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Abstract 

Traditionally, verification properties have been classified as 
safety or liveness properties. While this taxonomy has an at- 
tractive simplicity and is useful for identifying the appropri- 
ate analysis algorithm for checking a property, determining 
whether a property is safety, liveness, or neither can require 
significant mathematical insight on the part of the analyst. In 
this paper, we present an alternative property taxonomy. We 
argue that this taxonomy is a more natural classification of  
the kinds of  questions that analysts want to ask. Moreover, 
most classes in our taxonomy have a known, direct mapping 
to the safety-liveness classification, and thus the appropriate 
analysis algorithm can be automatically determined. 

1. Introduction 

A number of finite state verification approaches are be- 
ing developed. Some approaches are designed to check 
fixed, general properties of software systems, such as free- 
dom from deadlock. Other approaches offer the flexibility 
of  specifying and checking application-specific properties. 
Traditionally, properties have been classified into safety and 
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liveness properties. In practice, it is often important to know 
whether a given property is a safety or liveness property, 
because several finite state verification approaches use dif- 
ferent analysis algorithms for checking safety and liveness 
properties [6, 7, 11,13, 18]. Determining whether a property 
is safety, liveness, or neither, however, can require signifi- 
cant mathematical insight on the part of  the analyst. In this 
paper, we present an alternative property taxonomy. We ar- 
gue that this taxonomy is a more natural classification of the 
kinds of questions that analysts want to ask (i.e., express as 
properties). Moreover, most classes in our taxonomy have a 
known, direct mapping to the safety-liveness classification, 
and thus the appropriate analysis algorithm for a verification 
approach can be automatically determined. 

Intuitively, a safety property specifies that "bad things" do 
not happen on all executions of  a system and a liveness prop- 
erty specifies that "good things" eventually happen on all 
executions of a system [14]. Unfortunately, these intuitive 
definitions are often difficult to use for distinguishing be- 
tween safety and liveness properties. For example, a prop- 
erty specifying that a communication socket must be created 
on all executions of  a system is a liveness property, which 
agrees with the informal definition where the "good thing" 
is the creation of  a communication socket. However, a sim- 
ilar property stating that a communication socket must be 
created before any disk access happens is a safety property, 
even though we can still view creation of  a communication 
socket as a "good thing". 

Because informal definitions of safety and liveness are un- 
reliable, one has to use the precise definitions, given in 
Section 2.2. Using these definitions requires constructing 
proofs, which are often non-trivial. Carrying out such proofs 
is human-intensive and error-prone. In this paper, we pro- 
pose a new property taxonomy for which it is easy to assign 
a given property to one of several property classes. Further- 
more, many of these property classes include only safety or 
only liveness properties, so if the given property belongs to 
one of these classes, no proofs are required for determining 
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whether it is a safety or a liveness property. 

Our property classification is described in terms of se- 
quences of recognizable events in the system under analysis. 
We distinguish between property specifications that describe 
finite, infinite, or both kinds of sequences of events. We 
also distinguish between property specifications that must 
be checked on only finite, only infinite, or all system execu- 
tions. At present, it is usually assumed that a property has to 
be checked on all system executions. In some cases, how- 
ever, an analyst wants to specify sequences of events that 
hold on only finite or only infinite executions. For example, 
it does not make sense to check the property "all files must 
be closed by the time a system terminates" on infinite exe- 
cutions of a system or to check the property "the number of 
files that are open simultaneously must have a fixed upper 
bound" on finite executions. In cases where the analyst is 
interested in checking a property on only finite executions, 
the property has to be modified in such a way that it always 
holds on all infinite executions and vice versa. In contrast, 
with our proposed classification scheme the analyst explic- 
itly indicates whether the property is specifying finite, infi- 
nite, or both finite and infinite sequences, as well as indicates 
whether the property is to be checked on finite, infinite, or 
all executions of the system. 

In the next section, we give some background on reason- 
ing about software systems and provide formal definitions 
of safety and liveness properties. In Section 3 we offer a cri- 
tique of the safety-liveness taxonomy. Section 4 describes 
our proposed property classification and gives an example 
of using this classification with a property specification for- 
malism. In Section 5 we describe the relationship between 
our classification and the safety-liveness taxonomy. Finally, 
Section 6 summarizes our results and discusses directions 
for future research. 

2. B ac k gr ou nd  

In this section, we briefly introduce the two alternative ways 
of representing a software system's behaviors, state-based 
and event-based, and then introduce the traditional classifi- 
cation of event-based properties into safety and liveness. 

2.1. Event-based and State-based Properties 

The two popular ways of modeling systems are state-based 
and event-based 1. With the former, the model encodes all 
possible states the system might be in during execution. For 
a concurrent system, a system state may include the program 
counters for each of the threads of execution and the val- 
ues for all variables. Properties for systems with state-based 
models usually can be represented as sets of sequences o f  
state predicates. We call such properties state-based. With 

t Although some properties, such as quality of service, may be difficult 
to represent in one or the other or both of these formalisms, many interest- 
ing properties can be represented. 

the event-based approach to modeling systems, the model 
encodes all event sequences that can be observed during ex- 
ecutions of the system. The events used in these sequences 
represent some actions of the system, with an arbitrary level 
of granularity. For example, both a variable assignment and 
a function call could be events. Actions that are not of in- 
terest to the analyst usually are not assigned corresponding 
events. Properties for systems with event-based models are 
given in the form of sets of sequences of events that charac- 
terize executions of the model of the system. We call such 
properties event-based. 

