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Fig. 1. Left to right: given an input point cloud, Poisson Surface Reconstruction (PSR) recovers the surface as the zero levelset of an implicit function. We
propose a novel statistical derivation of PSR that exchanges the function for a distribution, allowing us to answer many statistical queries.

We introduce a statistical extension of the classic Poisson Surface Recon-

struction algorithm for recovering shapes from 3D point clouds. Instead of

outputting an implicit function, we represent the reconstructed shape as a

modified Gaussian Process, which allows us to conduct statistical queries

(e.g., the likelihood of a point in space being on the surface or inside a solid).

We show that this perspective: improves PSR’s integration into the online

scanning process, broadens its application realm, and opens the door to

other lines of research such as applying task-specific priors.

1 INTRODUCTION
Surface reconstruction refers to the process of converting a point

cloud (the most common real-world raw 3D capture format) into

another shape representation, such as a mesh or an implicit function,

for use in downstream applications. This is an underdetermined
process filledwith uncertainty, not just due to a point cloud’s discrete
nature and lack of topological information but also because of real-

world challenges like scan occlusions or measurement error.

The de facto standard geometry processing algorithm for this task

is Poisson Surface Reconstruction (PSR) [Kazhdan et al. 2006], which

solves a partial differential equation to reconstruct a function 𝑓𝑃𝑆𝑅
whose zero levelset 𝑓𝑃𝑆𝑅 = 0 defines the desired surface. Due to its

speed, quality and simplicity, PSR remains relevant and has seen

uses in fields as varied as digital heritage preservation [Andrade et al.

2012], topography [Gupta and Shukla 2017], medicine [Palomar et al.

2016] and autonomous driving [Vizzo et al. 2021].
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Unfortunately, PSR lacks the statistical formalism to quantify the

uncertainties of the surface reconstruction process. The magnitudes

of 𝑓𝑃𝑆𝑅 outside of the zero levelset are arbitrary (see Fig. 2) and 𝑓𝑃𝑆𝑅
alone cannot provide an answer to statistical questions crucial to the

reconstruction process like “how confident can one be of the values

of 𝑓𝑃𝑆𝑅?” or “where should one aim the scanner next to optimize

information gain?” Similarly, it cannot respond to queries like “what

is the probability of a point 𝑝 being contained in the shape?”, critical

for collision detection or ray casting applications.

In this paper, we introduce Stochastic Poisson Surface Reconstruc-
tion (SPSR), a statistical derivation of PSR as conditional probability

distributions in a Gaussian Process (GP). Instead of just an implicit

function value, we endow every point in space with a Gaussian

distribution of possible values. We propose an algorithm to compute

the mean and variance that fully determine this distribution (see

Fig. 1), allowing us to answer any statistical queries.
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Poisson Surface Reconstruction [Kazhdan et al. 2006]
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finer grid more samples zoomed out

Fig. 2. PSR values outside of zero are arbitrary (e.g., they depend on grid
size, sampling rate and scale) and contain no direct statistical information.
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Fig. 3. Our Stochastic PSR extends the traditional PSR into a statistical
distribution whose mean is nearly identical to the PSR output.

This extension vastly broadens the use cases of Poisson Surface

Reconstruction, as we highlight with prototypical examples of sur-

face point cloud repair, ray casting, next-view planning and collision

detection. Furthermore, we show that by understanding PSR from

this new perspective, we can borrow from the Gaussian Process

literature to modify it by incorporating task-specific priors, opening

several promising lines of future research.

2 RELATED WORK
A complete survey of vast research areas like uncertainty quantifi-

cation or surface reconstruction is beyond the scope of this work.

Instead, we focus this section on setting our Stochastic PSR in its

context of bridging the gap between PSR and Gaussian Processes.

2.1 Surface Reconstruction from Point Clouds
Point clouds are a common raw format for 3D geometry acquired

form the real world. However, most applications in fields like render-

ing, simulation and geometry processing require more structured

representations like triangle meshes. Thus, reconstructing surfaces

from point clouds is a well-studied, fundamental problem in Com-

puter Graphics (see [Berger et al. 2017] for an exhaustive survey).

While some methods convert point clouds directly to meshes (e.g.,

by dictionary learning [Xiong et al. 2014]) or simple primitives (e.g.,

[Monszpart et al. 2015; Nan et al. 2010]), we focus on those that

extract the shape as the zero levelset of a reconstructed function 𝑓 .

Within these, a common separation is made between local and
global algorithms. Local algorithms prioritize performance in speed

and memory; for example, by fitting linear [Hoppe et al. 1992], poly-

nomial [Alexa et al. 2001] or higher-order [Fuhrmann and Goesele

2014] functions to restricted point subsets. By their nature, these

are more susceptible to oscillations far from the sample points. To

cope, global algorithms (e.g., [Jacobson et al. 2013]) allow 𝑓 to be

influenced by every point in the cloud (hierarchical fast summation

structures can help reduce computation [Barill et al. 2018]).

