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User counterparts, such as user attributes in social networks or user interests, are the keys to more natural

HumanśComputer Interaction (HCI). In addition, users’ attributes and social structures help us understand

the complex interactions in HCI. Most previous studies have been based on supervised learning to improve

the performance of HCI. However, in the real world, owing to signal malfunctions in user devices, large

amounts of abnormal information, unlabeled data, and unsupervised approaches (e.g., the clustering method)

based on mining user attributes are particularly crucial. This paper focuses on improving the clustering

performance of users’ attributes in HCI and proposes a deep graph embedding network with feature and

structure similarity (called DGENFS) to cluster users’ attributes in HCI applications based on feature and

structure similarity. The DGENFS model consists of a Feature Graph Autoencoder (FGA) module, a Structure

Graph Attention Network (SGAT) module, and a Dual Self-supervision (DSS) module. First, we design an

attributed graph clustering method to divide users into clusters by making full use of their attributes. To take

full advantage of the information of human feature space, a k-neighbor graph is generated as a feature graph

based on the similarity between human features. Then, the FGA and SGAT modules are utilized to extract

the representations of human features and topological space, respectively. Next, an attention mechanism is

further developed to learn the importance weights of different representations to effectively integrate human

features and social structures. Finally, to learn cluster-friendly features, the DSS module unifies and integrates

the features learned from the FGA and SGAT modules. DSS explores the high-confidence cluster assignment

as a soft label to guide the optimization of the entire network. Extensive experiments are conducted on five
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real-world data sets on user attribute clustering. The experimental results demonstrate that the proposed

DGENFS model achieves the most advanced performance compared with nine competitive baselines.

CCS Concepts: · Human-centered computing→ User models; HCI design and evaluation methods.

Additional Key Words and Phrases: Attributed graph clustering, cluster-friendly features, deep graph embed-

ding, self-supervision module.
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1 INTRODUCTION

In recent years, HumanśComputer Interaction (HCI) has gradually changed from a computer-centric

approach to a more user-centric approach [1, 2]. In HCI applications, the degree of activity between

users and machines is considered from three levels: physical [3], cognitive [4], and emotional [5].

Commercial success has made user-friendly input methods, portable devices, and multi-sensor

availability the new standards for personal computing. For example, wearable sports devices are

being used by more users. Academic research has begun to focus on the "human aspects" of such

technologies to understand their impacts on athlete performance and develop more effective ways

of interaction [6, 7]. The training plan of sports can be made by aggregating the training information

between the athletes [8]. Another example is smart homes, where users expect not only to be able

to easily control their home but also for their home to adapt itself to their needs, actions, and

preferences over time. Whenever the home fails to perform as expected, there will be conflicts,

resulting in user dissatisfaction [9ś12]. So focusing on user attributes (e.g., behavior) tends to lead

to better HCI [13, 14].

Since 2010, deep learning (DL) methods have been applied to various HCI applications and

achieved improvements in user attributes, as well as won competitions at EmotiW [15] and improved

iris detection [16] and AVEC [17]. Today, most of the methods of HCI user attribute mining are based

on supervised learning. For example, Pimenta et al. [18] proposed the use of neural networks to

continuously classify user fatigue and support effective and efficient fatigue management measures.

However, due to signal malfunctions in user devices, large amounts of abnormal information, and

unlabeled data, unsupervised approaches based on mining user attributes are particularly crucial.

Yet, related research is currently ignored. User attribute clustering methods can uncover hidden

relationships between users and their interests to better interact with machines and devices.

A user’s attributes can reflect its relationships with other users and its habits of interacting with

the machine. A common method is to construct an attribute graph based on these connections

in a big social network and then perform information mining. Graph clustering methods have

great progress in analyzing these complex networks; however, graph clustering methods focus

on graph structure and cannot effectively utilize user attributes. Attributed graph clustering has

gradually become a popular direction. The attributed graph clustering method needs to integrate

the two dimensions of topological relationships and node features. It also needs to balance the

influence of these two aspects in the clustering process. Thus, attributed graph clustering can

be used as an unsupervised tool in HCI to mine user preferences by analyzing user features and

structural relationships. Social networks provide a lens for understanding the user’s interactive

behavior, and better support HCI to meet the user’s needs. Although the motivations of users vary

by domain, it is worth noting that users from the same social network will share similar motivational

and behavioral patterns. Since accurately clustering user information is a useful and promising

technology in HCI, we propose a novel model that takes advantage of users’ complex connections
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in social networks. We perform attributed graph clustering and group a massive number of users

into multiple preference-aware social clusters by using their attributes and social connections.

The attributed graph [19] plays an important role in detecting communities [20] and analyzing

these networks [21]. However, the integration of node features and topological structure information

remains an unsolved problem. SAE [22], DEC [23], and IDEC [24] execute graph clustering based

on node attributes. In particular, autoencoders are usually used to obtain low-latitude representa-

tions of node attributes and then subsequently group these nodes through traditional clustering

methods. However, this type of method only relies on node attributes and does not consider their

connectivity, such as the graph structure. SDNE [25] and LINE [26] explore the connectivity of

nodes by manipulating the adjacency matrix of the attribute graphs to group graph nodes with

similar structures. Similar to the methods based on node attributes, they perform graph clustering

from one aspect of the attributed graph (i.e., node attributes and graph structure). However, neither

of the above two methods effectively combines the node characteristics and topological structure.

With the continuous development of deep learning, relatively significant work has been done

on graph neural networks (GNNs) [27ś29]. Using the structural information within the sample’s

k-hop neighbors from the spectral or spatial [30] domain, each sample of the graphs recursively

aggregates the sample features of its k-hop neighbors. Recently, graph convolutional networks

(GCNs) [31] have attracted much attention. GCN-based generative models have been widely used

for attributed graph clustering, where GCN updates the graph embedding by combining the features

of adjacent nodes. These models have demonstrated strong performance in multiple attributed

graph clustering tasks, such as GAE, VGAE [32], and DAEGC [33].

