximum asymptotic load across the bins when O(n) balls
are assigned to O(3n) bins with each ball choosing a bin uniformly at random. From classical

balls and bins theory, LU = O(logn/log log 3n) = O(logn/log logn). Clearly, by Lemma 4, we

have Lp ≥ LU = O(logn/log logn). Since a cell consists of a server pair, one of the server pair
corresponding to the maximum load would have load at least (1/2)Lp . Thus the maximum load

across all servers would be at least (1/2)Lp ≥ O(logn/log logn). □

3.3 Tradeoff between Load and Allocation Distance
In this Section, we discuss the inherent tradeoff between maximum load and expected allocation

distance metric among different allocation policies. We evaluate the performance of sPOT and

compare it to that of other allocation policies. We consider n = 10000 servers and an equal number

of users placed on a unit square uniformly at random. We ran 10 trials for each policy. We compare

the performance of various allocation policies in Figure 4. The black lines on top of the bars in

Figures 4 (a) and (b) represent the standard deviation of maximum load and expected allocation

distance associated with different allocation policies.

First, note that with respect to maximum load, the spatial based policies perform worse compared

to their classical counterparts, POO and POT. Note that the introduction of spatial aspects into

a policy increases its maximum load. For example, sPOT performs worse than both POO and

POT as shown in Figure 4 (a). The scaling laws for the maximum load for sPOT and POO are

Ω(logn/log logn) and O(logn/log logn), respectively. Figure 4 (a) match this finding and validates

our lower bound results obtained for sPOT in Theorem 2. Note that in POO, there is an equal

probability of choosing any server. Since the areas of voronoi regions associated with servers are

not equal, few servers are more likely to be picked-up by sPOO than others. Similarly, in sPOT,

12
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Load

0.0

0.1

0.2

0.3

0.4

0.5

PD
F

Max Load = 3

(a) InvSq-POT(n) Load distribution

Allocation Distance

(b) InvSq-POT(n) alloc. dist. distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Load

0.0

0.1

0.2

0.3

0.4

0.5

PD
F

Max Load = 3

(c) POT Load distribution

Allocation Distance

(d) sPOT alloc. dist. distribution

Allocation Distance

(e) POT alloc. dist. distribution

Fig. 5. Performance comparison of allocation policies wrt InvSq-POT(n) for n = 50000 servers. (a) and (b)
plots are for InvSq-POT(n) while (c),(e) and (d) for POT and sPOT respectively.

some servers are probably not going to be sampled at all since they are never among the nearest

two servers of any point where the requests arrived at. This maybe true especially for a moderate

number of arrivals e.g., 10000.

However, the expected allocation distance is smallest for sPOO and almost similar to that of

sPOT. Also, both POT and POO have very large and similar expected allocation distances as shown

in Figure 4 (b). Both results shown in Figure 4 (a) and (b) combined, illustrate the tradeoff between

maximum load and expected allocation distance metric.

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 13

3.4 Improving Performance of Planar Policies
In previous sections, we showed a tradeoff between maximum load and expected allocation distance

among different allocation policies. Note that for each user, once its arrival location is fixed, the

choice of two servers by sPOT is deterministic while it is completely random for POT. This random

sampling over the entire set of servers results in better load behavior for POT than for sPOT.

However, since random sampling is oblivious to the distances of servers from the particular user,

POT exhibits a large expected allocation distance. Thus if one can design a policy with random and

distance dependent sampling of servers, such a policy should provide benefits of both POT and

sPOT in terms of maximum load and expected allocation distance. Below we propose and evaluate

two such policies that get benefits of both POT and sPOT. We empirically show that they achieve

both POT like load benefits while having a allocation distance profile similar to that of sPOT. All

simulations in this section assume servers and an equal number of users placed on a unit square

uniformly at random.

3.4.1 InvSq-POT(k). Consider the allocation of a random user j in the service network. We propose

InvSq-POT(k) to allocate j as follows. Under InvSq-POT(k), j samples two servers from a candidate

set consisting of its k geographically nearest servers (without replacement), each with probability

proportional to 1/d(j,v)2. Here, d(j,v) denotes the euclidean distance between user j and server v .
User j is then allocated to the server with the least load among the two sampled servers. This rule is

similar to one used in small world routing [23]. Note that, since the probability of sampling a server

is inversely proportional to its distance from the user, InvSq-POT(k) incurs a smaller expected

allocation distance compared to POT. Surprisingly, InvSq-POT(k) achieves similar load behavior to

that of POT. We compare the performance of InvSq-POT(k) to sPOT and POT as follows.

We perform 10 independent simulation runs for each of the policies: InvSq-POT(n), sPOT, POT
and take the average of different performance metrics to generate plots in Figures 5 (a) - (e). We

define the load associated with a server to be the number of users assigned to it. We measure the

load distribution across all servers and the allocation distance distribution. Figure 5 (a) shows the

load distribution and Figure 5 (b) shows the allocation distance distribution for InvSq-POT(n). We

plot the load distribution for POT and allocation distance distribution for sPOT in Figure 5 (c) and

(d) respectively.

First we focus on the server loads in Figure 5 (a) and (c). Interestingly, the load distributions are

almost identical for InvSq-POT(n) and POT. Similarly, sPOT performs better than InvSq-POT(n) in
terms of allocation distance distribution as shown in Figure 5 (b) and (d) since they significantly

favor closer nodes. However, compared to POT (as shown in Figure 5 (e)), InvSq-POT(n) performs

significantly better in terms of allocation distances. Thus InvSq-POT(n) achieves the best of both
worlds, i.e., small maximum load and small allocation distances.

