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A grammar compression algorithm, called GCIS, is introduced in this work. GCIS is based on the induced suffix sorting algorithm
SAIS, presented by Nong et al. in 2009. The proposed solution builds on the factorization performed by SAIS during suffix sorting. A
context-free grammar is used to replace factors by non-terminals. The algorithm is then recursively applied on the shorter sequence of
non-terminals. The resulting grammar is encoded by exploiting some redundancies, such as common prefixes between right-hands
of rules, sorted according to SAIS. GCIS excels for its low space and time required for compression while obtaining competitive
compression ratios. Our experiments on regular and repetitive, moderate and very large texts, show that GCIS stands as a very
convenient choice compared to well-known compressors such as Gzip, 7-Zip, and RePair, the gold standard in grammar compression.
In exchange, GCIS is slow at decompressing. Yet, grammar compressors are more convenient than Lempel-Ziv compressors in that one
can access text substrings directly in compressed form, without ever decompressing the text. We demonstrate that GCIS is an excellent
candidate for this scenario because it shows to be competitive among its RePair based alternatives. We also show, how GCIS relation
with SAIS makes it a good intermediate structure to build the suffix array and the LCP array during decompression of the text.
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1 INTRODUCTION

Text compression is a fundamental task in Computer Science that consists in transforming an input string into another
string whose bit sequence representation is smaller. The suffix array [Gonnet et al. 1992; Manber and Myers 1993]
is a key data structure used to compute lossless compression transforms [Goto and Bannai 2014; Kärkkäinen et al.
2013; Ohlebusch and Gog 2011], such as the Burrows-Wheeler transform (BWT) [Burrows and Wheeler 1994] and
the Lempel-Ziv factorization (LZ77) [Liu et al. 2016; Ziv and Lempel 1977], which are at the heart of the popular data
compression tools like Bzip2, 7-zip and Gzip.

∗A preliminary version of this work appeared in DCC 2018 [Nunes et al. 2018].
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The suffix array construction (or suffix sorting) may be performed in linear time (see Puglisi et al. [2007] and
Dhaliwal et al. [2012] for good reviews). Nong et al. [2009] introduced a remarkable suffix array construction algorithm
called SAIS, which runs in linear time and is fast in practice. Subsequently, SAIS was adapted to directly compute
the BWT [Okanohara and Sadakane 2009], the Φ-array [Goto and Bannai 2014; Kärkkäinen et al. 2009], the LCP
array [Fischer 2011], and the suffix array for string collections [Louza et al. 2017a].

Grammar compression [Kieffer and Yang 2000] is a compression technique based on finding a small context-free
grammar that generates (only) the text. Finding the smallest such grammar is NP-hard [Charikar et al. 2005], but
heuristics like RePair [Larsson and Moffat 1999] work very well in practice. Like Lempel-Ziv, grammar compression
performs particularly well on repetitive text collections. An advantage of grammar compression is that text substrings
can be extracted from the compressed representation without the need to decompress the text [Bille et al. 2015]. One
can then aim at never decompressing the text but work on it directly in compressed form.

This article introduces GCIS, a new grammar-based compression algorithm that builds on SAIS framework. GCIS
constructs a context-free grammar recursively, based on the string factorization performed by SAIS. The rules are
encoded exploiting the common prefixes between the right-hands of consecutive rules, which are sorted lexicographically
by SAIS. GCIS is the first grammar-compressor algorithm, as far as we know, based on induced suffix sorting.

Our experiments show that, on repetitive texts and compared to the best grammar-compressor (RePair [Larsson and
Moffat 1999]) and the best Lempel-Ziv compressor (7-zip [Pavlov 2017]), GCIS is an interesting alternative in practice
because it displays the fastest compression speed and low memory usage, while reaching a compression ratio close to
that of RePair. We also show that GCIS is competitive with the relevant alternatives when processing regular (not
highly repetitive) and very large texts.

In exchange, GCIS is slower than most alternatives for decompressing the text. As explained, however, we may aim
at extracting any desired substring while never decompressing the whole text. When compared to variants of RePair
that allow extraction, GCIS turns out to be very efficient while using less space. Further, it is possible to build the suffix
and LCP arrays as a byproduct of text decompression by GCIS in competitive time.

This work differs from its early version [Nunes et al. 2018] in that we support efficient extraction of substrings and
computation of suffix and LCP arrays directly from decompression. We also present more thorough descriptions and
experimental results.

2 BACKGROUND

2.1 Suffix array

Let 𝑇 be a string of length |𝑇 | = 𝑛, over an ordered alphabet Σ. We assume that our alphabet Σ has an integer size, but
limited to 𝑛, that is, 1 ≤ |Σ| ≤ 𝑛. The concatenation of strings or symbols is denoted by the dot operator (·). The symbol
< is used for the lexicographic order relation between strings.

Let 𝑇 [𝑖] be the 𝑖-th symbol of 𝑇 . The substring (factor) from 𝑇 [𝑖] to 𝑇 [ 𝑗], both included, is denoted by 𝑇 [𝑖, 𝑗], for
1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. A prefix of 𝑇 is a substring of the form 𝑇 [1, 𝑖] and a suffix is a substring of the form 𝑇 [𝑖, 𝑛], also denoted
by𝑇𝑖 . For convenience, it is assumed that𝑇 always ends with a special symbol𝑇 [𝑛] = $, which is not present elsewhere
in 𝑇 and lexicographically precedes every symbol in 𝑇 [1, 𝑛 − 1].

The suffix array (SA) [Gonnet et al. 1992; Manber and Myers 1993] of a string 𝑇 [1, 𝑛] is an array of integers in the
range [1, 𝑛] that gives the lexicographic order of all suffixes of 𝑇 , such that 𝑇

SA[1] < 𝑇
SA[2] < . . . < 𝑇

SA[𝑛] . The length
of the longest common prefix (LCP) of two strings 𝑋 and 𝑌 in Σ∗ is denoted lcp(𝑋,𝑌 ). The LCP array of 𝑇 [1, 𝑛] is an
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array of integers that stores the lcp value between consecutive suffixes in SA, such that LCP[𝑖] = lcp(𝑇
SA[𝑖−1] ,𝑇SA[𝑖 ] ),

for 1 < 𝑖 ≤ 𝑛, and we define 𝐿𝐶𝑃 [1] = 0. The suffixes starting with the same symbol 𝑐 ∈ Σ form a 𝑐-bucket in SA. The
head and the tail of a 𝑐-bucket refer to the first and the last position of the 𝑐-bucket in SA.