Although GCN has been found to be practical in the integration of structural and feature

information, the correlation between features, topological information, and, graph clustering tasks,

in reality, is usually complex and agnostic. In addition, most of these methods utilize the original

graph structure, and the embeddings obtained cannot well reflect the similarity of features between

nodes. In this way, the learned graph embedding results contain less information related to node

features. Moreover, the clustering result relies on the loss of graph structure reconstruction, rather

than cluster-driven loss. For example, DAEGC attempts to introduce different clustering losses

to guide embedding learning to reduce the effect, but the effect may not be obvious. Through

the analysis of the existing attributed graph clustering methods, we posit that there are still

shortcomings that cannot effectively use the topology and node feature information and learn

clustering-friendly information.

To address the above problems and improve the performance of user attribute clustering, we

propose a deep graph embedding network model. Feature similarity and topology similarity are

dominated by clustering-driven loss. The main idea of our work is to learn specific representations

based on node features and topology and combine them according to a defined policy. The un-

derlying principle is that the inter-feature and topology-inferred similarities are complementary.

By combining them, we can obtain a more complete and powerful representation of attributed

graph clustering tasks. To make full use of the information in the feature space, we first use the

k-nearest neighbor graph generated from the inter-feature similarity of nodes. We propagate the

node features in the feature and topological spaces and use the FGA module and SGAT module

to extract their respective representations. Considering complementarity between the spaces, the

importance of different representations is learned layer by layer through an attention mechanism.

In addition, we combine them according to their importance to obtain graph embeddings that

contain deeper information. Finally, to learn cluster-friendly features, the DSS module unifies

the feature graph self-encoder and structure graph attention network module. The module uses

a high-confidence clustering assignment as a soft label to guide the optimization of the entire

framework. The main contributions of this paper are summarized as follows:

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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• We incorporate human social factors (e.g., society and citations) to simulate human attention

and preference in HCI. To help users operate accurately, we model people as nodes through

attributed graph clustering, model people’s connectivity as a graph structure, and obtain

data representation of user attributes and connection relationships. Because the size of social

graph data has increased dramatically, attributed graph clustering is utilized to classify

users into clusters by leveraging node attributes and graph structures. Therefore, related

nodes are assigned to the same cluster, and the difference between clusters is maximized.

• We propose a novel attributed graph clustering framework (deep graph embedding net-

work with feature and structure similarity, or DGENFS), which provides an effective deep

framework to integrate feature and topological space information. The framework jointly

optimizes graph embedding learning and graph clustering, making them complementary.

• We design an FGA module and an SGAT module to capture the similarity between features

and the similarity of the topological structure, respectively. The features and similarities

are used to effectively extract feature space or structure space information. Combined with

the attention mechanism, different information can be adequately fused.

• Experiments on a series of attributed graph clustering tasks show that our model signifi-

cantly outperforms the state-of-the-art graph clustering methods in terms of accuracy and

performance.

2 RELATED WORK

Many approaches focus on user attribute analysis in the field of HCI. However, only a few researchers

have explored whether the clustering of user attributes in HCI can promote the efficiency and

accuracy of HCI. In this section, we review the existing attribute clustering methods, especially in

the field of HCI.

2.1 Clustering Methods Based on Graph Attributes and Structure

The clustering method based on node attributes extracts the depth features through the encoder

and then uses the decoder to reconstruct the original features. In [23], deep embedding clustering

(DEC) was proposed to use an auto-encoder to pre-train the feature data and then remove the

decoder. The clustering cohesion is fine-tuned by a defined KullbackśLeibler divergence clustering

loss, which destroys the feature space and leads to unrepresentative features. In [24], Guo et al.

proposed an improved deep embedding clustering (IDEC) method that recombines the decoder and

optimizes reconstruction error and clustering loss. The structured auto-encoder [34] uses a deep

subspace clustering method with a self-expression layer between the encoder and decoder. The

algorithm can simulate the self-expression characteristics in subspace clustering to obtain a more

representative representation.

Multiple studies have also focused on clustering methods based on the adjacency matrix of

attributed graphs [25, 35ś38]. For example, matrix-decomposition-based methods decompose node

adjacency matrices into node embeddings. GraRep captures different k-order local relationship

information from the graph by manipulating different global transfer matrices defined on it. More-

over, random wander-based methods learn node embeddings by maximizing the probability of each

node’s neighborhood [26]. For example, DeepWalk uses DFS random walk to sample the nodes

in the graph and uses word2vec to learn the vector representations of the nodes in the sampled

sequence. Unlike DeepWalk, LINE is another method based on the assumption of neighborhood

similarity, which uses DFS to construct neighborhoods [26]. In addition, LINE can be applied to

both weighted graphs and unweighted graphs, while DeepWalk can only be used for unweighted

graphs. Autoencoder-based approaches try to capture the nonlinear embedding of the adjacency

matrix [37, 38]. For example, Wang et al. considered that Line step-wise optimization has difficulty

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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in capturing highly nonlinear network structures [25]. They proposed to use an autoencoder-based

network to optimize both first- and second-order similarities to capture such structures.

2.2 Clustering Methods Based on GCN

Representative approaches mainly use GCN [31] to integrate node characteristics and topologies. In

particular, GAE and VGAE [32] use a two-layer superposed GCN to learn node representations and

then use the autoencoder and variational autoencoder to reconstruct node adjacency matrices. To

learn a better node representation, MGAE [39] learns the node representation through a three-layer

GCN, and then applies a marginalized denoising autoencoder to reconstruct the node features.

DAEGC [33] uses a graph attention network to capture the importance of neighboring nodes to the

target nodes. Then, the model combines the graph adjacency structure and node features into graph

embeddings, and finally generates soft labels from the graph embeddings to supervise self-training

graph clustering. EGAE-JOCAS [40] introduces clustering models into the GCN, which combines

relaxed 𝑘-means and spectral clustering, and is applicable for learning embedding. SDCN [41] uses

a GCN and a deep neural network with feature reconstruction loss functions to separately learn two

node representations. Feature representations of the nodes are passed to the GCN layer through a

designed transfer factor to integrate their information. SENet [42] integrates both structure and

feature information into a kernel matrix via a higher-order graph convolution and improves the

graph structure by leveraging the information of shared neighbors.

