
Migrating from Proprietary Tools to Open-source Software
for EAST-ADL Metamodel Generation and Evolution
Jörg Holtmann

jorg.holtmann@cse.gu.se

Chalmers | University of Gothenburg

Gothenburg, Sweden

Jan-Philipp Steghöfer
jan-philipp.steghofer@cse.gu.se

Chalmers | University of Gothenburg

Gothenburg, Sweden

Henrik Lönn
Henrik.Lonn@volvo.com

Volvo Technology AB

Gothenburg, Sweden

ABSTRACT

Open-source software has numerous advantages over proprietary

commercial-off-the-shelf (COTS) software. However, there are mod-

eling languages, tool chains, and tool frameworks that are developed

and maintained in an open-source manner but still incorporate

COTS tools. Such an incorporation of COTS tools into an over-

all open-source approach completely annihilates the actual open-

source advantages and goals. In this tool paper, we demonstrate

how we eliminated a COTS tool from the otherwise open-source-

based generation and evolution workflow of the domain-specific

modeling language East-Adl, used in the automotive industry to

describe a variety of interdisciplinary aspects of vehicle systems. By

switching to a pure open-source solution, East-Adl becomes easier

to inspect, evolve, and develop a community around. We compare

both the mixed COTS/open-source and the open-source-only work-

flows, outline the advantages of the open-source-only solution, and

show that we achieve equivalent tooling features compared to the

original approach.

CCS CONCEPTS

• Software and its engineering → Domain specific languages;

Architecture description languages; System modeling lan-

guages; Development frameworks and environments; Soft-

ware development techniques.

KEYWORDS

Model-based engineering, DSL construction, open-source

ACM Reference Format:

Jörg Holtmann, Jan-Philipp Steghöfer, and Henrik Lönn. 2022. Migrating

from Proprietary Tools to Open-source Software for EAST-ADL Metamodel

Generation and Evolution. In ACM/IEEE 25th International Conference on

Model Driven Engineering Languages and Systems (MODELS ’22 Companion),

October 23–28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3550356.3559084

1 INTRODUCTION

Software-intensive, automotive systems continue to increase in

complexity (see, e.g., [1]). Model-based engineering (MBE) provides

one way to cope with this complexity. Domain-specific modeling

languages such as East-Adl (Electronics Architecture and Software

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9467-3/22/10.
https://doi.org/10.1145/3550356.3559084

Technology—Architecture Description Language) [6, 8] provide suit-

able concepts and abstractions for automotive engineers. East-Adl

covers aspects of requirements, verification & validation, prod-

uct lines, functional, software, and hardware architectures, and

software allocation for the interdisciplinary engineering lifecycle

phases. The language evolves to address new and changing needs

under the auspices of an industry consortium [8].

The modeling tool suite Eatop [10] provides the tooling capa-

bilities for East-Adl and is applied in a prototyping environment

(together with further language derivatives) at Volvo Technology

AB. Eatop is based on the Eclipse Modeling Framework (EMF) [12]

and the Eclipse Sphinx project [13], and it provides a number of

modeling and convenience features such as validators as well as a

custom serialization format.

Developing Eatop is itself a complex endeavor. The research

project Maenad [22] has addressed this complexity with an ap-

proach that distinguishes between a metamodel for documentation

purposes (documentation MM) and an implementation metamodel

(implementation MM) that is deployed to Eatop. Particularly, the

approach generates the structurally different implementation MM

as well as other artifacts, such as customized model and edit code

plugins for EMF, from the documentation MM. This generation

of the Eatop modeling infrastructure decouples the model and

edit code plugins specific to a concrete East-Adl version from

the remaining Eatop plugins which provide the actual tooling

features. This means that East-Adl can evolve separately from

Eatop. Umanovskis and Voget [27] report that this way of working

has been adopted from Artop [2], the official open-source editor

for the automotive software modeling language and architecture

framework Autosar [3], which is closely aligned with East-Adl.

