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HiGAN+: Handwriting Imitation GAN with Disentangled
Representations
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Fig. 1. Humans can quickly learn handwriting imitation with the ability of hallucination, while this task may be challenging for machines. Our goal is to

teach machines to mimic such hallucinations, so that they may write diverse and realistic texts as well as humans after learning from limited handwriting

scripts.

Humans remain far better than machines at learning, where humans re-

quire fewer examples to learn new concepts and can use those concepts

in richer ways. Take handwriting as an example, after learning from very

limited handwriting scripts, a person can easily imagine what the hand-

written texts would like with other arbitrary textual contents (even for
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unseen words or texts). Moreover, humans can also hallucinate to imitate

calligraphic styles from just a single reference handwriting sample (that

even have never seen before). Humans can do such hallucinations, per-

haps because they can learn to disentangle the textual contents and cal-

ligraphic styles from handwriting images. Inspired by this, we propose a

novel handwriting imitation generative adversarial network (HiGAN+) for

realistic handwritten text synthesis based on disentangled representations.

The proposed HiGAN+ can achieve a precise one-shot handwriting style

transfer by introducing the writer-specific auxiliary loss and contextual

loss, and it also attains a good global & local consistency by refining local

details of synthetic handwriting images. Extensive experiments, including

human evaluations, on the benchmark dataset validate our superiority in

terms of visual quality, scalability, compactness, and style transferability

compared with the state-of-the-art GANs for handwritten text synthesis.
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1 INTRODUCTION

Although machines can easily recognize humans’ handwriting

scripts with recent advanced techniques, it still remains chal-

lenging for machines to synthesize realistic handwriting images.

Hence, it will step closer to high-level artificial intelligence if we

can teach machines/robotics to write texts as realistic as humans.

Generally, handwriting imitation (HI) aims at (1) synthesizing

diverse and realistic handwriting images conditioned on arbitrary

textual contents and (2) imitating the calligraphic styles of refer-

ence handwriting images (e.g., the character shape, stroke thick-

ness, writing slant, and ligature). As shown in Figure 1, humans

can quickly learn such HI with the ability of hallucination. Specifi-

cally, after learning from very limited handwriting scripts, humans

can easily visualize (or imagine) what the handwritten texts would

look like with the other arbitrary textual contents. Moreover, after

providing a reference handwriting sample, humans can also hal-

lucinate novel handwriting images of similar calligraphic styles

yet with different textual contents. Lastly, humans also are able to

write arbitrarily long words and even complete sentences or para-

graphs. By rethinking humans’ learning ability, the reason why hu-

mans can do such advanced hallucinations is perhaps that they can

learn to disentangle calligraphic styles and textual contents from

handwriting images (rather than simply memorizing the training

samples). Therefore, if we can teach machines to mimic this learn-

ing process, they may learn HI as well as humans.

It has witnessed many great achievements in the field of image

generation with the recent advances in generative adversarial

networks (GANs) [Goodfellow et al. 2014] and variational auto-

encoders (VAEs) [Kingma and Welling 2013]. By integrating the

advantages of GANs and VAEs, computers nowadays are capable

of synthesizing diverse and realistic nature images or oil paintings,

and they can even perform image-to-image translation by learning

the mapping between different visual domains. However, a signif-

icant observation is that HI as a special image synthesis task has

not been fully explored yet. Particularly, we demonstrate that HI

is substantially different from the conventional image genera-

tion (CIG) studied in previous works, mainly due to the following

aspects:

(1) Variable-Sized Outputs. CIG mainly focuses on producing

fixed-sized images, while HI requires generating variable-

sized images since handwritten texts can be arbitrarily long

(e.g., handwritten sentences typically are longer than hand-

written words). Therefore, the generator for HI should be

specifically designed for variable-sized outputs.

(2) Arbitrary Textual Contents. CIG can only generate images

conditioned on predefined classes and thus is impossible to

produce images for other unseen classes. However, HI re-

quires textual contents to be more precise (i.e., exact char-

acters in desired orders), which is expected to generate ar-

bitrary handwriting images conditioned on arbitrary textual

contents that are unconstrained to any pre-defined corpus or

out-of-vocabulary (OOV) words (i.e., the words that have

never been seen during training).

(3) Different Style Transfer. CIG aims at synthesizing nature

images or oil paintings, whose styles can be modeled as

dense textures (which can be effectively captured by Gram

Table 1. Feature-by-Feature Comparison of GANs for

Handwritten Text Generation

Method Text
Length

Style Transfer Refine
Detail

Size↓
(MB)

Quality

FID↓Shot Acc.↑
ScrabbleGAN Arbitrary × × × 81.8 26.78

TS-GAN Arbitrary One 0.05 × 172.1 33.90

GANwriting Short Few 0.16 × 135.8 20.55

HWT Arbitrary Few 0.17 × 131.3 19.69

HiGAN Arbitrary One 0.33 × 59.1 18.30

HiGAN+ Arbitrary One 0.42
√

21.7 5.95

In the table, ↑ indicates that higher values are better, and vice versa.
Bold indicates the best result.

matrices). In contrast, handwriting images contain little tex-

tures since they mainly consist of a sparse set of continuous

graphical elements (i.e., handwriting strokes and cursive

ligatures). Moreover, humans’ handwriting can be very

arbitrary, and thus handwriting images may not be perfectly

spatially aligned even though their styles are visually similar.

What is worse, HI has stronger semantic constraints, under

which the generated images may contain completely different

textual contents with different spatial sizes. Therefore, it

poses challenges for traditional style transfer methods based

on pixel correspondence (e.g., Pix2Pix [Isola et al. 2017] and

CycleGAN [Kim et al. 2017]).

Those characteristics make HI could be more challenging than

CIG.

Recently, several efforts have been made for handwritten text

synthesis based on GANs, while none of them have success-

fully solved the aforementioned difficulties at the same time.

Specifically, Alonso et al. [2019] first proposed to adopt GANs

for synthesizing handwritten text images conditioned on the

whole embeddings of entire words. However, this method can

only synthesize fixed-sized images and also produce low visual

qualities for OOV words. Fogel et al. [2020] proposed an improved

method called ScrabbleGAN, which can synthesize arbitrarily long

handwritten texts by concatenating all the letter-tokens. However,

the major limitation is that ScrabbleGAN cannot imitate the

calligraphic styles of reference samples and thus fails to control

the styles of synthetic images. Furthermore, Kang et al. [2020]

proposed a few-shot style-conditioned handwritten word gener-

ation GAN, i.e., GANwriting. However, GANwriting is limited to

synthesizing short words (e.g., less than 10 letters) rather than

long texts due to its inferior architectural design. Moreover, Bhu-

nia et al. [2021] proposed HWT to synthesize handwritten texts

with Transformers. However, both GANwriting and HWT require

multiple reference samples for extracting reliable calligraphic

features during training, thus exhibiting low visual qualities when

only one reference sample is available in inference. Recently,

Davis et al. [2020] proposed text and style conditioned GAN

(TS-GAN) for handwritten text synthesis. TS-GAN can learn to

extract styles from images based on the pixel-to-pixel reconstruc-

tion loss, while it fails to correctly imitate styles of reference

samples in most cases. This is because handwriting images are not

spatially aligned and contain few textures, which makes pixel cor-

respondence ineffective to model calligraphic styles. In summary,

the state-of-the-art GANs have not entirely solved HI yet.
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To address the above challenges, in our previous conference

work [Gan and Wang 2021], we have proposed a novel handwrit-

ing imitation GAN (HiGAN) for HI, which can generate diverse

and realistic handwriting images conditioned on arbitrary textual

contents (that are unconstrained to any predefined corpus or OOV

words) and calligraphic styles (that are disentangled from refer-

ence samples). However, HiGAN may produce blurred and dis-

torted characters, exhibiting low visual qualities of synthetic im-

ages. The presented HiGAN+ not only significantly improves the

visual qualities of synthetic images but also achieves a more ac-

curate handwriting style transfer with desired properties. Table 1

shows a feature-by-feature comparison between different GANs

for handwritten text generation.

Overall, the presented work supposes a significantly extended

version of our previous conference paper. Specifically,

(1) We enhance our prior HiGAN with several new technical con-

tributions, including:

— The contextual loss is introduced to improve the style con-

sistency and achieves a better calligraphic style transfer.

— The local patch refinement is proposed to improve the

local consistency of synthetic images with higher visual

qualities.

— We derive a more compact and effective architecture by

reusing the writer identifier for style encoding.