3.4.2 Unif-POT(k). We now propose a policy that improves the load behavior of sPOT. We define

Ck to be the candidate set (of size k) consisting of the k nearest servers for a particular user. Under

Unif-POT(k), the user selects two servers uniformly at random from Ck and assigns itself to the

least loaded one. Note that, random sampling of two servers within the candidate set helps to

balance load and reduce the overall maximum load. Clearly sPOT and POT are two extremes of

the policy Unif-POT(k) with k = 2 and k = n respectively. Below, we discuss the effect of k on

maximum load and expected allocation distance and compare it to other policies. We perform 50

independent simulation runs for each of the policies: InvSq-POT(n), sPOT, POT, Unif-POT(logn),
and take the average of different performance metrics to generate plots in Figures 6 (a) - (d).

We present total variation distance between load distributions of proximity based policies and

POT as a function of number of servers in Figure 6 (a). We also plot the total variation distance

14
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

103 104

n
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e InvSq-POT(n)

POT
Unif-POT(log n)
sPOT

(a)

103 104

n

3 × 100

4 × 100

5 × 100

6 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d InvSq-POT(n)
POT

Unif-POT(log n)
sPOT

(b)

A
vg

.
A

llo
c

D
is

t

(c)

2 4 6 8 10 12 14
k

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Av
er

ag
e

M
ax

im
um

 L
oa

d Unif-POT(k)
POT

(d)

Fig. 6. Performance comparison of Unif-POT(k) and InvSq-POT(n) with respect to (a) total variation distance
to POT (b) average maximum load and (c) average allocation distance when servers placed uniformly at
random on a plane. (d) Performance of Unif-POT(k) for different values of k .

between load distributions of two independent runs of POT which quantifies the noise or variation

in load distribution of POT due to randomness. Both Unif-POT(logn) and InvSq-POT(n) achieve
total variation distances as low as 0.02 across a wide range of values of n. Also note that, sPOT

achieves a load distribution farthest from POT while InvSq-POT(n) achieves the closest. Due to
load-implementation cost trade-off, a very local policy sPOT, achieves larger variation distance.

Figure 6 (b) shows the growth in the average maximum load as n is varied. We observe that both

InvSq-POT(n) and POT perform the best. Unif-POT(k) with k = logn performs quite well compared

to sPOT.

Figure 6 (c) shows how the average allocation distance drops asn increases (since the node density

increases). We observe that, not surprisingly, sPOT outperform the rest. However, Unif-POT(k) with
k = logn performs quite well. Thus Unif-POT(k) with k = O(logn) achieves good performance for

both load and allocation distance.

Last, we plot the average maximum load as a function of k for Unif-POT(k) policy in Figure 6 (d).

We have considered a total of n = 10000 number of servers and an equal number of users placed

uniformly at random on a plane. We find that the average maximum load is high for Unif-POT(k)

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 15

as compared to POT and no POT benefit is observed for fixed values of k . However, the average
maximum load decreases with increase in k and is within 4% difference of that of POT when

k = logn. Based on this result, we present the following conjecture.

Conjecture 1. If the candidate set in Unif-POT(k) does not grow with n, no POT benefit is expected.

Remark 4. Among the proximity aware POT policies on a plane, InvSq-POT(n) selects servers
through distance based sampling. Thus even a minor change in positions of servers theoretically
requires choosing a new set of sampling distributions. However, sampling in Unif-POT(logn) depends
on the local neighborhood of the user and thus involves less frequent updates for server sampling
distributions.

3.5 Effect of User Dynamics

0 1 2 3 4 5
Load

0.0

0.1

0.2

0.3

0.4

PD
F

= 0.7
InvSq-POT(n)
POT
Unif-POT(log n)
sPOT

(a)

0 1 2 3 4 5
Load

0.0

0.1

0.2

0.3

0.4

PD
F

= 1
InvSq-POT(n)
POT
Unif-POT(log n)
sPOT

(b)

A
vg

.
A

llo
c

D
is

t

(c)

Fig. 7. Performance of dynamic load balancing policies for uniform server placements on a 2D plane with
n = 1000 servers and 10

7 user arrivals.

So far we have considered a static load balancing system, i.e. the users never depart and the

requests just accumulate at the servers. However, our proposed policies are still well defined and

applicable for dynamic load balancing systems, i.e. in systems where incoming user requests are

assigned to one of the servers and then they leave the system after getting served according to a

service discipline.

In this section, we consider a dynamic load balancing system where users arrive on a two-

dimensional Euclidean plane uniformly at random. We assume the inter-user arrival times are

exponentially distributed with rate nλ. The servers are assumed to be placed on a two dimensional

plane uniformly at random. Users are allocated to servers according to different proximity aware

POT policies. Each server follows an M/M/∞ queuing model where every user request arrival on a

server experiences immediate service and does not wait. Service times at servers are independent

and identically distributed (IID) exponential random variables with mean µ. A processed user

departs the system upon completion of its service.

For our simulations, we consider n = 1000 servers with 10
7
number of user arrivals. We assume

µ = 1.We plot the load (the number of users being served at any moment) distribution for different

policies in Figures 7 (a) and (b). We observe that both InvSq-POT(n) and UnifPOT(logn) achieve
load distributions which are very close to that of POT across different values of λ. Note that, the
load distribution obtained by sPOT is quite different compared to POT and performs the worst. We

also plot average allocation distance for various policies across different values of λ as shown in

16
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

Graph Type n m Parameters

Line [1000, · · · , 7000] [1000, · · · , 7000] n : [1000, · · · , 7000]
Ring [1000, · · · , 7000] [1000, · · · , 7000] n : [1000, · · · , 7000]

Erdős Rényi (n,γ) 10000 10000 γ : [logn/n, · · · , 2 logn/n]
Random Regular (n, β) 10000 10000 β : [5, 6, · · · , 11]
Barabasi Albert (n,α) 10000 10000 α : [1, 2, · · · , 7]

Random Geometric (n, r) 10000 10000 r : [
√
logn/πn, · · · ,

√√
n/πn]

Spatial Line (n,Lmax) [1000, · · · , 7000] [1000, · · · , 7000] Lmax : [1000, · · · , 7000]
Spatial Ring (n,R) [1000, · · · , 7000] [1000, · · · , 7000] R : 1

Table 1. Simulation parameters for different network topologies.

