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ABSTRACT
In this paper, we propose a general architecture for designing lan-
guage servers for hybrid modeling languages, that is, modeling
languages that contain both textual and graphical representations.
The architecture consists of a textual language server, a graphi-
cal language server, and a client that communicates with the two
servers. The servers are implemented using the Language Server
Protocol (LSP) and the Graphical Language Server Protocol (GLSP)
and are based on a shared abstract syntax of the hybrid language.
This means that only static resources need to be common between
the graphical and textual language servers. The servers’ separa-
tion allows each to be developed and maintained independently,
while also enabling forward-compatibility with their respective
dependencies.

We describe a prototype implementation of our architecture in
the form of a hybrid editor for the UML-RT language. The evalua-
tion of the architecture via this prototype gives us useful insight
into further generalization of the architecture and the way it is used.
We then sketch a suitable extension of the architecture to enable
support for multiple diagram types and, thus, multiple graphical
views.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; Domain specific languages.
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1 INTRODUCTION
With the increasing amount of complexity in software systems, it
is important to be able to express them clearly and consistently.
This is a must to ensure effective communication among possibly
diverse sets of stakeholders such as designers, developers, and
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users. Abstracting away implementation-level details is one way to
provide clarity to a user. Consistency can be achieved by a definition
of rules and patterns. This type of approach to expressing systems
allows them to be easily understood by way of familiarity with
their domain, rather than programmatic knowledge.

The high-level motivation of our work is to enable better ways to
express models of software as used in Model-Driven Development
(MDD). The ultimate goal is to facilitate the development of hybrid
editors for modeling languages.

We propose a methodology of creating two separate services
to equip Integrated Development Environments (IDEs) with the
capabilities of hybrid editing. This involves the implementation of
two concrete syntaxes, one textual and the other graphical, each
providing suitable representations (or views) of the same underly-
ing model and its abstract syntax. While this methodology seems
straightforward conceptually, it is challenging to implement in a
way that supports cohesion, maintainability and evolvability.

2 BACKGROUND
2.1 Hybrid Modeling Languages
Hybrid modeling languages are characterized by their use of more
than one concrete syntax paradigm. In this paper, we will use the
term to refer specifically to a modeling language which has both a
textual concrete syntax, and a graphical concrete syntax.

2.2 Language Servers
The classical method of implementing support for a language in an
IDE usually results in high coupling to the IDE, even though most
modern IDEs are functionally similar. Language servers take advan-
tage of these similarities by treating IDEs as clients to be serviced
and whose behaviour is dictated by the language’s semantics.

2.2.1 Language Server Protocol. The Language Server Protocol
allows a client IDE to trade information and instructions with a lan-
guage server. The language server can run as a background process
and be queried by the IDE in order to give the user advanced edit-
ing features such as “auto complete”, “go to definition/declaration”,
“find all references”, among others [17]. LSP allows for the client
IDE to be completely language-agnostic.

2.2.2 Graphical Language Server Protocol (GLSP). The Graphical
Language Server Protocol [3, 5], is an open source framework origi-
nally built to facilitate displaying SVG graphs and providing editing
tools for graphical languages. This is all done in such a way that one
implementation would be able to service multiple IDEs compliant
with GLSP, hence the similarity in names between it and LSP.

GLSP functions by visiting a model, similar to how any other
modeling tool would parse it, and systematically creating graph
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objects that reflect each different object in the original model speci-
fied by the developer. GLSP also allows the language developer to
choose where to persist any elements of the concrete syntax that
do not impact the execution semantics of the model (i.e. graph X/Y
positioning, colors, shapes, etc.).

2.3 UML for Real-Time
The Unified Modeling Language for Real-Time (UML-RT) is a mod-
eling language that is specified as a UML Profile. The language
was created with the properties necessary to be able to describe
Real-Time systems [11, 16]. UML-RT’s established graphical speci-
fications made it a good candidate for our prototype hybrid editor.

The twomain components of a system’s architecture are its struc-
tural and behavioral aspects. UML-RT is able to create graphical
models of systems that are capable of specifying both these struc-
tural and behavioral aspects. Some tools for specifying UML-RT
models, such as the open-source eclipse-based Papyrus-RT [7], are
able to automatically generate functional code from a given model.

RTPoet is a toolset that we have created for the purposes of
working with UML-RT models of different forms [12]. The original
use case was to bridge the gap between different UML-RT imple-
mentations (specifically Papyrus-RT [7] and RTIST/RSARTE [8, 9])
by model transformation. We have already specified a textual im-
plementation of UML-RT under the RTPoet umbrella. Once the
UML-RT hybrid language server prototype is sufficiently mature,
we intend to integrate it into the RTPoet suite.