Theoretically, translations between state-based and event- 
based representations of systems and properties are not dif- 
ficult. For example, if a system is specified as a set of se- 
quences of its states, any such sequence can be translated 
into a sequence of events, where each event represents a 
transition from one state to another. In the rest of this pa- 
per we only deal with event-based models of systems and 
property specifications. 

We assume that event-based properties use a subset of the 
events that could occur along an execution of the system un- 
der analysis. Throughout this paper, we use the term event 
sequence or just sequence to refer to any sequence of events 
and execution to refer to a sequence of events observed on 
an execution of the software system under analysis. 2 

A property P is characterized by a possibly infinite set of 
event sequences. We write 8 E P to represent the fact that 
sequence 8 is in the set of event sequences of P .  The alpha- 
bet of property P is denoted ~ ( P )  and represents the union 
of all events in the set of event sequences of P .  For exam- 
ple, if the set of event sequences of P is {(a, a), (a, b, a)}, 
then E (P )  = {a,b}.  A projection of an event sequence s 
on an alphabet ~ is the event sequence s t obtained from s 
by removing all events not present in ~. We use the nota- 
tion slz to denote projection of sequence s on alphabet r,. 
For this example, the projection of sequence (a, c, d, b, c, a) 
on ~ ( P )  is (a, c, d, b, c, a)I{a,b} = (a, b, a). We say that a 
sequence 8 is accepted by property P ,  denoting this s I- P ,  
if the projection of s on the alphabet of P is in the set of 
sequences represented by P .  Thus, for the example above, 
(a, c, d, b, c, a) l-- P. 

Let E be the union of the alphabets for a set of properties 
for a particular software system. We use E* to denote the 
set of all finite sequences of events from E and E ~ to de- 
note the set of all infinite sequences of events from E. We 

assume that the empty sequence A E E*. For convenience, 
we introduce a function prefixes : E ~ --+ 2 E* that, given an 
infinite sequence or, returns all finite prefixes of 0r, including 
the empty sequence A. 

2,,Execution of the software system under analysis" is actually a trace 
or path through the event-based model of the system. Each event sequence 
that could be observed during execution of the system is represented by a 
trace through the model of that system. For brevity, we refer to this simply 
as an execution. 
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To use a uniform notation, many finite state verification ap- 
proaches replace each finite execution v of  a system with an 
infinite execution ~r by adding infinitely many instances of  
an empty event T to the end of v: tr = va-a- .... For con- 
venience, we assume that no non-empty events can follow 
event T, which means that a- is used only for representing 
system termination. 

A property can be represented as a set of event sequences 
that must hold on all system executions. For brevity, we 
use 79e to denote the set of all possible properties over the 
alphabet E .  A property P holds for a system if  and only if  
all system execution event sequences satisfy P .  

2.2. The Safety-Liveness Property Taxonomy 
While the informal definition of  safety and fiveness proper- 
ties, given in the introduction, has intuitive appeal, generally 
it is not precise enough to be used for determining whether 
a given property is a safety or a liveness property. 

A concise definition of safety and liveness properties based 
on topology says that a property is a safety property if  and 
only if it is closed and a liveness property if  and only if  it 
is dense [3]. Equivalently, a safety property is one that is 
finitely refutable and a liveness property is one that is never 
finitely refutable [1,3]. 

In this section, we describe the safety-liveness taxonomy 
proposed by Alpern and Schneider [3] 3. The formal defi- 
nition of a safety property is 

P is a safety property iff 

¥~r ~ g~,~r ~/ P =~ (1) 

(:Iv e prefixes(iT) : (YtT' e E~,vt7 ' ~ P ) )  

This definition means that P is a safety property if and 
only if every infinite sequence of events that does not sat- 
isfy this property contains a finite prefix such that no infinite 
sequence obtained by adding an infinite suffix to this finite 
prefix satisfies this property. 

The formal definition of a liveness property is 

Set P is a liveness property iff 
(2) 

Vv e E * , ( 3 a  e E ~ : w  t- P )  

This definition means that P is a liveness property if and 
only if for every finite sequence we can find an infinite suf- 
fix, so that the resulting infinite sequence satisfies the prop- 
erty. 

Naturally, not every property can be classified as either a 
safety or liveness property. For example, a property requir- 
ing that on any execution of a system events a and b alternate 
infinitely often cannot be refuted in all situations by either 
considering only finite prefixes of  system executions or only 

31n the following definitions we translate the state-based representation 
used in [3] into an event-based representation 

infinite executions of the system. If  we only look at finite 
prefixes of  system executions, we cannot detect situations 
where the pattern ab will not repeat infinitely often on an ex- 
ecution. Thus, this property is not a safety property. On the 
other hand, looking at only finite prefixes, it may be possible 
to detect situations where a and b do not strictly alternate. 
Thus, this property is not a liveness property. 