Poisson Surface Reconstruction (PSR) [Kazhdan et al. 2006] cap-

tures the best features of the global (robustness) and local (perfor-

mance) methods by computing 𝑓 in two steps. First, a vector field ®𝑉
is interpolated from the point cloud using only local information.

Then, 𝑓 is obtained from ®𝑉 via a global sparse PDE solve, which

is discretized as a linear system and can be solved very efficiently

using an adaptative grid structure. PSR has been improved since its

publication; for example, Kazhdan and Hoppe [2013] combine both

steps to improve noise robustness, Kazhdan et al. [2020] include

Gaussian Process

Training
observations

Test point

Conditional 
mean

Conditional 
variance

Fig. 4. A sample Gaussian Process applied to a supervised learning task.
Given some training observations (orange), any unobserved test point is
given a conditional distribution with a mean (purple) and variance (brown).

[Pauly et al. 2004] Our Stochastic PSR

(surface smoothness prior) (solid smoothness prior)

+     Other statistical queries

Fig. 5. Pauly et al. [2004] use a surface smoothness prior to quantify uncer-
tainty in reconstruction. We use a solid smoothness prior to compute a full
statistical distribution, from which we can also query surface quantities.

envelope constraints and Peng et al. [2021] formulate the Poisson

solve in a differentiable way. Nonetheless, the original 2006 publi-

cation is still one of the few showing robustness in every metric

considered by Berger et al. [2017] more than a decade later.

Our Stochastic PSR inherits all the benefits of the original PSR,

supplying it with a complete statistical formalism that extends it and

its application realm (see Fig. 3). Our contributions are orthogonal

to the specific grid structure used (see [Kazhdan and Hoppe 2019]).

Our algorithm can output the probability of any point in space be-

ing inside the sampled domain (see Fig. 1). While this resembles the

shape representations proposed by occupancy networks [Mescheder

et al. 2019] and neural radiance fields [Mildenhall et al. 2020], we

note that our algorithm produces this quantity as a direct byproduct

of a fully determined statistical distribution which can answer many

other statistical queries, like boundary probabilities (see Fig. 5) or

regional probabilities (see Fig. 12).

2.2 Gaussian Processes
A Gaussian Process (GP) is an infinite collection of joint normal

distributions [Doob 1944; Dudley 2018], usually parametrized by a

continuous parameter like time or space [Kac and Siegert 1947]. Re-

cently, Gaussian processes have been used as a tool in unsupervised

learning (see [Williams and Rasmussen 2006] for an introduction,

[Engel et al. 2005; Raissi et al. 2017] for examples), even suggested

initially as an alternative to neural networks by MacKay [1997].

Closer to our application are Gaussian Process Implicit Surfaces

(GPIS) [Williams and Fitzgibbon 2006]. These algorithms exchange

the 𝑓 (𝑥) function that implicitly defines a surface for a Gaussian

distribution 𝑓 (𝑥) ∼ N (𝜇 (𝑥), 𝜎 (𝑥)), and compute 𝜇 (𝑥) and 𝜎 (𝑥) by
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Fig. 6. Our SPSR provides a probability that accounts for sampling and
cannot be recovered from the PSR values. Histograms in logarithmic scale.

studying the posterior GP distribution given observed points. One

can recover a surface by extracting the zero levelset of 𝜇; however,

the information contained in 𝜎 also finds use in tasks like robotic

grasping [Dragiev et al. 2011], next view planning [Hollinger et al.

2012] and segmentation [Ramon Soria et al. 2017; Shin et al. 2017].

GPIS present the same global/local dilemma as other surface

reconstruction algorithms. If the interpolation is done using all the

point cloud information (this is encoded in the support of the GP

covariance function), the method suffers in performance; if not, in

robustness. By using the insights of Poisson Surface Reconstruction,

our Stochastic PSR instead uses a local Gaussian Process to build

the distribution of the gradient field ∇𝑓 (𝑥), and then recover the

full distribution of 𝑓 (𝑥) with a global PDE solve. While using a GP

to interpolate vector-valued data is unorthodox, we note it has been

done before; e.g., for fluid velocity information [Lee et al. 2019].

Gaussian processes are a more traditional approach to quantify-

ing the uncertainty of a regression model, a field which has seen

significant growth since recent advances in deep learning (see [Ab-

dar et al. 2021] for a survey). Often, the posterior distribution of

a given neural network is approximated by another Bayesian net-

work whose parameters minimize a chosen distribution loss. (see

e.g., [Xue et al. 2019]). Alternatively, the posterior may be learned

directly from the observed data (see e.g., [Shen et al. 2021]).

2.3 Stochastic Geometry Processing
Our algorithm stands among many similar works that add statistical

formalism to standard geometry processing techniques, like point

cloud registration. Specifically, a lot of work has been dedicated to

computing the covariances in the pairwise iterative closest point

[Bosse and Zlot 2008; Landry et al. 2019] and, most recently, for

general multi-scan registration [Cao et al. 2018; Huang et al. 2020].

