
Classifying Properties: An Alternative to the Safety-Liveness
Classification*

Gleb Naum0vich
Polytechnic University, Brooklyn

Department of Computer and Information Science
Brooklyn, NY 11201

(718) 260-3554
gleb@poly.edu

Lori A. Clarke
Computer Science Department

University of Massachusetts
Amherst, Massachusetts 01003

(413) 545-2013
clarke @ cs.umass.edu

Abstract

Traditionally, verification properties have been classified as
safety or liveness properties. While this taxonomy has an at-
tractive simplicity and is useful for identifying the appropri-
ate analysis algorithm for checking a property, determining
whether a property is safety, liveness, or neither can require
significant mathematical insight on the part of the analyst. In
this paper, we present an alternative property taxonomy. We
argue that this taxonomy is a more natural classification of
the kinds of questions that analysts want to ask. Moreover,
most classes in our taxonomy have a known, direct mapping
to the safety-liveness classification, and thus the appropriate
analysis algorithm can be automatically determined.

1. Introduction

A number of finite state verification approaches are be-
ing developed. Some approaches are designed to check
fixed, general properties of software systems, such as free-
dom from deadlock. Other approaches offer the flexibility
of specifying and checking application-specific properties.
Traditionally, properties have been classified into safety and

*This research was partially supported by the Air Force Research Lab-
oratory/Ib'TD and the Defense Advanced Research Projects Agency un-
der Contract F30602-97-2-0032; by the National Science Foundation un-
der Grant CCR-9708184 and by IBM Faculty Partnership Awards dated
5/21/99 and 6/20/2000. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreled as necessar-
ily representing the official policies or endorsements, either expressed or
implied of the Defense Advanced Research Projects Agency, the Air Force
Research Laboratory/IFTD, the U.S. Government, of the National Science
Foundation, or of IBM.

Permission to make digital or hard copies of all or pert of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first Page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT :)000 (FSE-8) 11100 San Diego, CA, USA
© 2000 ACM ISBN 1-58113-205-0/00/0011 ...$5.00

liveness properties. In practice, it is often important to know
whether a given property is a safety or liveness property,
because several finite state verification approaches use dif-
ferent analysis algorithms for checking safety and liveness
properties [6, 7, 11,13, 18]. Determining whether a property
is safety, liveness, or neither, however, can require signifi-
cant mathematical insight on the part of the analyst. In this
paper, we present an alternative property taxonomy. We ar-
gue that this taxonomy is a more natural classification of the
kinds of questions that analysts want to ask (i.e., express as
properties). Moreover, most classes in our taxonomy have a
known, direct mapping to the safety-liveness classification,
and thus the appropriate analysis algorithm for a verification
approach can be automatically determined.

Intuitively, a safety property specifies that "bad things" do
not happen on all executions of a system and a liveness prop-
erty specifies that "good things" eventually happen on all
executions of a system [14]. Unfortunately, these intuitive
definitions are often difficult to use for distinguishing be-
tween safety and liveness properties. For example, a prop-
erty specifying that a communication socket must be created
on all executions of a system is a liveness property, which
agrees with the informal definition where the "good thing"
is the creation of a communication socket. However, a sim-
ilar property stating that a communication socket must be
created before any disk access happens is a safety property,
even though we can still view creation of a communication
socket as a "good thing".

Because informal definitions of safety and liveness are un-
reliable, one has to use the precise definitions, given in
Section 2.2. Using these definitions requires constructing
proofs, which are often non-trivial. Carrying out such proofs
is human-intensive and error-prone. In this paper, we pro-
pose a new property taxonomy for which it is easy to assign
a given property to one of several property classes. Further-
more, many of these property classes include only safety or
only liveness properties, so if the given property belongs to
one of these classes, no proofs are required for determining

159

http://crossmark.crossref.org/dialog/?doi=10.1145%2F357474.355066&domain=pdf&date_stamp=2000-11-01

whether it is a safety or a liveness property.

Our property classification is described in terms of se-
quences of recognizable events in the system under analysis.
We distinguish between property specifications that describe
finite, infinite, or both kinds of sequences of events. We
also distinguish between property specifications that must
be checked on only finite, only infinite, or all system execu-
tions. At present, it is usually assumed that a property has to
be checked on all system executions. In some cases, how-
ever, an analyst wants to specify sequences of events that
hold on only finite or only infinite executions. For example,
it does not make sense to check the property "all files must
be closed by the time a system terminates" on infinite exe-
cutions of a system or to check the property "the number of
files that are open simultaneously must have a fixed upper
bound" on finite executions. In cases where the analyst is
interested in checking a property on only finite executions,
the property has to be modified in such a way that it always
holds on all infinite executions and vice versa. In contrast,
with our proposed classification scheme the analyst explic-
itly indicates whether the property is specifying finite, infi-
nite, or both finite and infinite sequences, as well as indicates
whether the property is to be checked on finite, infinite, or
all executions of the system.

In the next section, we give some background on reason-
ing about software systems and provide formal definitions
of safety and liveness properties. In Section 3 we offer a cri-
tique of the safety-liveness taxonomy. Section 4 describes
our proposed property classification and gives an example
of using this classification with a property specification for-
malism. In Section 5 we describe the relationship between
our classification and the safety-liveness taxonomy. Finally,
Section 6 summarizes our results and discusses directions
for future research.