Figure 7 (c). We observe similar results as that of the static scenario, i.e. sPOT achieves the lowest

average allocation distance while POT has the highest. UnifPOT(logn) achieves the second best

average allocation distance, closer to that achieved by sPOT.

Remark 5. The results presented in this section are preliminary and not exhaustive. For example,
when servers follow M/M/1 queueing model, each server is shared among users and competition
among users for server resource may impact the performance of proposed load balancing policies.
A comprehensive analysis and evaluation of proximity aware dynamic load balancing policies for
different queueing models such as M/M/1 and other service disciplines remain one of our future works.

4 PROXIMITY AWARE POT POLICIES ON GRAPHS
In Sections 3, we proposed new load balancing policies for the case when users/jobs and servers

are distributed on a two dimensional Euclidean plane. However, load balancing algorithms for

more general settings, such as on a general graph have applications in many fields including

bike-sharing systems, World Wide Web, peer-to-peer networks, vehicular wireless ad-hoc networks.

We can easily extend the definitions of Unif-POT(k) and InvSq-POT(k) to a generic graph setting as

mentioned in Section 2.2.

4.1 Experimental Setup
4.1.1 Investigated Policies and Performance Metrics. In this section we present extensive simulation

results to illustrate the effectiveness of both Unif-POT(k) and InvSq-POT(k) policies in graph based

load balancing systems. Our study also provides insights into the choice of a load balancing policy

under different load conditions and for different network topologies. We evaluate the proposed

schemes (POT, Unif-POT(logn), InvSq-POT(logn) and InvSq-POT(n)) using total variation distance,

average allocation distance and average maximum load as performance metrics.

We implemented the proposed policies in Python to study their performance in a simulated

environment. To make the performance comparisons between the algorithms meaningful, a number

of simulation runs were conducted for each algorithm with different parameter values (e.g., system

size, average degree etc.) for different graph topologies. If not specified, we assume n = 10000

servers interconnected through a graph G . Also, m = 10000 jobs each arriving sequentially to

one of the servers chosen uniformly at random and is allocated to a server according to different

proximity based POT policies. We report the average of 10 simulation runs.

4.1.2 Network Topologies. We consider three types of network topologies: deterministic, random

and spatial networks. To avoid ambiguity we define each of the graphs as follows. We first define

the following deterministic graphs with fixed degrees that we use in our simulations.

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 17

Line Graph-L(n)
A Line graph L(n) is a graph whose vertices v1,v2, · · · ,vn are connected with edges (vi ,vi+1), .i =
1, 2, · · · ,n − 1.

Ring Graph-R(n)
The ring graph R(n) on n vertices can be viewed as having a vertex set {0, 1, · · · ,n − 1} correspond-

ing to the integers modulo n with edges (i, i + 1), modulo n.

We consider three random graphs in the simulation: Erdős-Rényi (ER), Random Regular (RR)

and Linear Preference (LP) which we define as follows.

Linear Preference Graph- LP (n,α):
An LP (n,α) graph (also known as Barabasi Albert Graph) consists of n nodes is grown by adding

new nodes each with α edges attached to existing nodes with probability proportional to the node

degree. This has been shown to yield a power-law degree distribution [4].

Random Regular Graph- RR (n, β):
A β-regular graph RR (n, β) sampled from the probability space of all β-regular graphs on n vertices

uniformly at random with nβ being even. For β ≥ 3, a random β-regular graph of large size is

asymptotically almost surely β-connected [7]. In our simulations, we assume β ≥ 3.

Erdős-Rényi Graph- ER (n,γ):
The ER (n,γ) graph is generated by choosing each of the [n(n−1)]/2 possible edges with probability

γ . γ = logn/n is a sharp threshold for the connectedness of ER(n,γ). Also as n → ∞, the probability

that ER(n,γ) with γ = 2 logn/n is connected, tends to 1 [7]. In all of our simulations, we assume

γ ≥ logn/n.

We also evaluate the performance of proximity aware POT policies for three spatial graphs:

Random Geometric (RG), Spatial Line (SL) and Spatial Ring (SR) graphs defined as follows.

2-D Random Geometric Graph-RG (n, r)
A 2-D random geometric graph RG (n, r) is an undirected graph with n nodes uniformly sampled

from a 2-dimensional Euclidean space [0, 1)2. Two vertices: a,b ∈ V share an edge iff the Euclidean

distance between these two servers is less than r , excluding any loops. RG (n, r) possesses a sharp

threshold for connectivity at r ∼
√
logn/πn [14]. In all our simulations we consider r ≥

√
logn/πn.

Spatial Line Graph-SL(n,Lmax)
Locations of servers are uniformly sampled from a one-dimensional euclidean space [0,Lmax).

Spatial Ring Graph-SR(n,R)
We assume servers are placed uniformly at random on a circle of radius R.

We present the system and network parameters used in the simulation in Table 1. For random

graphs, we assume the topology is re-sampled after each simulation run. Note that, the radius

parameters for RG are chosen such that the graph remains asymptotically almost surely connected.

18
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

Avg. Alloc Dist

Pareto frontier𝒌 = 𝟎

𝒌 =10

(a)

Pareto frontier𝒌 = 𝟎

𝒌 = 𝟏𝟎

Avg. Alloc Dist

(b)

Fig. 8. Pareto Frontier for multi-objective optimization between average maximum load and average allocation
distance for servers on a Line graph withm = n = 1000 for (a) Unif-POT(k) and (b) InvSq-POT(k).