Alpern and Schneider show that any property P can be rep- 
resented as an intersection of a safety property Ps and a live- 
ness property Pt: Vtr E E ~, tr ~- P ¢~ tr b P8 A a ~-/~. For 
our example in the previous paragraph, the property can be 
split into Ps specifying that events a and b alternate on all 
executions and /~  specifying that there is an infinite number 
of  a ' s  and b 's  on all executions. 

While using the set of all sequences that represent a prop- 
erty is a convenient theoretical characterization, it is not 
very useful in practice. A property is usually specified by 
a characteristic predicate on event sequences rather than by 
their enumeration. The two most popular kinds of mathe- 
matical machinery used for property specification are tem- 
poral logics [17] and finite automata. A number of  various 
forms of  temporal logics have been proposed for specifying 
properties [15, 16, 22]. Biichi automata [21] are the most 
popular kind of  finite automata used for specifying proper- 
ties [2, 5, 6, 12]. Biichi automata are known to be quite ex- 
pressive, demonstrably more expressive than linear-time and 
branching-time first-order temporal logics [8, 22]. 

A mechanical way for distinguishing safety and liveness 
properties has been proposed by Alpern and Schneider [4]. 
In their approach, a property is specified as a Biichi automa- 
ton A and then characteristics of the structure of  this au- 
tomaton are used to classified the property as safety, live- 
ness, or neither. In cases where the property is neither safety 
nor liveness, a simple procedure can be used to produce 
two Biichi automata As and At, where As specifies a safety 
property, At specifies a liveness property, and the intersec- 
tion of infinite sequences accepted by As and At is the exact 
set of sequences accepted by A. Unfortunately, using this 
approach in cases where properties are not initially repre- 
sented as Biichi automata is cumbersome. Additional in- 
strumentation is needed to translate from the native prop- 
erty representation to the Biichi automaton representation, 
to then perform the split into two Biichi automata, one for 
a safety property and the other for a liveness property, and 
then finally to translate these two automata back to the native 
property representation. In addition, this approach does not 
solve the problem of specifying whether the property must 
hold on finite, infinite, or all executions of  the system. 

3. Critique of the Safety-Liveness Taxonomy 

The safety-liveness taxonomy has an attractive simplicity, 
providing two fundamental classes of  properties, so that any 
property can be represented as a combination of two prop- 
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erties, one from each class. While it is an elegant and the- 
oretically useful classification, in our opinion it has several 
important problems. 

The first problem is terminology. Intuitively, the term safety 
property implies that i f  an execution of  a system does not 
satisfy such a property, it represents an unsafe behavior. 
While this may be true, safety properties are not the only 
kind of  property that specifies what it means for a software 
system to operate safely. Consider a typical liveness prop- 
erty specifying that a request of service must eventually be 
followed by a provision of this service. If  the system being 
verified contains an execution that does not satisfy this prop- 
erty, this execution can be characterized as unsafe. Thus, a 
condition describing a safe operation of a system can be ex- 
pressed by a property that is not a safety property! 

Using the term liveness is also problematic. For example, 
the intuitive explanation of  the expression "a connection is 
live" is that the connection is enabled and ready to receive 
or send messages. This is not the same meaning that live- 
ness properties generally express, which is that something 
good eventually happens, as in "eventually, a connection is 
used for sending or receiving". Thus, the term liveness is 
misleading. 

The second problem with the safety-liveness taxonomy is 
that while safety and liveness properties can always be dis- 
tinguished formally, the difference between the two kinds 
of properties is often difficult to see when using informal 
approaches. For example, a property of  the general form 
"event a must never happen on any execution of  the system" 
is a safety property. (Suppose we have an infinite sequence 
tr that does not satisfy this property, which means that this 
sequence contains at least one event a. Let v be the prefix 
of  tr that includes a. No infinite sequence tr ~ can make the 
sequence vtr '  accepting, since vtr '  contains a. According to 
the definition in Equation (1), this is a safety property.) If  
this property is changed to read "event a must never happen 
on any infinite execution of  the system (and is allowed to 
happen on finite executions)", suddenly it becomes a live- 
ness property. (Take any finite sequence v. I f  v contains a, 
then the infinite sequence w-r. . ,  satisfies the property, be- 
cause this infinite sequence represents a finite execution. If  
v does not contain a, we can add any infinite suffix that does 
not contain a to v and the resulting infinite sequence satis- 
fies the property. Thus, according to the definition in Equa- 
tion (2), this is a liveness property.) 

Finally, in our opinion, the most severe problem with the 
safety-liveness taxonomy is that it is not much help to the 
analysts who have to write properties. The criteria for clas- 
sifying a property as either safety or liveness help in choos- 
ing an appropriate method for verifying the property. These 
criteria, however, do not facilitate the task of specifying the 
property. Using a temporal logic or finite automaton rep- 
resentation, the specification of a property is not guided by 
whether the property being specified is safety or liveness. In 

fact, in most cases the property has to be formally specified 
before a decision can be made about whether it is a safety or 
liveness property, or neither [4]. 