However, this approach relies on the proprietary commercial-off-

the-shelf (COTS) tool Sparx Enterprise Architect [26] for the

modeling of the language. Using this commercial and proprietary

software has the drawback that it prevents potentially interested

stakeholders from producing new versions of the language and ex-

perimenting with the tool chain. It also leads to vendor lock-in. Fur-

thermore, Sparx Enterprise Architect itself and particularly the

interface to access its models relies on the COTS operating system

Microsoft Windows, thereby preventing applying the generation

approach on other platforms and requiring users to buy further

COTS software. Since East-Adl and Eatop are both developed as

open-source projects and are intended to be community-driven,

these restrictions have been a major hurdle in development and in

evolving the language to fit the needs of automotive engineers in

different organizations. The commercial, proprietary, and platform-

specific basis of the approach thus impedes the application and

further involvement of a broader community.

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3550356.3559084&domain=pdf&date_stamp=2022-11-09


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Jörg Holtmann, Jan-Philipp Steghöfer, and Henrik Lönn

In contrast, open-source software (OSS) addresses these needs by

providing the freedoms to use, distribute, inspect, and modify the

software system [28]. Consequently, Carillo and Okoli [5] report

on many positive follow-up effects of OSS on the society, like the

establishment of control over and trust in the software that is used.

At the same time, OSS— and in our case in particular the Eclipse

Modeling Framework (EMF), Ecore, and the associated modeling

tools—have reached a maturity that makes it feasible to model

and evolve even complex languages like East-Adl in an open-

source environment. We therefore present the migration from an

approach that uses COTS components to an Eclipse-native approach

for generating the Eatop modeling infrastructure. The approach

uses an EMF-based documentation metamodel as the single source

of truth and as the basis for the model and edit code.

Themain advantage of this new approach is that it supports rapid

prototyping, because there is no tool gap and powerful Eclipse-

based technologies are now at the language engineers disposal. At

the same time, it avoids vendor lock-in, is platform-independent,

and provides better maintainability. We also show that we can

achieve the same documentation features as the COTS tool with

EMF and argue how we enable the possibility for (meta-)model

co-evolution.

In the upcoming Section 2, we provide background informa-

tion about the workflow and the technical realization of the mixed

COTS/open-source realization. Subsequently, we describe in Sec-

tion 3 our pure open-source solution and compare it to the original

one. Finally, we conclude and outline future work in Section 4.

2 BACKGROUND: ORIGINAL APPROACH FOR
GENERATING THE EATOP MODELING
INFRASTRUCTURE

Both the interdisciplinary systems modeling language East-Adl

and the software modeling language and software architecture

framework Autosar emerged out of the research project East-Eea

[15]. Thus, both languages are closely aligned with each other to

ensure a seamless model-based development process. This language

alignment was designed on the meta-metamodel level M3, on the

metamodel/language level M2, and on the tooling level.

On the meta-metamodel level M3 for the definition of both lan-

guages, the basic notions of the MetaObject Facility (MOF) [20]

are applied and supplemented by Autosar rules [4]. On the meta-

model or language level M2, East-Adl and Autosar share several

abstract metaclasses, and East-Adl references certain concepts

in the Autosar metamodel. On the tooling level, East-Adl and

Autosar share the evolution and maintenance of their respective

documentation MM’s in Sparx Enterprise Architect as well

as a transformation approach from these documentation MM’s to

Open-source and Eclipse-based tooling platforms. That is, like for

East-Adl and Eatop, there is a transformation approach [27] to

generate from the Autosar documentation MM an implementation

MM for the Autosar Tooling Platform (Artop) [2]. Thus, the trans-

formation from the East-Adl documentation MM to the Eatop

implementation MM was designed likewise [27].

In the following, we describe this transformation approach on a

conceptual level (Section 2.1) as well as on a technical realization

level (Section 2.2).

Implementation MMImplementation MMDocumentation MMDocumentation MM

StructureStructure

System-
Modeling
System-
Modeling

EAST-ADLEAST-ADL

...

Hardware-
Modeling
Hardware-
Modeling

System-
Model

System-
Model

...

...

Require-
ments

Require-
ments

SituationSituation

...

EAST-ADLEAST-ADL

...