(2) We propose comprehensive metrics to fully measure the

performance of GANs for variable-length handwritten text

synthesis. Particularly, the newly proposed writer identifi-

cation error rate (WIER) can quantitatively measure the

handwriting style transferability of GANs, which has never

been investigated before.

(3) We conduct more extensive experiments (including Turning

tests) on benchmarks to fully compare the proposed HiGAN+

with other state-of-the-art GANs for HI, where HiGAN+

achieves the best performance in terms of visual quality,

scalability, compactness, and style transferability.

2 RELATED WORK

2.1 Handwriting Synthesis

Traditional approaches for handwritten text generation not only

involve expensive manual intervention for clipping glyphs and tag-

ging individual characters, but they also require a strong domain-

specific knowledge for modeling glyph layouts and rendering lig-

atures and background textures. For example, Haines et al. [2016]

proposed such an algorithm that can render desired English texts

in a specific writer’s handwriting. Similarly, Lin and Wan [2007]

proposed to compute features from individual glyphs and words

based on geometric statistics and further learn to synthesize com-

plete words/sentences with hand-crafted hierarchical rules. Of

course, such manual interventions are extremely expensive, and

their generalization and scalability are also limited due to the

domain-specific knowledge and hierarchical rules.

With the great successes of deep learning techniques in com-

puter vision and machine learning, artificial neural networks

have been gradually used for handwriting synthesis. Specifically,

Graves [2013] first proposed to synthesize online handwrit-

ing trajectories of English texts based on recurrent neural

networks (RNNs), which can predict the future stroke points with

Gaussian mixture models. Moreover, Ha and Eck [2018] proposed

SketchRNN for synthesizing hand-drawn sketches. Furthermore,

Zhang et al. [2018] successfully adopted this architecture to draw

realistic online handwritten Chinese characters of thousands of

categories. More recently, Kotani et al. [2020] proposed the decou-

pled style descriptor model for handwriting, which factors both

character- and writer-level styles and thus synthesizes more realis-

tic handwriting trajectories. However, such an RNN-based model

is hard to learn long-range dependencies of long sequences, and

also their generation is time-consuming since RNNs remain less

amenable to parallelization. More lethally, it is challenging to col-

lect massive trajectories in a natural setting, since their recordings

require unique equipment like stylus pens and touch screens. In-

stead, it is much easier to collect handwriting images with ubiqui-

tous cameras and scanners in our real lives. Hence, it is more prac-

tical to synthesize handwriting images rather than trajectories.

GANs have achieved much progress in many image synthe-

sis tasks, including handwritten character generation. Specifically,

Goodfellow et al. [2014] proposed to generate realistic handwrit-

ten digits by introducing the adversarial loss, and Kingma and

Welling [2013] proposed a VAE instead. Furthermore, Mirza and

Osindero [2014] proposed conditional GANs (cGANs) to con-

strain the handwriting generation conditioned on desired class la-

bels. Moreover, Chen et al. [2016] proposed InfoGANs to address

the model collapse and Radford et al. [2013] proposed deep con-

volutional GANs (DCGANs) to improve the generation capa-

bility, thus producing more diverse and realistic images. Particu-

larly, Chang et al. [2018] successfully adopted CycleGANs [Kim

et al. 2017] for synthesizing handwritten Chinese characters of

thousands of categories. Moreover, many researches also adopted

GANs for the glyph font generation [Azadi et al. 2018; Jiang et al.

2019; Cha et al. 2020; Park et al. 2021], which aims at generating

fixed-sized and isolated glyph font characters (instead of long text

strings) with desired styles. Overall, existing works mainly focus

on synthesizing fixed-sized handwritten digits/characters, while

handwritten text synthesis is rarely explored.

As an emerging research topic, only a few efforts have been

made for synthesizing handwritten text images. Specifically,

Alonso et al. [2019] first proposed a GAN-based model to syn-

thesize handwritten words conditioned on the whole embeddings

of input texts, while their model is limited to generating fixed-

sized images and also produces low visual qualities for OOV

words. Moreover, Fogel et al. [2020] proposed ScrabbleGAN which

can generate arbitrary-length handwritten texts by concatenat-

ing letter-tokens together but fails to imitate calligraphic styles

of reference samples. Furthermore, Kang et al. [2020] proposed

GANwriting that can generate handwritten words conditioned on

extracted calligraphic features in a few-shot setting and tex-

tual contents of a pre-defined text length. In their follow-up

work [Kang et al. 2021], they further demonstrated that the use

of realistic synthetic texts at training is useful for improving the

handwritten text recognition performance. Moreover, Bhunia et al.

[2021] proposed to synthesize handwritten texts with Transform-

ers. Recently, Davis et al. [2020] proposed a TS-GAN for handwrit-

ten text synthesis, which learns to extract styles based on pixel-

to-pixel reconstruction loss. However, TS-GAN fails to correctly
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imitate styles of reference samples most of the time. In our prior

work [Gan and Wang 2021], we proposed HiGAN that can synthe-

size variable-sized handwriting images conditioned on arbitrary-

length texts and disentangled styles, while it sometimes produces

blurred textures and distorted characters. Nevertheless, the state-

of-the-art GANs have not entirely solved the text- and style-

conditioned handwritten text synthesis yet.

2.2 GAN-Based Style Transfer

Computers nowadays can solve many image translation tasks by

combining the conceptions of GANs and VAEs, and those tasks

aim at transferring the style characteristics of a style image to a

content image. Specifically, Isola et al. [2017] proposed a cGAN

(i.e., pix2pix) for image-to-image translation, and Zhu et al. [2017]

proposed BicycleGAN to enable more diversified outputs. Never-

theless, those methods all require paired training data. To address

this problem, many works relax the dependency on paired data by

leveraging the cycle consistency, e.g., CycleGAN [Kim et al. 2017],

DIRT [Lee et al. 2018], MUNIT [Huang et al. 2018], and StarGAN

[Choi et al. 2018]. Moreover, Mao et al. [2019] proposed the mode

seeking regularization to ensure the output diversity, and Iizuka

et al. [2017] proposed to refine local details of images. Essentially,

this kind of style transfer is achieved by minimizing differences

between the generated and target images, where pixel-to-pixel

reconstruction is utilized for spatial alignments and Gram matri-

ces for texture statistics. Similar techniques have been extended

to related applications such as font synthesis [Gao et al. 2019],

scene texts [Wu et al. 2019], caricature [Cao et al. 2018], and face

editing [Portenier et al. 2018].

2.3 Glyph Font Synthesis

Glyph font synthesis aims at designing and generating glyph font

images automatically, and it has witnessed great achievements in

recent years [Azadi et al. 2018; Gao et al. 2019; Jiang et al. 2019;

Cha et al. 2020; Wang et al. 2020; Park et al. 2021]. However, we

demonstrate that the glyph font synthesis is largely different from

HI in the following aspects:

(1) Annotation Difficulty: The font style transfer requires

laborious annotations for supervision, such as paired training

samples (i.e., the input images and corresponding pixel-level

aligned ground-truth images) or even attribute annotations

for attribute editing [Wang et al. 2020]. Instead, HI only

imposes writers’ identities to specify the calligraphic styles,

which avoids laborious annotations. This task learns the style

transfer more implicitly than font generation.

(2) Characters vs. Strings: Previous font generation can only

generate single isolated characters; however, HI aims at syn-

thesizing long handwritten text strings with variable-sized

outputs and arbitrary textual contents that are unconstrained

to any predefined corpus and OOV words.

(3) Style Variations: Font generation aims at designing fonts

for the industry, and the glyph fonts have very small intra-

category variations (i.e., the font of the specific character class

and style always has a standard template); instead, humans’

handwriting is very arbitrary and their writing styles vary

significantly (e.g., a person even is hard to write the exactly

same sentences twice with pixel-to-pixel correspondence).

Different from glyph fonts with limited styles, a thousand

people have a thousand different handwriting styles.

Indeed, the research on glyph font generation may bring some in-

spiration for HI.