2.3 Applications of User Attribute Clustering in HCI

In HCI applications, users with specific backgrounds and different usage habits have different

needs [43ś47]. The relevant attributes of users can be clustered to improve the efficiency of HCI. In

[48], Nguyen et al. pointed out that proper user understanding and recognition of their hobbies,

habits, psychology, and feelings will help designers convey correct ideas and improve the efficiency

of the HCI process. In addition, in [49], Shen et al. considered the characteristics of a special

group of elderly people and obtained the interaction mode. Then, they designed principles to meet

their requirements to enable older users to obtain higher efficiency and satisfaction while using

computers. In [50], Adeyemi et al. found relevance and application in the human-centered graphical

user interface design of recommendation systems and e-commerce services. They used cluster

dichotomy to distinguish the thinking styles of individuals with different dichotomies.

In addition, Mencarini et al. pointed out that HCI needs to consider the special needs of athletes

[7]. It was found that different types of athletes and tasks have an important impact on HCI. In [51],

Miandashti et al. introduced an empirical method for modeling userśsystem interaction conflicts in

smart homes. They used conflict sample scenarios collected from 163 users. Based on the clustering

of these scenarios, an empirical definition of user system conflicts for intelligent homes was formed.

However, prior studies have mainly focused on user attributed clustering based on the special

information but ignored the feature fusion between user characteristics and spatial structure.

3 METHODOLOGY

3.1 Problem Statement and Objective

Given an attributed graph𝐺 ,𝐺 = (𝑉 , 𝐸, 𝑋 ), where𝑉 = {𝑣𝑖 }𝑖=1,2,3,...𝑛 is the set of nodes, and 𝐸 = {𝑒𝑖 𝑗 }

is the set of edges between nodes. The topology of graph 𝐺 can be represented by the adjacency

matrix 𝐴, where 𝐴𝑖 𝑗 = 1 means that there is an edge between nodes 𝑖 and 𝑗 ; otherwise, 𝐴𝑖 𝑗 = 0.

𝑋 = {𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛} is the set of user attribute values, where 𝑥𝑖 ∈ 𝑅𝑑 is the attribute vector

associated with node 𝑣𝑖 .
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Objective: Given an attributed graph 𝐺 , the goal of attributed graph clustering is to divide

the nodes in 𝐺 into 𝑘 disjointed sub-groups {𝐺1,𝐺2,𝐺3, ...,𝐺𝑘 }. Nodes in the same sub-group are

usually close to each other and are more likely to have similar attribute values.

3.2 Overview of the Proposed Model

The framework of the proposed method is shown in Fig. 1. Our model consists of an FGA module,

SGAT module, and DSS module. The FGA module allows the propagation of node features in the

feature space to learn the representation Z
(𝑙)

𝑓
, and the feature graph is composed of X. The SGAT

module allows node features to be propagated in the topological space to learn the representation

Z
(𝑙)
𝑡 , where the topological graph is the adjacency matrix A. To effectively utilize the learned

representations, Z
(𝑙)

𝑓
and Z

(𝑙)
𝑡 are fused through the attention mechanism to learn a more complete

and powerful representation Z
(𝑙)

𝑓 +𝑡
and obtain the graph embedding Z. The DSS module generates

the target distribution P through Z
(𝑙)

𝑓
. At the same time, it guides the update of the FGA module

and SGAT module, making it possible to optimize the graph embedding and clustering module in a

unified framework.

Inner Product 

Decoder

Structure Graph Attention Network (SGAT) Module 

A
tte

n
tio

n
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Reconstructed Graph
Visualization
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A

Fig. 1. The overall architecture of the proposed model. The DGENFS model consists of a Feature Graph

Autoencoder (FGA) module, a Structure Graph Attention Network (SGAT) module, and a Dual Self-supervision

(DSS) module. First, an attributed graph clustering method is designed to divide users into clusters, and a

𝑘-neighbor graph is generated as a feature graph based on the similarity between human features. Then, the

FGA and SGAT modules extract the representations of human features and topological space, respectively. In

addition, an attention mechanism is further adapted to learn the importance weights of different representa-

tions and integrate human features and social structures. Finally, the DSS module unifies and integrates the

learned features to learn cluster-friendly features and explore the high-confidence cluster assignment.
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3.3 Feature Graph Construction

To capture the underlying structure of the nodes in the feature space, we construct a 𝑘-nearest

neighbor graph𝐺 𝑓 = (A𝑓 ,X) based on the node feature matrix X, where A𝑓 is the adjacency matrix

of the 𝑘-nearest neighbor graph. We first calculate the similarity matrix S ∈ R𝑛∗𝑛 for 𝑛 nodes. There

are multiple ways to obtain S, such as Cosine similarity and the heat kernel function.

(1) Cosine similarity: The 𝑥𝑖 and 𝑥 𝑗 be the eigenvectors (feature vector) of the nodes 𝑖 and 𝑗 ,

respectively. As depicted in Eq. (1), we use the cosine of the angle between two vectors to measure

similarity, defined as

𝑆𝑖, 𝑗 =
𝑥𝑖 · 𝑥 𝑗��𝑥𝑖 ∥𝑥 𝑗 �� . (1)

(2) Heat kernel function: The similarity of the nodes based on the heat kernel function is calculated

in Eq. (2):

𝑆𝑖, 𝑗 = 𝑒
−
∥x𝑖−x𝑗 ∥

2

𝑡 , (2)

where 𝑡 is the time parameter in the heat conduction equation, and we set 𝑡 to 2. We use the cosine

similarity to obtain S, select the first 𝑘 pairs of similar nodes to set the edges for each node, and

finally obtain the adjacency matrix A𝑓 .

3.4 Feature Graph Autoencoder Module

After obtaining the underlying structure of the feature space, we design an FGA module to learn a

specific representation. The FGA module consists of a feature graph encoder and an inner product

decoder.