Closer to our application, Curless and Levoy [1996] compute

truncated signed distance fields for each sensor position and use a

model for their individual uncertainty to weigh their contributions

to the final implicit reconstruction. Pöthkow et al. [2011] model

grid samples of an implicit function as normal distributions and

calculate the individual probabilities of each voxel marching cubes

configuration to quantify the contouring uncertainty. Sharf et al.

Input PSR vector field Our SPSR vector field

Fig. 7. Our SPSR vector field ®𝑉𝑆𝑃𝑆𝑅 (right), which uses a symmetrized
version 𝑘𝑆𝑃𝑆𝑅 of the traditional PSR covariance 𝑘𝑃𝑆𝑅 , is visually identical
to the PSR vector field ®𝑉𝑃𝑆𝑅 (center) for a representative input point cloud
(left). In the language of Section 4, the right-most subfigure shows the mean
of our vector field Gaussian Process ®𝑉 (𝑞) after covariance lumping.

[2007] similarly measure topological reconstruction uncertainty to

identify where user-provided disambiguation is most needed.

Pauly et al. [2004] work is the most similar to ours. It takes a point

cloud as input and uses a surface smoothness prior to compute

the likelihood of any point in space lying on it (see Fig. 5, left).

Instead, our proposed algorithm assumes samples to lay on the

boundary of a solid, and impose solid smoothness prior (examined

further in Section 5). Further, while our algorithm can also output

a surface likelihood quantity (see Fig. 5, center), it is only part of a

full statistical distribution of the solid (see Fig. 5, right).

3 BACKGROUND
By posing PSR as a Gaussian Process, our work combines these two

concepts. We begin by reviewing them individually.

3.1 Gaussian Processes
Intuitively, a Gaussian Process is an extension of the multivari-

ate normal distribution to an infinite number of dimensions. For-

mally, let A = {𝐴(𝑥)}𝑥 ∈𝐷 be a collection of random variables

parametrized by some continuous parameter 𝑥 . A is said to be a

Gaussian Process if any finite subset of A follows a multivariate

Gaussian distribution. Equivalently, A is a Gaussian Process if for

any two 𝑥, 𝑥 ′ ∈ Ω,

𝐴(𝑥), 𝐴(𝑥 ′) ∼ N
( [
𝑚(𝑥)
𝑚(𝑥 ′)

]
,

[
𝑘 (𝑥, 𝑥) 𝑘 (𝑥, 𝑥 ′)
𝑘 (𝑥 ′, 𝑥) 𝑘 (𝑥 ′, 𝑥 ′)

] )
(1)

for somemean and covariance functions𝑚 : Ω → R, 𝑘 : Ω×Ω → R.
These two functions uniquely determine the Gaussian Process A.

Gaussian Processes are a particularly useful tool for supervised

learning tasks (see Fig. 4). Assume training observationsT = {(𝑥𝑖 , 𝑎𝑖 )}𝑛𝑖=1,
where each 𝑎𝑖 is an observation of the distribution 𝐴(𝑥𝑖 ), and con-

sider an unobserved (test) point 𝑥 . By definition of GP, the joint

distribution of {𝐴(𝑥), 𝐴(𝑥1), . . . , 𝐴(𝑥𝑛)} is

N
©­­­­«

𝑚(𝑥)
𝑚(𝑥1)

.

.

.

𝑚(𝑥𝑛)


,


𝑘 (𝑥, 𝑥) 𝑘 (𝑥, 𝑥1) . . . 𝑘 (𝑥, 𝑥𝑛)
𝑘 (𝑥1, 𝑥) 𝑘 (𝑥1, 𝑥1) . . . 𝑘 (𝑥1, 𝑥𝑛)

.

.

.
.
.
.

. . .
.
.
.

𝑘 (𝑥𝑛, 𝑥) 𝑘 (𝑥𝑛, 𝑥1) . . . 𝑘 (𝑥𝑛, 𝑥𝑛)


ª®®®®¬

(2)
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Fig. 8. To interpret PSR as a Gaussian Process, we define 𝑘𝑆𝑃𝑆𝑅 , a minor
modification of the PSR semicovariance 𝑘𝑃𝑆𝑅 . These are visually similar
and their difference is small (a maximum of 2%).

which we write as

𝐴(𝑥), 𝐴(𝑥1), . . . , 𝐴(𝑥𝑛) ∼ N
( [
𝑚1

m2

]
,

[
𝑘1 k⊤2
k2 K3

] )
, (3)

where it is relevant to note thatK3 depends only on the training data

and k2 depends on both training and test sets. By Bayes’ theorem,

this means the distribution of𝐴(𝑥) conditioned on the observations

{(𝑥𝑖 , 𝑎𝑖 )}𝑛𝑖=1 is

𝐴(𝑥) | T ∼ N(𝑚1 + k⊤2K
−1
3 (a −m2), 𝑘1 − k⊤2K

−1
3 k2) (4)

One usually assumes𝑚 = 0 (otherwise, the Gaussian processA−𝑚
is considered), and writes

𝐴(𝑥) | T ∼ N(k⊤2K
−1
3 a, 𝑘1 − k⊤2K

−1
3 k2) . (5)

In the case of noisy observations, a term 𝜎2𝑛 I (where 𝜎
2
𝑛 is the noise

variance) is added to K3.