2. B ac k gr ou nd

In this section, we briefly introduce the two alternative ways
of representing a software system's behaviors, state-based
and event-based, and then introduce the traditional classifi-
cation of event-based properties into safety and liveness.

2.1. Event-based and State-based Properties

The two popular ways of modeling systems are state-based
and event-based 1. With the former, the model encodes all
possible states the system might be in during execution. For
a concurrent system, a system state may include the program
counters for each of the threads of execution and the val-
ues for all variables. Properties for systems with state-based
models usually can be represented as sets of sequences o f
state predicates. We call such properties state-based. With

t Although some properties, such as quality of service, may be difficult
to represent in one or the other or both of these formalisms, many interest-
ing properties can be represented.

the event-based approach to modeling systems, the model
encodes all event sequences that can be observed during ex-
ecutions of the system. The events used in these sequences
represent some actions of the system, with an arbitrary level
of granularity. For example, both a variable assignment and
a function call could be events. Actions that are not of in-
terest to the analyst usually are not assigned corresponding
events. Properties for systems with event-based models are
given in the form of sets of sequences of events that charac-
terize executions of the model of the system. We call such
properties event-based.

Theoretically, translations between state-based and event-
based representations of systems and properties are not dif-
ficult. For example, if a system is specified as a set of se-
quences of its states, any such sequence can be translated
into a sequence of events, where each event represents a
transition from one state to another. In the rest of this pa-
per we only deal with event-based models of systems and
property specifications.

We assume that event-based properties use a subset of the
events that could occur along an execution of the system un-
der analysis. Throughout this paper, we use the term event
sequence or just sequence to refer to any sequence of events
and execution to refer to a sequence of events observed on
an execution of the software system under analysis. 2

A property P is characterized by a possibly infinite set of
event sequences. We write 8 E P to represent the fact that
sequence 8 is in the set of event sequences of P . The alpha-
bet of property P is denoted ~ (P) and represents the union
of all events in the set of event sequences of P . For exam-
ple, if the set of event sequences of P is {(a, a), (a, b, a)},
then E (P) = {a,b}. A projection of an event sequence s
on an alphabet ~ is the event sequence s t obtained from s
by removing all events not present in ~. We use the nota-
tion slz to denote projection of sequence s on alphabet r,.
For this example, the projection of sequence (a, c, d, b, c, a)
on ~ (P) is (a, c, d, b, c, a)I{a,b} = (a, b, a). We say that a
sequence 8 is accepted by property P , denoting this s I- P ,
if the projection of s on the alphabet of P is in the set of
sequences represented by P . Thus, for the example above,
(a, c, d, b, c, a) l-- P.

Let E be the union of the alphabets for a set of properties
for a particular software system. We use E* to denote the
set of all finite sequences of events from E and E ~ to de-
note the set of all infinite sequences of events from E. We

assume that the empty sequence A E E*. For convenience,
we introduce a function prefixes : E ~ --+ 2 E* that, given an
infinite sequence or, returns all finite prefixes of 0r, including
the empty sequence A.

2,,Execution of the software system under analysis" is actually a trace
or path through the event-based model of the system. Each event sequence
that could be observed during execution of the system is represented by a
trace through the model of that system. For brevity, we refer to this simply
as an execution.

160

To use a uniform notation, many finite state verification ap-
proaches replace each finite execution v of a system with an
infinite execution ~r by adding infinitely many instances of
an empty event T to the end of v: tr = va-a- For con-
venience, we assume that no non-empty events can follow
event T, which means that a- is used only for representing
system termination.

A property can be represented as a set of event sequences
that must hold on all system executions. For brevity, we
use 79e to denote the set of all possible properties over the
alphabet E . A property P holds for a system if and only if
all system execution event sequences satisfy P .

2.2. The Safety-Liveness Property Taxonomy
While the informal definition of safety and fiveness proper-
ties, given in the introduction, has intuitive appeal, generally
it is not precise enough to be used for determining whether
a given property is a safety or a liveness property.

A concise definition of safety and liveness properties based
on topology says that a property is a safety property if and
only if it is closed and a liveness property if and only if it
is dense [3]. Equivalently, a safety property is one that is
finitely refutable and a liveness property is one that is never
finitely refutable [1,3].

In this section, we describe the safety-liveness taxonomy
proposed by Alpern and Schneider [3] 3. The formal defi-
nition of a safety property is

P is a safety property iff

¥~r ~ g~,~r ~/ P =~ (1)

(:Iv e prefixes(iT) : (YtT' e E~,vt7 ' ~ P))

This definition means that P is a safety property if and
only if every infinite sequence of events that does not sat-
isfy this property contains a finite prefix such that no infinite
sequence obtained by adding an infinite suffix to this finite
prefix satisfies this property.

The formal definition of a liveness property is

Set P is a liveness property iff
(2)

Vv e E * , (3 a e E ~ : w t- P)

This definition means that P is a liveness property if and
only if for every finite sequence we can find an infinite suf-
fix, so that the resulting infinite sequence satisfies the prop-
erty.

Naturally, not every property can be classified as either a
safety or liveness property. For example, a property requir-
ing that on any execution of a system events a and b alternate
infinitely often cannot be refuted in all situations by either
considering only finite prefixes of system executions or only

31n the following definitions we translate the state-based representation
used in [3] into an event-based representation

infinite executions of the system. If we only look at finite
prefixes of system executions, we cannot detect situations
where the pattern ab will not repeat infinitely often on an ex-
ecution. Thus, this property is not a safety property. On the
other hand, looking at only finite prefixes, it may be possible
to detect situations where a and b do not strictly alternate.
Thus, this property is not a liveness property.