2.2 Grammar compression

Let 𝐺 = (Σ, Γ, 𝑃, 𝑋𝑆 ) be a reduced context-free grammar (i.e, with no unreachable non-terminals) such that Σ is the
terminal alphabet of𝐺 ; Γ is the set of non-terminal symbols (disjoint from Σ); 𝑃 ⊆ Γ × (Σ ∪ Γ)∗ is the set of production
rules; and 𝑋𝑆 ∈ Γ is the start symbol.

A production rule (𝑋𝑖 , 𝛼𝑖 ) is also denoted 𝑋𝑖 → 𝛼𝑖 . In this case, it is said that 𝛼𝑖 is derived from 𝑋𝑖 . For strings
𝑆, 𝑅 ∈ (Σ ∪ Γ)∗, if 𝑅 is obtained from 𝑆 by production rules in 𝑃 , then 𝑅 is derived from 𝑆 . When 𝑅 is obtained by a
(possibly empty) sequence of derivations from 𝑆 , then 𝑅 is generated from 𝑆 .

Given a string 𝑇 , the grammar compression problem is to find a grammar 𝐺 that generates only 𝑇 , such that 𝐺 can
be represented in less space than the original 𝑇 . Given that 𝐺 grammar-compresses 𝑇 , for (𝑋𝑖 , 𝛼𝑖 ) ∈ 𝑃 , G(𝑋𝑖 ) = 𝑆 is
defined as the single string 𝑆 ∈ Σ∗ that is generated from 𝑋𝑖 . The language generated by𝐺 contains the unique string
G(𝑋𝑆 ) = 𝑇 . This notion can be extended further for a string of terminals and non-terminals 𝑆 , such that:

G(𝑆) = {𝑊1 ·𝑊2 · . . . ·𝑊 |𝑆 | |𝑊𝑘 ∈ G(𝑆 [𝑘]), 1 ≤ 𝑘 ≤ |𝑆 |}.

When each 𝑆 [𝑖], 1 ≤ 𝑖 ≤ |𝑆 |, generates a single sequence, the previous definition can be replaced by the concatenation
of the strings generated by 𝑆 [𝑖], 1 ≤ 𝑖 ≤ |𝑆 |:

G(𝑆) = G(𝑆 [1]) · G(𝑆 [2]) · . . . · G(𝑆 [|𝑆 |])

2.3 Integer Encoding

We cover various techniques to encode sequences of integers, when most of them are expected to be small. Some of the
techniques allow us to directly access any integer in the sequence.

Simple8b. The Simple8b scheme, proposed by Anh and Moffat [2010], encodes a sequence of small integers in a
64-bit word using the number of bits required by the largest integer. Basically, it identifies a word with a 4-bit tag
called selector, which specifies the number of integers encoded in the rest of the word and the width of such integers.
Simple8b also has specific selectors for a run consisting of zeroes. If a run of 240 or 120 zeros is encountered, it can be
represented with a single 64-bit word.

Directly Addressable Codes. The Directly Addressable Codes (DAC) proposed by Brisaboa et al. [2013] allow efficient
retrieval of any given value 𝐴[𝑖] from an array of integers 𝐴[1, 𝑛] while encoding such integers compactly. Let 𝑙𝑖 be
the length (number of bits) of 𝐴[𝑖], then this encoding splits each 𝐴[𝑖] into ⌈𝑙𝑖/𝑏⌉ blocks 𝑣𝑖,1, 𝑣𝑖,2,. . . , 𝑣𝑖,𝑘 of 𝑏 bits
each. A bit 𝑏𝑖, 𝑗 = 1 is associated with a block 𝑣𝑖, 𝑗 if 𝑗 < 𝑘 , that is, 𝑣𝑖, 𝑗 is not the last block of 𝐴[𝑖]. Otherwise, 𝑏𝑖, 𝑗 = 0.
Then a layered data structure is constructed in such a way that the 𝑘-th layer contains two bitmaps: the first bitmap is
the concatenation of blocks 𝑣𝑖,𝑘 , for every 1 ≤ 𝑖 ≤ 𝑛, whereas the second bitmap is the concatenation of the bits 𝑏𝑖,𝑘
associated with each block 𝑣𝑖,𝑘 .

To retrieve any given value 𝐴[𝑖], one must first recover 𝑏𝑖,1 and check if its value is zero. If so 𝐴[𝑖] equals 𝑣𝑖,1,
otherwise, it is necessary to proceed recursively to the 𝑗-th entry of the next layer, where 𝑗 =

∑𝑖
𝑚=1 𝑏𝑚,1, and append
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the result of the recursive call to 𝑣𝑖,1. The prefix sum value 𝑗 can be computed in constant time by using auxiliary data
structures on top of the bitmaps.

Elias-Fano Encoding. This format permits the encoding of a monotonically increasing sequence of 𝑛 integers over
the interval [0,𝑚 − 1] within 2𝑛 + 𝑛⌈lg 𝑚

𝑛 ⌉ bits and allows the retrieval of any integer of such sequence in constant
time [Vigna 2013]. Each integer 𝑎𝑖 is divided into two parts: 𝑢𝑖 , the ⌈lg𝑛⌉ most significant bits of 𝑎𝑖 and 𝑙𝑖 , the ⌈lg 𝑚

𝑛 ⌉
remaining bits of 𝑎𝑖 . The 𝑙𝑖 values are concatenated in a single array of 𝑛⌈lg 𝑚

𝑛 ⌉ bits and each value 𝑎𝑖 is classified in
one of the total of 𝑛 possible buckets. Then, the number of elements of each bucket is represented in a negated unary
representation and such representations are concatenated in a bitmap 𝐵 of 2𝑛 bits, 𝑛 bits for each possible bucket and
further 𝑛 bits for every element 𝑎𝑖 .

To retrieve the 𝑖-th value of the sequence of integers, one just needs to search for the position 𝑘 of the 𝑖-th one bit on
𝐵, and append 𝑙𝑖 to the binary representation of 𝑘 − 𝑖 . The position 𝑘 can be retrieved in constant time using auxiliary
data structures on top of 𝐵.