3.2 Poisson Surface Reconstruction
Any input oriented point cloud of the surface of a solid shape Ω
can be written as a set of observations 𝑠 ∈ S, each of them stor-

ing a position 𝑝𝑠 and a (normalized) orientation ®𝑁𝑠 . Poisson Sur-

face Reconstruction [Kazhdan et al. 2006] aims to build a function

𝑓𝑃𝑆𝑅 : R3 → R which takes positive values inside Ω and negative

values outside of it, thus making the zero levelset 𝑓𝑃𝑆𝑅 = 0 the

reconstructed surface 𝜕Ω.
PSR begins by building a grid O. Then, they define the following

vector field for any 𝑞 ∈ R3 by using the grid structure to interpolate

the orientation observations:

®𝑉𝑃𝑆𝑅 (𝑞) =
∑︁
𝑠∈S

1

𝑊 (𝑝𝑠 )
∑︁

𝑜∈𝐵 (𝑠)
𝛼𝑜,𝑝𝑠 𝐹𝑜 (𝑞) ®𝑁𝑠 (6)

where 𝐵(𝑠) are the eight closest grid nodes to 𝑠 , 𝛼𝑜,𝑝𝑠 is the trilin-

ear interpolation weight for 𝑝𝑠 at 𝑜 ,𝑊 is a measure of volumetric

sampling density and 𝐹𝑜 is a compactly-supported approximation

of a Gaussian kernel centered at the 𝑜-th node.

The fundamental observation of PSR is that once ®𝑉 has been

constructed, the desired implicit function 𝑓 satisfies

Δ𝑓𝑃𝑆𝑅 (𝑥) = ∇ · ®𝑉𝑃𝑆𝑅 (𝑥) , ∀𝑥 ∈ O (7)

Eq. (7) is underdetermined, as wildly different functions can have the

same Laplacian. This ambiguity is resolved in part during discretiza-

tion. Kazhdan et al. [2006] suggest building O as an adaptive grid of

a bounding box of the point cloud. Then, they use the finite element

method to build discrete Laplacian and divergence operators L and

Z and solve

Lf𝑃𝑆𝑅 = Zv𝑃𝑆𝑅 . (8)

Input

Full GP
(needs inverting K)

Independent sample
approximation

Our covariance 
lumping

Fig. 9. One can avoid the GP sample covariance matrix inversion (center
left) by assuming samples to be independent (center right). This makes
magnitudes proportional to sampling density (see highlight). Our covariance
lumping approximates the full GP with invariant magnitudes (right).

This discretization imposes zero Neumann ∇𝑓 · ®𝑛 = 0 boundary

conditions on the boundary of O. Even so, Eq. (8) only determines f
up to translation. To account for this, one valid f𝑃𝑆𝑅 is computed

and then shifted so its values near the observation points are zero

on average. The solution f𝑃𝑆𝑅 contains the implicit function 𝑓𝑃𝑆𝑅
evaluated at each grid node, and its zero levelset can be extracted

using contouring algorithms like Marching Cubes [Lorensen and

Cline 1987] or Dual Contouring [Ju et al. 2002].

4 STOCHASTIC POISSON SURFACE RECONSTRUCTION
We introduce our Stochastic PSR, which extends the traditional PSR

from Kazhdan et al. [2006] with the statistical formalism of a Gauss-

ian Process. We begin by defining the PSR semicovariance as

𝑘𝑃𝑆𝑅 (𝑥,𝑦) = 𝜎𝑔

∑︁
𝑜∈𝐵 (𝑥)

𝛼𝑜,𝑥𝐹𝑜 (𝑦) , (9)

where 𝜎𝑔 is a scalar parameter. Then, the vector field interpolation

in Eq. (6) can be written as

®𝑉𝑃𝑆𝑅 (𝑞) =
∑︁
𝑠∈𝑆

𝑘𝑃𝑆𝑅 (𝑝𝑠 , 𝑞)
1

𝜎𝑔𝑊 (𝑝𝑠 )
®𝑁𝑠 . (10)