2.4 Differences between the Prior and Presented Works

HI is a new research topic, and the state-of-the-art GANs have

not entirely solved this challenging problem yet. In our previous

work [Gan and Wang 2021], we have proposed a novel HiGAN

for HI, which can generate handwriting images conditioned on

arbitrary-length texts and any calligraphic styles of reference sam-

ples. However, the prior work is very preliminary, still leaving a

big room for improvement. Specifically,

(1) Generation Quality: The prior HiGAN sometimes may pro-

duce blurred and distorted characters, exhibiting low visual

qualities of synthetic images. In HiGAN+, we introduce a lo-

cal patch loss (LPL) to refine the local details of synthetic

images, which significantly improves the local consistency of

synthetic images. This strategy effectively prevents HiGAN+

from producing blurred patches or distorted characters, thus

leading to much higher visual qualities of synthetic handwrit-

ten texts. Moreover, considering the characteristics of hand-

writing images, we introduce the contextual loss dedicated to

HiGAN+ to effectively model calligraphic styles, which signif-

icantly improves the style consistency and achieves a better

handwriting style transfer.

(2) Model Compactness: The prior HiGAN requires training

two individual modules (i.e., the writer identifier and style en-

coder). Instead, HiGAN+ derives a more compact and more ef-

fective architecture by rethinking the roles of individual mod-

ules in the current framework, i.e., reusing the early layers of

the writer identifier for style encoding. In contrast to existing

works, this strategy can avoid using a huge pre-trained VGG

backbone or training an additional style encoder.

(3) Comprehensive Evaluation: The evaluations of prior work

are weak and insufficient in some aspects, since it only evalu-

ates the Fréchet Inception Distance (FID) and word error

rate (WER) scores of HiGAN, GANwriting and ScrabbleGAN.

Instead, the presented work proposes comprehensive metrics

for HI, including (a) Inception Score (IS), FID, Kernel

Inception Distance (KID), Peak Signal to Noise Ratio

(PSNR), and Mean Structural Similarity (MSSIM) for

visual quality, (b) WER for readability, and (c) the newly pro-

posed WIER for style transferability. Especially, none of the

previous works have ever attempted to quantitatively evalu-

ate the handwriting style transferability before. Furthermore,

more extensive experiments are conducted on benchmark

datasets to demonstrate the superiority of HiGAN+ over

many other state-of-the-art GANs (including ScrabbleGAN,

GANwriting, TS-GAN, HWT, and HiGAN). Moreover, the

presented work even conducts Turing tests for HI.

(4) State-of-The-Art Performance: Experimental results show

that the presented framework significantly outperforms

the prior work, and the proposed HiGAN+ achieves the
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state-of-the-art performance for HI in terms of visual

quality, scalability, compactness, and style transferability

compared with the state-of-the-art GANs for handwritten

text generation.

Overall, the presented HiGAN+ not only significantly improves

the visual qualities of prior HiGAN but also achieves the more ac-

curate handwriting style transfer with desired properties, suppos-

ing a significantly extended version of our prior work.

3 METHODOLOGY

3.1 Problem Formulation

We aim at teaching machines to synthesize diverse and realis-

tic handwriting images conditioned on arbitrary textual content

y = [y1, . . . ,yL] (with a length of L) and any calligraphic style s ,
i.e., x̂ = G (y, s ), whereG is the generator. Notably, the textual con-

tent y for handwriting generation can be very arbitrary, which is

unconstrained to any predefined corpus or OOV words. Moreover,

the conditioned calligraphic style s can be either (1) randomly sam-

pled from a prior normal distribution N (0, 1) or (2) disentangled

from the reference image x , i.e., s = E (x ), where E denotes the style

encoder. As a result, our generative model can not only generate

arbitrary handwritten texts with randomized styles, but it also is

able to imitate the calligraphic styles of reference samples. Figure 2

illustrates the overview of the proposed HiGAN+.

3.2 Network Architecture

3.2.1 Style-Controlled Handwritten Text Generator. Different

from conventional image synthesis tasks, handwritten text synthe-

sis needs to generate variable-length images (instead of fix-sized

ones) conditioned on arbitrary textual contents (even for unseen

texts and OOV words). By revisiting humans’ handwriting pro-

cess, one major observation is that handwriting essentially is a

local process (which is firstly introduced by ScrabbleGAN [Fogel

et al. 2020]). More specifically, humans typically finish a handwrit-

ing text by writing its letters sequentially and individually, under

which the character shapes and cursive ligatures are mostly influ-

enced by their neighbor characters in a local range. Inspired by this,

our generator is designed to mimic such a writing process. Briefly,

rather than generating handwriting based on a single embedding

of the entire text, the generator converts the text into character em-

beddings individually and then concatenates those local character

patches together into a complete handwritten text, where the con-

volutions are utilized to learn the overlaps and transitions among

characters. Overall, the style-controlled handwritten text genera-

tor is designed with the following two strategies:

Textual Content Embedding. Instead of encoding the entire tex-

tual content y into a fixed-sized representation, we prefer to learn

the character-level embeddings of y and concatenate letter-tokens

into a complete text. The reason for doing this is to improve the

generalization ability of the generative model, under which the

generation can be conditioned on arbitrary texts that are uncon-

strained to the training corpus or any OOV words (e.g., words

that have never been seen during training). Specifically, let A
be the alphabet and F = { fc |c ∈ A} be the set of character

filter maps (where fc is the embedding of the character c). To

achieve the character-level embedding, the given textual content

y = [y1, . . . ,yL] (with a length L) will be individually embedded

into multiple filter maps as F (y) = [fy1 , . . . , fyL ]. Moreover, each

filter map can be further modulated with a consistent randomized

noise vector ϵ to introduce subtle distortions for characters, i.e,

F (y, ϵ ) = [fy1 ⊗ ϵ, . . . , fyL ⊗ ϵ]. Lastly, those filter maps are con-

catenated horizontally into a variable-sized text map M, which

can be regarded as a style-invariant embedding of y.

Calligraphic Style Rendering. Given the style-invariant text map

M, the generatorG will up-sample its spatial resolution and simul-

taneously render the calligraphic styles. Particularly, the condi-

tional batch normalization (CBN) [Vries et al. 2017] is utilized

to inject the style feature s into the generator, thus explicitly af-

fecting the calligraphic styles of synthetic images (such as the text

slant, character shape, and stroke thickness). Moreover, the gener-

ator follows a fully convolutional structure to ensure the variable-

length outputs. Due to the merits of convolutions, the generator

can automatically learn the overlaps between adjacent characters

and create smooth transitions (i.e., natural ligatures) if necessary.

This eventually leads to the generator being able to synthesize ar-

bitrarily long handwritten texts conditioned on arbitrary textual

contents with controllable calligraphic styles.

3.2.2 Other Components. To achieve precise HI, we further in-

troduce the following key components to assist in the training pro-

cess of HiGAN+:

Global Discriminator. The global discriminatorD learns a binary

classification to determine whether an input image x is the real

image from the training data or the fake image produced by the

generatorG. By grading the whole image, the discriminator D can

verify the fidelity of synthetic images from a global perspective.

Patch Discriminator. The patch discriminator P can justify

whether a given patch ψ x is the one cropped from real images or

fake images. Instead of grading the whole image, it will help refine

the local texture details of synthetic images by verifying the patch

fidelity.

Style Encoder. The style encoder E is supposed to disentangle the

calligraphic styles from arbitrary handwriting images but without

explicitly accessing extra clues including the writer identities and

text labels. Additionally, the encoder E can map arbitrary-length

handwriting images into fixed-sized latent vectors (i.e., the calli-

graphic style features) for HI.

Writer Identifier. The writer identifier I can distinguish which

writer the input handwriting image x belongs to, and it aims to

guide the generator to synthesize handwriting images conditioned

on specific calligraphic styles. Notably, the identifier I can only

identify handwriting images of seen writers in training data, while

it cannot classify that of unseen writers at test time.

Text Recognizer. The text recognizer R should correctly predict

the text label y of any handwriting image x . Particularly, although

the recognizer R is only trained on real, labeled, handwriting im-

ages, it is supposed to guide the generator G to produce arbitrary

readable handwriting images conditioned on arbitrary textual

contents.
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Fig. 2. Overview of the proposed HiGAN+. During training, the model simultaneously (a) learns to synthesize handwritten texts based on disentangled

styles, (b) is regularized based on reconstruction, and (c) lastly refines the local details of synthetic images for improving visual qualities. At the test time,

the model can either (d) generate diverse handwritten texts by randomly sampling styles from a prior normal distribution or (e) imitate the calligraphic

styles that disentangled from reference samples. Notably, each module shares its parameters at different training stages.

3.3 Objective Functions

To train HiGAN+ for HI, it requires a multi-writer handwriting

dataset which consists of the sets of handwriting images X, their

labeled texts Y , and the corresponding writer identitiesW . Since

the handwritten text generation is not limited to the training cor-

pus or OOV words, a large open corpus C is utilized to yield arbi-

trary textual contents during training, where Y ⊂ C. As shown

in Figure 2, we illustrate the overview of the training process, and

the details of different losses are formulated below.