3 SAIS: INDUCED SUFFIX SORTING

SAIS [Nong et al. 2009] builds on the induced suffix sorting technique introduced by previous algorithms [Itoh and
Tanaka 1999; Ko and Aluru 2003]. Induced suffix sorting consists in deducing the order of unsorted suffixes from a
(smaller) set of already ordered suffixes.

The next definition classifies suffixes and symbols of strings.

Definition 1 (L-type and S-type). For any string 𝑇 , 𝑇𝑛 = $ has type S. A suffix 𝑇𝑖 is an S-suffix if 𝑇𝑖 < 𝑇𝑖+1, otherwise

𝑇𝑖 is an L-suffix. Each symbol 𝑇 [𝑖] has the type of 𝑇𝑖 .

The suffixes can be classified in linear time by scanning 𝑇 once from right to left, so that the type of each suffix is
stored in a bitmap of size 𝑛.

Note that, within a 𝑐-bucket, the L-suffixes precede the S-suffixes.
Further, the classification of suffixes is refined as follows:

Definition 2 (LMS-type). Let 𝑇 be a string. Then 𝑇𝑖 is an LMS-suffix if 𝑇𝑖 is an S-suffix and 𝑇𝑖−1 is an L-suffix.

Nong et al. [2009] showed that the order of the LMS-suffixes is enough to induce the order of all suffixes. This is the
basis of the SAIS algorithm.

3.1 SAIS framework

(1) Sort the LMS-suffixes. This step is explained later.
(2) Insert the LMS-suffixes into the tail of their respective 𝑐-buckets in SA[1, 𝑛], without changing their order. Now

SA contains the LMS-suffixes positions, in sorted order, on the end of each 𝑐-bucket. The remaining values of SA
are initialized with a sentinel ⊥ value.

(3) Induce L-suffixes by scanning SA[1, 𝑛] from left to right: for each suffix SA[𝑖] ≠ ⊥, if 𝑇 [SA[𝑖] − 1] is L-type,
insert SA[𝑖] − 1 into the head of its 𝑐-bucket.

(4) Induce S-suffixes by scanning SA[1, 𝑛] from right to left: for each suffix SA[𝑖] ≠ ⊥, if 𝑇 [SA[𝑖] − 1] is S-type,
insert SA[𝑖] − 1 into the tail of its 𝑐-bucket.

Whenever a value is inserted in the head (or tail) of a 𝑐-bucket, the pointer to the head (or tail) is increased (or
decreased) by one.
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In order to sort the LMS-suffixes in Step 1, 𝑇 [1, 𝑛] is divided (factorized) into LMS-substrings.

Definition 3. 𝑇 [𝑖, 𝑗] is an LMS-substring if both𝑇𝑖 and𝑇𝑗 are LMS-suffixes, but no suffix between 𝑖 and 𝑗 has LMS-type.

The last suffix 𝑇𝑛 is an LMS-substring.

Let 𝑟11 , 𝑟
1
2 , . . . , 𝑟

1
𝑛1 be the 𝑛1 LMS-substrings of 𝑇 read from left to right. A modified version of SAIS is applied to sort

the LMS-substrings. Starting from Step 2, 𝑇 [1, 𝑛] is scanned (right-to-left) and each new LMS-suffix starting with 𝑐 is
inserted (bucket-sorted) at the tail of its 𝑐-bucket. Steps 3 and 4 work exactly the same. At the end, the LMS-substrings
are sorted and the beginning positions of each LMS-substring are stored in their corresponding 𝑐-buckets in SA.

3.2 Naming

A name 𝑣1
𝑖
is assigned to each LMS-substring 𝑟1

𝑖
according to its lexicographical rank in [1, 𝜎1], such that 𝑣1

𝑖
≤ 𝑣1

𝑗
iff

𝑟1
𝑖
≤ 𝑟1

𝑗
, where 𝜎1 is the number of different LMS-substrings in 𝑇 . In order to compute the names, each consecutive

LMS-substrings in SA, say 𝑟1
𝑖
and 𝑟1

𝑖+1, are compared to determine if either 𝑟1
𝑖
= 𝑟1

𝑖+1 or 𝑟
1
𝑖
< 𝑟1

𝑖+1. In the former case
𝑣1
𝑖+1 is set to 𝑣1

𝑖
, whereas in the latter case 𝑣1

𝑖+1 is set to 𝑣1
𝑖
+ 1. This procedure may be sped up by comparing the

LMS-substrings first by symbol and then by type, with L-type symbols being smaller than S-type symbols in case of
ties [Nong et al. 2011].

3.3 Recursive call

A new (reduced) string 𝑇 1 = 𝑣11 · 𝑣
1
1 · · · 𝑣

1
𝑛1 is created, whose length 𝑛1 is at most 𝑛/2, and the alphabet size 𝜎1 is integer.

If every 𝑣1
𝑖
≠ 𝑣1

𝑗
then all LMS-suffixes are already sorted. Otherwise, SAIS is recursively applied to sort all the suffixes of

𝑇 1. Nong et al. [Nong et al. 2009] showed that the relative order of the LMS-suffixes in𝑇 and the order of the respective
suffixes in 𝑇 1 are the same. Therefore, the order of all LMS-suffixes can be determined by the result of the recursive
algorithm.

4 GCIS: GRAMMAR COMPRESSION BY INDUCED SUFFIX SORTING

This section introduces the Grammar Compression algorithm by Induced Sorting (GCIS).

4.1 Compressing

First, a context-free grammar 𝐺 = (Σ, Γ, 𝑃, 𝑋𝑆 ) that generates only 𝑇 [1, 𝑛] is computed. To do this SAIS is modified as
follows.

Consider the 𝑗-th recursion level. In Step 1, after the input string 𝑇 𝑗 [1, 𝑛 𝑗 ] is divided into the LMS-substrings
𝑟
𝑗

1 , 𝑟
𝑗

2 , . . . , 𝑟
𝑗

𝑛 𝑗+1 and named 𝑣 𝑗1, 𝑣
𝑗

2, . . . , 𝑣
𝑗

𝑛 𝑗+1 , a new rule 𝑣 𝑗
𝑖
→ 𝑟

𝑗
𝑖
is created for each different LMS-substring 𝑟 𝑗

𝑖
. Moreover,

an additional rule 𝑣 𝑗0 → 𝑣
𝑗−1
0 𝑇 𝑗 [1, 𝑗1 − 1] if 𝑗 > 0 or 𝑣 𝑗0 → 𝑇 [1, 𝑗1 − 1] if 𝑗 = 0, with 𝑗1 standing for the index of the

leftmost LMS-type suffix of 𝑇 𝑗 , is created for the prefix of 𝑇 𝑗 that is not included in any LMS-substring. In this context,
when 𝑗 = 0, 𝑛0 = 𝑛 and 𝑇 0 = 𝑇 .