Feature graph encoder. We use the GCN layer as a graph encoder, where the input is A𝑓 . The

output of the 𝑙-th layer can be calculated in Eq. (3):

Z
(𝑙)

𝑓
= ReLU

(
D̃
− 1

2

𝑓
Ã𝑓 D̃

− 1
2

𝑓
Z
(𝑙−1)

𝑓
W

(𝑙)

𝑓

)
, (3)

where W
(𝑙)

𝑓
is the weight matrix of the 𝑙-th layer of the GCN. We use the 𝑅𝑒𝐿𝑈 activation function

with the initialization value Z
(0)

𝑓
= X; Ã𝑓 =A𝑓 +I𝑓 , and D̃𝑓 represents the pairwise angle matrices

of Ã𝑓 . In addition, Z𝑓 is the embedding output of the last layer, allowing us to capture specific

information from the feature space.

Inner product decoder.We employ a simple inner product decoder to predict the links between

nodes, which is efficient and flexible, as described in Eq. (4):

A∗
𝑓 = sigmoid

(
𝑧𝑖𝑓

𝑇
𝑧
𝑗

𝑓

)
, (4)

where A∗
𝑓
is the adjacency matrix of the feature graph reconstructed by A𝑓 . The reconstruction

loss objective function is defined as 𝐿𝑅 in Eq. (5):

𝐿𝑅 = loss
(
A𝑓 ,A

∗
𝑓

)
. (5)

3.5 Structure Graph Attention Network Module

After extracting feature space information, we consider that the topological space is usually

complicated, and neighbor nodes contribute to the target node. Therefore, it is difficult for low-order

neighbors to provide global structure information, so higher-order neighbors need to be used. We

adopt a variant of the graph attention network [33] with two effective techniques: attribute value
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and topological distance. We have the original input graph𝐺𝑡 = (At,X), where At = A. The output

of the node 𝑖 in the 𝑙-th layer can be expressed as in Eq. (6):

𝑧
(𝑙)
𝑖 = 𝜎

(∑︁
𝑗 ∈𝑁𝑖

𝛼𝑖, 𝑗W𝑡𝑧
(𝑙−1)
𝑗

)
, (6)

where 𝑁𝑖 is the neighbor of the node 𝑖 , and W𝑡 is the weight matrix shared by each node. 𝜎 is

a nonlinear function, and 𝑧
(𝑙)
𝑡 consists of 𝑧

(𝑙)
𝑖 , (𝑖 ∈ {1, ..., 𝑛}). 𝛼𝑖, 𝑗 is the attention factor, which

indicates the importance of the neighbor node 𝑗 to node 𝑖 .

Attribute values. Coefficient 𝛼𝑖, 𝑗 is expressed as a single-layer feed-forward neural network

after 𝑧𝑖 , 𝑧 𝑗 stacking, as defined in Eq. (7):

𝑒𝑖, 𝑗 =
−→𝑎 𝑇

(
W𝑡𝑧𝑖 ,W𝑡𝑧 𝑗

)
, (7)

where −→𝑎 ∈ R2ℎ
′
is the weight vector of the single layer of the feed-forward neural network.

Topological distance. An approximation matrix is obtained by considering the 𝑡-order neighbor

nodes in the graph, as defined in Eq. (8):

M =

(
B + B2 + · · · + B𝑡

)
/𝑡, (8)

where B is the transfer matrix. If 𝐴𝑖, 𝑗 = 1, then the elements 𝐵𝑖, 𝑗 = 1/𝑑𝑖 ; otherwise, 𝐵𝑖, 𝑗 = 0. 𝑑𝑖 is

the degree of node 𝑖 , so𝑀𝑖, 𝑗 denotes the topological correlation between nodes 𝑗 and 𝑖 up to the

𝑡-order. In this case, 𝑁𝑖 denotes the neighboring nodes of 𝑖 inM; that is, if𝑀𝑖, 𝑗 > 0, then 𝑗 is the

neighbor of 𝑖 . 𝑡 can be flexibly selected according to the distribution of the target data set, and we

set 𝑡 = 2.

To calculate the attention coefficient, it is usually necessary to use the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function to

normalize the attention coefficients of all neighbors 𝑗 ∈ 𝑁𝑖 . Based on the attention coefficients, we

can obtain the comparability between nodes by using applying the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 nonlinear function:

𝛼𝑖, 𝑗 =
exp

(
LeakyReLU

(
−→𝑎 𝑇

[
W𝑡𝑧𝑖 ,W𝑡𝑧 𝑗

] ))
∑

𝑘∈𝑁𝑖
exp

(
LeakyReLU

(
−→𝑎 𝑇 [W𝑡𝑧𝑖 ,W𝑡𝑧𝑘 ]

)) . (9)

After adding the topological weight M, the coefficients can be expressed as in Eq. (10):

𝛼𝑖, 𝑗 =
exp

(
LeakyReLU

(
𝑀𝑖, 𝑗

−→𝑎 𝑇
[
W𝑡𝑧𝑖 ,W𝑡𝑧 𝑗

] ))
∑

𝑘∈𝑁𝑖
exp

(
LeakyReLU

(
𝑀𝑖,𝑘

−→𝑎 𝑇 [W𝑡𝑧𝑖 ,W𝑡𝑧𝑘 ]
)) . (10)

3.6 Attention Mechanism

Node features are propagated in the topological space to obtain a specific representation 𝑧
(𝑙)
𝑡 . Based

on the inter-feature and topological similarities, graph clustering results are associated with one of

these features or a combination of them. We use the specific representations Z𝑓 and Z𝑡 to learn the

importance (𝜶 𝑓 ,𝜶 𝑡 ) through the attention mechanism 𝑎𝑡𝑡 (Z𝑓 ,Z𝑡 ). For example, we focus on node

𝑖 , where its embedding in Z𝑓 is 𝑧
𝑖
𝑓
∈ R1×ℎ . First, we transform the embedding through a nonlinear

transformation, and we use the one shared attention vector 𝑞 ∈ Rℎ
′×1 to obtain the attention value