Alpern and Schneider show that any property P can be rep-
resented as an intersection of a safety property Ps and a live-
ness property Pt: Vtr E E ~, tr ~- P ¢~ tr b P8 A a ~-/~. For
our example in the previous paragraph, the property can be
split into Ps specifying that events a and b alternate on all
executions and /~ specifying that there is an infinite number
of a ' s and b 's on all executions.

While using the set of all sequences that represent a prop-
erty is a convenient theoretical characterization, it is not
very useful in practice. A property is usually specified by
a characteristic predicate on event sequences rather than by
their enumeration. The two most popular kinds of mathe-
matical machinery used for property specification are tem-
poral logics [17] and finite automata. A number of various
forms of temporal logics have been proposed for specifying
properties [15, 16, 22]. Biichi automata [21] are the most
popular kind of finite automata used for specifying proper-
ties [2, 5, 6, 12]. Biichi automata are known to be quite ex-
pressive, demonstrably more expressive than linear-time and
branching-time first-order temporal logics [8, 22].

A mechanical way for distinguishing safety and liveness
properties has been proposed by Alpern and Schneider [4].
In their approach, a property is specified as a Biichi automa-
ton A and then characteristics of the structure of this au-
tomaton are used to classified the property as safety, live-
ness, or neither. In cases where the property is neither safety
nor liveness, a simple procedure can be used to produce
two Biichi automata As and At, where As specifies a safety
property, At specifies a liveness property, and the intersec-
tion of infinite sequences accepted by As and At is the exact
set of sequences accepted by A. Unfortunately, using this
approach in cases where properties are not initially repre-
sented as Biichi automata is cumbersome. Additional in-
strumentation is needed to translate from the native prop-
erty representation to the Biichi automaton representation,
to then perform the split into two Biichi automata, one for
a safety property and the other for a liveness property, and
then finally to translate these two automata back to the native
property representation. In addition, this approach does not
solve the problem of specifying whether the property must
hold on finite, infinite, or all executions of the system.

3. Critique of the Safety-Liveness Taxonomy

The safety-liveness taxonomy has an attractive simplicity,
providing two fundamental classes of properties, so that any
property can be represented as a combination of two prop-

161

erties, one from each class. While it is an elegant and the-
oretically useful classification, in our opinion it has several
important problems.

The first problem is terminology. Intuitively, the term safety
property implies that i f an execution of a system does not
satisfy such a property, it represents an unsafe behavior.
While this may be true, safety properties are not the only
kind of property that specifies what it means for a software
system to operate safely. Consider a typical liveness prop-
erty specifying that a request of service must eventually be
followed by a provision of this service. If the system being
verified contains an execution that does not satisfy this prop-
erty, this execution can be characterized as unsafe. Thus, a
condition describing a safe operation of a system can be ex-
pressed by a property that is not a safety property!

Using the term liveness is also problematic. For example,
the intuitive explanation of the expression "a connection is
live" is that the connection is enabled and ready to receive
or send messages. This is not the same meaning that live-
ness properties generally express, which is that something
good eventually happens, as in "eventually, a connection is
used for sending or receiving". Thus, the term liveness is
misleading.

The second problem with the safety-liveness taxonomy is
that while safety and liveness properties can always be dis-
tinguished formally, the difference between the two kinds
of properties is often difficult to see when using informal
approaches. For example, a property of the general form
"event a must never happen on any execution of the system"
is a safety property. (Suppose we have an infinite sequence
tr that does not satisfy this property, which means that this
sequence contains at least one event a. Let v be the prefix
of tr that includes a. No infinite sequence tr ~ can make the
sequence vtr ' accepting, since vtr ' contains a. According to
the definition in Equation (1), this is a safety property.) If
this property is changed to read "event a must never happen
on any infinite execution of the system (and is allowed to
happen on finite executions)", suddenly it becomes a live-
ness property. (Take any finite sequence v. I f v contains a,
then the infinite sequence w-r. . , satisfies the property, be-
cause this infinite sequence represents a finite execution. If
v does not contain a, we can add any infinite suffix that does
not contain a to v and the resulting infinite sequence satis-
fies the property. Thus, according to the definition in Equa-
tion (2), this is a liveness property.)

Finally, in our opinion, the most severe problem with the
safety-liveness taxonomy is that it is not much help to the
analysts who have to write properties. The criteria for clas-
sifying a property as either safety or liveness help in choos-
ing an appropriate method for verifying the property. These
criteria, however, do not facilitate the task of specifying the
property. Using a temporal logic or finite automaton rep-
resentation, the specification of a property is not guided by
whether the property being specified is safety or liveness. In

fact, in most cases the property has to be formally specified
before a decision can be made about whether it is a safety or
liveness property, or neither [4].

One specific example of this lack of assistance in specifying
properties is the decision of whether only finite, only infi-
nite, or all executions of the system have to satisfy the prop-
erty. Making this simple and clear distinction is not trivial
with the safety-liveness taxonomy. For example, if Biichi
automata are used for property specification, and only fi-
nite executions have to satisfy the property, the analyst con-
structing the automaton has to do it in such a way that all
infinite executions are always accepted by this automaton.
This specification would be far simpler if the analyst could
explicitly specify that only finite executions of the system
have to be considered.