4.2 Maximum Load - Allocation Distance Tradeoff and Pareto Frontier
Similar to Section 3.3 we first discuss the inherent tradeoff between average maximum load and

average allocation distance for different values of k in Unif-POT(k) and InvSq-POT(k) policies. We

perform a simulation experiment with n = 1000 servers connected through a line graph. We assume

m = 1000 jobs each arriving sequentially to one of the servers chosen uniformly at random and is

allocated to a server according to Unif-POT(k) and InvSq-POT(k) policy.
We obtain both average maximum load and average allocation distance as a function of neigh-

borhood parameter k . We observe that with an increase in the value of k the average maximum

load value decreases for both policies. This is because the size of k-hop neighborhood of an origin

server increases as k increases. Thus the load is distributed among a larger group of servers and

the behavior of both policies resemble more and more that of POT policy for large values of k .
However, an increase in k results in larger values of average allocation distance. Again, for

smaller values of k, the sampled servers remain close to the origin server. However, as k increases,

the size of the k-hop neighborhood grows. One is more likely to sample a far away server thereby

increasing the average allocation distance. Thus one needs to be careful in choosing the correct

value of k according to the performance metric of interest.

Choosing the correct value of k , that minimizes both average maximum load and average

allocation distance for a policy π , can be cast as a multi-objective optimization problem [13] as

follows.

min (MLπavд(k),RD
π (k)),

s .t . k ∈ {0, 1, 2, · · · ,kmax }, (14)

whereMLπavд and RDπ
are the average maximum load and average allocation distance respectively.

Here, kmax is the diameter of the network that connects all the servers. We solve the optimization

problem (14) for the case when π ∈ {Unif-POT(k) , InvSq-POT(k)}. We call a solution Pareto

optimal/nondominated if none of the objective functions can be improved without degrading the

other. Note that, since the objective functions in (14) are conflicting, there exists multiple Pareto

optimal solutions. We call the set of Pareto optimal solutions as the Pareto frontier. In Figures 8 (a)

and (b), we show the Pareto frontiers for policies Unif-POT(k) and InvSq-POT(k) respectively. In

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 19

Figure 8 (a)/(b), the entire red/pink dotted curve is the Pareto optimal solution, i.e., the optimal

values of k ∈ {1, 2, · · · , 10} \ {4, 6} for Figure 8 (a) and k ∈ {0, 1, 4, 8} for Figure 8 (b). All values
of k that are on the Pareto frontier can be considered equally good with respect to the objective

functions defined in (14).

4.3 Performance Comparison for Deterministic Graphs

0 1 2 3 4 5
Load

0.0

0.1

0.2

0.3

0.4

0.5

PD
F

Line Graph
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

(a)

1000 2000 3000 4000 5000 6000 7000
n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Line Graph
InvSq-POT(1)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(log n)

(b)

A
vg

.
A

llo
c

D
is

t
(c)

0 1 2 3 4 5
Load

0.0

0.1

0.2

0.3

0.4

0.5

PD
F

Ring Graph
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

(d)

1000 2000 3000 4000 5000 6000 7000
n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Ring Graph
InvSq-POT(1)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(log n)

(e)

A
vg

.
A

llo
c

D
is

t

(f)

103 104

n

3 × 100

4 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Line Graph

InvSq-POT(1)
InvSq-POT(log n)
InvSq-POT(n)

Unif-POT(log n)
POT

(g)

103 104

n

3 × 100

4 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Ring Graph

InvSq-POT(1)
InvSq-POT(log n)
InvSq-POT(n)

Unif-POT(log n)
POT

(h)

Fig. 9. Simulation Results for Unif-POT(k) and InvSq-POT(k) for line and ring graphs.

In this section, we analyze the performance of fixed degree deterministic graphs: Line and Ring.

The results are presented in Figure 9. First we plot the load distribution for Line and Ring topologies

20
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

k InvSq-POT(k) Unif-POT(k)
1 0.03152 0.03054
2 0.02096 0.01562
4 0.01609 0.00703
8 0.01400 0.00359
16 0.01388 0.00144

10000 0.01272 0.00171

Table 2. Effect of k on the total variation distance of InvSq-POT(k) and Unif-POT(k) policies for a line graph
with n = 10000.

in Figures 9 (a) and (d). Surprisingly, the load distributions of Unif-POT(logn), InvSq-POT(logn)
and InvSq-POT(n) almost exactly match to that of POT for both Line and Ring topologies. Similar

behavior is also observed in Figure 6 (a) for the case of planar graphs. We also consider the effect of k
on the total variation distance as shown in the Table 2. We observe that the total variation distances

decrease with k for both policies InvSq-POT(k) and Unif-POT(k). In [9], it was proved that in a d(n)-
regular graph with dynamic setting, if a job is assigned to the server with the shortest queue among

source server and a sampled server chosen from d(n)-neighbors of the source server uniformly

at random, then the resulting load distribution is same as that of POT policy if d(n) = log(n) and
n approaches infinity. We conjecture that this type of result holds even for our static models as

observed numerically in Figures 6 (a), 9 (a) and (d). However, note that, the diameter of d(n)-regular
graph is different than a line/ring topology which may impact the allocation distance even when

the set of servers to sample from are of the same order in both cases.

Next, we compare the proximity based policies to POT with respect to total variation distance

and present graphs for both Line and Ring topologies. We also plot the total variation distance

between load distributions of two independent runs of POT which quantifies the noise or variation

in load distribution of POT due to randomness. Again to our surprise, all proximity based policies

with k = logn,n achieve total variation distances as low as 0.02 across a wide range of values of n.
Also note that, InvSq-POT(1) achieves a load distribution farthest from POT while Unif-POT(logn)
achieves the closest. Due to its uniform way of sampling, Unif-POT(logn) achieves the smallest

total variation distance. However, due to bias towards closest severs, both InvSq-POT(logn) and
InvSq-POT(n) achieve higher variation distances. Due to load-implementation cost trade-off, a very

local policy InvSq-POT(1), achieves even higher variation distance. Both InvSq-POT(logn) and
InvSq-POT(n) appear to converge to a constant variation distance as n gets large. We get similar

results for the case when servers are connected through a ring graph. The results are presented in

Figure 9 (e).