𝜔𝑖
𝑓
, which can be expressed as in Eq. (11):

𝜔𝑖
𝑓 = 𝑞T · tanh

(
W ·

(
𝑧𝑖𝑓

)T
+ 𝑏

)
, (11)
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where W ∈ Rℎ
′×ℎ is the weight matrix, and 𝑏 ∈ Rℎ

′×1 is the bias vector. Similarly, we can obtain

the attention values 𝜔𝑖
𝑡 for node i in embedding Z𝑡 . We normalize the attention value 𝜔𝑖

𝑡 and 𝜔
𝑖
𝑓

with the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function, which can be calculated as in Eq. (12):

𝛼𝑖𝑓 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝜔𝑖
𝑓

)
=

exp
(
𝜔𝑖
𝑓

)
exp

(
𝜔𝑖
𝑓

)
+ exp

(
𝜔𝑖
𝑡

) . (12)

Similarly, 𝛼𝑖𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜔
𝑖
𝑡 ). For all the n nodes in the 𝑙-th layer, we have the learned attention

value matrix 𝜶
(𝑙)

𝑓
= [𝛼𝑖

𝑓
, 𝑖 ∈ 𝑛],𝜶

(𝑙)
𝑡 = [𝛼𝑖𝑡 , 𝑖 ∈ 𝑛]. Then, we combine Z𝑓 and Z𝑡 to obtain a more

complete and powerful representation based on importance, as calculated using Eq. (13):

Z𝑓 +𝑡 = 𝜶 𝑓 · Z𝑓 + 𝜶 𝑡 · Z𝑡 . (13)

In the structure graph attention network module, we use 𝑧
(𝑙−1)
𝑗 and 𝑧

(𝑙−1)
𝑗 ∈ Z𝑓 +𝑡

(𝑙−1) as the input

to each layer. The output of node 𝑖 at the 𝑙-th layer can be expressed as in Eq. (14):

Ẑ
(𝑙)
𝑖 = 𝜎

(∑︁
𝑗 ∈𝑁𝑖

𝛼𝑖, 𝑗W𝑡 Ẑ
(𝑙−1)
𝑗

)
. (14)

After obtaining the embedding representation Z, the multiple classification layers of the second-

order structured graph learning module use the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function, and we denote the class predic-

tions for n nodes as Q𝑧 = [𝑞𝑖𝑐 ] ∈ R
𝑛×𝑐 , where 𝑞𝑖𝑐 is the probability that node i belongs to cluster

center c. Q𝑧 can be considered a probability distribution. Q𝑧 can be calculated as in Eq. (15):

Q𝑧 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Z). (15)

3.7 Double Self-supervision Clustering Module

The FGA module and SGAT module integrate feature and structural space information, but they are

not designed for clustering. Hence, the learned embedding representation may not be suitable for

clustering. A good clustering distribution should ensure that nodes in the same cluster are dense,

and nodes between different clusters are far apart. Therefore, we need an objective function to

guide the embedding learning process. Inspired by SDCN [41], we adopt the dual self-supervision

clustering objective function, which can unify the FGA module and SGAT module and effectively

train these two modules end to end for attributed graph clustering.

In particular, for a sample 𝑖 and cluster 𝑗 , we use the student 𝑡 distribution as a kernel function

to measure the similarity between the data representation 𝑧𝑖
𝑓
and the cluster center vector 𝑢 𝑗 , as

defined in Eq. (16):

𝑞𝑖, 𝑗 =

(
1 +

𝑧𝑖𝑓 − 𝜇 𝑗
2

)−1
∑

𝑖

(
1 +

𝑧𝑖
𝑓
− 𝜇 𝑗

2
)−1 , (16)

where 𝑧𝑖
𝑓
is the 𝑖-th row of Z𝑙

𝑓
, and 𝑢 𝑗 is the cluster center. We consider that 𝑞𝑖, 𝑗 is the probability

of assigning node 𝑖 to cluster center 𝑢 𝑗 , and that Q = [𝑞𝑖, 𝑗 ] is the soft label distribution of all nodes.

After obtaining the soft label distribution Q, we optimize the embedding representation by learning

from the high-confidence soft assignment. Then, we want to make the embedding representation

close to the cluster centers and improve clustering cohesion. Therefore, we compute the target
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distribution P in Eq. (17):

𝑝𝑖, 𝑗 =
𝑞2𝑖, 𝑗/

∑
𝑖 𝑞𝑖, 𝑗∑

𝑗

(
𝑞2𝑖, 𝑗/

∑
𝑖 𝑞𝑖, 𝑗

) , (17)

where
∑

𝑖 𝑞𝑖, 𝑗 is a soft cluster frequency used to normalize the contribution of each center-of-mass

loss and prevent larger clusters from distorting the embedding space. As high-confidence nodes

(close to the cluster centers) are considered plausible in Q, the target distribution P will be raised

Q to the second power to emphasize their role, which leads to the objective function, it can be

regarded as Clustering Loss as 𝐿𝐶 in Eq. (18):

𝐿𝐶 = 𝐾𝐿(P∥Q) =
∑︁
𝑖

∑︁
𝑗

𝑝𝑖, 𝑗 log
𝑝𝑖, 𝑗

𝑞𝑖, 𝑗
. (18)

By minimizing the KullbackśLeibler divergence loss between the Q and P distributions, the

target distribution P can help the FGA module to learn a better feature of space representation.

This process is an important step of the attributed graph clustering task.

To train the structure graph attention network module, as the module will eventually provide a

soft distribution Q𝑧 , we can use the distribution P to supervise Q𝑧 . We represent the Probability

Distribution Loss as 𝐿𝑃𝐷 in Eq. (19):

𝐿𝑃𝐷 = 𝐾𝐿 (P∥Q𝑧) . (19)

Overall objective function. We jointly optimize the two modules of embedding and clustering

learning and define the overall objective function as:

𝐿 = 𝜇𝐿𝑅 + 𝐿𝐶 + 𝐿𝑃𝐷 , (20)

where 𝜇 > 0 is the hyperparameter controlling the loss of feature graph reconstruction.