In the next section we propose an alternative property clas-
sification scheme to the safety-liveness taxonomy and argue
that it ameliorates the problems indicated in this section.

4. P r o p o s e d P r o p e r t y T a x o n o m y

By introducing a new property taxonomy, we argue that sim-
pler and more intuitive criteria of separating properties into
categories exist than that of the safety-liveness taxonomy.
Specifically, we use two criteria, one based on whether the
property contains only finite, only infinite, or both kinds of
event sequences and the other based on whether only finite,
only infinite, or all executions of the system should satisfy
the property. Note that such treatment of executions means
that we do not convert all finite executions of the system
into infinite executions by appending an infinite number of
empty events 7- to the end of all finite executions.

Our first classification criterion is based on what kinds of
execution sequences are represented by the property. There
are three obvious cases:

property P contains only finite event sequences:
V s E P : s E E * ,

property P contains only infinite event sequences:
Va E P : s E EW, and

property P contains both finite and infinite event se-
quences: 3sl , s2 E P : 81 E E*/~ 82 E E w.

Our second classification criterion is based on whether the
property refers to only finite, only infinite, or all executions
of the system. We use S to denote the set of all execution
sequences in the system. We recognize three cases:

• The property is for finite execution sequences only:
the property holds if Vs E S, a E E* ~ s F- P.

* The property is for infinite execution sequences
only: the property holds if Vs E S, s E E w =~ 8 I- P .

162

• The property is for both finite and infinite execution
sequences: the property holds if Vs E • :=~ s I-- P .

Intersecting these two criteria, we obtain nine property
classes. We refer to each property class by a tuple (A, B) ,
where A refers to the first criterion and B refers to the
second criterion. Thus, A E {inf,fin, both} and B E
{inf,fin, all}. Of these classes, class (inf,fin) is empty,
since it does not make sense to specify a finite behavior
with an infinite event sequence. For the same reason, class
(inf, all) is equivalent to class (inf, inf), in the sense that
any property from (inf, all) holds for a system if and only
if all executions in the system are infinite. Also, class
(both,fin) is equivalent to class (fin,fin) in the sense that
for any property/>1 from class (both,fin) there exists prop-
erty P2 from class (fin,fin) (obtained from/>1 by discard-
ing all infinite sequences) such that a system execution sat-
isfies P1 if and only if it satisfies/>2. Thus, we exclude
classes (inf ,fin) , (inf , all), and (both,fin) from our classifi-
cation as redundant. In the rest of this paper we refer to the
remaining six classes (fin,fin), (fin, inf), (fin, all), (inf , inf),
(both, inf), and (both, all) as our property classification.

It is obvious that this property specification is complete in
the sense that any property specifying a behavior that must
hold on all executions of a system belongs to one of the three
classes (fin, all), (inf, all), and (both, all). The additional
granularity provided by our second classification category is
for added convenience of specifying properties. The reader
might wonder how this classification compares to the tra-
ditional safety, liveness, or neither trichotomy used in the
safety-liveness classification scheme. In the next section,
we will explicitly describe this relationship.

In the following, we briefly describe each of the six cate-
gories. For each category, we give an example property that
deals with opening and closing of files in a program. For this
example, the events of interest to the properties correspond
to calls to open and e].ose file primitives.

(finCh)
A property P from class (fin,fin) specifies a set of event
sequences of finite length and requires that all finite execu-
tions of the system are present in this set. This means that
we can construct property p t that refers to all system exe-
cutions by including in the set of event sequences of p t all
event sequences of P and in addition all infinite event se-
quences: Pr = P U E w. Property P t holds on all executions
of a system if and only if property P holds on all finite ex-
ecutions of this system. An example from this category is a
property specifying that any file is always closed before it is
re-opened or before the program terminates.

(fin, in f)
This is an interesting case, because in order for an infinite
execution sequence ¢r to satisfy property P containing only

finite event sequences, the projection of cr on the alphabet of
P must be finite. In other words, ~r must have a representa-
tion wr t, where v is a finite prefix of~r and cr'[z(p) =)~. For
example, if the property specifies that on infinite executions
of the system, events a and b alternate (but not infinitely of-
ten), then an infinite system execution a b a b a b a b a b a b . . .
does not satisfy this property, because its projection on the
alphabet of the property {a , b} is infinite. On the other
hand, an infinite execution a b a b e e e e e . . , does satisfy this
property, because a b a b e e c e e . . -]{a, b) = abab, which is
a finite sequence on which each event a is followed by a b.
Since properties from set (fin, inf) are not concerned with
finite executions of the system, for each such property P we
can construct property P I E (fin, all) by including in the set
of event sequences of P ' all event sequences of P and in
addition all finite event sequences: P~ = P O E*. Property
P ' holds on all executions of a system if and only if prop-
erty P holds on all infinite executions of this system. An
example from this category is a property specifying that on
all non-terminating executions, any file is closed before it is
re-opened, and any file is only opened and closed a limited
number of times or not at all.

ffln,att)
A property P from this class can also be represented as a
conjunction of two properties/°1, P2, where t>1 E (fin,fin)
and P2 E (fin, inf), where both/>1 and P2 contain the same
event sequences as P . If v is a finite execution of the system,
then it satisfies P if it satisfies P1. If ~r is an infinite execu-
tion, then it satisfies P if it satisfies Pz. An example from
this category is a property specifying that any file is closed
before it is re-opened, and any file is only opened and then
closed a limited number of times or not at all.