3.3.1 HI with Disentangled Representations.

Adversarial Loss. Following the paradigm of GANs, the genera-

tive model is trained via a min-max adversarial game. During train-

ing, the generator G takes arbitrary textual content ỹ ∈ C and a

style feature s as inputs and then learns to synthesize a fake image

G (ỹ, s ) that is indistinguishable (by the discriminator D) from the

real one x ∈ X via the adversarial loss, i.e.,

Ladv = Ex [logD (x )] + Eỹ,s [log(1 − D (G (ỹ, s )))], (1)

where the style feature s is either (1) randomly sampled from a

prior normal distribution N (0, 1) or (2) disentangled from the ref-

erence image x , i.e., s = E (x ). Notably, the adversarial loss only pro-

motes the general visual appearance of generated images to make

them look realistic, while it does not consider preserving either

textual contents or calligraphic styles.

Text Recognition Loss. Despite visual appearances, the genera-

tor G is supposed to synthesize realistic readable handwriting im-

ages with preserving desired textual contents. To this end, a hand-

writing recognizer R is introduced to guide G toward producing

handwriting images with specific textual contents. Specifically, the

recognizerR is first optimized by theoretically maximizing the like-

lihoods for each pair {x ∈ X,y ∈ Y} from the training data (where

the connectionist temporal classification loss [Graves et al. 2006]

is empirically adopted in HiGAN+) as

LD
ctc = Ex,y[−y logR (x )], (2)

when maximizing the adversarial loss. This ensures that R can

correctly predict the text labels of given handwriting images. Al-

though the recognizer R is only trained with real, labeled, hand-

writing images, it is supposed to guide the generator G to synthe-

size readable handwriting conditioning to arbitrary textual content

ỹ ∈ C as

LG
ctc = Eỹ,s [−ỹ logR (G (ỹ, s ))], (3)

where the parameters of R keep fixed when minimizing the adver-

sarial loss.

Writer Identification Loss. The primary objective of HiGAN+ is

to exactly disentangle the calligraphic styles from reference hand-

writing images and further imitate generating different images of

similar styles but with other textual contents. However, one major
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concern is that we actually do not have the exact labels for writ-

ing styles (including the stroke thickness, character shape, and text

slant) to form the style consistency regularization. To avoid expen-

sive manual annotations, we impose the writer identity to specify

the calligraphic style. The reason for doing this is based on a sim-

ple assumption that the writing style of each individual is unique

and almost consistent. Therefore, the writer identifier I is intro-

duced to guide the encoder E in disentangling calligraphic styles

from reference samples.

Specifically, the identifier I is optimized by minimizing the cross-

entropy loss for each pair {x ∈ X,w ∈ W} from training data as

LD
id
= Ex,w [−w log I (x )], (4)

when maximizing the adversarial loss. This ensures that I can

identify which writer the reference image x belongs to. To guide

the encoder E to exactly disentangle calligraphic styles from

reference samples, we enforce the style-conditioned synthetic

images G (ỹ,E (x )) to retain a remarkably similar style with the

reference image x , i.e.,

LG
id
= Ex,w, ỹ[−w log I (G (ỹ,E (x )))], (5)

where I keeps its parameters fixed when minimizing the adversar-

ial loss, and the textual content ỹ ∈ C is not limited to the training

corpus. It is worth noting that the identifier I is only trained on

the training set and thus it is unable to identify the writers that

have never been seen during training (i.e., the writers in the test

set).

3.3.2 Regularization with Reconstruction.

Style Reconstruction Loss. To encourage an invertible mapping

between synthetic images and style features, we apply a style re-

construction loss similar to Chen et al. [2016] as

Lstyle = Eỹ,s [| |s − E (G (ỹ, s )) | |1], (6)

where the style feature s is sampled from the prior normal distri-

bution N (0, 1). This regularization loss essentially exhibits two

advantages: (1) It guarantees that the style feature s can explic-

itly affect calligraphic styles of synthetic handwriting images; (2)

It encourages the diversified outputs and thus helps avoid model

collapses of the generative network.

Content Reconstruction Loss. To improve the content and style

consistency of synthetic images, we adopt a self-reconstruction

loss to facilitate the training, i.e.,

Lr ecn = Ey,x [| |x −G (y,E (x )) | |1], (7)

where y ∈ Y is the labeled text of image x . Following this auto-

encoding training scheme, it may regularize the generative model

to achieve a more robust handwriting style transfer.

KL-Divergence Loss. To ensure a meaningful stochastic style

sampling in inference, we further explicitly regularize the encoded

latent space to match the prior normal distribution as

Lkl = Ex [DK L (E (x ) | |N (0, 1))], (8)

where DK L denotes the KL-divergence [Zhu et al. 2017]. This is a

crucial regularization technique in many style transfer tasks [Zhu

et al. 2017; Lee et al. 2018].

3.3.3 Local Detail Refinement.

Contextual Loss. Conventional style transfer is achieved by syn-

thesizing an image to match both the contents and styles of tar-

get images, which commonly compares images in two aspects:

(1) the pixel-to-pixel loss that compares pixel values at the same

spatial coordinates; (2) the Gram loss that compares high layer fea-

tures and texture information over the entire image. This method is

very effective for nature images or oil paintings, since their styles

are modeled as texture features. In contrast, handwriting images

contain little textures and their styles are modeled as the charac-

ter shape, thickness, and slant. Moreover, humans’ handwriting

can be very arbitrary and the synthetic handwriting may not be

exactly spatially aligned with the ground-truth images, and thus

handwriting images with similar styles may produce a large re-

construction loss. What is worse, the synthetic handwriting and

reference samples may have completely different textual contexts

and spatial sizes. Therefore, the conventional style transfer strat-

egy is unsuitable for HI.

To address this problem, we introduce the contextual

loss [Mechrez et al. 2018] to measure the similarity of two

handwriting images, requiring no spatial alignment. The key

idea of contextual loss is to treat an image as a collection of

features, and the similarity between images is measured based

on the similarity between their high-level features, ignoring

the spatial positions of the features. This loss focuses more on

high-level style features and allows the generated images to be

slightly spatially deformed with respect to ground-truth images.

Moreover, the contextual loss is not overly global and it compares

features in local regions based on semantics. Let A = {a1, . . . ,aN }
and B = {b1, . . . ,bN } be two sets of features, the contextual

similarity between them is defined as

CX(A,B) =
1

N

∑
j

max
i

CXi j , (9)

where CXi j denotes the similarity between features ai and bj , and

CXi j is calculated by normalizing all the cosine distances di j be-

tween any ai and bj as Mechrez et al. [2018]. In our task, we apply

the contextual loss to achieve better HI, i.e.,

Lctx =
∑

l

−loдCX
(
Φl (x ),Φl (G (ỹ,E (x )))

)
, (10)

where Φl (·) denotes the high-level features extracted from the lth
layer of the writer identifier I , and CX(·, ·) denotes the aforemen-

tioned contextual similarity between two feature sets.

Local Patch Loss. Handwritten text images can be arbitrarily

long, and thus they can be regarded as high-resolution images. Al-

though it can achieve a good global consistency (i.e., a synthetic im-

age is globally visually plausible) by grading the whole image from

a global perspective, such a strategy may lead to poor local con-

sistency (i.e., the synthetic handwriting image may contain many

blurred patches and distorted characters). Therefore, it is crucial

to refine the local texture details of synthetic handwriting images.

Despite classifying the whole image as fake or real, we further split

each image into patches and then justify the patch fidelity by in-

troducing an extra patch discriminator. The introduced patch dis-

criminator can penalize the local structures and thus help achieve
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good local consistency. Let {ψ x
i |i = 1 · · ·M } and {ψ ỹ,s

i |i = 1 · · ·M }
be the patches of real image x and generated one G (ỹ, s ) respec-

tively, the local details of synthetic images are refined as

Lpatch =
1

M

M∑
i=1

{
Ex [log P (ψ x

i )] + Eỹ,s [log(1 − P (ψ
ỹ,s
i ))]

}
,

(11)

where P is the patch discriminator. It is worth noting that our patch

discriminator receives image patches as inputs rather than the en-

tire image, and thus it is not limited to the simple and specific net-

work design of PatchGAN [Isola et al. 2017]. As a result, our patch

discriminator can be more flexible and complex than that of Patch-

GAN, which eventually may lead to better synthesis performance.