By term identification, it may be tempting to interpret this interpo-

lation directly as the posterior mean of a Gaussian Process k⊤2K
−1
3 y

(see Eq. (5)), with normals as the observed values y, 𝑘𝑃𝑆𝑅 (𝑝𝑠 , 𝑞) as
the entries of k2 and division by 𝜎𝑔𝑊 (𝑝𝑠 ) playing the role of multi-

plication byK−1
3 . However, a valid Gaussian distribution must have

a symmetric covariance, and 𝑘𝑃𝑆𝑅 (𝑝𝑠 , 𝑞) ≠ 𝑘𝑃𝑆𝑅 (𝑞, 𝑝𝑠 ) in general

(hence the semi in “PSR semicovariance”). To circumvent this, we

define the Stochastic PSR covariance to be its symmetrized version

𝑘𝑆𝑃𝑆𝑅 (𝑥,𝑦) = 𝑘𝑆𝑃𝑆𝑅 (𝑦, 𝑥) =
1

2
(𝑘𝑃𝑆𝑅 (𝑥,𝑦) + 𝑘𝑃𝑆𝑅 (𝑦, 𝑥)) , (11)

which analagously defines a Stochastic PSR vector field

®𝑉𝑆𝑃𝑆𝑅 (𝑞) =
∑︁
𝑠∈𝑆

𝑘𝑆𝑃𝑆𝑅 (𝑝𝑠 , 𝑞)
1

𝜎𝑔𝑊 (𝑝𝑠 )
®𝑁𝑠 (12)

This variance symmetrization will be our only deviation from

the traditional Poisson Surface Reconstruction by Kazhdan et al.

[2006] (see Fig. 8). Strictly speaking, all the observations that follow

in this paper can only be said to apply to ®𝑉𝑆𝑃𝑆𝑅 ; however, note that
®𝑉𝑃𝑆𝑅 and ®𝑉𝑆𝑃𝑆𝑅 are visually indistinguishable (see Fig. 7) and their

difference vanishes under refinement (see proof in Appendix A).
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Fig. 10. By adding a variance, we can consistently compute the probability
of any point in space being in the sampled object.

Our critical observation is that the interpolation in Eq. (12) can

be interpreted as the mean of a supervised learning task under the

assumptions of a Gaussian Process with 𝑚 = 0 and covariance

𝑘𝑆𝑃𝑆𝑅 . Indeed, one needs only to exchange 𝐴 for the vector-valued

®𝑉 and the observations {(𝑥𝑖 , 𝑎𝑖 )} for {(𝑝𝑠 , ®𝑁𝑠 )} in Eq. (5) to obtain

the conditional probability distribution

®𝑉 (𝑞) | S ∼ N(k⊤2K
−1
3

®𝑁𝑠 , 𝑘1 − k⊤2K
−1
3 k2) (13)

where

𝑘1 = 𝑘 (𝑞, 𝑞) , k2 = (𝑘 (𝑞, 𝑝𝑠 ))𝑠∈S ∈ R |S | , (14)

K3 = (𝑘 (𝑝𝑠 , 𝑝𝑠′))𝑠,𝑠′∈S ∈ R |𝑆 |× |𝑆 | . (15)

The main computational cost in computing the mean and variance

of the conditional distribution is the inversion ofK3, a matrix whose

size scales with the number of points in the cloud. One could avoid

this by assuming that the samples S are independent, which would

result in approximatingK3 by 𝜎𝑔I. However, completely discarding

the sample interdependency could have adverse effects: in practice,

it would make densely sampled regions have an outsized effect over

more sparsely sampled ones (see Fig. 9, center right).

We introduce a better approximation: we assume each sample is

independent, but with variance proportional to sampling density.

Intuitively, this means we account for the interdependence by trust-

ing each individual sample in a densely sampled region less than

in a sparsely sampled one (see Fig. 9, right). We justify this choice

mathematically in the general GP context in Appendix B.

We are not aware of any previous work that proposes this approx-

imation, which addresses one of the main performance limitations

of general Gaussian Processes. Numerically, this resembles the mass

matrix lumping step often carried out in the Finite Element litera-

ture (see e.g., [Zienkiewicz et al. 2005] Chap. 16.2.4.), so we call it

the (diagonal) lumped covariance matrix

D := diag(𝜎𝑔𝑤) ≈ K3 (16)

where𝑤 is the local sampling density at each sample point, which

we compute as described by Kazhdan et al. [2006]. As is usual with

Gaussian processes, we sum 𝜎𝑛I if the sampled point cloud is as-

sumed to contain noise with variance 𝜎𝑛 in the normal vector.

Then, the conditional distribution becomes

®𝑉 (𝑞) | S ∼ N(k⊤2D
−1 ®𝑁𝑠 , 𝑘1 − k⊤2D

−1k2) (17)

Importantly, note that the mean of this distribution is exactly the

Stochastic PSR vector field we introduced in Eq. (12), i.e.,

®𝑉 (𝑞) | S ∼ N( ®𝑉𝑆𝑃𝑆𝑅 (𝑞), 𝑘1 − k⊤2D
−1k2) . (18)

Simulated scan input
Mean Variance

0in out 0 + 0 1

Fig. 11. Our extension of PSR provides a mean and variance, which can be
used to compute probabilities.