(inf , inf)
A property P from class (inf, inf) specifies a set of event se-
quences of infinite length and requires that all infinite execu-
tions of the system are present in this set. We can construct
property p t E (both, all) by including in the set of event se-
quences of P ' all event sequences of P and in addition all
finite event sequences: P~ = F U E*. Property P~ holds on
all executions of a system if and only if property P holds on
all infinite executions of this system. An example from this
category is a property specifying that on all non-terminating
executions, any file is alternately opened and then closed re-
peatedly and infinitely.

(both, inf)
Any property P from this class can also be represented as
a disjunction of two properties P1 and />2, where />1 E
(fin, inf) and P2 E (inf , inf). In addition, we can construct
P~ E (both, all) by including in the set of event sequences of
p r all event sequences of P and in addition all finite event
sequences: p t = 19 t3 E*. Property P~ holds on all exe-

163

cutions of a system if and only if property P holds on all
infinite executions of this system. An example from this
category is a property specifying that on all non-terminating
executions, any file is alternately opened and then closed,
but may not be opened at all.

(both,air)
This is the most general of all classes. Any property from
this class can be represented as a disjunction of two proper-
ties P , and P~, where ['1 ~ (fin, all) and P2 6 (inf, inf), by
se t t i ng P , = P 17 E* and/ '2 = P f'l E ~. An example from
this category is a property specifying that on all executions,
any file is alternately opened and then closed, but may not
be opened at all.

4.1. QRE Property Specification Language

As an example of a property specification language that sup-
ports our property classification scheme, we describe an ex-
tension we are developing for the Quantified Regular Ex-
pressions (QRE) language [10,19]. The QRE language uses
regular and c0-regular expressions and represents a conve-
nient approach for specifying event sequencing properties.

A QRE specification consists of three parts: alphabet, regu-
lar expressions, and modifier. The alphabet simply lists all
events of interest to this property. Regular expressions de-
scribe sequences of events of interest to this property. The
modifier specifies whether the event sequences described by
the regular expressions must hold on all system executions
or on no system executions. In our extension, modifier is re-
placed by modifiers, which in addition to the quantification,
also indicates whether this property must be checked for fi-
nite, for infinite, or for both kinds of system executions.

At present, the alphabet is specified simply by listing all
events of interest to the property (in future, parameterization
and aliases will be supported). The alphabet must contain
all events explicitly used in the regular expressions but may
also contain additional events. We explain the need for such
additional events below when discussing the regular expres-
sions part of the QRE specifications.

If multiple regular expressions are present in a QRE, the
property is represented by a union of the sets of event se-
quences that each of these regular expressions specifies.
Regular expressions are specified using an assortment of tra-
ditional syntactic features for supporting regular languages.
Because of space constraints, we do not describe all these
features here. Importantly, one of the features used in this
language is complement. For example, "any event in the al-
phabet, except events a and b" may be represented in a QRE
as - [a , b] . Thus, an event e from the property alphabet may
not appear in the regular expression explicitly, although it is
represented implicitly.

Regular expressions in the extended QRE notation may be
co-regular expressions, to indicate that a certain pattern of

for events {open_F, close_F}
show (open_F; close_F); (open_F; close_F)#
on ALL INFINITE executions

Figure 1: An example extended QRE specification

events repeats infinitely often. We use the symbol © to repre-
sent such an infinite repetition. For example, a© specifies an
infinite sequence a a a a . . . In some cases, it is convenient to
specify a certain pattern of events that may or may not repeat
infinitely often. For example, an analyst may want to specify
that events a and b alternate, without restricting whether this
repetition is finite or infinite. We use the symbol # to specify
that the regular expression to which this symbol refers re-
peats either 0 or more times or infinitely: <expr># is equiv-
alent to <expr>* [<expr>@, where <expr> is an arbitrary
regular expression and I is a logical "or" operator.

Finally, an extended QRE property specification has modi-
fiers of two types. The first describes the quantification over
the program executions considered by the property by indi-
cating whether the event sequences described by the regu-
lar expressions must hold on all executions (modifier ALL)
or no executions (modifier NO) of the system. The second
describes the executions considered by the property by in-
dicating whether only finite executions (modifier FINITE),
only infinite executions (modifier INFINITE), or all possible
executions (modifier POSSIBLE) have to be compared to the
event sequences described by the regular expressions. Fig-
ure 1 shows a property specifying that file F has to be open
and then closed at least once, but could be open and then
closed an infinite number of times, with open and close
operations strictly alternating, to be checked only for infi-
nite executions.

A property specified in this extended QRE language can
be automatically classified into one of the categories of
our classification scheme. Whether the property should be
checked on finite, infinite, or all executions in the system is
specified explicitly. Information about whether only finite,
only infinite, or both kinds of event sequences are present
in the property specification can be derived from the regu-
lar expressions. If none of the regular expressions contain
symbols a or # then the property represents only finite event
sequences. If some regular expressions contain symbols ©
or #, then the structure of the regular expressions can be an-
alyzed to determine whether or not they may encode finite
sequences in addition to infinite sequences. For example, it
is easy to see that the property in Figure 1 belongs to class
(both, inf). The modifier INFINITE indicates that the prop-
erty refers to only infinite executions. The use of symbol
in the regular expression part indicates (in this case) that
the property contains both infinite and finite sequences. The
table in Figure 2 shows the QRE specifications of the ex-
ample properties concerning opening and closing files in a
program, given in the earlier part of this section, for each of
the six property classes.