3.3.4 Overall Objectives. Finally, our model is trained by play-

ing a min-max adversarial game, where the full objective functions

can be summarized as follows.

When maximizing the adversarial loss, the global discriminator

D, patch discriminator P , text recognizer R, and writer identifier I
are individually optimized as

LD = −Ladv ,LP = −Lpatch , LR = LD
ctc , LI = LD

id
. (12)

When minimizing the adversarial loss, the generator G and style

encoder E are jointly optimized as

LG,E = Ladv + Lpatch (13)

+λctcLG
ctc + λidLG

id
+ λctxLctx (14)

+λstyleLstyle + λr ecnLr ecn + λklLkl , (15)

where λs are the hyper-parameters to control the importance of

different loss terms.

3.4 Training Strategies

3.4.1 Pre-Training the Writer Identifier and Text Recognizer. For

the writer identifier I and text recognizer R, their optimization

actually can be separated from the adversarial training process.

Specifically, we can benefit from such a pre-training in two aspects:

(1) We can obtain more powerful and robustI andR by introduc-

ing data augmentation and extra handwriting samples during

pre-training, since their optimization is separated from the ad-

versarial training process.

(2) Once the I and R are pre-trained, the adversarial training of

HiGAN+ can be further accelerated. Moreover, we can avoid

retraining new I and R when training a different HiGAN+.

Finally, pre-training both I and R will not hurt the performance

of HiGAN+ empirically.

3.4.2 Reusing Writer Identifier as Style Encoder. By rethinking

the role of each component of HiGAN+ for HI, we propose to reuse

the writer identifier as the style encoder as shown in Figure 3.

Specifically, if we check the relations between the style encoder

and writer identifier, their functions are almost consistent. Basi-

cally, to correctly identify handwriting images, the writer identi-

fier should extract their calligraphic styles but ignore the semantic

textual contents; Similarly, the style encoder is exactly designed

to disentangle styles from handwriting images. Upon this moti-

vation, it is intuitive to reuse the writer identifier for encoding

Fig. 3. Reusing writer identifier as style encoder.

styles. However, most previous works for handwriting synthesis

simply use the huge VGG backbone as the style encoder, and they

also train two separated modules (i.e., the writer identifier and

style encoder) rather than merging them as ours. Those eventually

make their model more parameter-redundant and computation-

expensive than HiGAN+. In summary, such reusing exhibits two-

fold advantages:

(1) We achieve a more compact architecture, since the style en-

coder and writer identifier share a large number of parame-

ters. Moreover, this strategy can benefit the training proce-

dure of HiGAN+, since lots of parameters of the style encoder

are well pre-trained and thus it can extract more reliable style

features at the early stage.

(2) We avoid using a huge VGG backbone for style encoding,

which is pre-trained on nature images instead of handwrit-

ing images. In contrast, our writer identifier is specifically de-

signed for handwriting identification, which is more suitable

for extracting calligraphic styles and also attains a more com-

pact model than the VGG backbone.

During training, the shared parameters of the style encoder keep

fixed and only the independent part is optimized.

3.4.3 Optimization with Gradient Balancing. The loss function

of HiGAN+ for optimization involves quite a few terms, and the

relative weighting of different loss terms will affect the synthesis

results. Moreover, it also takes lots of time to fully optimize the Hi-

GAN+ for handwriting synthesis. Therefore, it may be difficult to

find an optimal setting of those hyper-parameters λs for HiGAN+

with the naive grid search. To address this issue, we adopt the gradi-

ent balancing strategy to dynamically adjust the hyper-parameters

λs of HiGAN+, thus balancing the gradient of each loss term to sta-

bilize the training procedure and reach a satisfied local optimum.

Specifically, the gradient of Ladv warped on the synthetic im-

age x̂ is first calculated as

∇adv =
∂Ladv

∂x̂
. (16)

Take Lctc for example, its gradient can be balanced [Alonso et al.

2019] by

∇ctc ←
δ (∇adv )

δ (∇ctc )
[∇ctc − μ (∇ctc )] + μ (∇adv ), (17)

where μ (∇ctc ) denotes the mean of ∇ctc and δ (∇adv ) denotes

the standard deviation. To avoid changing the sign of the gradi-

ent ∇ctc , we adopt a simpler strategy similar to Fogel et al. [2020],

i.e.,

∇ctc ←
δ (∇adv )

δ (∇ctc )
∇ctc . (18)
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Therefore, the weight of Lctc is adjusted as λctc =
δ (∇adv )
δ (∇ctc ) and

other hyper-parameters can be calculated in the same way.

3.5 Evaluation of GANs for HI

HI is different from CIG due to its variable-sized outputs, arbi-

trary textual contents, and different style transfer. Hence, it is

essential to quantitatively measure the qualities of synthetic hand-

writing images from different aspects. Therefore, we propose com-

prehensive metrics to fully evaluate the performance of GANs for

variable-length handwritten text synthesis. Specifically,

— Visual Quality: Synthetic handwriting images should first

deceive the human eyes visually and be realistic as far as

possible. Therefore, we adopt several commonly used met-

rics to evaluate the visual quality of handwriting images, in-

cluding IS [Salimans et al. 2016], FID [Heusel et al. 2017],

KID [Binkowski et al. 2018], PSNR, and MSSIM. Particularly,

IS is used to measure the realism and diversity of generated

images, FID and KID aim to measure the distance between dis-

tributions of the generated images and real samples, MSSIM

measures the structural similarity between them, and PSNR

measures the reconstruction error.

— Readability: Different from natural images, handwriting im-

ages convey specific semantic information that can be read

and understood by humans. Therefore, we use the WER to

evaluate the readability of synthetic texts, which is the num-

ber of word recognition errors divided by that of total words.

Particularly, the word recognition can be done by humans or

a pre-trained handwriting recognizer.

— Style Transferability: Besides the realism and readabil-

ity, the calligraphic styles of synthetic images should be

consistent with the reference samples as much as possible.

Therefore, we propose to use the WIER to measure the style

transferability of GANs for HI, which is the number of writer

identification errors divided by that of the total words. It is

worth noting that none of the previous works have ever quan-

titatively evaluated the style transferability of GANs for HI.

Since the handwritten texts are variable-length instead of fixed-

sized, we replace the averaging pooling of IncepetionV3 with Tem-

poral Pyramid Pooling (TPP) when calculating IS, FID, and KID

(similar to Kang et al. [2021]), and we also use the global averag-

ing pooling in the CNN backbone of the writer identifier when

calculating WIER. In our settings, all GANs are trained using the

training set images and all evaluations are conducted on test set im-

ages. However, since the writers in test set have never been seen

in training set, we need to train an additional writer identifier us-

ing the test images to evaluate the WIER. Such a writer identifier

is entirely independent of the presented framework and thus can

fairly evaluate the style transferability of different GANs for HI.

4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Datasets. To evaluate the performance of handwriting

generation, we use the IAM dataset [Marti and Bunke 2002] as

the benchmark dataset. The IAM dataset consists of 63K handwrit-

ten English words, written by 500 different writers. It provides one

training set, one test set, and two validation sets. It is worth not-

ing that handwritten words of all sets are mutually exclusive, thus

each writer only contributes to one set. In our experiments, only

the training set and validation sets are used for training GANs, and

the test set is only used for quality evaluation.

4.1.2 Implementation Details. Our experiments are conducted

on a Dell workstation with an Intel(R) Xeon(R) Bronze 3204 CPU @

1.90 GHz, 48 GB RAM, and GeForce RTX 3090 GPU 24 GB. For fast

training, the batch size is set to 8 and the model is trained for 70

epochs. Furthermore, we utilize the Adam [Diederik and Ba 2015]

algorithm to optimize the GAN model, where the initial learning

rate is 0.0001 and (β1, β2) = (0.5, 0.999). Moreover, we begin to lin-

early decay the learning rate at the 25th epoch. When training Hi-

GAN+, we empirically set λkl = 0.0001, λctx = 5.0, and the rest λs

are dynamically adjusted during training with the gradient balanc-

ing strategy. The training time is less than three days on a single

GeForce RTX 3090 with our implementation in PyTorch [Paszke

et al. 2019].

4.1.3 Competitors. Previous works mainly focus on handwrit-

ten character/digit generation, while handwritten text generation

has not been fully explored. In our experiments, we can only

compare our method with several recently proposed handwrit-

ten text generation approaches, i.e., ScrabbleGAN [Fogel et al.