One specific example of  this lack of  assistance in specifying 
properties is the decision of  whether only finite, only infi- 
nite, or all executions of  the system have to satisfy the prop- 
erty. Making this simple and clear distinction is not trivial 
with the safety-liveness taxonomy. For example, if Biichi 
automata are used for property specification, and only fi- 
nite executions have to satisfy the property, the analyst con- 
structing the automaton has to do it in such a way that all 
infinite executions are always accepted by this automaton. 
This specification would be far simpler if  the analyst could 
explicitly specify that only finite executions of  the system 
have to be considered. 

In the next section we propose an alternative property clas- 
sification scheme to the safety-liveness taxonomy and argue 
that it ameliorates the problems indicated in this section. 

4.  P r o p o s e d  P r o p e r t y  T a x o n o m y  

By introducing a new property taxonomy, we argue that sim- 
pler and more intuitive criteria of separating properties into 
categories exist than that of  the safety-liveness taxonomy. 
Specifically, we use two criteria, one based on whether the 
property contains only finite, only infinite, or both kinds of  
event sequences and the other based on whether only finite, 
only infinite, or all executions of  the system should satisfy 
the property. Note that such treatment of  executions means 
that we do not convert all finite executions of  the system 
into infinite executions by appending an infinite number of  
empty events 7- to the end of all finite executions. 

Our first classification criterion is based on what kinds of  
execution sequences are represented by the property. There 
are three obvious cases: 

property P contains only finite event sequences: 
V s E P : s E E * ,  

property P contains only infinite event sequences: 
Va E P : s E EW, and 

property P contains both finite and infinite event se- 
quences: 3sl ,  s2 E P : 81 E E*/~ 82 E E w. 

Our second classification criterion is based on whether the 
property refers to only finite, only infinite, or all executions 
of  the system. We use S to denote the set of  all execution 
sequences in the system. We recognize three cases: 

• The property is for finite execution sequences only: 
the property holds if Vs E S, a E E* ~ s F- P.  

* The property is for infinite execution sequences 
only: the property holds if  Vs E S, s E E w =~ 8 I- P .  
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• The property is for both finite and  infinite execution 
sequences: the property holds if  Vs E • :=~ s I-- P .  

Intersecting these two criteria, we obtain nine property 
classes. We refer to each property class by a tuple (A, B) ,  
where A refers to the first criterion and B refers to the 
second criterion. Thus, A E {inf,fin, both} and B E 
{inf,fin, all}. Of these classes, class (inf,fin) is empty, 
since it does not make sense to specify a finite behavior 
with an infinite event sequence. For the same reason, class 
(inf, all) is equivalent to class (inf, inf), in the sense that 
any property from (inf, all) holds for a system if and only 
if  all executions in the system are infinite. Also, class 
(both,fin) is equivalent to class (fin,fin) in the sense that 
for any property/>1 from class (both,fin) there exists prop- 
erty P2 from class (fin,fin) (obtained from/>1 by discard- 
ing all infinite sequences) such that a system execution sat- 
isfies P1 if and only if it satisfies/>2. Thus, we exclude 
classes ( inf ,fin) , ( inf , all), and (both,fin) from our classifi- 
cation as redundant. In the rest of this paper we refer to the 
remaining six classes (fin,fin), (fin, inf ), (fin, all), ( inf , inf ), 
(both, inf), and (both, all) as our property classification. 

It is obvious that this property specification is complete in 
the sense that any property specifying a behavior that must 
hold on all executions of a system belongs to one of the three 
classes (fin, all), (inf, all), and (both, all). The additional 
granularity provided by our second classification category is 
for added convenience of specifying properties. The reader 
might wonder how this classification compares to the tra- 
ditional safety, liveness, or neither trichotomy used in the 
safety-liveness classification scheme. In the next section, 
we will explicitly describe this relationship. 

In the following, we briefly describe each of  the six cate- 
gories. For each category, we give an example property that 
deals with opening and closing of files in a program. For this 
example, the events of interest to the properties correspond 
to calls to open and e].ose file primitives. 

(finCh) 
A property P from class (fin,fin) specifies a set of  event 
sequences of finite length and requires that all finite execu- 
tions of the system are present in this set. This means that 
we can construct property p t  that refers to all system exe- 
cutions by including in the set of  event sequences of  p t  all 
event sequences of P and in addition all infinite event se- 
quences: Pr  = P U E w. Property P t  holds on all executions 
of a system if and only if property P holds on all finite ex- 
ecutions of this system. An example from this category is a 
property specifying that any file is always closed before it is 
re-opened or before the program terminates. 