In other words, this critical reinterpretation of PSR has allowed us

to extend the interpolated PSR vector field into a complete statistical

distribution whose mean ®𝑉𝑆𝑃𝑆𝑅 is nearly identical to ®𝑉𝑃𝑆𝑅 (see Fig. 7,

which we can now understand as comparing the traditional PSR

vector field to the mean of our lumped Gaussian Process).

Ideally, however, we would want a similar statistical formalism

not for ®𝑉 but for the implicit function 𝑓 , which would allow us to

formulate statistical queries meaningful to the reconstruction task,

e.g., 𝑃 (𝑓 (𝑞) < 0).
Fortunately, transfering our statistical understanding of ®𝑉 to 𝑓

is just a matter of Gaussian arithmetic. First, note that a reasoning

identical to the one above leads to the joint conditional probability

of ®𝑉 at all grid nodes being

®𝑉 (𝑜1), . . . , ®𝑉 (𝑜 |𝑂 |) | S ∼ N(V𝑆𝑃𝑆𝑅,K1 −K⊤
2D

−1K2) , (19)

where

K1 = (𝑘 (𝑜, 𝑜 ′)) ∈ R |O |×|O | , K2 = (𝑘 (𝑜, 𝑝𝑠 )) ∈ R |O |×|S |
(20)

and

V𝑆𝑃𝑆𝑅 = ( ®𝑉𝑆𝑃𝑆𝑅 (𝑜)) ∈ R |O |×3 . (21)

For simplicity, denote KV = K1 − K⊤
2D

−1K2, and let v be the

concatenated vector of ®𝑉 values as in the previous section. Then,

Eq. (19) becomes

v | S ∼ N (V𝑆𝑃𝑆𝑅,KV) . (22)

By linearity and bilinearity of the mean and covariance, respectively,

we know

Zv | S ∼ N (ZV𝑆𝑃𝑆𝑅,ZKVZ⊤) . (23)

and thus, since the vector f of evaluations of 𝑓 satisfies Lf = Zv,

f | S ∼ N
(
L−1ZV𝑆𝑃𝑆𝑅,L

−1ZKVZ⊤ (L⊤)−1
)
, (24)

Similarly to the traditional PSR, we shift the mean values to be

zero near the sample points and shift the variance values to have a

minimum diagonal entry of zero. We write the above distribution as

f | S ∼ N (f𝑆𝑃𝑆𝑅,Kf ) . (25)

This statement is our principal contribution, as it extends the tradi-

tional PSR implicit function f𝑃𝑆𝑅 into a full statistical distribution

whose mean is almost identical to f𝑃𝑆𝑅 . Of all the information con-

tained inKf , a particularly useful quantity is its diagonal 𝜎2
f
, which

contains the variances of each entry of 𝑓 (see Fig. 3).
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Fig. 12. Our algorithm not only allows us to compute individual spatial
probabilities (center), but also joint regional probabilities (right).

4.1 Statistical queries
Eq. (25) contains all the information we need to respond to statis-

tical queries fundamental to the reconstruction process; e.g., the

probability of a given point being inside the shape (see Fig. 10)

𝑝 (𝑜𝑖 ∈ Ω) = 𝑝 (f𝑖 ≤ 0) = 𝐶𝐷𝐹f𝑆𝑃𝑆𝑅,𝑖 ,𝜎2
𝑖
(0) (26)

or the probability density of being on the surface (see Fig. 13)

𝑝 (𝑜𝑖 ∈ Ω) = 𝑝 (f𝑖 = 0) = 𝑃𝐷𝐹f𝑆𝑃𝑆𝑅,𝑖 ,𝜎2
𝑖
(0) (27)

where 𝐶𝐷𝐹𝜇,𝜎2 and 𝑃𝐷𝐹𝜇,𝜎2 are the cummulative distribution and

probability density functions, respectively, of a Gaussian distribution

with mean 𝜇 and variance 𝜎2. Similar Gaussian arithmetic lets us

compute other quantities like confidence intervals (see Fig. 14).

All these queries would be impossible to answer from PSR’s 𝑓𝑃𝑆𝑅
alone. We show this in the didactic example in Fig. 6, where vectors

pointing upward are sampled from a normal distribution centered

at the middle horizontal line. As more samples get added, 𝑓𝑃𝑆𝑅
converges to a smooth transition between positive and negative

values; however, our variances are progressively decreasing, making

𝑃 (𝑥 ∈ Ω) converge in certainty as expected.

We formalize this observation further by defining an integrated

statistical quantity, the total uncertainty 𝑈𝑆𝑃𝑆𝑅 , which we define as

𝑈𝑆𝑃𝑆𝑅 =

∫
𝐵

(0.5 − |𝑃 (𝑥 ∈ Ω) − 0.5|) 𝑑𝑥 (28)

where 𝐵 is a bounding box around the point cloud. 𝑈𝑆𝑃𝑆𝑅 can be

intuitively interpreted as a global measure of reconstruction quality

which converges to zero when the surface has been reconstructed

with absolute certainty (see Fig. 15). We pose that this quantity can

be used as a stopping criteria to guide the scanning process (see

Fig. 17). We know of no analogous quantity that can be formally

defined from the traditional PSR understanding alone.