The algorithm is then called recursively with the reduced string 𝑇 𝑗+1 = 𝑣
𝑗

1 · 𝑣
𝑗

2 · · · 𝑣 𝑗
𝑛 𝑗+1 as input as long as

𝜎 𝑗+1 < 𝑛 𝑗+1, that is, the LMS-substrings are not pairwise distinct. At the end, when 𝜎ℓ = 𝑛ℓ , the last recursion level
𝑗 = ℓ is reached, and the start symbol of 𝑋𝑆 of 𝐺 is created so that the initial production 𝑋𝑆 → 𝑣ℓ0 · 𝑣

ℓ
1 · 𝑣

ℓ
2 · · · 𝑣

ℓ
𝑛ℓ

generates the original string 𝑇 [1, 𝑛].
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The algorithm stops after computing 𝑋𝑆 , since we are not interested in constructing the suffix array; Steps 2, 3 and 4
of SAIS are not executed. The recursive calls return to the top level and a grammar 𝐺 that generates only 𝑇 [1, 𝑛] has
been computed.

Since for each LMS-substring there is a unique 𝑣 𝑗
𝑖
, there are no cycles in any generation. Further, there is only one

path of derivations that from a string 𝑆 generates a string 𝑆 ′. The consequence of this deterministic choice, for every
derivation, is that G(𝑋𝑖 ), for 𝑋𝑖 ∈ Γ, is a fixed string of terminals. Figure 1 shows the grammar construction on GCIS.

Fig. 1. Grammar construction during GCIS. All LMS-substrings (those starting with a ‘∗’ symbol), are sorted according to SAIS

framework, and then rules 𝑣00 → AG, 𝑣01 → $, . . . , 𝑣07 → 𝐶𝑇𝑇𝑇𝑇𝐶 are created. Next,𝑇 1
is obtained by replacing every LMS-substring

by the left-hand side of its rule. The procedure is applied recursively to𝑇 1
. When𝑇 2

is created, the alphabet size is equal to |𝑇 2 | = 𝑛2,
and thus the starting rule 𝑋𝑆 that generates𝑇 0

is obtained.

Grammar compression. Consecutive entries in the set of productions 𝑃 are likely to share a common prefix, since the
LMS-substrings are given lexicographically ordered by SAIS. Therefore, each rule 𝑋𝑖 → 𝛼𝑖 ∈ 𝑃 is encoded using two
values (𝑙𝑖 , s(𝛼𝑖 )), such that 𝑙𝑖 encodes lcp (𝛼𝑖−1, 𝛼𝑖 ), and the remaining symbols of 𝛼𝑖 are given by s(𝛼𝑖 ) = 𝛼𝑖 [𝑙𝑖 +1, |𝛼𝑖 |].
For each starting rule 𝑣 𝑗0 , we define 𝑙𝑖 = 0. This technique is known as Front-coding [Witten et al. 1999].

The computation of (𝑙𝑖 , s(𝛼𝑖 )) is performed with no additional cost with a slight modification in the naming procedure
of SAIS. Each consecutive LMS-substring in SA, say 𝑟 𝑗

𝑖−1 and 𝑟
𝑗
𝑖
, are compared first by symbol until a mismatch is found,

and then compared by type, to check if either 𝑟 𝑗
𝑖−1 = 𝑟

𝑗
𝑖
or 𝑟 𝑗

𝑖−1 < 𝑟𝑖 . The symbol-wise comparison reveals lcp(𝑟 𝑗
𝑖−1, 𝑟

𝑗
𝑖
)

as well, so the resulting complexity is the same with a small slowdown in the running time.

Time complexity. GCIS runs in 𝑂 (𝑛) time, since each step of the modified SAIS runs in linear time and the length of
the reduced string 𝑇 𝑗 is at most |𝑇 𝑗−1 |/2.

Implementation details. Each non-terminal 𝑋𝑖 is represented by a pair 𝛼𝑖 = (𝑙𝑖 , s(𝛼𝑖 )), as explained. The 𝑙𝑖 values
tend to be small and, considering the 𝑗-th recursion value, the sum of such values cannot be greater than 𝑛 𝑗 , since no
two LMS-substrings overlap by more than one symbol.

One can encode all 𝑙𝑖 values by using the Simple8b encoding in an integer array𝑊 . All strings s(𝛼𝑖 ) are encoded
in a single fixed-width integer array 𝑌 , of cell width ⌊lg(𝜎 𝑗 )⌋ + 1 bits. The length of each s(𝛼𝑖 ) is also encoded using
Simple8b into a word array 𝑍 . The same observation of the lcp sum can be done here: the sum of all |s(𝛼𝑖 ) | on the
𝑗-th recursion level is no larger than 𝑛 𝑗 .
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4.2 Decompressing

The decoding process is done level-wise, starting from the last recursion level 𝑗 = ℓ , by decoding the right side of each
rule. At the end, 𝑇 is decoded from 𝑇 1.

In the 𝑗-th recursion level, the values (𝑤,𝑦, 𝑧) from𝑊 , 𝑌 and 𝑍 , the data structures mentioned in the implementation
details of Section 4.1, are decoded sequentially. In order to obtain the right-hand side of the production rules 𝛼𝑘+1
from 𝛼𝑘 , the first𝑤 symbols of 𝛼𝑘 are copied to 𝛼𝑘+1 and the 𝑧 symbols from 𝑌 , which correspond to the string 𝑦, are
appended to 𝛼𝑘+1. After this process the plain representation of each rule is stored, in a single array of cells with fixed
width ⌊lg(𝜎 𝑗 )⌋ + 1 bits. An additional array of pointers 𝐷 is also created to find the starting position of each rule in this
fixed-width array.