(fin, in f )  
This is an interesting case, because in order for an infinite 
execution sequence ¢r to satisfy property P containing only 

finite event sequences, the projection of cr on the alphabet of  
P must be finite. In other words, ~r must have a representa- 
tion wr t, where v is a finite prefix of~r and cr'[z(p) = )~. For 
example, if  the property specifies that on infinite executions 
of the system, events a and b alternate (but not infinitely of- 
ten), then an infinite system execution a b a b a b a b a b a b . . .  
does not satisfy this property, because its projection on the 
alphabet of  the property {a ,  b} is infinite. On the other 
hand, an infinite execution a b a b e e e e e . . ,  does satisfy this 
property, because a b a b e e c e e . .  -]{a, b) = abab,  which is 
a finite sequence on which each event a is followed by a b. 
Since properties from set (fin, inf) are not concerned with 
finite executions of  the system, for each such property P we 
can construct property P I E  (fin, all) by including in the set 
of  event sequences of  P '  all event sequences of  P and in 
addition all finite event sequences: P~ = P O E*. Property 
P '  holds on all executions of a system if and only if  prop- 
erty P holds on all infinite executions of this system. An 
example from this category is a property specifying that on 
all non-terminating executions, any file is closed before it is 
re-opened, and any file is only opened and closed a limited 
number of times or not at all. 

ffln,att) 
A property P from this class can also be represented as a 
conjunction of  two properties/°1, P2, where t>1 E (fin,fin) 
and P2 E (fin, inf), where both/>1 and P2 contain the same 
event sequences as P .  If  v is a finite execution of the system, 
then it satisfies P if it satisfies P1. If  ~r is an infinite execu- 
tion, then it satisfies P if it satisfies Pz. An example from 
this category is a property specifying that any file is closed 
before it is re-opened, and any file is only opened and then 
closed a limited number of times or not at all. 

(inf , inf) 
A property P from class (inf, inf) specifies a set of event se- 
quences of infinite length and requires that all infinite execu- 
tions of the system are present in this set. We can construct 
property p t  E (both, all) by including in the set of event se- 
quences of  P '  all event sequences of  P and in addition all 
finite event sequences: P~ = F U E*. Property P~ holds on 
all executions of  a system if  and only if property P holds on 
all infinite executions of this system. An example from this 
category is a property specifying that on all non-terminating 
executions, any file is alternately opened and then closed re- 
peatedly and infinitely. 

(both, inf ) 
Any property P from this class can also be represented as 
a disjunction of two properties P1 and />2, where />1 E 
(fin, inf) and P2 E (inf , inf). In addition, we can construct 
P~ E (both, all) by including in the set of  event sequences of  
p r  all event sequences of P and in addition all finite event 
sequences: p t  = 19 t3 E*. Property P~ holds on all exe- 
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cutions of a system if and only if property P holds on all 
infinite executions of this system. An example from this 
category is a property specifying that on all non-terminating 
executions, any file is alternately opened and then closed, 
but may not be opened at all. 

(both,air) 
This is the most general of  all classes. Any property from 
this class can be represented as a disjunction of  two proper- 
ties P ,  and P~, where ['1 ~ (fin, all) and P2 6 (inf, inf), by 
se t t i ng  P ,  = P 17 E* and/ '2  = P f'l E ~. An example from 
this category is a property specifying that on all executions, 
any file is alternately opened and then closed, but may not 
be opened at all. 

4.1. QRE Property Specification Language 

As an example of a property specification language that sup- 
ports our property classification scheme, we describe an ex- 
tension we are developing for the Quantified Regular Ex- 
pressions (QRE) language [10,19]. The QRE language uses 
regular and c0-regular expressions and represents a conve- 
nient approach for specifying event sequencing properties. 

A QRE specification consists of three parts: alphabet, regu- 
lar expressions, and modifier. The alphabet simply lists all 
events of interest to this property. Regular expressions de- 
scribe sequences of events of  interest to this property. The 
modifier specifies whether the event sequences described by 
the regular expressions must hold on all system executions 
or on no system executions. In our extension, modifier is re- 
placed by modifiers, which in addition to the quantification, 
also indicates whether this property must be checked for fi- 
nite, for infinite, or for both kinds of system executions. 

At present, the alphabet is specified simply by listing all 
events of interest to the property (in future, parameterization 
and aliases will be supported). The alphabet must contain 
all events explicitly used in the regular expressions but may 
also contain additional events. We explain the need for such 
additional events below when discussing the regular expres- 
sions part of the QRE specifications. 

If  multiple regular expressions are present in a QRE, the 
property is represented by a union of  the sets of  event se- 
quences that each of  these regular expressions specifies. 
Regular expressions are specified using an assortment of tra- 
ditional syntactic features for supporting regular languages. 
Because of space constraints, we do not describe all these 
features here. Importantly, one of the features used in this 
language is complement. For example, "any event in the al- 
phabet, except events a and b" may be represented in a QRE 
as - [ a , b ] .  Thus, an event e from the property alphabet may 
not appear in the regular expression explicitly, although it is 
represented implicitly. 