Package Hierarchy
Diagrams
Documentation

"<documentation>""<documentation>"

"<documentation>""<documentation>"

SituationSituation

"<documentation>
Original fully qualified name: 
EAST-ADL.Requi-
rements.Situation"

"<documentation>
Original fully qualified name: 
EAST-ADL.Requi-
rements.Situation"

System-
Model

System-
Model

"<documentation>
Original fully qualified name: 
EAST-ADL.Structure.System-
Modeling.SystemModel"

"<documentation>
Original fully qualified name: 
EAST-ADL.Structure.System-
Modeling.SystemModel"stemModel"

Exploited in 
EATOP runtime

ation>

Exploited in 
EATOP runtime

Exploited in 
EATOP runtime

Figure 1: General Approach for Transforming an East-Adl

Documentation MM to an Eatop Implementation MM

2.1 Distinction and Transformation Between
Documentation and Implementation MM

As outlined in the introduction, the original approach distinguished

between an East-Adl documentation MM as well as a structurally

different Eatop implementation MM and realized a transformation

approach to generate the latter one from the former one. Figure 1

depicts this general transformation approach with the East-Adl

Documentation MM on the left-hand side and the Eatop Imple-

mentation MM on the right-hand side.

The Documentation MM has the purpose of aligning the MM in

its specific version with the corresponding version of the East-Adl

specification (cf. [7]). This encompasses structuring the MM into

packages that correspond to the specification structure (e.g., the

metaclass SystemModel in the package Structure.SystemModeling

and the metaclass Situation in the package Requirements), provid-

ing diagrams for each package, and providing documentation texts

for the particular metaclasses (cf. annotations "<documentation>")—

where the diagrams and documentation texts also show up in the

specification.

The Implementation MM is the basis for generating model and

edit code which applies a customized serialization format. This fol-

lows the standard approach used by the Eclipse Modelling Frame-

work (EMF) to generate a number of plugins which are deployed

into the generic Eatop framework. To this end, the transformation

approach flattens the package hierarchy from the Documentation

MM. However, the original hierarchy is persisted by extending the

original metaclass annotations with information about it. That is,

all metaclasses (e.g., SystemModel and Situation) are rearranged di-

rectly under the root package EAST-ADL, and their documentation

annotations are extended by their original fully qualified names

(cf. annotations "<documentation> Original fully qualified name:

..."). Both the actual documentation and the original fully qualified

name in these annotations are exploited at runtime in Eatop.



Migrating from Proprietary Tools to Open-source Software
for EAST-ADL Metamodel Generation and Evolution MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

EAAdapter

Spawns Enterprise 
Architect process 

and gains access to 
Documentation MM

Generate .ecore
Metamodel

Ecore Metamodelgen

Implementation MM
(eastadl<version>.ecore)

Generate Eclipse 
Plug-ins with 

.genmodel, .xsd, and 
model/edit code

Post-processing

Initial 
.ecore

Spawned Enterprise 
Architect Process

Documentation MM 
(eastadl<version>.eap)

Documentation 
MM Contents

Eclipse-/Java-based EATOP Modeling Infrastructure Generator

org.eclipse.eatop.
eastadl<version>[.edit]

Deployed 
to EATOP

On MM 
Evolution

Ecore Metamodelgen

Java-based transformation 
using EMF and Sphinx APIs

Figure 2: OriginalWorkflow for theMMTransformationwith

the Commercial and Proprietary Tool Enterprise Architect

2.2 Transformation based on Sparx Enterprise
Architect

In this section, we describe the original transformation approach

described in Section 2.1. Whereas the code for this transformation is

published as OSS [9], it relies on the COTS tool Sparx Enterprise

Architect for maintaining the versions of the documentation MM

and is therefore not fully supported by OSS.

Figure 2 depicts the internal, technical workflow of the original

realization. The main focus of the figure is on the Eclipse-/Java-

based Eatop Modeling Infrastructure Generator with its two sub-

components EAAdapter and EcoreMetamodelgen. Additionally, the

Spawned Enterprise Architect Process simply provides access to the

Documentation MM maintained in Sparx Enterprise Architect.

ThisDocumentation MM is stored in a file with the naming schema

eastadl<version>.eap, where .eap is the default name suffix for

Enterprise Architect model files.

When the workflow is executed (typically after the metamodel

was evolved), the component EAAdapter spawns a process of Sparx

Enterprise Architect and, using this tool’s API, gains access to

the Documentation MM. In this process, the EAAdapter reads the

Documentation MM Contents and transfers them to an in-memory

representation based on Ecore. This representation can then be

read by the component Ecore Metamodelgen. This component is

realized by means of Java and uses the APIs of both EMF and Sphinx.