We choose the soft assignment distributionQ𝑧 obtained in the last iteration as the final clustering

result. The label assigned to node 𝑖 can be obtained as in Eq. (21):

𝑙𝑖 = argmax
𝑗

𝑞𝑖, 𝑗 , (21)

where 𝑞𝑖, 𝑗 is calculated by using Eq. (15).

3.8 Optimization Strategy

We pre-train the FGA module to obtain a well-trained representation Z𝑓 , and integrate it with

the SGAT module representation Z𝑡 to finally obtain the embedding Z. The dual self-supervision

clustering module is used to improve the embedding representation of the learning of two modules.

To initialize the clustering centers, we perform k-means on Z𝑓 to obtain the initial centroid {𝜇}𝑘𝑗=1.

Four parameters must be updated: the FGAW
(𝑙)

𝑓
, clustering center 𝑢 𝑗 , SGATW

(𝑙)
𝑡 , and attention

factor 𝜶 . Then, it updates the feature graph encoder weights and clustering centers. By fixing the

target distribution P and given 𝑛 nodes, we can calculate the gradient of the clustering center 𝑢 𝑗
relative to 𝐿𝑐 as in Eq. (22):

𝜕𝐿𝐶

𝜕𝑢 𝑗
= 2

𝑁∑︁
𝑖=1

(
1 +

𝑧𝑖𝑓 − 𝑢 𝑗
2

)−1 (
𝑞𝑖, 𝑗 − 𝑝𝑖, 𝑗

) (
𝑧𝑖𝑓 − 𝑢 𝑗

)
. (22)

Given a learning rate of 𝜑 , we can update 𝑢 𝑗 by using Eq. (23):

𝑢 𝑗 = 𝑢 𝑗 − 𝜙
𝜕𝐿𝑐

𝜕𝑢 𝑗
. (23)
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In addition, the feature graph encoder weights are updated in Eq. (24):

W
(𝑙)

𝑓
= W

(𝑙)

𝑓
− 𝜑

©«
𝜕𝐿𝐶

𝜕W
(𝑙)

𝑓

+ 𝜇
𝜕𝐿𝑅

𝜕W
(𝑙)

𝑓

ª®¬
. (24)

We update the structure graph attention network weights by using Eq. (25):

W
(𝑙)
𝑡 = W

(𝑙)
𝑡 − 𝜑

(
𝜕𝐿𝑃𝐷

𝜕W
(𝑙)
𝑡

)
. (25)

Note that the coefficients are updated when integrating 𝑍 𝑓 and 𝑍𝑡 , as defined in Eq. (26):

𝜶
(𝑙)

= 𝜶
(𝑙) − 𝜑

(
𝜕𝐿𝑃𝐷

𝜕𝜶 (𝑙)

)
. (26)

4 EXPERIMENTS

Our experiments cluster users to determine user categories based on different networks under a self-

supervision system. The data sets of communities, citation networks, and ACM are used to obtain

the users’ different personality characteristics and preferences to carry out corresponding intelligent

interactions. For example, according to the preference of the messages, the interaction system needs

to judgewhether themessage is helpful andwhether to show it to the user. The intelligent interaction

system needs to be calibrated according to the user’s preference. In HCI, dialogue intelligence

systems, emotion detection systems, and many other recommendation systems, the execution of

user instructions does not explicitly consider the user’s background and preference. Therefore, the

user clustering model can meet the current massive intelligent interaction requirements.

4.1 Experimental Setup

Data sets: Our method is evaluated on five real-world data sets with the specific user attributes

described in Table 6.

• Citeseer [52] is a research paper citation network, where nodes are publications and edges

are citation links. Node attributes are bag-of-words representations of papers, and nodes

are divided into six regions.

• UAI2010 [53] contains 3,067 nodes and 28,311 edges, and has been verified for community

detection.

• ACM [54] network is extracted from the ACM data set, where nodes represent papers, and

edges between papers represent the same author. The paper information is divided into

different categories, such as database, wireless communication, and data mining. The paper

classification function is a bag-of-words representation of the paper keywords.

• DBLP [55] is an author network. The authors represent the fields of database, data mining,

machine learning, and information retrieval. In addition, there is a cooperative relationship

among coauthors. We mark each author’s research area based on the conversation they

submitted. The author characteristics are the elements of the word package, which are

composed of keywords.

• BlogCatalog [53]: It is a social network with bloggers and their social relationships from

the BlogCatalog website. Node attributes are constructed by the keywords of user profiles,

labels represent the topic categories provided by the authors, and all nodes are divided into

6 classes.

Baseline methods: We compared our model with attribute-, graph-structure-, and GCN-based

methods for graph clustering, including 8 competitive approaches.
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Table 1. The details of the experimental data set.

data set Sample size Category Dimension Edge

UAI2010 3067 19 4973 28311

BlogCatalog 5196 6 8189 171743

ACM 3025 3 1870 13128

DBLP 4057 4 334 3528

Citeseer 3327 6 3703 4552

• K-means [56] is a classical clustering method based on raw data.

• DEC [23] is a deep clustering method that designs clustering objectives to guide the learning

of data representations.

• IDEC [24] adds reconstruction loss to DEC to learn a better representation.

• Spectral-g is based on a graph adjacency matrix.

• SDNE [25] is a network embedding algorithm that uses an autoencoder structure to optimize

first-and second-order similarity, learning a vector representation that preserves both the

local and global structure.

• GAE [32] is an unsupervised graph embedding method that uses a GCN to learn data

representations.

• DAEGC [33] uses an attention network (GAT) to learn node representations, and clustering

loss to supervise graph clustering.

• SDCN [41] fuses the data representation learned by a self-encoder with the structural repre-

sentation learned by GCN through a transfer operator, and designs a dual self-supervision

approach for clustering.

• AMGCN [53] improves the fusion capability of GCN, and we apply it to graph clustering.