With the fixed-width array and the array of pointers 𝐷 , 𝑇 𝑗−1 now can be decoded from 𝑇 𝑗 . First, the right side of 𝑣 𝑗0
is copied into 𝑇 𝑗−1. Then, 𝑇 𝑗 is scanned in a left-to-right fashion and for each 𝑇 𝑗 [𝑖] the algorithm appends to 𝑇 𝑗−1 the
right-hand side of the non-terminal 𝑇 𝑗 [𝑖], which can be easily found with support of array 𝐷 in constant time.

Time complexity. The whole decompression process takes 𝑂 (𝑛) time.

4.3 Extracting substrings

In order to support extraction of substrings from the compressed text, it is necessary to augment the dictionary with
two additional data structures: 𝑃𝑆 , a partial-sum on the lengths of the symbols in the reduced string 𝑇 ℓ of the last
recursion level, and 𝐿, a data structure that for each non-terminal 𝑋𝑖 stores |G(𝑋𝑖 ) |. Formally, those data structures are
defined as:

𝑃𝑆 (𝑖) =

𝑖−1∑︁
𝑗=1

|G(𝑋𝑆𝑖 ) |, 𝑋𝑆 → 𝑋𝑆1 , . . . 𝑋𝑆𝑘 and 1 ≤ 𝑖 ≤ 𝑘 + 1

𝐿(𝑋 ) = |G(𝑋 ) |, 𝑋 ∈ Σ ∪ Γ

The data structure 𝐿 can also be defined recursively as:

𝐿(𝑋 ) =


1, 𝑋 ∈ Σ
|𝑆 |∑︁
𝑖=1

𝐿(𝑆 [𝑖]), 𝑋 → 𝑆

To obtain a substring 𝑇 [𝑙, 𝑟 ], we then proceed as follows:

(1) With a binary search, locate indices 𝑎 and 𝑏 from 𝑃𝑆 such that:

𝑎 = max{1 ≤ 𝑘 ≤ |𝑇 ℓ | | 𝑃𝑆 (𝑘) ≤ 𝑙}

𝑏 = min{1 ≤ 𝑘 ≤ |𝑇 ℓ | + 1 | 𝑃𝑆 (𝑘) > 𝑟 } − 1

(2) Let ℓ be the number of levels in GCIS grammar and 𝑆 the string derived from 𝑋𝑆 . Then define 𝐸ℓ = 𝑆 [𝑎, 𝑏] and
follow the next steps for 𝑖 = ℓ to 𝑖 = 1.

(3) Apply a derivation step to each non-terminal 𝑋 ∈ 𝐸𝑖 to obtain a new string 𝐸𝑖−1. Note that G(𝐸𝑖−1) = 𝑇 [𝑙 ′, 𝑟 ′] is
a superstring of 𝑇 [𝑙, 𝑟 ].

(4) Trim 𝐸𝑖−1 from the left and right as much as possible as long as it generates a superstring of 𝑇 [𝑙, 𝑟 ]. This can be
done efficiently because we know the lenght of G(𝑋 ), for every 𝑋 ∈ Σ ∪ Γ.
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(a) If 𝑖 = 1, then 𝐸0 contains only terminal symbols and generates a superstring𝑇 [𝑙 ′, 𝑟 ′] = 𝐸0 of𝑇 [𝑙, 𝑟 ]. Thus, one
simply extracts the symbols 𝐸0 [𝑙 − 𝑙 ′ + 1, 𝑟 − 𝑙 ′ + 1] to obtain 𝑇 [𝑙, 𝑟 ].

(b) If 𝑖 > 1, then 𝐸𝑖−1 contains only non-terminal symbols and generates a superstring 𝑇 [𝑙 ′, 𝑟 ′] = G(𝐸𝑖−1) of
𝑇 [𝑙, 𝑟 ]. We then trim 𝐸𝑖−1 by using 𝐿 and finding, with a linear search, two indices 𝑎 and 𝑏 of 𝐸𝑖−1 such that:

𝑎 = max
1 ≤ 𝑘 ≤ |𝐸𝑖 |

������ 𝑙 ′ + 𝑘−1∑︁
𝑗=1

𝐿(𝐸𝑖 [ 𝑗]) ≤ 𝑙


𝑏 = max

1 ≤ 𝑘 ≤ |𝐸𝑖 |

������ 𝑟 ′ −
|𝐸𝑖 |∑︁

𝑗=𝑘+1
𝐿(𝐸𝑖 [ 𝑗]) ≥ 𝑟


𝐸𝑖−1 is then trimmed to 𝐸𝑖−1 [𝑎, 𝑏] before proceeding.

Figure 2 shows an example for extracting a text using the aforementioned procedure.

Fig. 2. Extraction of the substring𝑇 [10, 34] of the text of Figure 1. Initially, a binary search is performed on 𝑃𝑆 to identify the substring

of 𝐸2
that shall be decompressed: 𝐸2 [2, 4], which generates 𝑇 [9, 43], is decompressed to obtain 𝐸1

. A linear scan is performed in

both ends considering the length of the terminals generated by each rule of 𝐸1
to find the indexes 𝑎 = 2 and 𝑏 = 8. 𝐸1 [2, 8] is then

decompressed and 𝐸0 = 𝑇 [9, 36] is obtained, which makes possible to extract𝑇 [10, 34] by simply ignoring both ends.

Implementation details. Since the length of the string 𝑇 ℓ is much shorter than the original text in practice, the
verbatim representation of 𝑃𝑆 as an array of integers is affordable.

The array 𝐿 is represented using DACs. This representation allows efficient access while representing the data in a
compact way.
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To support fast extraction, we need to efficiently decompress a single rule. Simple8b encoding works very well when
the objective is compressing or decompressing since all the rules are first expanded sequentially in the decompressing
stage. However, when the aim is to extract symbols, we need to expand individual rules. Thus, instead of encoding all
the lcp values with the simple8b scheme, Elias-Fano encoding is employed, allowing us to retrieve a random lcp value
of a rule efficiently and hence the decoding of a random rule. The length of each s(𝛼𝑖 ) is also encoded using Elias-Fano
and the s(𝛼𝑖 ) values are encoded in a fixed-width integer array. Since the lcp values are front-encoded, we force that
every 𝑘-th lcp value is set to 0, with 𝑘 ∈ 𝑂 (1). This setting does not have a significant impact on compression and
ensures that we have to backtrack a constant number of rules to extract an individual rule prefix.