We plot average allocation distance as a function of number of servers in Figures 9 (c) and (f). The

average path length can be thought of as an upper bound on average allocation distance under POT.

Larger values of average path length imply larger values of average allocation distance under POT.

Surprisingly, proximity based policies significantly decrease average allocation distance (∼ 99%

reduction) for large values of n. Since average path length for both line and ring graphs scale as

O(n), the average allocation distance under POT also drastically increases as n increases. Also note

that, InvSq-POT(logn) achieves the lowest average allocation distance compared to other policies.

Finally Figures 9 (g) and (h) show the growth in average maximum load as n increases. We

observe that both Unif-POT(logn) and POT produces the smallest average maximum load. The

average maximum load of InvSq-POT(logn) and InvSq-POT(n) are similar but larger compared to

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 21

Unif-POT(logn). As expected InvSq-POT(1) exhibits the largest average maximum load since the

policy distributes load only among immediate neighbors of the origin server.

4.4 Performance Comparison for Random Graphs
We now study the impact of proximity based policies on random graphs. The results are presented

in Figure 10. We first plot the total variation distance between load distributions of proximity based

policies and POT as a function of ER edge probability parameter γ as shown in Figure 10 (a). Note

that, for all values of k = 2, logn,n, both proximity based policies produce a variation distance as

low as 0.5%. This is surprising since with k = O(1) = 2 we only sample the two hop neighborhood

of the origin server. But we are able to produce load distribution behavior almost identical to that

of POT, which samples from the entire set of servers. We observe similar trends for RR graphs, as

shown in Figure 10 (d). However, we observe different results for the LP graph as shown in Figure

10 (g). For LP graphs, we observe that when k = 2, both proximity based policies produce higher

total variation distances than when k = logn,n. The variation distance is still small when k = 2

fluctuating around 0.033. One possible explanation for higher variation distances for small k can

be the inhomogeneity of the degree distribution and the presence of hubs in a LP graph.

Note that, an increase in k should decrease variation distance since the sampling set size increases

with k . Observe that the variation distance of policies under a Line or Ring topology is larger

than that of any random topologies with fixed degree (Ex: RR topology). Higher graph densities in

random topologies yield lower variation distance compared to Line or Ring topologies.

We now study the effect of network parameter on the average allocation distances of the proximity

based policies as shown in Figures 10 (b), (e), (h). First observe that an increase in the value of

network parameters (α , β and γ) increases the graph densities of the corresponding graphs (LP, RR

and ER) and hence connectedness. This results in decrease in average allocation distances. Also

observe the insensitivity of proximity based policies with k = 2 to the network size n. As expected,
proximity policies with k = 2 produce very small allocation distances when compared to the case

k = logn.
Next, we study the scalability of average allocation distance with respect to network size as shown

in Figures 10 (c), (f) and (i). Note that the average path length of ER and LP exhibits small (logn)
and ultra small world (logn/log logn) behavior respectively [16]. Due to small world behavior,

the observed average allocation distances are small for LP and ER topologies across all policies as

compared to similar size Line and Ring topologies. Another implication of the small world behavior

is that the log(n)-hop and n-hop neighborhoods of a server are basically the same which results in

very similar performance of InvSq-Pot(logn) and InvSq-POT(n) in Figures 10 (c), (f) and (i). Again as

expected, proximity policies with k = 2 are insensitive to changes in network size and produce the

smallest average allocation distances. Also, observe that between Unif-POT(k) and InvSq-POT(k)
for every k, InvSq-POT(k) policies produce smaller average allocation distances for similar size

networks.

We finally study how average maximum load increases as a function of network size as shown

in Figures 10 (j), (k) and (l). For ER, for k = 2, logn,n, both proximity based policies produce

similar average maximum load values. For RR and LP we observe that all policies produce similar

average maximum loads. However as the network size increases, local policies InvSq-POT(2) and

Unif-POT(2) produce larger maximum load values compared to InvSq-POT(n), Unif-POT(logn),
and POT.

4.5 Performance Comparison for Spatial Graphs
We first plot total variation distance as a function of radial parameter r of the RG topology as

shown in Figure 11 (a). Again to our surprise, for all values of k = logn,n, both the proximity based

22
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

0.0010 0.0012 0.0014 0.0016 0.0018
0.000

0.005

0.010

0.015

0.020

0.025

0.030

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Erdos Renyi Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(a)

A
vg

.
A

llo
c

D
is

t

(b)

A
vg

.
A

llo
c

D
is

t

(c)

5 6 7 8 9 10 11
0.000

0.005

0.010

0.015

0.020

0.025

0.030

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Random Regular Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(d)

A
vg

.
A

llo
c

D
is

t

(e)

A
vg

. A
llo

c
D

is
t

(f)

1 2 3 4 5 6 7
0.00

0.02

0.04

0.06

0.08

0.10

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Linear Preference Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(g)

A
vg

.
A

llo
c

D
is

t

(h)

A
vg

. A
llo

c
D

is
t

(i)

103 104

n

2.6 × 100

2.7 × 100

2.8 × 100

2.9 × 100

3 × 100

3.1 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Erdos Renyi Graph, = logn/n

InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

Unif-POT(2)
POT
Unif-POT(log n)

(j)

103 104

n

2.7 × 100

2.8 × 100

2.9 × 100

3 × 100

3.1 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Random Regular Graph, = 5

InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

Unif-POT(2)
POT
Unif-POT(log n)

(k)

103 104

n
2.6 × 100

2.7 × 100

2.8 × 100

2.9 × 100

3 × 100

3.1 × 100

3.2 × 100

3.3 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Linear Preference Graph, = 3

InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

Unif-POT(2)
POT
Unif-POT(log n)

(l)

Fig. 10. Simulation Results for Unif-POT(k) and InvSq-POT(k) with n = 10000 and k = 2, logn,n for random
graphs.