From the Documenation MM Contents, the component generates

an Initial .ecore file with the same structure than the original doc-

umentation MM. In the subsequent Post-processing step, particu-

larly the transformation to the Implementation MM is conducted

as described in Section 2.1. Furthermore, many technical aspects

specific to Sparx Enterprise Architect models are transformed

to EMF-specific concepts, and the metamodel is prepared according

to the expectations of the Eatop framework. For these purposes,

the transformation approach applies a multitude of post-processing

templates. In the final step, the component Ecore Metamodelgen

generates Eclipse plugins including a generator model, an EMF XMI

schema, and the model/edit code from the Implementation MM.

These plugins, which are specific to an East-Adl version, are then

deployed to Eatop.

Eclipse-/Java-based 
EATOP Modeling 
Infrastructure Generator

Eclipse-/Java-based 
EATOP Modeling 
Infrastructure Generator

Spawned Enterprise 
Architect Process

Documentation 
MM

Documentation 
MM

Windows Operating System

MM

ActiveX Component 
Object Model (COM)
ActiveX Component 
Object Model (COM)

«use»«use» «use»«use»
EAAdapterEAAdapter

Model access

...

Figure 3: Technical, Platform-dependent Principle for Ac-

cessing Enterprise Architect Artifacts from Java

Figure 3 depicts the technical principle behind gaining access

to the Documentation MM maintained in Sparx Enterprise Ar-

chitect. This tool’s API relies on the ActiveX Component Object

Model (COM) technology provided by the COTS operating system

Microsoft Windows. In order to execute the EAAdapter compo-

nent and thereby gain access to the Documentation MM, Sparx

Enterprise Architect as well as Windows have to be installed

on the host computer, and the corresponding .dll library file has

to be copied to the Java implementation. Beyond the general dis-

advantages of commercial and proprietary software mentioned in

the introduction, the need for this platform-dependent and awk-

ward setup is a particular issue in the application of the original

approach.

3 ECLIPSE-NATIVE APPROACH FOR
GENERATING THE EATOP MODELING
INFRASTRUCTURE

In the upcoming Section 3.1, we describe the technical realization

of our pure open-source approach for the generation and evolution

workflow for East-Adl. Subsequently, we compare in Section 3.2

the open-source-only approach with the mixed COTS/open-source

one and discuss the advantages of the pure open-source approach.

3.1 Realization based on Eclipse

Figure 4 depicts the internal, technical workflow of our new Eclipse-

native generator for the general transformation approach described

in Section 2.1. We again realize the component in Java and apply

the EMF and Sphinx APIs. Similarly to the original workflow, the

workflow is started due to the evolution of the East-Adl meta-

model and takes as input a documentation MM that is structured as

explained in Section 2.1. In contrast to the original workflow, this

documentation MM is stored as an .ecore file and has been created

andmaintained using the documentation and diagramming features

of EcoreTools [14] included in EMF. In the step Post-processing

(which is realized by means of an adapted subset of the original

post-processing templates), the Documentation MM gets trans-

formed into the Implementation MM. From this Implementation

MM, the Eclipse plugins including a generator model, an EMF XMI

schema, and the model/edit code are generated, like in the original

approach.

In the documentation MM, the textual documentation for the

particular metaclasses and the package-wise diagrammatic docu-

mentation is conducted by means of the EMF-native component



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Jörg Holtmann, Jan-Philipp Steghöfer, and Henrik Lönn

Eclipse-native EATOP Modeling Infrastructure Generator

Implementation MM 
(eastadl<version>.ecore)

Generate Eclipse 
Plug-ins with 

.genmodel, .xsd, and 
model/edit code

Post-processing

On MM 
Evolution

org.eclipse.eatop.
eastadl<version>[.edit]