4.4 Suffix array construction

The suffix array (SA) construction boils down to sorting all suffixes of 𝑇 . Although GCIS compression does not sort
suffixes, it executes Step 1 of SAIS and the production rules created correspond to the LMS-substrings already sorted,
which is used by SAIS for sorting all suffixes. We show next how to modify our decompression algorithm for building
SA as a byproduct with, asymptotically, no additional overhead.

First, when 𝑗 = ℓ , 𝑋𝑆 → 𝑇 ℓ is taken, and its suffix array SA
𝑗 is built directly as SA𝑗 [𝑇 𝑗 [𝑖]] = 𝑖 . Nong et al. [2009]

observed that SA𝑗 also gives the order of all LMS-suffixes of string 𝑇 𝑗−1. Then, 𝑇 𝑗−1 is decoded (Section 4.2), and Steps
2, 3 and 4 of SAIS (Section 3) are executed to obtain SA

𝑗−1, and so on. The algorithm proceeds for 𝑗 = ℓ − 1, . . . , 1,
obtaining the reduced string 𝑇 𝑗−1 together with SA

𝑗−1 at each iteration. At the end, the original string 𝑇 is decoded
from 𝑇 1 and SA is induced from SA

1.

Time Complexity. SA is built in 𝑂 (𝑛) time, since each step of SAIS is linear and the length of all reduced strings is
𝑂 (𝑛).

4.5 LCP array construction

When |Σ| ∈ 𝑂 (1), the longest common prefix (LCP) array can also be computed in linear time within the induced suffix
sorting framework [Fischer 2011; Louza et al. 2017b]. We show below how to modify our decompression algorithm to
compute SA and LCP together with, asymptotically, no additional cost.

When 𝑗 = 1, the original string𝑇 is decoded from𝑇 1, and SA1 stores the order of all LMS-suffixes of𝑇 . Then, in linear
time, we compute the LCP array of the LMS-suffixes using a sparse variant of Φ-algorithm by Kärkkäinen et al. [2009],
which avoids storing auxiliary arrays by reusing the space of SA[𝑛/2, 𝑛] and LCP[𝑛/2, 𝑛]. The lcp-values between
the LMS-suffixes are used to induce the lcp-values between the L-suffixes during Step 3 (Section 3), and these are
used to induce the S-suffixes during Step 4 (see Louza et al. [2017b] for details). Given an additional stack of 𝑂 (𝜎 log𝑛)
bits [Gog and Ohlebusch 2011], each lcp-value induction is done in 𝑂 (𝜎) time, which we assume to be constant at the
top recursion level.

Therefore, at the end we have computed SA and LCP as a byproduct of GCIS decompression.

Time complexity. SA and LCP are built in 𝑂 (𝑛) time, since each step of SAIS is linear and the LCP-values induction
can be done in constant time.

5 EXPERIMENTS

To confirm the practical value of GCIS, we conducted experiments using several corpora. We measured compression
and decompression speed, compression ratio, and memory usage during compression and decompression of GCIS
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against classical and grammar-based compressors (Section 5.4), evaluated the extraction of symbols (Section 5.6) and
showed the efficiency of suffix array construction of GCIS during the decompression (Section 5.7).

In the following subsections we describe and discuss the experimental setup and the results.

5.1 Texts

Regular texts were taken from the corpora large-corpus [Trigell 1998], enwiki [Mahoney 2006], manzini [Manzini
2003], pizza-chili [Ferragina and Navarro 2005a] and silesia [Deorowicz 2003]. Repetitive texts were chosen
from pizza-chili-repetitive corpus [Ferragina and Navarro 2005b]. Very large inputs were built by repeating
and mutating strings such as chr19 [Consortium 2009] , sars-cov [NCBI 2020] and salmonella [NCBI 2007] with a
mutation rate of 0.1%, thus these texts are highly repetitive as well; each filename has an integer suffix that represents
the number of repetitions. In addition, a 20GB prefix from November 2019 Wikipedia dump was taken [Wikipedia 2019].
Tables 1, 2 and 3 summarize the chosen texts and their size, grouping in boxes texts from the same corpus.
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Table 1. Regular texts.

Regular text Size (MB)

archive 27.07
emacs 47.46
linux 47.60
samba 41.58
spamfile 84.22

enwiki8 100.00
enwiki9 1000.00

chr22 34.55
etext99 105.28
gcc-3.0.tar 86.83
howto 39.42
jdk13c 69.73
linux-2.4.5.tar 116.25
rctail96 114.71
rfc 116.42
sprot34.dat 109.62
w3c2 104.20

dblp.xml 296.14
dna 403.93
english 2210.40
pitches 55.83
sources 210.87

dickens 10.19
mozilla 51.22
mr 9.97
nci 33.55
oofice 6.15
osdb 10.09
reymont 6.63
samba 21.61
sao 7.25
webster 41.46
xray 8.457
xml 5.35

Table 2. Repetitive texts.

Repetitive text Size (MB)
cere 461.29
coreutils 205.28
dblp.xml.00001.1 104.86
dblp.xml.00001.2 104.86
dblp.xml.0001.1 104.86
dblp.xml.0001.2 104.86
dna.001.1 104.86
einstein.de.txt 92.76
einstein.en.txt 467.63
english.001.2 104.86
Escherichia_Coli 112.69
influenza 154.81
kernel 257.96
para 429.27
proteins.001.1 104.86
sources.001.2 104.86
world_leaders 46.97

Table 3. Very large texts.

Very large text Size (MB)
c050 2956.45
c100 5912.90
c150 8869.35
c200 11 825.80
c250 14 782.25
c300 17 738.69
c350 20 695.14

sars-cov100000 2990.30
sars-cov200000 5980.60
sars-cov300000 8970.90
sars-cov400000 11 961.20
sars-cov500000 14 951.50
sars-cov600000 17 941.80
sars-cov700000 20 932.10

enwiki-20191120-20G 20 000.00

salmonella1000 4928.40
salmonella2000 9856.80
salmonella3000 14 785.20
salmonella4000 19 713.60
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5.2 Compressors and Extractors

To evaluate GCIS in compression speed, decompression speed and compression ratio, we chose the well-known
compressors Gzip [Gailly and Adler 2017], Bzip2 [Seward 1996], 7-zip [Pavlov 2017]; the statistical compressor Ppmdj
[Shkarin 2006]; the grammar compressor RePair [Wan 2014], the Lempel-Ziv approximation for very large texts ReLZ
[Kosolobov et al. 2020], and the RePair approximation for very large texts BigRePair [Gagie et al. 2019].