2020], GANwriting [Kang et al. 2020], TS-GAN [Davis et al. 2020],

HTW [Bhunia et al. 2021], and HiGAN [Gan and Wang 2021]

(where Table 1 gives a detailed feature-by-feature comparison ).

We use the official implementation of those models provided by the

authors, where we directly use the default settings and pre-trained

models if available. Notably, we also retrain HiGAN with our new

network configurations, which can generate handwriting images

with a fixed height of 64 pixels rather than 32 pixels. In our ex-

periments, all synthetic handwriting images are resized to have 64

pixel height while preserving the original aspect ratios. For a fair

comparison, all evaluations are conducted on test set images. More

specifically, we optimize all GANs with training set images and

then use those generative models to reconstruct test set images.

4.2 Qualitative Analysis

In this subsection, we first conduct the qualitative analysis of Hi-

GAN+ for arbitrary handwritten text generation.

4.2.1 Latent-Guided Synthesis. The proposed HiGAN+ can gen-

erate arbitrary handwritten English words of diverse calligraphic

styles with high visual quality. For latent-guided synthesis, differ-

ent styles of synthetic images are simply randomly sampled from

the prior normal distribution. Specifically, we show some selected

synthetic images in Figure 4, where each row presents images of

the same styles and each column of the same texts. It is worth not-

ing that all generated handwritten words are human-readable, and

they are unconstrained to the predefined corpus or OOV words.

Moreover, we observe that HiGAN+ can successfully render cur-

sive ligatures among adjacent characters of handwritten words if

necessary.

4.2.2 Reference-Guided Synthesis. For reference-guided syn-

thesis, our HiGAN+ can precisely disentangle calligraphic styles
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Fig. 4. Latent-guided synthesis.

Fig. 5. Reference-guided synthesis.

from reference samples, and it further imitates generating other

handwriting images of similar calligraphic styles. As shown

in Figure 5, we show some selected handwritten words under

reference-guided synthesis. We can observe that HiGAN+ can

successfully imitate the calligraphic styles of reference samples

(such as the writing slant, thickness, and character shape), while

strictly preserving the desired textual contents. Overall, Our

HiGAN+ can achieve precise one-shot handwriting style transfer.

4.2.3 Arbitrary-Length Text Synthesis. The proposed HiGAN+

can generate variable-sized images conditioned on arbitrary-

length texts, which are unconstrained to any predefined corpus

or OOV words. As shown in Figure 6, we show some selected

long synthetic handwritten texts. Particularly, since handwritten

English sentence generation can be easily accomplished by word

generation, we omit all spaces of the provided textual content to

form an extremely long text string for handwriting synthesis in

Figure 6. Rather than generating handwriting images conditioned

on a single embedding of the entire word/text, HiGAN+ will con-

vert the text into character embeddings individually and then con-

catenate them together. Moreover, the generator with a fully con-

volutional network structure will automatically learn overlaps and

ligatures among adjacent characters. Notably, HiGAN+ can even

Fig. 6. Arbitrary-length text synthesis. Notably, all spaces of the provided

textual content are omitted to form a long text string.

Fig. 7. Handwritten paragraph synthesis.

disentangle styles from short words to generate arbitrary-length

text images of similar styles.

4.2.4 Handwritten Paragraph Synthesis. Despite words and

texts, HiGAN+ can even generate complete handwritten para-

graphs with its ability of one-shot style transfer for handwriting

images. Figure 7 illustrates the original handwritten paragraph and

the one reconstructed with HiGAN+, where each reconstructed

word is synthesized based on the disentangled representations of

the corresponding real word. We observe that HiGAN+ can suc-

cessfully imitate calligraphic styles and preserve the original tex-

tual contents of most handwritten words. This eventually results

in that the generated handwritten paragraphs look extremely real-

istic and mostly indistinguishable from the real ones. Overall, our
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Fig. 8. Handwriting style interpolation.

Fig. 9. Handwriting text editing.

results demonstrate that HiGAN+ can perform precise one-shot HI

with high visual qualities.

4.3 Generalization Analysis

We further investigate whether the generative model can imi-

tate handwriting as humans, rather than simply memorizing the

ground-truth images.

4.3.1 Style Interpolation. To better analyze the learned latent

style space, we perform the linear interpolation between two ran-

dom calligraphic styles and generate the corresponding handwrit-

ing images as shown in Figure 8. We can observe that the synthetic

handwriting images continuously change their calligraphic styles

(such as the thickness, character shape, and writing slant), while

strictly preserving the original textual contents. Those results val-

idate the continuity of the latent style space, thus demonstrating

that HiGAN+ generalizes in the distribution rather than simply

memorizing trivial visual appearances of training data.

4.3.2 Text Editing. Despite the latent style space, we also per-

form the interpolation in the text space to further validate the

generalization of HiGAN+. In contrast to the continuous nature

of the style distribution, the textual content space essentially

is discrete. Therefore, we simply perform the handwriting text

editing by following a “word ladder” puzzle game as shown in

Figure 9, where we change the source word into the target one

by replacing only one character at a time. We can observe that the

synthetic handwriting images continuously change their textual

contents, while strictly preserving the original calligraphic styles.

Moreover, HiGAN+ not only draws the natural ligatures when re-

placing the specific letter but also successfully generates the OOV

words (e.g., “kitty”, “dicer”, and “dicey”). The interpolation results

validate that HiGAN+ can generate novel handwriting images that

Fig. 10. The UMAP visualization of the latent vectors extracted by the en-

coder, where the shape and color identify the author.

unconstrained to any OOV words (rather than simply copying the

training samples).

4.3.3 Style Embeddings. To further verify the generalization

ability of HiGAN+, we show the UMAP visualization of the latent

vectors extracted from both (a) test images and (b) reconstructed

images of HiGAN+. As shown in Figure 10(a), the latent distri-

butions (i.e., style features) of images from the same writer are

clustered, while that of different writers are separated from each

other. This demonstrates that HiGAN+ can cluster embeddings for

handwriting images of similar styles and diversify embeddings for

that of different styles, thus disentangling meaningful styles from

handwriting images. Furthermore, we can also observe a similar

phenomenon on the reconstruction images in Figure 10(b), which

indicates that HiGAN+ can achieve a precise HI.

4.4 Ablation Studies

In this subsection, we conduct an ablation study to justify the con-

tribution of each key component in HiGAN+. As shown in Table 2,

we give the quantitative comparison of different configurations for

handwritten text synthesis, where each component is cumulatively

added on top of the baseline model.

Specifically, the baseline configuration (A) (with only the adver-

sarial loss and CTC loss) corresponds to the basic setup of Scrab-

bleGAN [Fogel et al. 2020], which can only generate readable hand-

written texts with randomized styles. As shown in the first row of

Figures 11 and 12, the baseline model (A) fails to imitate the cal-

ligraphic styles of reference images, since it lacks a style encoder

to disentangle handwriting styles. Moreover, the visual quality of

synthetic images is poor, where some characters are even distorted

and blurred as shown in Figure 11.

We first improve the baseline model (A) by regularizing the gen-

erator with reconstructing original image contents, i.e., the config-

uration (B) which is equivalent to the TS-GAN [Davis et al. 2020].

Additionally, we introduce the KL-Divergence loss to regularize

the encoded latent space to match the prior normal distribution.

With the explicit spatial alignment between synthetic images and

ground-truth images, we wish the style encoder can extract mean-

ingful style embeddings from reference images and thus is able to

generate novel handwritten texts of similar styles. However, the

WIER of configuration (B) is very high as shown in Table 2, which

indicates that such an auto-encoding scheme cannot help the gen-

erative model to achieve precise HI. As shown in the second row
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Table 2. Quantitative Comparison of Different Configurations for Handwritten Text Synthesis

ID Method IS↑ FID↓ KID↓ PSNR↑ MSSIM↑ WIER↓ WER↓
A Ladv + Lctc 1.2975 24.3985 2.2173 11.6510 0.2078 1.0000 0.0243

B A + Lr ecn + Lkl 1.3356 25.2118 2.0649 11.3832 0.2452 0.9751 0.0080

C B + Lid + Lstyl e 1.3298 18.3095 1.6688 11.7609 0.2459 0.6747 0.0085

D C + Lct x 1.3694 10.6346 0.7752 11.9286 0.2981 0.6116 0.0085

E D + Dpatch 1.4059 5.9510 0.3709 12.3391 0.3322 0.5821 0.0186

Ground Truth 1.4390 0.1105 0.1820

“↑” denotes that higher values are better, and “↓” denotes that lower values are better.
Bold indicates the best result.