164

Class
(fn,fin)

(fin, inf)

(~n~ all)

(inf , inf)

(both, in f)

(both, all)

Natural language description
File F is always closed before it is re-opened
or before the program terminates

On all non-terminating executions, file F is
closed before it is re-opened, and file F is
only opened and closed a limited number of
times or not at all

File F is closed before it is re-opened, and
file F is only opened and then closed a lim-
ited number of times or not at all

On all non-terminating executions, file F is
alternately opened and then closed repeat-
edly and infinitely

On all non-terminating executions, file F is
alternately opened and then closed, but may
not be opened at all

On all executions, file F is alternately
opened and then closed, but may not be
opened at all

QRE specification

for events {open_F, close_F}
show (open_F; close_F)*
on ALL FINITE executions

for events {open_F, close_F}
show (open_F; close_F)*
on ALL INFINITE executions

for events {open_F, close_F}
show (open_F; close_F)*
on ALL POSSIBLE executions

for events {open_F, close_F}
show (open_F; close_F)@
on ALL INFINITE executions

for events {open_F, close_F}
show (open_F; close_F)#
on ALL INFINITE executions

for events {open_F, close_F}
show (open_F; close_F)#
on ALL POSSIBLE executions

Figure 2: Examples of extended QRE specifications for different property classes

Other property specification formalisms can be adapted to
take advantage of our property taxonomy in a similar man-
ner. For example, linear temporal logic (LTL) [20] specifi-
cations can be extended with a keyword specifying whether
the property must be checked on only finite, only infinite,
or all executions and a keyword specifying whether certain
behaviors should be observed finitely or infinitely often 4.

Similarly, our classification scheme could also be used to ex-
tend property specification patterns [9]. Property specifica-
tion patterns map commonly occurring sequences of events,
such as "event a must follow event b, but only after event
c happens" to formal specifications in a variety of property
specification formalisms. Some specification patterns fall
within a single category from our taxonomy. For example,

4For example, the property that opening a file always should be fol-
lowed by eventually closing this file can be specified in LTL as n(open --~
<>clone). If a keyword specifying that this property should be checked
on only finite executions is used, the appropriate modification of the LTL
formula can be done automatically, yielding O~ermina'ce -d. 12(otmn --t.
<>close), where "cerminate indicates termination of the system. Simi-
larly, if a keyword specifying that only a finite number of open and c l o s e

operations should be allowed is used, automatic modifications of the for-
mula will yield O(open --+ Oc lose) A -~DOopen A -~nOclose .

the absence pattern with global scope, which states that a
certain event does not happen on any executions of the sys-
tem, is in (fin, all). Specifying that a certain event does not
happen on anyfinite executions of the system would involve
explicitly using the termination event to bind the scope in
which the absence is checked. For more complicated prop-
erties that already bind the scope, adding this termination
event may be tricky. In addition, at present it is hard to
use property patterns to place restrictions on whether certain
events must repeat infinitely, finitely, or whether this does
not matter. Thus, it appears to us that specification prop-
erty patterns would also benefit if they were extended with
additional keywords allowing the analyst to indicate whether
only finite, only infinite, or all executions of the system must
be checked and whether patterns must repeat infinitely or
finitely.

5. Relationship between the Proposed Taxon-
omy and the Safety.Liveness Taxonomy

In this section, for each of the six classes from our classi-
fication we describe the part of the safety-liveness universe

165

that it describes. For convenience, we denote the set of all
safety properties as ,5 and the set of all liveness properties
as £. The definitions of safety and liveness in Equations (1)
and (2) assume that all execution sequences in the system
are infinite (with all finite executions extended by an infinite
number of empty events r). To be able to use these defi-
nitions, we define a mapping InfProp that, given a property
P specified in our classification (e.g., where some event se-
quences may be finite), returns a property P~ that deals with
infinite event sequences. P ' is equivalent to P in the follow-
ing sense:

V a E E ~ : a E P ~ a E P '
Vv E E* : v E P =~ vrr . . . E pt (3)

P E (fin,fin) =V (E ~ \ {a i r E a}) _C p t

P e ((fin, inf) U (inf, inf) U (both, inf))
Yv E E* : vrr.. , e. p ,

This means that any infinite event sequence in our classifica-
tion is the same infinite event sequence in the safety-liveness
classification and any finite event sequence is extended to an
infinite event sequence by appending an infinite number of
r events. Also, for any property from our class (fin,fin), the
corresponding property in the safety-liveness classification
will accept any infinite sequence of events (without added
r events) and for any property in our classification scheme
that specifies an infinite execution, the corresponding prop-
erty in the safety-liveness classification scheme will accept
all finite execution sequences. For properties classified as
(fin, all) or (inf, all), they should first be represented as their
constituent properties from (fin,fin), (fin, inf), and (inf , inf)
and then each constituent can be represented as described in
Equation (3).

Given a class C from our classification, for simplicity we
use notation like C C ,5 to show the relationship of this class
with the safety-liveness taxonomy. In reality, it is the rela-
tionship of class C ' = {P ' ISP E C : P ' = lnfProp(P)}
that is considered, since classes C and C" are equivalent in
the sense described by Equation (3).