3 PROPOSED ARCHITECTURE
In this section, we identify some key requirements that the architec-
ture must satisfy. Then, the structure of the architecture is described
together with sequence diagrams showing the interaction between
components to realize aspects of these requirements.

The use of any language in an IDEmust include the support of the
standard CRUD (create, read, update, delete) operations. However,
these are not a necessary point of focus for our proof-of-concept
implementation, as these operations are mostly realized by the
language definitions contained in the servers themselves. We are
more interested in the design of a high-level architecture.

Current best practices in GUI development include the use of
the Model-View-Controller (MVC) design pattern. GLSP’s design
is informed by this pattern, as graphs naturally suggest the use of
GUIs. We have chosen to model the textual language server in a
similar way. While MVC is not normally applied to text editors, its
properties allow us to maintain synchronization between views.
In the context of language servers, most of the responsibilities of
the “controller" and “view" are carried out by the client, language-
specific tasks are delegated to the server.

3.1 Four Core Interface Requirements
Figure 1 shows our proposed general approach to creating the
architecture for hybrid language services. There are four main
interfaces that must be implemented in order to fulfill the CRUD
use cases in each of the textual and graphical views while keeping
them synchronized. These four interfaces are denoted by the edges
in the figure, and each represent a transformation to, or from, the
views and model. Essentially, the model is the abstract syntax,

Figure 1: High-Level Relationship Between Graphical and
Textual Views

while the graphical and textual views are two different types of
concrete syntaxes used to specify and represent it. The four different
interfaces will be discussed in more detail below.

3.1.1 Generation. We will use “generation" or “regeneration" to
refer to the transformation of the textual view into the model. This
is the intended usage of Xtext [4], and will not be any different
than the first step of implementing a textual DSL (Domain-Specific
Language) using the tool. The realization of this interface requires
the specification of a grammar for the language. The textual lan-
guage server uses the grammar to instruct the language client how
to perform this transformation.

3.1.2 Serialization. The model that the textual view generates re-
tains enough information about the original specification that it is
still possible to perform a transformation from the model itself back
to the textual view. This process is the inverse to the previously
explained one, and the client is advised on how to do so by the
textual language server.

3.1.3 Rendering. The “rendering" of the graphical view should
be realized by specifying a mapping between model objects and
graph element objects (predominantly different types of nodes and
edges). More granular parts of the language may be left out of this
mapping, if they can not be appropriately graphed and can be more
effectively handled by the textual view (e.g., action code in state
machines).

3.1.4 Updating. Graphical views typically only display a subset of
the elements of the model they represent. Lower-level properties
may be simplified or excluded altogether, meaning we cannot reli-
ably retrieve these by transforming a graphical view into a model.
We can, however, manipulate the model directly by keeping track
of the graph elements’ source mappings. GLSP allows for this to be
done natively. We will refer to this as “updating" the model, as we
are applying an update directly to the model objects by proxy of
the graphical elements. Models can be kept complete and correct
by restricting the operations available in the graphical view (often
by using “palettes of operations"). Each time an update is applied,
the graphical view must then be rendered anew using the updated
model.

3.2 Architecture Diagram
Figure 2 depicts our proposed general architecture for hybrid lan-
guage servers. The diagram shows the communication between two
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language clients, encapsulated together in the “hybrid language
client", and two language servers, together in the “hybrid language
server". The two pairs of clients and servers communicate on dif-
ferent ports as, despite their similarities, they make use of different
protocols.

The previously described “generation" and “serialization" occur
between the “textual client" and the “model" shown in figure 2.
Though, the methods that the client uses to do so are given to it
by the textual language server. The same is true with respect to
the graphical side: “rendering" and “updating" occur between the
“graphical client" and “model", and the information on how to carry
out these steps is held by the graphical language server.

Figure 2: Architecture of Hybrid Language Server

3.3 Sequence Diagrams
In order to better illustrate the interaction between the modules in
the proposed general architecture, some sequence diagrams depict-
ing different behaviours have been included below.

Figure 3: Sequence Diagram: Textual Edit Action

The sequence diagram in figure 3 shows how a change to the
textual view would be propagated to the graphical view.

Figure 4: Sequence Diagram: Graphical Edit Action

The sequence diagram in figure 4 shows how a change to the
graphical view would affect the textual view. By simply observing
the shape of this sequence compared to the previous one, it is clear
that they are very similar.

4 PROTOTYPE IMPLEMENTATION
In order to evaluate our proposed architecture, we have created
a prototype hybrid language server, which we will refer to as the
“RTPoet language", based on UML-RT. Below is a description of our
implementation of the four core interfaces described in section 3.1.
This is followed by a discussion of our findings.