Deployed 
to EATOP

Documentation MM 
(eastadl<version>.ecore) (astadl<version>.ecore)rssionrsion

Documentation & diagrams 
through EcoreTools

g

Java-based transformation 
using EMF and Sphinx APIs

Figure 4: New Eclipse-native Workflow for the MM Transfor-

mation

Figure 5: Screenshots—Package-wise Class Diagrams and

Class-wise Documentation through EcoreTools

EcoreTools. Figure 5 depicts screenshots of this approach. The up-

per part of the figure shows a class diagram for the package EAST-

ADL.Structure.SystemModeling (cf. left part of Figure 1). Like En-

terprise Architect and most modeling tools, the EcoreTools diagram

editor provides a model element palette, the actual diagram canvas

with typical layouting capabilities, and a property editor. For the

same package, the middle part of the figure depicts a documentation

table, which provides a row-wise list of the package’s metaclasses

that can be selected for editing (i.e., metaclass SystemModel in the

figure). In contrast to Sparx Enterprise Architect where the user

has to open a property editor for each class, the documentation

table provides a convenient overview of the documentation texts

for all classes of a package. The bottom part of the figure shows

the text editor for the selected table row. This text editor provides

the same text editing capabilities than the property editor of Sparx

Enterprise Architect.

We provide the new approach including a comprehensive user

documentation in [18].

3.2 Improvements in the New Approach

Our proposed approach offers equivalent documentation fea-

tures to the original one. The diagramming and layouting features

of EcoreTools are essentially the same as in Sparx Enterprise Ar-

chitect. Regarding the textual documentation of the metaclasses,

we favor the EcoreTools documentation approach with a package-

wise table overview over the documentation approach of Sparx

Enterprise Architect. Thus, we consider the features of the Ecore-

Tools documentation approach for maintaining the documentation

MM at least equivalent to the features provided by the COTS tool.

The direct comparison of Figure 4 with Figure 2 also shows

that our Eclipse-native approach is simpler and more straightfor-

ward than the original approach. This also implies a better main-

tainability of the transformation approach. As Klint et al. [19]

have shown, the maintainability of language implementations in-

creases when using dedicated tools for the development of external

domain-specific languages. Likewise, Goldschmidt and Kübler [17]

cite Oman and Hagemeister [21] in the context of DSLs who em-

phasize that maintainability depends— amongst other things— on

the management practices and the software environment, both of

which become simpler with our new, Eclipse-native approach.

Furthermore, as our Eclipse-native, fully open-source approach

does not require buying a COTS tool and a COTS operating system

anymore, the software we make available [18] enables all interested

stakeholders to try, reenact, reuse, and improve the approach as

well as East-Adl itself. Enabling these basic tenets of OSS [28] will

hopefully have positive long-term effects on the development of

East-Adl since the foundations of the language become available

to a broader audience, including potential adopters that do not have

a license of Sparx Enterprise Architect, but also researchers

and students, traditionally strong contributors to East-Adl.

At the same time, our migration from the original approach re-

lying on a COTS tool to OSS avoids vendor lock-in for Eatop

stakeholders. Although Sparx Enterprise Architect has been

actively developed for over 20 years now [25], it is still a risk to fully

rely on only one tool vendor. EMF is under active development as

almost as long as Sparx Enterprise Architect [16] and is avail-

able as open-source itself. This means that even though projects of

the Eclipse Foundation can also get archived, it is possible to invest

own resources to keep technology alive.

The Eclipse-native approach alsomeans thatmaintaining the doc-

umentation MM and generating the implementation MM as well as

the Eatop modeling infrastructure is now platform-independent.

It relies only on Eclipse and Java and has been tested on Microsoft

Windows, macOS, and Linux.

Most importantly, however, the Eclipse-native approach im-

proves rapid prototyping. Since the documentation MM and the

transformation to the implementation MM are maintained and

executed in the same tool, more convenient rapid prototyping of

changes in the metamodel can be achieved. Furthermore, the East-

Adl language is modular in the sense that new language concepts

can be easily hooked into the language infrastructure by setting

the concepts’ super-types to abstract metaclasses. Together with

the new feature that no export or use of bridge technologies are

necessary, a change in the metamodel can be directly tested with

new model and edit code.

At the same time, the powerful (meta-)model co-evolution

mechanisms like Eclipse Edapt™ [11] or one of its extensions (see,

e.g., [29]) could be used with our Eclipse-native approach, which

is missing in the original approach. Eclipse Edapt™ works directly



Migrating from Proprietary Tools to Open-source Software
for EAST-ADL Metamodel Generation and Evolution MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

on Ecore metamodels and models. That means that the history of

changes in the metamodel can be directly used to create migrators

for existing models. The original approach would not be amenable

to such a workflow since the documentation MM was maintained

in Sparx Enterprise Architect and a change history is therefore

not available to Eclipse Edapt™.