Regular expressions in the extended QRE notation may be 
co-regular expressions, to indicate that a certain pattern of  

for events {open_F, close_F} 
show (open_F; close_F); (open_F; close_F)# 
on ALL INFINITE executions 

Figure 1: An example extended QRE specification 

events repeats infinitely often. We use the symbol © to repre- 
sent such an infinite repetition. For example, a© specifies an 
infinite sequence a a a a . . .  In some cases, it is convenient to 
specify a certain pattern of  events that may or may not repeat 
infinitely often. For example, an analyst may want to specify 
that events a and b alternate, without restricting whether this 
repetition is finite or infinite. We use the symbol # to specify 
that the regular expression to which this symbol refers re- 
peats either 0 or more times or infinitely: <expr># is equiv- 
alent to <expr>* [ <expr>@, where <expr> is an arbitrary 
regular expression and I is a logical "or" operator. 

Finally, an extended QRE property specification has modi- 
fiers of  two types. The first describes the quantification over 
the program executions considered by the property by indi- 
cating whether the event sequences described by the regu- 
lar expressions must hold on all executions (modifier ALL) 
or no executions (modifier NO) of  the system. The second 
describes the executions considered by the property by in- 
dicating whether only finite executions (modifier FINITE), 
only infinite executions (modifier INFINITE), or all possible 
executions (modifier POSSIBLE) have to be compared to the 
event sequences described by the regular expressions. Fig- 
ure 1 shows a property specifying that file F has to be open 
and then closed at least once, but could be open and then 
closed an infinite number of  times, with open and close  
operations strictly alternating, to be checked only for infi- 
nite executions. 

A property specified in this extended QRE language can 
be automatically classified into one of  the categories of  
our classification scheme. Whether the property should be 
checked on finite, infinite, or all executions in the system is 
specified explicitly. Information about whether only finite, 
only infinite, or both kinds of  event sequences are present 
in the property specification can be derived from the regu- 
lar expressions. If  none of the regular expressions contain 
symbols a or # then the property represents only finite event 
sequences. If  some regular expressions contain symbols © 
or #, then the structure of  the regular expressions can be an- 
alyzed to determine whether or not they may encode finite 
sequences in addition to infinite sequences. For example, it 
is easy to see that the property in Figure 1 belongs to class 
(both, inf). The modifier INFINITE indicates that the prop- 
erty refers to only infinite executions. The use of  symbol 
# in the regular expression part indicates (in this case) that 
the property contains both infinite and finite sequences. The 
table in Figure 2 shows the QRE specifications of  the ex- 
ample properties concerning opening and closing files in a 
program, given in the earlier part of  this section, for each of  
the six property classes. 
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Class 
(fn,fin) 

(fin, inf) 

(~n~ all) 

(inf , inf) 

(both, in f )  

(both, all) 

Natural language description 
File F is always closed before it is re-opened 
or before the program terminates 

On all non-terminating executions, file F is 
closed before it is re-opened, and file F is 
only opened and closed a limited number of  
times or not at all 

File F is closed before it is re-opened, and 
file F is only opened and then closed a lim- 
ited number of times or not at all 

On all non-terminating executions, file F is 
alternately opened and then closed repeat- 
edly and infinitely 

On all non-terminating executions, file F is 
alternately opened and then closed, but may 
not be opened at all 

On all executions, file F is alternately 
opened and then closed, but may not be 
opened at all 

QRE specification 

for events {open_F, close_F} 
show (open_F; close_F)* 
on ALL FINITE executions 

for events {open_F, close_F} 
show (open_F; close_F)* 
on ALL INFINITE executions 

for events {open_F, close_F} 
show (open_F; close_F)* 
on ALL POSSIBLE executions 

for events {open_F, close_F} 
show (open_F; close_F)@ 
on ALL INFINITE executions 

for events {open_F, close_F} 
show (open_F; close_F)# 
on ALL INFINITE executions 

for events {open_F, close_F} 
show (open_F; close_F)# 
on ALL POSSIBLE executions 

Figure 2: Examples of extended QRE specifications for different property classes 

Other property specification formalisms can be adapted to 
take advantage of  our property taxonomy in a similar man- 
ner. For example, linear temporal logic (LTL) [20] specifi- 
cations can be extended with a keyword specifying whether 
the property must be checked on only finite, only infinite, 
or all executions and a keyword specifying whether certain 
behaviors should be observed finitely or infinitely often 4. 

Similarly, our classification scheme could also be used to ex- 
tend property specification patterns [9]. Property specifica- 
tion patterns map commonly occurring sequences of events, 
such as "event a must follow event b, but only after event 
c happens" to formal specifications in a variety of property 
specification formalisms. Some specification patterns fall 
within a single category from our taxonomy. For example, 

4For example, the property that opening a file always should be fol- 
lowed by eventually closing this file can be specified in LTL as n(open  --~ 
<>clone). If a keyword specifying that this property should be checked 
on only finite executions is used, the appropriate modification of the LTL 
formula can be done automatically, yielding O~ermina'ce -d. 12(otmn --t. 
<>close), where "cerminate indicates termination of the system. Simi- 
larly, if a keyword specifying that only a finite number of open and c l o s e  

operations should be allowed is used, automatic modifications of the for- 
mula will yield O(open --+ Oc lose )  A -~DOopen A -~nOclose .  

the absence pattern with global scope, which states that a 
certain event does not happen on any executions of  the sys- 
tem, is in (fin, all). Specifying that a certain event does not 
happen on anyfinite executions of the system would involve 
explicitly using the termination event to bind the scope in 
which the absence is checked. For more complicated prop- 
erties that already bind the scope, adding this termination 
event may be tricky. In addition, at present it is hard to 
use property patterns to place restrictions on whether certain 
events must repeat infinitely, finitely, or whether this does 
not matter. Thus, it appears to us that specification prop- 
erty patterns would also benefit if they were extended with 
additional keywords allowing the analyst to indicate whether 
only finite, only infinite, or all executions of the system must 
be checked and whether patterns must repeat infinitely or 
finitely. 