4.1 Generation
To implement the generation interface, a textual grammar for the
RTPoet language has been specified using Xtext.

While most Xtext-based languages often define code generation
instructions in addition to a grammar, the code stubs included when
creating a new Xtext project are sufficient to allow model files to
be generated from the textual view. This is possible because the
model file is purely structural.

We have made our Xtext implementation of UML-RT (i.e., the
RTPoet language’s textual syntax) available as part of the RTPoet
tool suite, available on GitHub [13].

4.2 Serialization
In order to be able to serialize a model back into the textual view,
specific mappings to code templates must be specified for each of
the model objects. Whereas the aforementioned generation process
would typically yield “markup language" string representations
of objects as their target (such as EMF/XML models), this type of
transformation would need to yield complete and correct “code".
The templates can consist of predefined code blocks with different
types of values and identifiers substituted into the appropriate
places. A traversal of the model’s abstract syntax tree allows the
string templates to be correctly ordered. This is similar to how an
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Xtext language might normally be equipped to generate code, but
it easier to implement considering we already have access to the
target language’s grammar and metamodel.

4.3 Rendering
The metamodel resulting from the specification of the Xtext gram-
mar was used to automatically create a full Java class model for the
RTPoet language. The structure of these classes exactly reflects the
scope of models specifiable in the textual syntax. This collection
of Java classes was used as a basis for the implementation of the
graphical language server. The collection’s format is identical to
the metamodel. The next step was to map each metamodel type to
an appropriate GLSP graphical type. GLSP contains its own classes
for graph elements, and assigns them SVG properties at runtime.

Next, a model visitor was created, based on one of GLSP’s ex-
tension points, that converts any given model into a collection of
graphical objects based on the mappings. The graph resulting from
our rendering operation is held directly in memory. The source
mappings are kept track of by GLSP. Since we have opted to not
store any additional graphical properties, we chose to implement
automatic arrangement of the elements.

4.4 Updating
Some basic update instructions were added to the graphical lan-
guage server, such as the ability to add a new simple state to a state
machine. However, the implementation of the prototype was halted
here, as there were architectural incompatibilities that needed to
be addressed. This will be discussed in detail below.

5 NEW PROPOSED ARCHITECTURE
We found that, given our current approach, the functionality of our
implementation of UML-RT was not up to par with existing editors.
In order to implement hybrid languages in a more convincing,
user-friendly way, single views are insufficient. In particular, single
views offer poor support for the following modeling concepts and
activities.

5.1 Containment
A concept that is present in many modeling languages is that of
object containment. If an object owns a collection of other objects,
it may make sense to render the collection of objects within the
boundaries of their owner. However, as object ownership depth
increases, this becomes harder to manage. A better solution is to
render only objects with a direct containment relation. This would
mean that in order to interact with elements of greater depth, we
would need the ability to drill down into elements using new views.

5.2 Projection
Models often containmany elements, complicating their user-friendly
graphical display. Projection, that is, the selective display of only
specific subsets of model elements, can mitigate this problem.

These projections can be based on language concepts, such as
types or other fixed properties, and they can be further influenced
by user input. For instance, some elements in a UML-RT model
represent structure, while some other represent behaviour (as seen
in Figure 5). While displaying different projections simultaneously

in a single view can be useful, it can also cause confusion, and
support for different views seems preferable in general.

5.3 Static Analysis
A static analysis often involves using the model as an input and,
after some additional processing, returning an output whose syntax
and semantics may well be outside the scope of the modeling lan-
guage itself. For example, we might want to see a full traversal of a
state machine. This would include duplicate states, something not
possible using only the vanilla model view. Therefore, rendering
graphs for these types of operations is intrinsically incompatible
with a single model visualization.

Figure 5: Structure vs Behaviour in UML-RT Model

In summary, an architecture for hybrid language servers should
enable support for different views. Only then can different parts of
the model, as well as results of different projections and analyses,
be displayed most appropriately.

By using multiple different graphical views, we may represent
languages’ structure more accurately while also providing an ex-
tension point for supplemental graph functionality.

5.4 Modified Architecture
Our architecture can be modified to support multiple views. This
modification is minimally invasive and, from the point of view of
the client, it is the same as before. The new proposed architecture
can be seen in figure 6.