First we prove (fin,fin) C_ S. Take any P E (fin,fin) and
let p t = InfProp(P). According to Equation (3), an event
sequence a that does not satisfy P~ must have been derived
from a finite sequence v E P and e = e r r According to
the definition of safety in Equation (1), the finite sequence
w- is a prefix of e for which no infinite suffix e t can make
the sequence ve t into a sequence that satisfies p t , since it
contains prefix v that caused a not to satisfy P~ and corre-
sponds to finite executions by containing r . Thus, P is a
safety property.

Now we prove 8 ~ (fin,fin). To do that, it is sufficient
to show that there is a safety property that is not in (fin,fin).
For example, any safety property that does not accept at least

one infinite sequence is such a property.

(fin,inf) C £

First, we prove (fin, inf) C_ f~. Take any P E (fin, inf) and
let P ' = InfProp(P). According to Equation (3), for any
v E E*, the infinite sequence vr~-... E P~. By the definition
in Equation (2), p t is a liveness property.

To prove that f.. fL (fin, inf), it is sufficient to show that there
is a liveness property that is not in (fin, inf). For example,
a liveness property requiring that on all infinite executions,
event a happens infinitely often is not in (fin, inf), because
such a property contains infinite event sequences.

3P1,P2,Ps E ~n,a l l) : t"1 E 8 ,P2 e £,
P3 ¢ (`5 u ~)

An example of P1 is a property that accepts all sequences ex-
cept those containing event a. Wr E E ~ : a ¢ lnfProp(Px)
means that o contains event a. We can write o in the form
a = va t, where v is a sequence ending with a. This is the v
from the definition of safety in Equation (1).

An example of P2 is a property that accepts all sequences
except those that do not contain a. Take any v E E*. If v
contains a, then infinite sequence a from the definition of
liveness in Equation (2) can be any infinite sequence. If v
does not contain a, then a can be any infinite sequence that
contains a.

An example of Pn is a property that accepts all sequences
that contain exactly one event a. Pn ¢ ,5 because we can
pick a to be any infinite sequence that does not contain a
(and thus does not satisfy Ps). For any finite prefix v of this
sequence a we can take a t to be any infinite sequence that
contains one event a. Then va t satisfies Ps and so P3 is
not a safety property by the definition in Equation (1). Pn is
not a liveness property either, because we can pick v from
the definition in Equation (2) to be a finite sequence that
contains two events a. No infinite sequence a exists such
that va E Ps.

(inf, inf) C £

First we prove (inf, inf) C_ £. Take any P E (inf, inf)
and let P~ = InfProp(P). Take any v E E*. According to
Equation (3), v r r . . . E pt . By the definition in Equation (2),
P~ is a liveness property.

To prove £ ~ (inf, inf), let P be the liveness property that
specifies that on infinite executions, event a must happen at
least once. This property is not in (inf, inf), because it uses
finite event sequences.

(both, inf) C ~.

The proof of (both, inf) C f_. is identical to that for (inf, inf).
To prove/~ ~ (both, inf), let P be a liveness property that
contains only finite event sequences. Thus, P E (fin, inf)

166

1(
n, all 1

(a) The safety-livoness taxonomy (b) Our classification, superimposed on
the safety-liveness taxonomy

Figure 3: The correspondence between our property classification and the safety-liveness taxonomy

and so P ¢ (both, inf).

3PI, P,., t'3 ~ (both,aU) : t"1 ~ 8,1"2 ~ £,
Ps ¢(suz:)
The proofs are similar to those for (fin, all).
Figure 3 represents the correspondence between our prop-
erty classification and the safety-liveness taxonomy visually.

6. Conclusion

As shown in Section 5, class (fin,fin) contains only safety
properties and classes (fin, inf), (inf , inf), and (both, inf)
contain only liveness properties. This means that if a given
property falls into one of these four classes, it is immediately
clear whether it is a safety or a liveness property. Classes
(fin, all) and (both, all) contain safety properties, liveness
properties, and also properties that are neither safety nor
liveness. In general, any property from class (fin, all) can
be represented as a conjunction of two properties, one from
class (fin,fro), and another from class (fin, inf). For exam-
ple, a property specifying that event a happens exactly once
on all system executions (which is neither a safety nor live-
ness property), can be represented as a conjunction of two
properties, one checking that a happens exactly once on fi-
nite executions and another checking that a happens exactly
once on infinite executions. The first of these two proper-
ties belongs to class (fin,fin) and the second belongs to class
(fm, inf).
The case with class (both, all) is not as simple. Whether
or not such a property can be decomposed successfully de-
pends on whether we can decompose the representation of
event sequences in the property into finite sequences and in-
finite sequences. If we can, then the property P is repre-
sented as the conjunction of two properties, P1 from class

(fin,fin), and P2 from class (both, inf). (Thus, P l is a safety
property and P2 is a liveness property.) For example, a prop-
erty specifying that on all executions of a system, events a
and b alternate (but not specifying whether a finite or in-
finite number of such events must be observed) is in class
(both, all). It can trivially be decomposed into a property
P t specifying that on all finite executions events a and b
alternate and a property P2 specifying that on all infinite ex-
ecutions events a and b alternate and either a finite or an
infinite number of such events is observed. We believe that
in practice, most properties from class (both, all) are decom-
posable in a similar way.