5. Relationship between the Proposed Taxon- 
omy and the Safety.Liveness Taxonomy 

In this section, for each of the six classes from our classi- 
fication we describe the part of the safety-liveness universe 
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that it describes. For convenience, we denote the set of all 
safety properties as ,5 and the set of all liveness properties 
as £.  The definitions of safety and liveness in Equations (1) 
and (2) assume that all execution sequences in the system 
are infinite (with all finite executions extended by an infinite 
number of empty events r).  To be able to use these defi- 
nitions, we define a mapping InfProp that, given a property 
P specified in our classification (e.g., where some event se- 
quences may be finite), returns a property P~ that deals with 
infinite event sequences. P '  is equivalent to P in the follow- 
ing sense: 

V a E E  ~ : a E P ~ a E P '  
Vv E E* : v E P =~ vrr . . .  E pt  (3) 

P E (fin,fin) =V (E ~ \ {a i r  E a})  _C p t  

P e ((fin, inf) U (inf, inf) U (both, inf)) 
Yv E E* : vrr.. ,  e. p ,  

This means that any infinite event sequence in our classifica- 
tion is the same infinite event sequence in the safety-liveness 
classification and any finite event sequence is extended to an 
infinite event sequence by appending an infinite number of 
r events. Also, for any property from our class (fin,fin), the 
corresponding property in the safety-liveness classification 
will accept any infinite sequence of events (without added 
r events) and for any property in our classification scheme 
that specifies an infinite execution, the corresponding prop- 
erty in the safety-liveness classification scheme will accept 
all finite execution sequences. For properties classified as 
(fin, all) or (inf, all), they should first be represented as their 
constituent properties from (fin,fin), (fin, inf), and ( inf , inf) 
and then each constituent can be represented as described in 
Equation (3). 

Given a class C from our classification, for simplicity we 
use notation like C C ,5 to show the relationship of this class 
with the safety-liveness taxonomy. In reality, it is the rela- 
tionship of class C '  = {P ' ISP E C : P '  = lnfProp(P)} 
that is considered, since classes C and C" are equivalent in 
the sense described by Equation (3). 

First we prove (fin,fin) C_ S. Take any P E (fin,fin) and 
let p t  = InfProp(P). According to Equation (3), an event 
sequence a that does not satisfy P~ must have been derived 
from a finite sequence v E P and e = e r r  .... According to 
the definition of safety in Equation (1), the finite sequence 
w- is a prefix of e for which no infinite suffix e t can make 
the sequence ve  t into a sequence that satisfies p t ,  since it 
contains prefix v that caused a not to satisfy P~ and corre- 
sponds to finite executions by containing r .  Thus, P is a 
safety property. 

Now we prove 8 ~ (fin,fin). To do that, it is sufficient 
to show that there is a safety property that is not in (fin,fin). 
For example, any safety property that does not accept at least 

one infinite sequence is such a property. 

(fin,inf) C £ 

First, we prove (fin, inf) C_ f~. Take any P E (fin, inf) and 
let P '  = InfProp(P). According to Equation (3), for any 
v E E*, the infinite sequence vr~-... E P~. By the definition 
in Equation (2), p t  is a liveness property. 

To prove that f.. fL (fin, inf), it is sufficient to show that there 
is a liveness property that is not in (fin, inf). For example, 
a liveness property requiring that on all infinite executions, 
event a happens infinitely often is not in (fin, inf), because 
such a property contains infinite event sequences. 

3P1,P2,Ps E ~n,a l l )  : t"1 E 8 ,P2  e £, 
P3 ¢ (`5 u ~) 

An example of P1 is a property that accepts all sequences ex- 
cept those containing event a. Wr E E ~ : a ¢ lnfProp(Px) 
means that o contains event a. We can write o in the form 
a = va  t, where v is a sequence ending with a. This is the v 
from the definition of safety in Equation (1). 

An example of P2 is a property that accepts all sequences 
except those that do not contain a. Take any v E E*. If v 
contains a, then infinite sequence a from the definition of 
liveness in Equation (2) can be any infinite sequence. If v 
does not contain a, then a can be any infinite sequence that 
contains a. 