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 23

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
r

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Geometric Graph
InvSq-POT(n)
InvSq-POT(log n)
Unif-POT(log n)

(a)

1000 2000 3000 4000 5000 6000 7000
n

0.00

0.05

0.10

0.15

0.20

0.25

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Line Graph (Spatial)
InvSq-POT(n)
InvSq-POT(log n)
Unif-POT(log n)

(b)

1000 2000 3000 4000 5000 6000 7000
n

0.00

0.05

0.10

0.15

0.20

0.25

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Ring Graph (Spatial)
InvSq-POT(n)
InvSq-POT(log n)
Unif-POT(log n)

(c)

A
vg

. A
llo

c
D

is
t

(d)

A
vg

.
A

llo
c

D
is

t

(e)

103 104

n
2.6 × 100

2.7 × 100

2.8 × 100

2.9 × 100

3 × 100

3.1 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Geometric Graph

InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(log n)

(f)

103 104

n

3.0

3.5

4.0

4.5

5.0

5.5

Av
er

ag
e

M
ax

im
um

 L
oa

d

Line Graph (Spatial)
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

(g)

103 104

n

3.0

3.5

4.0

4.5

5.0

5.5

Av
er

ag
e

M
ax

im
um

 L
oa

d

Ring Graph (Spatial)
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

(h)

Fig. 11. Simulation Results for Unif-POT(k) and InvSq-POT(k) with n = 10000 and k = logn,n for spatial
graphs.

policies produce a variation distance as low as 0.006. Note that for SL and SR topologies, we adopt a

different job arrival model to incorporate the spatial nature of job request pattern. To be precise we

assume both jobs and servers are placed uniformly at random on a one dimensional line [0,Lmax)

and on a circle of radius R for SL and SR topologies respectively. We plot variation distance as a

function of network size for SL and SR as shown in Figures 11 (b), (c). We observe a clear trend of

Unif-POT(logn) and InvSq-POT(logn) policy producing the smallest and largest variation distances

for both SL and SR with InvSq-POT(logn) producing a variation distance of around 0.08. These
variation distances are insensitive to network size. Also, note that, with introduction of the spatial

dimension, the variation distances increased by five fold compared to their non-spatial counterparts

(Figures 9 (b) and (e)) for the same network size.

We next plot average allocation distance as a function of r for RG topology as shown in Figure

11(d). First note that the proximity aware policies are almost insensitive to r . As r increases, the

24
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

0 2000 4000 6000 8000 10000
Job id

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

InvSq-POT(n) Policy, n = 5000

Linear Preference
Random Regular
Erdos Renyi

(a)

0 2000 4000 6000 8000 10000
Job id

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

To
ta

l V
ar

ia
tio

n
Di

st
an

ce

InvSq-POT(n) Policy, n = 5000
Line
Ring

(b)

0 2000 4000 6000 8000 10000
Job id

0.00

0.02

0.04

0.06

0.08

0.10

To
ta

l V
ar

ia
tio

n
Di

st
an

ce

InvSq-POT(n) Policy, n = 5000
Line (Spatial)
Ring (Spatial)

(c)

Fig. 12. Simulation Results for evolution of total variation distance for InvSq-POT(n) policy.

graph density for an RG increases thereby reducing average path length of the network. Thus

we observe a decrease in average allocation distance for POT with an increase in r . As observed
before, InvSq-POT(k) produces lower average allocation distances as compared to their Unif-POT(k)
counterpart. InvSq-POT(k) produces the smallest average allocation distance for SL, which is almost

insensitive to system size as shown in Figure 11 (e). However, as expected, POT produces a large

allocation distance that increases linearly with system size.

We study the average maximum load behavior of the policies across various spatial networks in

Figures 11 (f), (g), (h). For low values of n for RG topology, Unif-POT(logn) and POT exhibit similar

average maximum loads. However, the corresponding average maximum load values for InvSq-

POT(logn) and InvSq-POT(n) are larger. When n is large, all policies exhibit similar behavior. For

SL and SR topologies, InvSq-POT(logn) is the worst while POT is the best policy. Unif-POT(logn) is
closer to POT while InvSq-POT(n) is closer to InvSq-POT(logn) with respect to average maximum

load.

4.6 Evolution of Total Variation Distance
Until now we have considered systems where there are an equal number of servers and users/jobs,

i.e.m = n. In this section we study the evolution of the total variation distance for a fixed n and the

underlying network topology. We evaluate the load distribution of POT and other proximity aware

policies after each job arrival. We then calculate the total variation distance after each job arrival

and plot its evolution as shown in Figures 12 (a), (b), (c). While we only focus on InvSq-POT(n)
policy for Figures 12 (a)-(c), we obtained similar results for other proximity aware policies.

We consider a network of n = 5000 servers. We observe the system from arrival of first job till

the 10000
th

job. We plot the evolution of variation distance for various random network topologies

as shown in Figure 12 (a). We set the parameters for all three random graphs: ER, LP and RR such

that their graph density remains almost equal. To be precise we set α = logn, β = 2 logn and

γ = 2 logn/n. First we observe that with increase in number of jobs the total variation distance

continuously increases for RR and ER networks. However, for this particular choice of network

parameters, variation distance for LP first increases and then decreases. Thus one can believe

that proximity aware policies on scale free networks may provide good load balancing properties

when there is imbalance between the number of servers and number of jobs. However, no such

phenomena is observed for non-spatial and spatial Line and Ring topologies.

5 RELATED LITERATURE

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 25

The randomized load balancing problem can be categorized into two versions: static and dynamic.