The off-diagonal entries of Kf quantify the correlation between

the values of 𝑓 at different points in O. This allows for joint probabil-
ity queries; for example, computing the likelihood of a whole region

in space 𝑅 intersecting Ω (see Fig. 12), a quantity of immediate

relevance to collision detection applications.

To compute it, we can randomly sample 𝑅𝑠 = {𝑟1, . . . , 𝑟𝑠 } ⊂ 𝑅. If

W is the linear interpolation matrix from O to 𝑅𝑠 , then distribution

arithmetic says

f (𝑟1, . . . , 𝑟𝑠 ) |S ∼ N(Wf𝑆𝑃𝑆𝑅,W
⊤KfW) . (29)

Input Mean Variance

0in out 0 + 0 1 0 1

Fig. 13. Our computedmean and variance (center left) completely determine
the implicit function’s distribution, allowing us to respond to statistical
queries like the likelihood of a point being in the volume defined by the
point cloud (center right) or on its surface (right).

99.7% Confidence Interval

95%
68%

Mean

0in out

Fig. 14. The 68-95-99.7 rule from normal distributions lets us compute con-
fidence intervals for the implicit function values. Regions with the same
color (red or blue) at both extremes of an interval can be said to be inside or
outside with at least the interval’s confidence.

The collision probability, i.e., the probablity that any 𝑟𝑖 is contained

in the shape, is opposite to the joint probability that all 𝑟𝑖 are outside

the shape, 𝑝 (f (𝑟1) > 0, . . . , f (𝑟𝑠 ) > 0)). This quantity is also the

same as 𝑝 (−f (𝑟1) < 0, . . . ,−f (𝑟𝑠 ) < 0)), known as the multivariate
Gaussian cummulative distribution of −f , which can be estimated

with numerical integration (see Figs. 12 and 20).

4.2 Space reduction with eigenspace analysis
All this additional information comes at a computational cost. Specif-

ically, the main performance bottleneck is the computation of the

covariance matrix

Kf = L−1ZKVZ⊤ (L⊤)−1 , (30)

a matrix equation that amounts to solving 2 × |O| linear systems.

Even making use of efficient prefactorizations of L, this step is

impracticable for large 3D grids with sizes in the millions of cells.

To circunvent this, we will work in the reduced space of Laplacian

eigenvectors. For a cuboid with lengths ℓ1, ℓ2, ℓ3 and zero Neumann

boundary conditions, these are known [Gottlieb 1985] to respond

to the analytic function

𝜓
𝑀,𝑁,𝑁

(𝑥,𝑦, 𝑧) = cos

(
𝑀𝜋𝑥

ℓ1

)
cos

(
𝑁𝜋𝑦

ℓ2

)
cos

(
𝑁𝜋𝑧

ℓ3

)
, (31)

with associated eigenvalues

𝜆
𝑀,𝑁,𝑁

= 𝜋2

[(
𝑀

ℓ1

)2
+
(
𝑁

ℓ2

)2
+
(
𝑁

ℓ3

)2]
. (32)
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Fig. 15. Our statistical formalism means we can define quantities like the in-
tegrated uncertainty, which converges to zero as the probability is collapsed
to zero and one. This measure can serve as a scanning stopping criterion.

Input Adaptive
discretization Mean Variance
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Fig. 16. Our contribution is orthogonal to the choice of discretization, as
we show by answering statistical queries on a graded quadtree.

Specifically, we will evalute these analytical expressions into

E ∈ R |O |×𝑘
, the matrix of the 𝑘 lowest-magnitude eigenvectors of

L, and D𝑒 , the diagonal eigenvalue matrix. Then, we approximate

Kf by projecting ZKVZ⊤ to the eigenspace, solving the matrix

equation in this reduced space, and reprojecting; i.e.,

Kf ≈ ED−1
𝑒 E⊤ (

ZKVZ⊤
)
ED−1

𝑒 E⊤ . (33)

In all our examples, we fix 𝑘 = 3000.
Due to the dimensionality of the above matrices, the mostly com-

putationally expensive step in Eq. (33) is the product ECE⊤
, where

C ∈ R𝑘×𝑘 results from multiplying all middle matrices in Eq. (33).

We avoid this step by noting that it is rare that one is interested

in all entries of Kf . As seen in Section 4.1, most statistical queries

require only the diagonal 𝜎2
f
, which we can compute directly and

efficiently as (EC) ·E, where · denotes row-wise dot product. In the

case of joint probability queries that require off-diagonal knowledge

ofKf , we first construct the selection matrices S, S⊤ that extract the

covariance rows and columns relevant to the specific application,

and directly compute E′CE′⊤
, where E′ = SE. Thus, we eventually

avoid ever computing (or storing) the full Kf ∈ R |O |×|O |
.