Evaluation metrics: Four clustering evaluation metrics are used: accuracy (ACC), regular mutual

information quantity (NMI), Rand index (ARI), and equilibrium mean (F1-score). For each metric, a

larger value indicates a better result.

Parameter settings: All baseline methods are initialized using their suggested parameters, and we

use them to obtain the best performance. For our model, we pretrain a feature graph autoencoder

module. Its hidden layer size is ℎ𝑖𝑑1 ∈ {512, 768}, and its output size is ℎ𝑖𝑑2 ∈ {32, 128, 768}. The

model is trained for 30 iterations, with a learning rate of 10−3. We introduce a structure graph

attention network module with the same size as the structure graph encoder for the first two layers

of structure graph learning. Then, we add the third layer with a size of 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , which is the cluster

class size. We consider the second-order neighbors and set𝑀 =

(
𝐵 + 𝐵2

)
/2. We use 𝑙𝑟 = 0.0005 and

𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑐𝑎𝑦 ∈
{
5𝑒−3, 5−4

}
in the Adam optimizer. We set 𝑘 ∈ {3, . . . , 9} to construct the feature

map, and set the clustering loss hyperparameter to 𝛼 = 0.1. We run all comparative methods 10

times and report the average results.

4.2 Comparison of Node Clustering Results

The clustering results of each data set node are reported in Tables 2ś6. The proposed DGENFS

model performs best on most data sets in all benchmark tests. For the ACC metric, our model

achieves a maximum improvement of 5.02% on the Citeseer data set, 8.09% on Uai, and 8.96% on

BlogCatalog. The results prove the effectiveness of the DGENFS model. For the ACM data set, note

that some metrics are weaker than the baseline methods. The reason may be that the training time

is too short owing to the small amount of data, and the model extraction feature and structure
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Table 2. Clustering results on Citeseer data set.

Method ACC% NMI% ARI% F1%

Spectral-g 23.75 2.830 2.07 17.03

SDNE 26.60 3.850 3.35 25.55

K-means 40.91 18.68 14.88 37.98

DEC 55.77 29.86 28.99 52.97

IDEC 56.87 30.66 30.45 53.71

GAE 61.35 34.63 33.55 57.36

DAEGC 64.64 34.45 36.48 60.37

SDCN 65.96 38.71 40.17 63.62

AMGCN 65.13 37.87 38.02 60.40

Ours 69.27 43.59 44.72 64.98

Table 3. Clustering results on DBLP data set.

Method ACC% NMI% ARI% F1%

Spectral-g 30.56 0.98 1.08 27.22

SDNE 30.24 1.46 1.30 29.15

K-means 38.55 11.47 7.04 31.70

DEC 58.38 27.26 27.36 57.17

IDEC 60.58 28.48 26.83 60.79

GAE 61.21 30.80 22.02 61.41

DAEGC 63.81 34.88 39.01 61.03

SDCN 68.05 39.50 39.15 67.11

AMGCN 74.09 41.84 44.33 73.44

Ours 75.81 43.99 47.54 75.47

Table 4. Clustering results on ACM data set.

Method ACC% NMI% ARI% F1%

Spectral-g 34.80 18.04 10.61 32.34

SDNE 38.66 1.01 0.88 38.36

K-means 66.80 32.39 30.31 67.04

DEC 85.47 57.44 62.06 85.11

IDEC 86.07 58.09 63.84 86.18

GAE 84.52 55.38 59.46 84.65

DAEGC 86.71 59.88 65.17 86.62

SDCN 90.45 68.31 73.91 90.42

AMGCN 91.32 70.78 76.15 91.32

Ours 91.34 69.68 75.96 91.18

information have not been well learned, so the two kinds of information are not well integrated.

This also indicates that our method may not obtain good results on small data sets.
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Table 5. Clustering results on BlogCatalog data set.

Method ACC% NMI% ARI% F1%

Spectral-g 33.97 16.30 7.17 26.91

SDNE 39.71 20.20 13.66 39.24

K-means 31.69 17.78 8.06 25.79

DEC 42.20 29.63 20.35 35.13

IDEC 43.63 29.54 21.65 36.03

GAE 45.30 29.31 24.08 41.84

DAEGC 48.24 28.49 24.61 45.06

SDCN 38.07 17.59 12.59 25.67

AMGCN 53.46 39.06 25.21 50.68

Ours 58.25 37.64 33.86 50.71

Table 6. Clustering results on UAI2010 data set.

Method ACC% NMI% ARI% F1%

Spectral-g 30.81 27.88 10.75 25.98

SDNE 27.90 21.83 9.66 22.62

K-means 35.77 36.95 16.93 28.03

DEC 33.61 31.46 15.52 22.42

IDEC 34.44 31.59 17.60 23.94

GAE 33.73 34.22 17.95 28.36

DAEGC 37.24 33.85 20.56 22.48

SDCN 30.06 27.36 12.50 15.77

AMGCN 40.40 41.28 24.18 33.01

Ours 43.67 43.32 26.13 34.60

Comparing attribute-based, graph-structure-based, and GCN-based methods, we can see that

there are two types of graph clustering methods. One group of methods uses both node features

and graph structures, while the other group uses only one aspect of information. We can find that

the former group generally has better performance than the latter. For example, in the Citeseer

and DBLP data sets, GAE, DAEGC, SDCN, and AMGCN outperform the methods that use only

node features or topology. This observation indicates the necessity of fusing attribute features and

topology for graph clustering.

The clustering loss function (Eq. (19)) is used in most baseline methods, such as DEC, IDEC,

SDCN, and DAEGC. This indicates that this function obtains high-confidence soft labels to make

the learned features close to the clustering center.

Our proposed model outperforms the GCN-based method on most of the data sets. GCN-based

baseline methods mainly use structural similarity to obtain embedding features. Specifically, GAE

and VGAE use graph structure reconstruction loss, while SDCN uses the original graph structure to

increase the node feature reconstruction loss. Therefore, the graph embedding results learned from

these baseline methods focus more on structural similarity while ignoring the similarity between

node features, and they are not insufficient in fusing the two types of information. Although

DAEGC and SDCN introduce different clustering loss-driven strategies, the clustering results still
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depend on graph structure reconstruction loss or node feature reconstruction loss. Therefore, these

methods may not be able to effectively combine node features and graph structure information. In

addition to introducing global clustering loss, DGENFS also introduces feature similarity to guide

the fusion of structural similarity and feature similarity.