Rapid prototyping and (meta-)model co-evolution can have a

major impact on the future development of East-Adl. The bene-

fits of rapidly prototyping languages has been shown in different

domains, for example, for domain-specific languages for wireless

sensor networks [24]. Rouvoy and Merle [23] show that the ability

to rapidly prototype architecture description languages makes it

easier to develop new, useful architectural designs. The ability to

quickly make changes to the East-Adl specification and see the

impact on the editors and how these changes are represented in

the tooling directly will make it easier for the East-Adl Associa-

tion to explore new directions for the language. At the same time,

the ability to use Eclipse-native tools to create migrators for new

language versions will allow the users of East-Adl to easily and

seamlessly adopt new versions of the language when they become

available. This ability also supports rapid prototyping as the impact

of language changes on instances can also be inspected directly.

4 CONCLUSION AND FUTUREWORK

In this tool paper, we show howwe eliminated a COTS tool from the

otherwise open-source-based generation and evolution workflow

of East-Adl. We describe the functional and technical principles

behind both approaches, compare them, and discuss the advantages

of the pure open-source solution.

By eliminating the COTS tool from the workflow, we establish a

pure open-source solution and enable all open-source advantages,

which were earlier annihilated by the incorporation of the COTS

tool. The advantages encompass rapid prototyping, the avoidance

of vendor lock-in, platform-independency, a better maintainability,

equivalent documentation features, as well as the possibility of

(meta-)model co-evolution.

In terms of future work, the version 2.2 of East-Adl is currently

in the beta draft [7], so that the final version will be released in

near time. Thus, we plan to apply Eclipse Edapt™ [11] or one of

its extensions (e.g., [29]) to evaluate the (meta-)model co-evolution

w.r.t. the former East-Adl version 2.1.12 and thereby set the basis

for a state-of-the-art evolution management for future language

versions. Furthermore, due to the close alignment of East-Adl with

Autosar (cf. Section 2), one could create a similar open-source-only

solution for the generation and evolution workflow of the Artop

environment.

ACKNOWLEDGMENTS

Parts of this research were sponsored by Vinnova under grant

agreement nr. 2019-02382 as part of the ITEA4 project BUMBLE.

REFERENCES
[1] Vard Antinyan. 2020. Revealing the complexity of automotive software. In 28th

ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1525–1528. https://doi.org/10.1145/
3368089.3417038

[2] Artop User Group. 2022. Autosar Tool Platform (Artop). Retrieved August
2022 from https://www.artop.org/

[3] Autosar Consortium. 2022. Automotive Open System Architecture (Autosar)
Website. Retrieved August 2022 from https://www.autosar.org/

[4] Hans Blom, Henrik Lönn, Frank Hagl, Yiannis Papadopoulos, Mark-Oliver Reiser,
Carl-Johan Sjöstedt, De-Jiu Chen, and Ramin Tavakoli Kolagari. 2013. East-Adl—
An Architecture Description Language for Automotive Software-Intensive Systems.
White Paper, Version 2.1.12. Retrieved August 2022 from http://maenad.eu/
public/conceptpresentations/EAST-ADL_WhitePaper_M2.1.12.pdf

[5] Kevin Carillo and Chitu Okoli. 2008. The Open Source Movement: A Revolution
in Software Development. Journal of Computer Information Systems 49, 2 (2008),
1–9.