Fig. 11. Ablation study for handwritten words.

Fig. 12. Ablation study for long handwritten texts.

of Figures 11 and 12, the model (B) fails to imitate the calligraphic

styles of reference images.

To achieve precise handwriting style transfer, we further intro-

duce the writer identification loss Lid and style reconstruction

loss Lstyle , i.e., the configuration (C) which corresponds to Hi-

GAN [Gan and Wang 2021]. Specifically, the term Lid can guar-

antee that the input style code can explicitly affect the styles of

generated images. Furthermore, with the help of the writer iden-

tifier, the term Lid enforces the generator to synthesize images

conditioned on a particular writer identity, e.g., that of reference

images. Therefore, we can explicitly guide the generator to mimic

the calligraphic styles of reference images. As shown in Table 2,

the model (C) achieves much lower WIER and higher FID scores,

which indicates that the model achieves more accurate calligraphic

style transfer and significantly improves the visual quality of syn-

thetic images.

We further improve the style consistency of synthetic images by

introducing the contextual loss Lctx on top of the model (C), i.e.,

the configuration (D). Since humans’ handwriting is very arbitrary,

it may be challenging to spatially align the synthetic handwriting

images and ground-truth ones. Furthermore, in contrast to nature

images, handwriting images contain little textures. Therefore, it

may be insufficient to achieve precise handwriting style transfer

with the conventional pixel-to-pixel reconstruction and Gram loss

(that is designed for capturing textual features). However, the con-

textual loss can measure the style similarity between two images

based on high-level feature map collections, requiring no spatial

alignments. As shown in Table 2, the values of evaluation metrics

clearly demonstrate the effectiveness of the contextual loss.

Lastly, we introduce the local patch loss Lpatch on top of the

model (D) to further refine the local texture details of synthetic

images, i.e., the configuration (E) which corresponds to the pro-

posed HiGAN+. Notably, handwritten text images can be arbitrar-

ily long, and thus it cannot guarantee the local details for such

high-resolution images. Instead of grading the whole image, we

split each image into patches and then introduce another discrim-

inator to justify the patch fidelity. As shown in Figures 11 and 12,

the generative model without the LPL will produce blurred charac-

ters, and the Lpatch term ensures that the generated images pre-

serve better style consistency (e.g., grey textures in backgrounds).

Finally, the results in Table 2 demonstrate that HiGAN+ signifi-

cantly improves the visual quality and achieves a more precise cal-

ligraphic style transfer.

4.5 Comparison between PatchGAN and LPL

Although PatchGAN accepts the whole image and computes

patches in parallel, its discriminator is limited to the specific shal-

low architectures to simulate the patch processing. For example, to

simulate a patch processing with a path size of 32 × 32 and patch

stride of 8, the deepest discriminator is limited to “Conv2D (k =
3, s = 2) → Conv2D (k = 3, s = 2) → Conv2D (k = 3, s =
2) → Conv2D (k = 3, s = 1)” (where “k” is the kernel size and

“s” is the stride); however, a deeper CNN will lead to a larger recep-

tive filed (>32). In contrast, LPL physically splits the whole image

into separated patches, and thus its patch discriminator is not lim-

ited to the specific architectural design and can be arbitrarily com-

plex. Therefore, LPL with a more complex and powerful discrimi-

nator may achieve better performance than PatchGAN. To validate

our assumption, we conduct a quantitative comparison between
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Table 3. Comparison between PatchGAN and LPL

Method
Patch Discriminator

IS↑ FID↓ KID↓
Type Depth Size

Scrabble
GAN

None × 0.00 1.2975 24.3985 2.2173

PGAN∗ 4 2.32 1.3367 15.2872 1.1609

LPL∗ 8 2.26 1.3607 13.0480 0.9890

HiGAN

None × 0.00 1.3298 18.3095 1.6688

PGAN∗ 4 2.32 1.3521 13.0448 1.0290

LPL∗ 8 2.26 1.4393 12.0309 0.9795

*“PGAN” is the PatchGAN and “LPL” is the LPL.

PatchGAN and LPL on the IAM dataset in Table 3, where their

patch discriminators have the same number of parameters with

the patch size of 32 × 32 and patch stride of 8. Experimental re-

sults show that LPL with more powerful patch discriminators may

outperform PatchGAN.

4.6 Imitating Handwriting in the Wild

We show that HiGAN+ can also imitate calligraphic styles of hand-

writing images in the wild. Different from handwriting on the

whiteboard, handwriting in the wild has more extreme and di-

verse calligraphic styles (including large variations in stroke thick-

ness/colors and many noises and distortion of characters). Specif-

ically, we have conducted experiments on a dataset for English

handwriting in the wild named GNHK [Lee et al. 2021]. In our

experiments, only the training set of GNHK is used for optimiz-

ing GANs and no other extra images are involved, and the test

set is only used for evaluation. The qualitative results in Figure 13

show that HiGAN+ can synthesize handwriting images with more

extreme handwriting styles. Lastly, we also give the quantitative

results in Table 4, which demonstrates HiGAN+ significantly out-

performs the baselines.

4.7 Comparison with the State-of-the-Arts

We compare the proposed HiGAN+ with recent state-of-the-art

GANs for handwritten text synthesis. For all competing GANs, we

use the official implementation with default settings and the pre-

trained models provided by the authors. For a fair comparison,

we utilize all GANs to reconstruct the test set images of the IAM

dataset.

4.7.1 Visual Comparison. As shown in Figures 14 and 15, we

make a qualitative comparison between different GANs for hand-

writing synthesis to intuitively reflect their synthetic visual quali-

ties. Notably, the original implementations of ScrabbleGAN, HTW,

and HiGAN can only produce images with 32-pixel height, while

GANwriting, TS-GAN, and HiGAN+ can produce images with

64-pixel height.

Although ScrabbleGAN can generate readable handwritten

text images, it fails to imitate the calligraphic styles of reference

samples. This is because ScrabbleGAN lacks a style encoder to

disentangle calligraphic styles from images. Moreover, the visual

qualities of its synthetic images are poor as many characters in

handwritten texts are distorted and blurred.

Both GANwriting and HWT can control the calligraphic styles

of synthetic handwriting images. For GANwriting, since it only

Fig. 13. Handwritten text synthesis in wild.

Table 4. Quantitative Results of Handwritten Text Synthesis

in Wild on GNHK

Method IS↑ FID↓ MSSIM↑ WIER↓ WER↓
ScrabbleGAN 1.4993 44.3732 0.2931 1.0000 0.2524

HiGAN 1.5291 26.8190 0.2940 0.7111 0.1751

HiGAN+ 1.6255 9.6546 0.3695 0.4480 0.1237

Ground Truth 1.7592 0.0175 0.3602

encodes limited-length words to fixed-sized vectors, it cannot gen-

erate arbitrarily long handwritten texts (i.e., no more than 10 let-

ters). As shown in Figure 15, GANwriting fails to complete the pro-

vided textual contents. For HTW, it utilizes the vision Transformer

to capture the global and local styles of handwriting images. How-

ever, both HWT and GANwriting require multiple reference sam-

ples to extract reliable style features for HI.

For TS-GAN, it follows an auto-encoder architecture, which im-

plicitly learns HI by reconstructing original images. Although TS-

GAN successfully mimics thicknesses and text slants, it fails to

mimic character shapes and texture backgrounds. Therefore, its

ability for handwriting style transfer is limited, which demon-

strates that the pixel-to-pixel reconstruction is insufficient for

handwriting style transfer.

For HiGAN, it not only generates realistic handwritten texts but

also successfully imitates calligraphic styles of reference samples.

This is because HiGAN further introduces a writer-specific auxil-

iary loss to constrain the handwriting generation conditioned on

particular writer identities. However, HiGAN sometimes produces

a few distorted and blurred characters, since it only grades the

whole image during training but fails to consider the local texture

details.

For HiGAN+, we first introduce the contextual loss to improve

the style consistency of HiGAN, which enhances the style similar-

ity of images based on high-level feature map collections extracted

by the writer identifier. Furthermore, we also refine the local
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Fig. 14. Qualitative results of different GANs for handwritten paragraphs.

Fig. 15. Qualitative results of different GANs for long handwritten texts.

texture details of synthetic images by introducing a patch discrimi-

nator to verify the patch fidelity. Those strategies eventually make

HiGAN+ attain a good global & local consistency. As shown in

Figures 14 and 15, HiGAN+ produces clearer handwriting images

and achieves a more precise HI.