As discussed, it appears relatively straightforward to extend
existing specification languages with notations for express-
ing these characteristics. We intend to incorporate such ex-
tensions into the QRE specification language used by the
FLAVERS finite state verification system and to evaluate
how useful this classification scheme is in practice. We also
intend to evaluate this classification scheme in terms of the
large number of examples gathered to evaluate the work on
property patterns [9]. Unfortunately, without the presence of
the system under analysis, it is often not clear whether the
property refers to finite, infinite, or both kinds of executions.
We can use these examples, however, to evaluate how easy it
would be to extend the specifications with this information.

To summarize, we have described a new property classifica-
tion based on two simple characteristics of properties. One
characteristic indicates whether the sequences of events used
in the property specification are finite, infinite, or both; and
the other indicates whether the property specifies behaviors
that must (or must not) hold only on finite, only on infinite,
or on all executions of the system. The proposed classifi-
cation has a number of advantages over the safety-liveness
taxonomy. First, it is relatively natural. Second, deciding
which of the six classes in our classification a given property

167

belongs to is trivially derived from the specification of the
property. Finally, four out of six classes in our classification
contain properties that are either only safety or only liveness
properties, so there is no need for proofs to determine which
analysis algorithm to apply. Another class contains proper-
ties that can easily be decomposed into two properties, one a
safety and another a liveness property. For the final class, the
existence of a "nice" decomposition is not guaranteed, but
likely. Although our results are preliminary, they do sug-
gest a relatively straightforward approach for more clearly
and explicitly expressing important characteristics of soft-
ware systems. In addition, such specifications can be used
to help select the appropriate analysis algorithm.

Acknowledgments

Our thanks to George Avrunin and Jamieson Cobleigh for
comments on an early draft of this paper, as well as to the
anonymous reviewers for many helpful suggestions.

References
[1] M. Abadi and L. Lamport. Composing specifications.

A CM Transactions on Programming Languages and Systems,
15(1):73-132, Jan. 1993.

[2] S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding live-
ness properties to coupled finite-state machines. ACM Trans-
actions of Programming Languages and Systems, 12(2):303-
339, Apr. 1990.

[3] B. Alpem and F. B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181-185, Oct. 1985.

[4] B. Alpern and E B. Schneider. Recognizing safety and live-
hess. Distributed Computing, 2:117-126, 1987.

[5] B. Alpem and F. B. Schneider. Verifying temporal properties
without temporal logic. ACM Transactions of Programming
Languages and Systems, 11(1):147-167, Jan. 1989.

[6] S. C. Cheung, D. Giannakopoulou, and J. Kramer. Verifi-
cation of liveness properties using compositional reachabil-
ity analysis. In Proceedings of the 6th European Software
Engineering Conference and 5th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 227-243,
Sept. 1997.

[7] S.C. Cheung and J. Kramer. Checking safety properties us-
ing compositional reachability analysis. ACM Transactions
on Software Engineering and Methodology, 8(1):49-78, Jan.
1999.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications. A CM Transactions of Programming
Languages and Systems, 8(2):244-263, Apr. 1986.

[9] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in
property specifications for finite-state verification. In Pro-
ceedings of the 21st International Conference on Software
Engineering, pages 411-421, May 1999.

[10] M.B. Dwyer and L. A. Clarke. Data flow analysis for verify-
ing properties of concurrent programs. In Proceedings of the

2nd ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, pages 62-75, Dec. 1994.

[11] M. B. Dwyer and L. A. Clarke. Flow analysis for verifying
specifications of concurrent and distributed software. Tech-
nical Report 1999-52, University of Massachusetts, Amherst,
Aug. 1999. f t p : / / f t p , ca.umass, edu/pub/techrept/
techreport/1999/UM-CS- 1999-052 .ps.

[12] P. Godefroid and G. J. Holzmann. On the verification of tem-
poral properties. In Proceedings of the 13th International
Conference on Protocol Specification, Testing, and Verifica-
tion, INWG/IFIP, pages 109-124, May 1993.

[13] G.J. Holzmann. The model checking SPIN. IEEE Transac-
tions on Software Engineering, 23(5):279-295, May 1997.

[14] L. Lamport. Proving the correctness of multiprocess pro-
grams. IEEE Transactions on Software Engineering, SE-
3(2):125-143, 1977.

[15] Leslie Lamport. What good is temporal logic? In Proceed-
ings of the IFIP Congress on Information Processing, pages
657-667, 1983.

[16] Z. Manna and A. Pnueli. Verification of Concurrent Pro-
grams: The Temporal Framework, pages 141-154. Academic
Press, 1981.

[17] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer, New York, 1992.

[18] G. Naumovich and L. A. Clarke. Extending FLAVERS to
check properties on infinite executions of concurrent soft-
ware systems. Technical Report 2000-02, Polytechnic Uni-
versity, New York, 2000. h t t p : / / c i a . p o l y . e d u / t r /
tr-cis-2OOO-O2.pdf.

[19] K. M. 0lender and L. J. Osterweil. Cecil: A sequencing
constraint language for automatic static analysis generation.
IEEE Transactions on Software Engineering, 16(3):268-280,
Mar. 1990.

[20] A. Pnueli. The temporal logic of programs. In Proceedings
of the 18th Symposium on Foundations of Computer Science,
pages 46-57, Oct.-Nov. 1977.

[21] M. Y. Vardi. Verification of concurrent programs: The
automata-theoretic framework. In Proceedings of the 2nd An-
nual Symposium on Logic in Computer Science, pages 167-
176, June 1987.

[22] P. Wolper. Temporal logic can be more expressive. Informa-
tion and Control, 56(1/2):72-99, Jan./Feb. 1983.

168