Figure 6: New Architecture of Hybrid Language Server

5.4.1 Switching Views. A short sequence diagram depicting the
switching of graphical views can be seen in figure 7. The initial
action could come from simply clicking on an element. In this case,



A General Architecture for Client-Agnostic Hybrid Model Editors as a Service MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

the client would send the click with a reference to the clicked el-
ement along with necessary metadata. We can also see that the
latter half of the sequence is the same as the previous graph ren-
dering sequence in figure 3. Unless we explore the local scope of
the Graphical Language Server, the process will not appear much
different.

Figure 7: Sequence: Graphical View Switching

6 RELATEDWORK
Passing Graphical Information Using LSP. Papers [14] and [15]

discuss the proposal and implementation of a custom graphical
editing solution for EMF languages, using LSP without any exten-
sions. Their solution involves converting the EMF model into a
JSON-based format in order to exchange it with the server across
LSP. The JSON-based equivalent of the whole EMF model is what is
transmitted, including pure graph properties to render the graph as
an SVG (e.g. width:100, height:50, shape:square). The usage
of JSON-based messages makes this effectively an implementation
of a textual language server. They also define actions that the front-
end client is able to perform and manually map them to specific
LSP messages, such as creating or removing edges or nodes. In
the earlier of the their two papers, they propose the solution as
completely compliant with LSP as a prototype. In the later paper,
they discuss the possibility of extend LSP or defining a brand new
protocol, but ultimately decide to remain compliant with LSP. Since
our work separates the two editing mediums’ implementations, we
will not need to evaluate problems such as protocol extensions.

UML Profile Hybrid Editors. Addazi et al. [1] propose a methodol-
ogy of implementing hybrid languages based on UML by extending
it (i.e. creating UML profiles). In concept, their approach is similar
to ours, as it makes use of a shared abstract syntax between the two
different views of a given language. Similar to our proposed archi-
tecture, the source of their shared metamodel is based on Xtext’s
grammar specifications. The authors use UML as a basis for their
specification of Xtext grammars, allowing them to leverage its ex-
isting graphing libraries. Our approach does not rely on UML, but
it could be extended in the same way (i.e. used as a basis for typing
in the Xtext grammar specification). However, reusing any of the
graphical editor implementation designs in this work is not possible
in the context of language servers. The UML graphing libraries’ de-
pendence on IDE-specific features render them incompatible with
our proposed architecture both in concept and in practice. That be-
ing said, the stability of UML could motivate the creation of similar

UML-based graphing libraries that operate within the boundaries
of graphical language servers.

bigER Modeling Language. Glaser et al. have created the “bigER"
tool [6] which, as of yet, seems to be the most closely related to
our own work. The bigER tool is an example of a functional hy-
brid language server that also makes use of Xtext. The approach
to the design of the bigER tool mirrors one of our prior proposed
architectures for hybrid language servers [19, 20]. At a high level:
graphical operations are mapped to code snippets which are in-
jected directly into to the textual model. This is similar to the code
templating required for defining the “serialization" interface, but
controlled by a palette of operations similar to that required by
the “updating" interface (as seen in figure 1). The textual model
can then regenerate the graphical model, displaying the changes
graphically. We did not pursue this style of architecture for several
reasons. Most notably, this solution to synchronization of the two
editors is more difficult to specify and maintain as the size of the
language increases. For more complex languages, static analysis
might need to be done on the code in order properly contextual-
ize the code snippets. Our current proposed architecture uses the
language’s structure to guarantee completeness and correctness of
graphical edits. Language specification errors in our implementa-
tion can more easily be detected at compile time, whereas errors
using this style of implementation may only be clear at runtime.

Graphical Viewspoints. In [2], domain-specific modeling lan-
guages with multiple “viewpoints" are discussed. The work de-
scribes the nuances of the relationship between model and graphs.
The authors present amethodology for designingmulti-viewDSVLs
(Domain-Specific Visual Languages) in which they note that models
can be projected into submodels in different “viewpoints" (which
are analogous to the “views" described in this work). The concept of
viewpoints closely mirrors our proposed implementation of views.
While our work was not inspired by this paper, it corroborates
our findings well. The authors’ work predates LSP, meaning that
it evidently does not make use of it. This is a key differentiating
factor relative to our work.

7 CONCLUSION AND FUTUREWORK
We have proposed and evaluated a methodology for designing and
implementing hybrid language servers, in the form of a general
architecture, that offers a cohesive approach, simplifies maintain-
ability, and facilitates language evolution.

We anticipate that there is much work to be done in the study of
hybrid language design and usability. This may be inspired by ex-
isting research on best practices for textual and graphical mediums
alike [10, 18]. We hope that our findings may be foundational to
the accessibility of hybrid modeling languages, such that we may
facilitate future work in studying them as a whole, and not only
relative to language servers.
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