(a) DBLP: Raw (b) DBLP: Embedding (c) Citeseer: Raw (d) Citeseer: Embedding

(e) BlogCatalog: Raw (f) BlogCatalog: Embed-

ding

(g) Uai: Raw (h) Uai: Embedding

Fig. 2. T-SNE visualization of DGENFS.

4.3 Visualization

To visually demonstrate the effectiveness of our proposed model, we carry out the visualization of

the clustering results of comparative methods on the DBLP, Citeseer, BlogCatalog, and Uai data

sets. We use the last layer of the second-order structured graph learning module as the embedding

output. Then, we further use T-SNE [41] to describe the distribution of the original data and the

learned embedding. The results of the four data sets are color-coded according to the ground-truth

labels. As shown in Fig. 2, we know that as the training progresses, the embedding becomes more

obvious. Meanwhile, the overlap is reduced, and the learned embedding structures become more

compact. Nodes within the same cluster gradually gather, and nodes between different clusters

gradually move away from each other.

4.4 Embedding Dimension Analysis

The first two layers in the feature graph autoencoder module and the structure graph attention

network module have the same embedding dimensions 𝑑0 and 𝑑1. Therefore, this work focuses

on the impact of the embedding dimension on the user clustering results. We fix the value of 𝑑0
as [512, 768] and search for the impact of 𝑑1 on the clustering accuracy in terms of ACC and ARI.

Experimental results are shown in Fig. 3 and Fig. 4.

We can see from the experimental results that the overall performance of the model varies in

different dimensions. In the Uai2010 and Citeseer cases, the performance of the model improves

as the number of dimensions increases from 16 to 256. In the DBLP, ACM, and BlogCatlog cases,

the clustering performance fluctuates with the increase of the number of dimensions, but not

significantly. This also indicates that our model has better stability under different embedding
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Fig. 3. Impact of 𝑑1 of ACC on different methods.
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Fig. 4. Impact of 𝑑1 of ARI on different methods.

dimensions. In addition, we set different embedding dimensions according to the experimental

results; namely, we set 𝑑0 = 768 and 𝑑1 = 256 for the Citeseer and Dblp data sets; 𝑑0 = 512 and

𝑑1 = 32 for the Acm data set; 𝑑0 = 768 and 𝑑1 = 32 for BlogCatlog; and 𝑑0 = 512 and 𝑑1 = 256 for

the Uai data set.

4.5 Parameter Variable Study

To compare the influence of the top k-neighborhood in the k-nearest neighbor (KNN) graph on the

clustering results, we design sensitivity experiments for the parameter 𝑘 on different data sets. We

set 𝑘 to the range of 3 to 9 to investigate the model performance. As shown in Fig. 5, for Citeseer,

we find that the ACC, NMI, and ARI gradually increase to achieve the best performance with 𝑘=7.

For Acm and BlogCatlog, the best performance is obtained when 𝑘=6. This proves that our method

learns useful feature information from feature similarity, and is complementary to the structural

information learned from structural similarity in the fusion process. Another finding is that after

the two critical points (𝑘=6 and 𝑘=7), the performance begins to gradually decrease, which may be

because as the value of k increases, the feature graph becomes denser. Such results may introduce

more noise and make the feature information less distinguishable. In this case, it is not conducive

to fusing with the structural information extracted from the topological graph, which affects the
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clustering results. Moreover, for Citeseer, ACM, and BlogCatalog data sets, we find that ACC, NMI,

and ARI gradually increase initially, reaching the best performance at 𝑘=6, and then decrease.
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Fig. 5. Cluster results with parameter 𝑘 on Citeseer, ACM and BlogCatalog.

4.6 Analysis of Attention Mechanisms

To investigate whether the values learned by the attention mechanism are meaningful, we analyze

the last layer of learning values, including the attention distribution and learning trends.

Attention distribution. The DGENFS model learns information related to the attention values

from the feature graph autoencoder and the structure graph attention network. We analyze the

attention distribution of the Uai and BlogCatalog data sets, and the results are shown in Fig. 5(c). It

can be seen that for the Uai data set, the attention value assigned to extract information from the

topological space is greater than that of the feature space, which means that the information in the

topological space is more important. The BlogCatalog data set is the opposite, which shows that

our model can assign more attention to more important information in the double self-supervision

module.

Attention learning trends. We analyze the changes in the attention values corresponding

to two specific messages during the training iterations. We select the Uai and BlogCatalog data

sets. The experimental results are shown in Fig. 6, where the X-axis and Y-axis represent the

number of iterations and the attention values, respectively. As shown in Fig. 7, for the Uai data

set, the attention value in the topological space is larger than that in the feature space at the

beginning. As the iteration proceeds, the attention value in the topological space first decreases

and then increases. In contrast, the attention value in the feature spatial first increases and then

decreases. For the BlogCatalog data set, the attention value in the feature space is always greater

than that in the structure space. We find that DGENFS benefits from the impact of clustering loss.

As the iteration progresses, it can learn the importance of different spatial information and make

continuous adjustments.

5 CONCLUSION

In this paper, we have explored the capability of network embedding in HCI from the topological

and feature similarity of the users. In order to excavate the topology and node feature information,

we have proposed a graph embedding network consisting of the FGA module, SGAT module,

and DSS module. Moreover, the attention mechanism fuses them according to their importance.

Finally, the HCI users are clustered in a self-supervision way according to their different personality

characteristics and preferences to carry out corresponding intelligent HCI. The efficiency of the
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method has been demonstrated by comparing it with remarkable algorithms on various real work

data sets. In the future, we will focus on the larger complex network from a multi-view attributed

graph to further improve the clustering performance of HCI users.
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