4.7.2 Quantitative Evaluation. To give a higher-level indication

of visual quality on the whole test set, we further conduct a quan-

titative evaluation between different GANs for handwriting syn-

thesis as shown in Table 5. Moreover, we also have evaluated the

metrics between the generated and real samples in different set-

tings (in Table 6) including (1) in vocabulary and seen style (I-

S), (2) in vocabulary and unseen style (I-U), (3) OOV and seen

style (O-S), and (4) OOV and unseen style (O-U). We can ob-

serve that both ScrabbleGAN and ST-GAN obtain high FID and

WIER, which indicates that they suffer from the poor visual qual-

ity and also fail to imitate the calligraphic styles of reference sam-

ples. Moreover, although HiGAN slightly outperforms GANwrit-

ing in terms of visual quality, it achieves more precise HI (i.e.,

lower WIER) and its synthetic images are much more readable

(i.e., lower WER). Furthermore, the quantitative results in Table 5

clearly demonstrate that HiGAN+ largely outperforms the other

state-of-the-art GANs for HI in terms of visual quality and it also

achieves a more precise one-shot handwriting style transfer. Lastly,

we list the model storages of different GANs in Table 7, and we

can observe that the proposed HiGAN+ attains the most com-

pact model for handwritten text synthesis compared with other

state-of-the-art GANs. This is because HiGAN+ employs a com-

pact style encoder (that is specifically designed for extracting

handwriting styles) rather than using a huge pre-trained VGG

backbone.

4.8 Failure Case Analysis

To investigate the weakness and limitation of the proposed Hi-

GAN+, we conduct the failure case analysis as shown in Figure 16.
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Table 5. Quantitative Comparison of Different GANs for Handwritten Text Synthesis

Method IS↑ FID↓ KID↓ PSNR↑ MSSIM↑ WIER↓ WER↓
ScrabbleGAN 1.3268 26.7758 2.9479 11.2562 0.1950 1.0000 0.0740

ST-GAN 1.2443 33.9069 3.1314 12.0345 0.1845 0.9741 0.1968

GANwriting 1.3267 20.5539 1.3927 10.8045 0.2038 0.8455 0.2143

HWT 1.3620 19.6938 1.8003 10.7518 0.2319 0.8320 0.1032

HiGAN 1.3298 18.3095 1.6688 11.7609 0.2459 0.6747 0.0085

HiGAN+ 1.4059 5.9510 0.3709 12.3391 0.3322 0.5821 0.0186

Ground Truth 1.4390 0.1105 0.1820

Table 6. Comparison of Different GANs in Different Settings for Handwritten Text Synthesis

IS↑ FID↓ WIER↓ WER↓
Method I-S I-U O-S O-U I-S I-U O-S O-U I-S I-U O-S O-U I-S I-U O-S O-U

ScrabbleGAN 1.327 1.309 1.193 1.184 26.95 27.48 30.62 33.86 0.996 0.986 0.997 0.986 0.052 0.041 0.117 0.119

ST-GAN 1.277 1.237 1.159 1.277 37.71 37.89 40.79 43.76 0.994 0.986 0.994 0.994 0.174 0.173 0.217 0.227

GANwriting 1.345 1.347 1.213 1.322 19.50 21.28 26.67 25.40 0.877 0.843 0.888 0.862 0.177 0.106 0.428 0.439

HWT 1.352 1.326 1.278 1.369 18.87 20.76 25.15 24.47 0.856 0.826 0.847 0.822 0.059 0.043 0.159 0.162

HiGAN 1.374 1.335 1.241 1.204 17.83 18.61 17.53 24.02 0.665 0.669 0.727 0.721 0.004 0.003 0.061 0.061

HiGAN+ 1.468 1.416 1.352 1.296 5.81 6.17 12.62 11.42 0.494 0.528 0.642 0.659 0.008 0.005 0.092 0.086

Table 7. Comparison of Different GANs

in Terms of Model Storage

Method
Size (MB)

Gen. Enc. Total

ScrabbleGAN 81.8 × 81.8

GANwriting 95.6 76.5 172.1

ST-GAN 8.3 127.5 135.8

HWT 80.7 50.6 131.3

HiGAN ∗38.6 ∗20.5 ∗59.1

HiGAN+ 15.0 6.7 21.7

Training Data 496.8

*Conference version.
In the table, “Gen.” denotes the generator and
“Enc.” denotes the style encoder.

Our model sometimes fails in generating satisfactory handwriting

images in the following two situations:

(1) HiGAN+ is difficult to synthesize realistic punctuation marks

and digits. This is probably because that different characters

and symbols in training data follow a long-tailed distribution,

where the punctuation marks and digits are particularly rare

in ground-truth samples. Therefore, HiGAN+ is good at syn-

thesizing English characters rather than punctuation marks

and digits.

(2) HiGAN+ may fail to generate extremely scribbled characters,

while it prefers to generate neat and readable handwriting

images. This is because the recognizer will penalize HiGAN+

during training if the model generates scribbled handwritten

texts. This may be fixed by tuning the hyper-parameter λctc

of the text recognition loss Lctc during training.

Overall, humans’ handwriting can be very arbitrary and thus the

proposed HiGAN+ essentially has limits for synthesizing meaning-

ful handwriting images.

Fig. 16. Failure case analysis of HiGAN+.

4.9 Human Evaluation

Due to the subjective nature of images, we also conduct human

evaluations (i.e., Turing tests) to verify the performance of differ-

ent generative models for handwritten text synthesis. Specifically,

we have conducted two user studies on a professional data plat-

form Credamo with 100 randomly selected trustable participants

who can recognize handwritten English texts.

4.9.1 User Plausibility Study. We first conduct a user plausibil-

ity study to test whether the synthetic images of HiGAN+ are actu-

ally indistinguishable from real ones by human judgements. In this

study, we show each participant 50 random handwriting images

(half genuine and half generated), where the participant can only

view a single image at a time and then is asked whether the image

is written by humans or artificially generated by machines. After

ensuring the participant’s reliability, there are 5,000 responses con-

tributing to the final evaluation. As shown in Table 8, the study

reveals that our generative model is clearly perceived as plausible.

4.9.2 User Preference Study. We also conduct a user prefer-

ence study to justify whether HiGAN+ outperforms the com-

peting GANs for handwritten text synthesis in terms of visual

quality. In this study, we first randomly generate fake images of

different GANs conditioned on the identified textual contents and

calligraphic styles (where each GAN model generates one image

at a time), and we repeat this procedure 25 times. After that, each

participant is shown those images in a random order (side by side

on the same screen) and then asked to choose the most preferred
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Table 8. User Plausibility Study

Actual
Predicted Overall

Accuracy
Real Fake

Genuine 0.3172 0.1828
0.5004

Generated 0.3168 0.1832

Table 9. User Preference Study

Methods Scrabble
GAN

GAN
writing

ST-
GAN

HWT HiGAN HiGAN+

Prefers 0.0918 0.0542 0.1027 0.1686 0.2102 0.3725

one. In total, there are 2,500 responses contributing to the final

evaluation. As shown in Table 9, our HiGAN+ obtains the major-

ity of votes in all instances, which demonstrates the superiority of

HiGAN+ over the competing GANs for handwritten text synthesis.

5 CONCLUSION

In this article, we have proposed a novel generative model HiGAN+

for HI based on disentangled representations. The proposed Hi-

GAN+ can generate diverse and realistic handwritten texts con-

ditioned on arbitrary textual contents and calligraphic styles (that

are disentangled from reference images or randomly sampled from

a prior normal distribution). Since conventional style transfer tech-

niques based on pixel correspondences may be unsuitable for HI,

we further introduce the contextual loss to significantly improve

the style consistency of synthetic images. Moreover, to avoid many

artifacts produced by existing GANs, we further refine the local

details of synthetic handwriting images with an LPL. Lastly, we

propose to reuse the early layers of the writer identifier for style

encoding, thus deriving a more compact and effective architec-

ture. Extensive experiments, including human evaluations, on the

benchmark dataset demonstrate the superiority of HiGAN+ in

terms of visual quality, scalability, compactness, and style transfer-

ability over the state-of-the-art GANs for handwritten text synthe-

sis. It is worth noting that humans’ handwriting is very arbitrary

and thus HiGAN+ indeed has limits for synthesizing meaningful

handwriting images. Nevertheless, it is interesting to teach ma-

chines/robotics to write texts as realistic as humans, which takes a

closer step to high-level artificial intelligence. The source code of

HiGAN+ is available at https://github.com/ganji15/HiGANplus.
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