Regarding extraction of symbols, we compared GCIS with different encodings of RePair grammars that allow fast
extraction. These encodings can be represented in a more straight-forward way, storing G(𝑋 ), for 𝑋 ∈ Σ ∪ Γ, or in a
more elaborated way, creating succinct tree data structures that replace the original grammar encoding while allowing
one obtain the right-hand side of any rule, as described by Maruyama and Tabei [2013]. The implementation of such data
structures was based on the work of Gagie et al. [2020] and can be found in [I 2020]. We used the following encodings:

• PlainSlp_32Fblc: uses 32-bit integers for the array representations.
• PlainSlp_FblcFblc: employs the minimum bit length required to represent the maximum value of a given
integer array.

• PlainSlp_IblcFblc: uses roughly ⌈lg 𝑖⌉ bits to represent the 𝑖-th rule exploiting that the 𝑖-th rule is less than 𝑖 .
For representing G(𝑋 ), for 𝑋 ∈ Σ ∪ Γ, it uses the same strategy of PlainSlp_FblcFblc.

• PoSlp_Iblc: employs the approach POSLP of Maruyama and Tabei [2013] to represent the parse tree and encodes
the leaves using roughly ⌈lg 𝑖⌉ bits for the 𝑖-th rule.

• PoSlp_Sd: applies the POSLP approach of Maruyama and Tabei [2013] to represent the parse tree and encodes
the leaves with Elias-Fano.

In order to assess the computation of suffix and LCP arrays directly from decompression, GCIS was compared with
efficient suffix and LCP construction algorithms implemented by sais-lite [Kurpicz 2015; Mori 2010] and divsufsort
[Kurpicz 2016; Mori 2008].

GCIS source code and a detailed description of the processed data are available at https://github.com/danielsaad/gcis.

5.3 Environment Setup

Due to memory capacity and availability, we conducted the experiments in two machines, one for the regular and
repetitive corpora and another for the very large datasets. Their specifications follow:

Machine #1, used for regular and repetitive texts:

• CPU: 2x Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz CPUs;
• RAM Memory: 64GB;
• Operating System: Centos7, kernel version 3.10.

Machine #2, used for very large datasets:

• CPU: 2x Intel(R) Xeon(R) E5-2630 v3 @ 2.40GHz;
• RAM Memory: 386GB;
• Operating System: Debian GNU/Linux 8, kernel version 3.16.

We compiled GCIS, RePair (and its extractors), BigRePair, Ppmdj and ReLZ under gcc with -O3 -NDEBUG flags. The
default command line parameters of Gzip, Bzip2, Ppmdj, ReLZ were used on the experiments. A dictionary size of 1 GB
was used in 7-zip. BigRePair RAM usage was limited to 10 GB.

GCIS was implemented in C++11 using the Succinct Data Structure Library (SDSL) version 2.0 [Gog et al. 2014].

https://github.com/danielsaad/gcis


Grammar Compression by Induced Suffix Sorting 13

5.4 Compression and decompression

We evaluated all compressors in terms of compression ratio, compression and decompression speed. We also considered
their peak memory usage during compression and decompression. BigRePair could not compress some texts, so its
corresponding data in the graphs are missing. Decompression in ReLZ is not implemented, nonetheless, ReLZ serves as
a compression benchmark since it approximates the Lempel-Ziv parse.

It is important to remark that BigRePair does not produce a compact representation of rules, since it represents the
right-hand side of its rules with 2 integers (all the rules are of length two). However, we optimized it by representing
each rule with at most ⌈log2 𝑟⌉ bits, 𝑟 being the number of rules, and integrating the non-terminals that occur only
once in their corresponding right-hand side. This saves ⌈log2 𝑟⌉ bits for each eliminated non-terminal.

For very large texts, only 7-zip, GCIS, ReLZ and BigRePair were evaluated, since they are the best choices for
repetitive data. RePair was not considered because its data structures do not fit in main memory on such texts.

Compression ratio. It stands for the ratio between the compressed and the original text size, and it is given as
percentage.

Figure 3 shows that RePair outperforms GCIS and the approximations designed for very large texts, and it is
competitive with a basic Lempel-Ziv compressor such as Gzip. However, it is clearly outperformed by Bzip2, Ppmdj and
7-zip. The latter displays the best compression ratio overall, being Ppmdj a close competitor in some cases.

Figure 4 shows the compression ratios for the repetitive corpora. The compressors that exploit repetitiveness obtain
much better compression ratios this time, whereas Gzip, Bzip2 and Ppmdj obtain similar compression ratios as on
the regular texts. In particular, 7-zip obtains the best compression ratio in all cases, closely followed by RePair. The
compression ratio of GCIS is about twice that of RePair in most cases, but it is still very good in absolute terms and
outperforms ReLZ. BigRePair obtains a compression ratio between those of RePair and GCIS.

The results for the very large texts are depicted in Figure 5. 7-zip is better for the text enwiki-20191120-20G. The
situation stays as in the smaller repetitive files: BigRePair compresses more than GCIS, and GCIS compresses better
than ReLZ, except for the the chromosome 19 based texts.

Compression speed. Figures 6,7 and 8 show the compression speed, in MB/s, of the compressors for each text type.
Gzip is the fastest compressor in most regular texts. GCIS is the second-fastest compressor, followed by Ppmdj. GCIS

outperforms Bzip2 and ReLZ and is faster than the others by a wide margin. In particular, GCIS is typically an order of
magnitude faster than the other grammar compressors (RePair and BigRePair), which are its direct competitors.

Considering repetitive texts, GCIS is still faster than ReLZ and 7-zip (and often faster than Bzip2); it is also orders of
magnitude faster than RePair. Gzip is still generally the fastest, but its compression ratio is unacceptable for repetitive
data. BigRePair is also slower than GCIS in most cases and, in the exceptions where BigRePair is faster, it outperforms
GCIS by a small margin.