[6] East-Adl Association. 2022. East-Adl Bitbucket Repository. Retrieved August
2022 from https://bitbucket.org/east-adl/

[7] East-Adl Association. 2022. East-Adl Specifications. Retrieved August 2022
from https://www.east-adl.info/Specification.html

[8] East-Adl Association. 2022. East-Adl Website. Retrieved August 2022 from
https://www.east-adl.info

[9] East-Adl Association. 2022. Eatop Metamodel Generator. Retrieved August
2022 from https://bitbucket.org/east-adl/east-adl/src/Revison/org.eclipse.eatop/
metamodelgen/

[10] East-Adl Association. 2022. Eatop Resources. Retrieved August 2022 from
https://bitbucket.org/east-adl/east-adl/src/Revison/org.eclipse.eatop/

[11] Eclipse Foundation. 2022. Eclipse Edapt™. Retrieved August 2022 from https:
//www.eclipse.org/edapt/

[12] Eclipse Foundation. 2022. Eclipse Modeling Framework (EMF). Retrieved August
2022 from https://www.eclipse.org/modeling/emf/

[13] Eclipse Foundation. 2022. Eclipse Sphinx. Retrieved August 2022 from https:
//www.eclipse.org/sphinx/

[14] Eclipse Foundation. 2022. EcoreTools. Retrieved August 2022 from https://www.
eclipse.org/ecoretools/

[15] Electronics Architecture and Software Technology—Embedded Electronic Archi-
tecture (East-Eea) Project Consortium. 2018. East-Eea impact story: Paving the
way towards revolutionary automotive software development. Retrieved August
2022 from https://itea4.org/project/result/download/7181/EAST-EEA%20impact%
20story.pdf

[16] Eclipse Foundation. 2003. EMF 1.x Downloads. Retrieved August 2022 from
https://www.eclipse.org/modeling/emf/downloads/dl-emf1x.html

[17] Thomas Goldschmidt and Jens Kuebler. 2008. Towards Evaluating Maintainability
Within Model-Driven Environments. Software Engineering 2008.

[18] Jörg Holtmann. 2022. Source code and user documentation for the
Eclipse-native Eatop modeling infrastructure generator. Retrieved August
2022 from https://bitbucket.org/east-adl/east-adl/src/Revison/org.eclipse.eatop/
genmodelcodegen/

[19] Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. 2010. On the impact of DSL
tools on the maintainability of language implementations. In Tenth Workshop
on Language Descriptions, Tools and Applications. 1–9. https://doi.org/10.1145/
1868281.1868291

[20] Object Management Group (OMG). 2022. MetaObject Facility. Retrieved August
2022 from https://www.omg.org/mof/

[21] Paul Oman and Jack Hagemeister. 1992. Metrics for assessing a software system’s
maintainability. In Conference on Software Maintenance 1992. IEEE, 337–338.
https://doi.org/10.1109/ICSM.1992.242525

[22] Maenad Project Consortium. 2014.Maenad—Model-based Analysis & Engineering
of Novel Architectures for Dependable Electric Vehicles. Retrieved August 2022
from http://www.maenad.eu/

[23] Romain Rouvoy and Philippe Merle. 2012. Rapid prototyping of domain-specific
architecture languages. In 15th ACM SIGSOFT Symposium on Component Based
Software Engineering. 13–22. https://doi.org/10.1145/2304736.2304741

[24] Daniel A Sadilek. 2007. Prototyping domain-specific languages for wireless
sensor networks. In 4th Int. Workshop on Software Language Engineering. Citeseer,
76–91.

[25] SparxSystems Ltd. 2022. About Sparx Systems. Retrieved August 2022 from
https://sparxsystems.com/about.html

[26] SparxSystems Ltd. 2022. Sparx Enterprise Architect. Retrieved August 2022
from https://www.sparxsystems.eu/enterprise-architect/enterprise-architect-
editions

[27] Daniels Umanovskis and Stefan Voget. 2014. Eatop: An East-Adl Tool Platform for
Eclipse. Technical Report Deliverable D5.3.1. Model-based Analysis & Engineering
of Novel Architectures for Dependable Electric Vehicles (Maenad Project). Re-
trieved August 2022 from http://www.maenad.eu/public/Deliverables/MAENAD_
Deliverable_D5.3.1_EATOP_V3.0.pdf

[28] Jovica Ðurković, Vuk Vuković, and Lazar Raković. 2008. Open source approach in
software development—Advantages and disadvantages. Management Information
Systems 3 (2008), 29–33.

[29] Y Vissers, JGM Mengerink, Ramon RH Schiffelers, Alexander Serebrenik, and
Michel A Reniers. 2016. Maintenance of specification models in industry using
Edapt. In 2016 Forum on Specification and Design Languages (FDL). IEEE, 1–6.
https://doi.org/10.1109/FDL.2016.7880374