This work mainly deals with designing static load balancing policies while preliminary results on

dynamic load balancing policies were also presented in Section 3.5. For completion purpose, below

we discuss the state-of-the-art related to both static and dynamic version.

5.1 Static Load Balancing
Many previous works [1, 25] have developed simple and efficient load balancing algorithms in the

static setting. The widely acclaimed Power of Two (POT) choices policy was first proposed by Azar

et al. [3]. Further generalizations of POT policy to account for correlated and non-uniform sampling

strategies have been discussed in subsequent works [6, 10, 35]. Load balancing on graphs was first

proposed by Kenthapadi et al. [22], where the authors considered a model with bins interconnected

as a ∆-regular graph. Each ball then samples a random edge of the graph and gets allocated at one

of its endpoints with smaller load. Godfrey et al. [18] generalized the graph based model to balanced

allocations on a hypergraph. Bringmann et al. [8] studied a model where each ball picks a random

bin and performs a local search from the bin to a bin with local minimum load and gets allocated

to it. Pourmiri et al. [29] proposed algorithms for allocating balls to bins that are interconnected

as a regular graph by performing a non-backtracking random walk from a chosen node. In [28],

authors showed that the gap between the load of the most loaded bin and the average in a graph

setting depends on the edge expansion of the graph connecting the bins. Authors in [30] consider

load balancing in a network of caching servers that deliver contents to end users. In [11], parallel

load balancing protocols were designed for a client-server distributed model where client set and

servers were connected to each other via a fixed bipartite graph. Tang et.al. [33] developed two

new policies to allocate n balls into n bins by non-backtracking random walk on a k-regular graph
with the bins being the vertices of the graph. Balanced balls to bins allocation for the case when

bins are represented as dynamic hypergraphs, is discussed in [19].

5.2 Dynamic Load Balancing
In the dynamic setting, it was shown in [25, 36] that under the Power of d (d ≥ 2) policy, the

stationary probability that a server has at least i progressing jobs in the asymptotic regime when

n → ∞ is equal to (λ/µ)(d
i−1)/(d−1)

, whereas it equals to (λ/µ)i when d = 1. This shows that the

POT policy reduces the average delay significantly. In [17], a load balancing policy was investigated

for symmetric graphs. There, a job that arrived at a server say s was served at the shortest queue

length server among servers s andm, wherem was picked uniformly at random from the set of

neighboring servers of s . The authors were able to derive a set of evolution equations based on

pair-wise approximations and the fixed-point of these equations was shown to approximate the

stationary distribution of a server’s state. In [9], a similar model in which servers are located at

the nodes of a deterministic graph Gn was studied. The authors showed that if dmin(Gn) → ∞ and

supi≥1

��[dmin(Ci,n)/dmax (Ci,n)] − 1

�� → 0, where dmin(Gn) indicates the minimum degree of Gn ,

Ci,n is a connected component of the graph and dmax (Ci,n) denotes the maximum degree of a node

in Ci,n , then the empirical process of occupancy converges to the same mean-field as in the case of

POT policy. They also showed that for Erdős-Rényi graphs with average degree DN , the empirical

process of occupancy converges to the same mean-field limit as in the POT policy if Dn/ln(n) → ∞

as n → ∞. Recently, in [32], a load balancing policy was studied for a bipartite graph in which

task types are matched to servers which can serve them and each task type can be processed only

at a small subset of servers. An incoming task is assigned to a server that has the shortest queue

size among d randomly chosen servers from the set of servers which can process it. Under the

assumption that if a graph satisfies certain connectivity properties referred to as proportional

26
Nitish K. Panigrahy, Thirupathaiah Vasantam, Prithwish Basu, Don Towsley, Ananthram Swami,

and Kin K. Leung

sparsity, they showed that empirical occupancy process converges to the same mean-field limit as

in the case of a complete bipartite graph. For random graphs that satisfy proportional sparsity, if

the degree of a server is at most Dn satisfying Dn → ∞ and nDn/M(n) ln(n) → ∞ as n → ∞, then

the empirical occupancy process was shown to converge to the same mean-field limit as in the

complete bipartite graph case. Authors in [15] and [31] consider the analysis for greedy based user

routing policies when servers are placed on a real line and circle respectively.

6 CONCLUSION
In this work we considered a class of proximity aware power of two choices based allocation

policies where both servers and users are located on a two-dimensional plane. We analyzed the

sPOT policy and provided expressions for the lower bound on the asymptotic maximum load on

the resources. We claim that for both grid and uniform based resource placement, sPOT does not

provide POT benefits. We proposed two non-uniform euclidean distance based server sampling

policies that achieved the best load and allocation distance behavior. We also considered the case

when servers are interconnected as an arbitrary graph. We performed extensive simulations over a

wide range of network topologies. To our surprise, with few simple modifications in the server

sampling process, we observed a drastic reduction in the overall system wide implementation cost

while obtaining a similar load distribution profile as that of POT policy. Finally, going further, we

aim at extending our results to consider dynamic load balancing systems on arbitrary graphs.

7 ACKNOWLEDGMENT
This research was sponsored by the U.S. ARL and the U.K. MoD under Agreement Number W911NF-

16-3-0001 and by the NSF under Grant CNS-1617437. This document does not contain technology

or technical data controlled under either the U.S. International Traffic in Arms Regulations or the

U.S. Export Administration Regulations. The views and conclusions contained in this document

are those of the authors and should not be interpreted as representing the official policies, either

expressed or implied, of the National Science Foundation, U.S. ARL or the U.K. MoD.

REFERENCES
[1] M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel randomized load balancing. Random Structures

and Algorithms, 13(2):159–188, 1998.
[2] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A Survey. Computer Networks, 54(15):2787–2805, 2010.
[3] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM Journal on Computing, 29(1):180–200, 1999.
[4] A. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999.
[5] B. A. Bash and P. J. Desnoyers. Exact Distributed Voronoi Cell Computation in Sensor Networks. In IPSN, 2007.
[6] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: The heavily loaded case. SIAM Journal on

Computing, 35(6):1350–1385, 2006.
[7] B. Bollobas. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2 edition,

2001.