An example of Pn is a property that accepts all sequences 
that contain exactly one event a. Pn ¢ ,5 because we can 
pick a to be any infinite sequence that does not contain a 
(and thus does not satisfy Ps). For any finite prefix v of this 
sequence a we can take a t to be any infinite sequence that 
contains one event a. Then va  t satisfies Ps and so P3 is 
not a safety property by the definition in Equation (1). Pn is 
not a liveness property either, because we can pick v from 
the definition in Equation (2) to be a finite sequence that 
contains two events a. No infinite sequence a exists such 
that va E Ps. 

(inf, inf) C £ 

First we prove (inf, inf) C_ £. Take any P E (inf, inf) 
and let P~ = InfProp(P). Take any v E E*. According to 
Equation (3), v r r . . .  E pt .  By the definition in Equation (2), 
P~ is a liveness property. 

To prove £ ~ (inf, inf), let P be the liveness property that 
specifies that on infinite executions, event a must happen at 
least once. This property is not in (inf, inf), because it uses 
finite event sequences. 

(both, inf) C ~. 

The proof of (both, inf) C f_. is identical to that for (inf, inf). 
To prove/~ ~ (both, inf), let P be a liveness property that 
contains only finite event sequences. Thus, P E (fin, inf) 
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1( 
n, all 1 

(a) The safety-livoness taxonomy (b) Our classification, superimposed on 
the safety-liveness taxonomy 

Figure 3: The correspondence between our property classification and the safety-liveness taxonomy 

and so P ¢ (both, inf). 

3PI, P,., t'3 ~ (both,aU) : t"1 ~ 8,1"2 ~ £, 
Ps ¢(suz:) 
The proofs are similar to those for (fin, all). 
Figure 3 represents the correspondence between our prop- 
erty classification and the safety-liveness taxonomy visually. 

6. Conclusion 

As shown in Section 5, class (fin,fin) contains only safety 
properties and classes (fin, inf), ( inf , inf ), and (both, inf ) 
contain only liveness properties. This means that if  a given 
property falls into one of  these four classes, it is immediately 
clear whether it is a safety or a liveness property. Classes 
(fin, all) and (both, all) contain safety properties, liveness 
properties, and also properties that are neither safety nor 
liveness. In general, any property from class (fin, all) can 
be represented as a conjunction of  two properties, one from 
class (fin,fro), and another from class (fin, inf). For exam- 
ple, a property specifying that event a happens exactly once 
on all system executions (which is neither a safety nor live- 
ness property), can be represented as a conjunction of two 
properties, one checking that a happens exactly once on fi- 
nite executions and another checking that a happens exactly 
once on infinite executions. The first of these two proper- 
ties belongs to class (fin,fin) and the second belongs to class 
(fm, inf). 
The case with class (both, all) is not as simple. Whether 
or not such a property can be decomposed successfully de- 
pends on whether we can decompose the representation of 
event sequences in the property into finite sequences and in- 
finite sequences. If  we can, then the property P is repre- 
sented as the conjunction of  two properties, P1 from class 

(fin,fin), and P2 from class (both, inf). (Thus, P l  is a safety 
property and P2 is a liveness property.) For example, a prop- 
erty specifying that on all executions of a system, events a 
and b alternate (but not specifying whether a finite or in- 
finite number of  such events must be observed) is in class 
(both, all). It can trivially be decomposed into a property 
P t  specifying that on all finite executions events a and b 
alternate and a property P2 specifying that on all infinite ex- 
ecutions events a and b alternate and either a finite or an 
infinite number of such events is observed. We believe that 
in practice, most properties from class (both, all) are decom- 
posable in a similar way. 

As discussed, it appears relatively straightforward to extend 
existing specification languages with notations for express- 
ing these characteristics. We intend to incorporate such ex- 
tensions into the QRE specification language used by the 
FLAVERS finite state verification system and to evaluate 
how useful this classification scheme is in practice. We also 
intend to evaluate this classification scheme in terms of  the 
large number of examples gathered to evaluate the work on 
property patterns [9]. Unfortunately, without the presence of 
the system under analysis, it is often not clear whether the 
property refers to finite, infinite, or both kinds of  executions. 
We can use these examples, however, to evaluate how easy it 
would be to extend the specifications with this information. 

To summarize, we have described a new property classifica- 
tion based on two simple characteristics of  properties. One 
characteristic indicates whether the sequences of  events used 
in the property specification are finite, infinite, or both; and 
the other indicates whether the property specifies behaviors 
that must (or must not) hold only on finite, only on infinite, 
or on all executions of the system. The proposed classifi- 
cation has a number of advantages over the safety-liveness 
taxonomy. First, it is relatively natural. Second, deciding 
which of  the six classes in our classification a given property 
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belongs to is trivially derived from the specification of the 
property. Finally, four out of six classes in our classification 
contain properties that are either only safety or only liveness 
properties, so there is no need for proofs to determine which 
analysis algorithm to apply. Another class contains proper- 
ties that can easily be decomposed into two properties, one a 
safety and another a liveness property. For the final class, the 
existence of a "nice" decomposition is not guaranteed, but 
likely. Although our results are preliminary, they do sug- 
gest a relatively straightforward approach for more clearly 
and explicitly expressing important characteristics of  soft- 
ware systems. In addition, such specifications can be used 
to help select the appropriate analysis algorithm. 
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