For very large texts, GCIS is much faster than 7-zip, which becomes the slowest of the considered compressors.
However, ReLZ and BigRePair become much faster than GCIS, as expected from being designed for this scenario. ReLZ
is clearly the fastest compressor, though its compression ratio is the worst. A problem for GCIS on these very large files
is that, once the text exceeds 2 GiB, it needs to use 64-bit integers, which doubles the memory requirements. BigRePair
and ReLZ do not suffer from this problem and require a small amount of main memory during compression.

Decompression speed. Figure 9 depicts the results for regular texts. Gzip and RePair are the fastest at decompressing,
followed by 7-zip and GCIS. Bzip2 and BigRePair are the slowest decompressors.
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Figure 10 shows that the situation is similar on repetitive texts, except that 7-zip becomes way faster than the others
in almost all cases. Despite the relative differences, in absolute terms GCIS is still fast, decompressing the files in around
5 MB/s.

The situation stays the same on the compressors that run on very large texts: as shown in Figure 11, 7-zip is the
fastest, followed by GCIS and then by BigRePair.

Peak memory. We evaluated the peak memory consumption (resident size) of all compressors during compression and
decompression for each type of text; the results are shown in Figures 12 to 17. Overall, Gzip, Bzip2 and Ppmdj require
negligible space to compress or decompress. On regular texts, considering compression, GCIS is followed by ReLZ, 7-zip,
BigRePair and RePair, the last being behind by a large margin. The situation is reversed in decompression: BigRePair
is followed by RePair, 7-zip, and GCIS. On repetitive texts, the scenario is similar for compression, but GCIS escorts
BigRePair. On very large texts, during compression ReLZ is the most space-efficient, followed by BigRePair, 7-zip and
lastly by GCIS. Considering decompression the order stays the same, except for ReLZ, which does not decompress.

5.5 Overview

Figures 18 to 20 present conceptual radar charts that summarize, for each text type, the performance of all compressors
in each rated aspect. The closer the values are to the pentagon borders, the better the compressor performed on the
corresponding aspect.

5.6 Extract operation

Results depicted by Figures 21 and 22 show that GCIS is faster than the extractors on succinct encodings of RePair but
slower than those running on the more straightfoward representation using integer arrays. In turn, regarding space on
regular and repetitive texts, GCIS is more space-efficient than the straightfoward encodings but less space-efficient than
the POSLP alternatives, as shown in Figures 23 and 24. GCIS is then a competitive alternative regarding the space-time
trade-off.

5.7 Suffix Array and LCP Construction

Considering the computation of SA and LCP arrays during decompression, we measured the total time to decompress
the files with GCIS without generating a plain-text file, but instead inducing the SA and the LCP arrays. We compared
these results with SAIS [Kurpicz 2015] and divsufsort [Fischer and Kurpicz 2017; Kurpicz 2016] implementations
based on those of Yuta Mori, which are known as the fastest suffix array construction algorithms in practice.

Figure 25 shows the SA and LCP construction on the 8 most repetitive real texts when only the GCIS compressed
texts are available. Very large texts were not considered because the implementations of [Kurpicz 2015] and [Kurpicz
2016] only deal with 32-bit integers. GCIS builds the SA and LCP arrays faster than decompressing and then using the
suffix array construction algorithms over the plain text.

The hatched part corresponds to the LCP computation and the black bar corresponds to the time spent in decom-
pressing the text with GCIS to calculate SA and LCP values using the SAIS and divsufsort implementations.

6 CONCLUSIONS

We have introduced GCIS, a new grammar-based compression algorithm based on the induced suffix sorting framework
of SAIS [Nong et al. 2009]. GCIS uses the meta-symbols introduced by SAIS to generate non-terminals of a balanced
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grammar that reproduces the original text. Our experiments on repetitive texts show that GCIS compresses 3–7 times
faster than RePair and 7-zip. Compared to RePair, the grammar compressor that compresses the most, GCIS compresses
using 3–5 times less memory, yet it obtains a compressed file twice as large (yet the absolute compression is still
attractive, below 5% in most cases). GCIS decompresses 2–8 times slower than RePair and 7-zip, though.

Grammar-based compression is attractive because, unlike Lempel-Ziv, it can be enriched to support fast extraction
of arbitrary text substrings. From this perspective and regarding the space-time relation, our experiments show that
GCIS is a competitive option when compared to RePair-based extractors, being faster and less space-efficient than the
succinct encoding of RePair extractors and slower, but more space-efficient, than the more straightforwardly encoded
RePair extractors.

Finally, as a by-product of GCIS, the suffix array of the text can be obtained during the decompression algorithm,
faster than decompressing and running on the original text.

All previously discussed features make GCIS especially attractive in scenarios where it is required to support random
access on the compressed text. Grammar compression of very large files is challenging with RePair because of its large
main memory footprint, for which GCIS offers an interesting alternative. Given its slowness at decompression, the GCIS
grammar is best suited as a compressed data structure to be repeatedly accessed without decompressing it completely.
A possible further improvement would be to replace the variant of Nong et al. [2009] used during compression by the
more space-efficient SACA-K [Nong 2013] algorithm. This could decrease the working space used during compression.
Grammar-based compressed indexes are of particular interest, all of which are based on RePair [Claude and Navarro
2010, 2012]. Our next goal is to build those compressed indexes on GCIS instead. This would yield indexes that might
be built much faster, using much less memory, for moderate-sized repetitive texts, and that may lead to much more
efficient search times.
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Fig. 10. Decompression speed on repetitive texts.
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Fig. 11. Decompression speed on very large texts.
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Fig. 13. Peak memory (in MB) used by the compressors during compression for repetitive texts.
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Fig. 14. Peak memory (in MB) used by the compressors during compression for very large texts.
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Fig. 15. Peak memory (in MB) used by the compressors during decompression for regular texts.
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Fig. 16. Peak memory (in MB) used by the compressors during decompression for repetitive texts.
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Fig. 17. Peak memory (in MB) used by the compressors during decompression for very large texts.
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Fig. 21. Substring length vs. extraction time (microseconds) on regular texts.
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Fig. 22. Substring length vs. extraction time (microseconds) on repetitive texts.
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Fig. 23. Compression ratio of the extractors on regular texts.
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Fig. 24. Compression ratio of the extractors on repetitive texts.
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Fig. 25. Time consumed during Suffix Array and LCP construction.
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