[8] K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun. Balls into bins via local search: Cover time and maximum load.

Random Structures and Algorithms, 48(4):681–702, 2016.
[9] A. Budhiraja, D. Mukherjee, and R. Wu. Supermarket model on graphs. Ann. Appl. Probab., 29(3):1740–1777, 2019.
[10] J. Byers, J. Considine, and M. Mitzenmacher. Geometric Generalizations of the Power of Two Choices. In SPAA, 2004.
[11] A. Clementi, E. Natale, and I. Ziccardi. Parallel Load Balancing on Constrained Client-Server Topologies. Annual ACM

Symposium on Parallelism in Algorithms and Architectures, pages 163–173, 2020.
[12] C. Cooper, M. Dyer, and C. Greenhill. Sampling regular graphs and a peer-to-peer network. Combinatorics Probability

and Computing, 16(4):557–593, 2007.
[13] K. Deb. Multi-objective Optimization BT - Search Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques. pages 403–449. Springer US, Boston, MA, 2014.

[14] J. Diaz, D. Mitsche, and X. Perez-Gimenez. On the connectivity of dynamic random geometric graphs. SODA, pages
601–610, 2008.

On the Analysis and Evaluation of Proximity Based Load Balancing Policies 27

[15] S. Foss, L. T. Rolla, and V. Sidoravicius. Greedy walk on the real line. Annals of Probability, 43(3):1399–1418, 2015.
[16] A. Fronczak, P. Fronczak, and J. A. Hołyst. Average path length in random networks. Physical Review E - Statistical

Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70(5):7, 2004.
[17] N. Gast. The power of two choices on graphs: the pair-approximation is accurate. In In Proc. MAMA workshop 2015,

pages 69–71, 2015.

[18] P. B. Godfrey. Balls and bins with structure: Balanced allocations on hypergraphs. Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 511–517, 2008.

[19] C. Greenhill, B. Mans, and A. Pourmiri. Balanced allocation on dynamic hypergraphs. Leibniz International Proceedings
in Informatics, LIPIcs, 176, 2020.

[20] K. K. and R. Panigrahy. Balanced Allocation on Graphs. In SODA, 2006.
[21] R. Kacimi, R. Dhaou, and A. L. Beylot. Load balancing techniques for lifetime maximizing in wireless sensor networks.

Ad Hoc Networks, 11(8):2172–2186, 2013.
[22] K. Kenthapadi and R. Panigrahy. Balanced Allocation on Graphs. 2005.

[23] J. M. Kleinberg. Navigation in a small world. Nature, 406(6798):845, 2000.
[24] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications. In In: Academic Press, 1979.
[25] M. D. Mitzenmacher. The Power of Two Choices in Randomized Load Balancing. In Ph.D. Dissertation, Harvard

University, 1996.
[26] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations Concepts and Applications of Voronoi Diagrams. In New

York: Wiley, 1992.
[27] M. Penrose. Random Geometric Graphs. 2007.
[28] Y. Peres, K. Talwar, and U. Wieder. Graphical balanced allocations and the (1 + β)-choice process. Random Structures

and Algorithms, 47(4):760–775, 2015.
[29] A. Pourmiri. Balanced allocation on graphs: A random walk approach. Random Structures and Algorithms, 55(4):980–

1009, 2019.

[30] A. Pourmiri, M. J. Siavoshani, and S. P. Shariatpanahi. Proximity-Aware Balanced Allocations in Cache Networks.

Proceedings - 2017 IEEE 31st International Parallel and Distributed Processing Symposium, IPDPS 2017, pages 1068–1077,
2017.

[31] L. T. Rolla and V. Sidoravicius. Stability of the Greedy Algorithm on the Circle. Communications on Pure and Applied
Mathematics, 70(10):1961–1986, 2017.

[32] D. Rutten and D. Mukherjee. Load Balancing Under Strict Compatibility Constraints. In arXiv:2008.07562, 2020.
[33] D. Tang and V. G. Subramanian. Balanced Allocation on Graphs with Random Walk Based Sampling. 2018 56th Annual

Allerton Conference on Communication, Control, and Computing, Allerton 2018, pages 765–766, 2019.
[34] S. R. Turner. The effect of increasing routing choice on resource pooling. Probability in the Engineering and Informational

Sciences, 12(1):109–124, 1998.
[35] B. Vöcking. How asymmetry helps load balancing. Journal of the ACM, 50(4):568–589, 2003.

[36] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich. Queueing system with selection of the shortest of two

queues: An asymptotic approach. Problemy Peredachi Informatsii, 32(1):20–34, 1996.

	Abstract
	1 Introduction
	1.1 Spatial Load Balancing
	1.2 Load Balancing On Graphs
	1.3 Contributions

	2 Technical Preliminaries
	2.1 Load balancing on a plane
	2.2 Load balancing on a graph
	2.3 Performance Metrics

	3 Proximity Aware POT policies on a plane
	3.1 sPOT with Grid based server placement
	3.2 sPOT with Uniform server placement
	3.3 Tradeoff between Load and Allocation Distance
	3.4 Improving Performance of Planar Policies
	3.5 Effect of User Dynamics

	4 Proximity Aware POT policies on Graphs
	4.1 Experimental Setup
	4.2 Maximum Load - Allocation Distance Tradeoff and Pareto Frontier
	4.3 Performance Comparison for Deterministic Graphs
	4.4 Performance Comparison for Random Graphs
	4.5 Performance Comparison for Spatial Graphs
	4.6 Evolution of Total Variation Distance

	5 Related Literature
	5.1 Static Load Balancing
	5.2 Dynamic Load Balancing

	6 Conclusion
	7 Acknowledgment
	References