Dimension reduction has been used for implicit reconstruction

before; e.g., the Fourier coefficients computed by Kazhdan [2005].

We limit our approximation to the covariance computation only.

4.3 Adaptive discretization
The statistical formalism we contribute is agnostic to where the

values of 𝑓 and ®𝑉 are stored and to the discretization scheme used

to solve the Poisson equation. Kazhdan et al. [2006] suggest building

an adaptive grid which is finer near the sampled point cloud. This

choice is justified through their sole goal of accurately recovering

the zero levelset of 𝑓 .

...

...

...

...

Progressive simulated scans
Reconstruction 

with u<0.1

Our total uncertainty u as a stopping criterion in scanning

0 +

σ
Fig. 17. Like PSR, we can extract isosurfaces of the mean of our Stochastic
PSR. Unlike PSR, our statistical formalism provides a reliable stopping crite-
rion by thresholding integrated uncertainty 𝑢. Meshes colored by variance.

Our Stochastic PSR extends the traditional PSR by providing volu-

metric statistical information, which is also relevant and non-trivial

in regions away from the zero levelset of our mean function f𝑆𝑃𝑆𝑅 or

the point cloud (see, e.g., the probability in Fig. 10). Further, comput-

ing statistical queries accurately away from the mean-zero levelset

can be critical for applications that our formalism newly allows like

collision detection or ray casting (see Fig. 24). Thus, the choice of an

adaptive grid structure is less obvious for our algorithm. Nonethe-

less, we show in Fig. 16 our algorithm working as expected on a

graded quadtree grid structure, following the finite difference dis-

cretization proposed by Bickel et al. [2006]. While orthogonal to our

contribution, we believe exploring different adaptive discretization

strategies (e.g., narrowing in on regions of higher uncertainty) to be
a promising avenue for future work.

5 BEYOND POISSON SURFACE RECONSTRUCTION
A significant benefit of our interpretation of Poisson Surface Recon-

struction as a Gaussian Process is that we may borrow from the vast

literature on the latter to study variations of the traditional PSR. A

prototypical example of this is incorporating task-specific priors.

In Section 3.1, we mentioned that most Gaussian Process consider

𝑚 = 0 and are thus fully determined by the covariance𝑘 (this is often

known as kriging in the GP literature). Indeed, it was by assuming

𝑚 = 0 that we recovered the PSR vector field interpolation as the

mean of the GP posterior distribution. In fact, the choice of𝑚 is a

prior imposed on the joint distribution before any data is observed.

Thus, PSR can be understood to have a zero-gradient prior.

Incidentally, this observation also provides an answer to an often

asked question about PSR; namely, why PSR, which is posed as re-

covering a function which is zero on the surface and satisfies certain
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Fig. 18. Taking inspiration from Figs. 6 and 7 in [Martens et al. 2016], we show the result of reconstructing an apple and a car from a partial scan. PSR fails to
produce even a closed surface, as does our vanilla SPSR, albeit also providing variance information signaling the less confident regions. When combined with a
task-specific simple primitive (spherical or ellipsoidal) prior, SPSR provides a significantly better reconstruction.

norm-one gradients, produces an output so different from a Signed

Distance Field (SDF). From this novel Gaussian Process perspective,

we can understand that PSR is, via its 𝑚 = 0 prior, encouraging

zero-norm gradients away from the sample positions, while an SDF

requires Eikonal norm one gradients almost everywhere.

Primitive geometric priors. Martens et al. [2016] suggest using

simple geometric primitives as priors in the context of GP implicit

surfaces. Since the authors are directly learning the surface’s im-

plicit representation, their suggested priors𝑚 are scalar, SDF-like

functions. In our case, where learning is carried out in the gradient

space and then transfered to an implicit function via a PDE solve,

we can use gradient vector-valued priors.

In Fig. 19, we exemplify the effect of a simple spherical prior

𝑚(𝑥) = 𝛼
𝑥 − c

∥𝑥 − c∥ , (34)

which we pose can be a useful tool for favouring closed reconstruc-

tions over open ones. 𝛼 is a parameter tuning the strength of the

prior and c is the center of the sphere, which we set to be the average
of all point cloud positions. In Fig. 18, we show less didactical uses

of this same prior, along with a similar ellipsoidal one.

6 IMPLEMENTATION DETAILS
We implemented our algorithm in Python, using libigl [Jacobson

et al. 2018] for common geometry processing subroutines. We ren-

dered all our figures in Blender, using BlenderToolbox [Liu 2022].

All our results were produced on our machine with Intel Xeon CPU

E5-2637 v3 3.50Hz (16 cores) with 64GB of RAM.

For parameter standardization, we normalized all our examples

to fit a length-one cube as a preprocessing step. Unless specified

otherwise, we use a 1003 uniform grid (1002 in the two-dimensional

examples) such that L and Z become the usual finite difference

Laplacian and divergence matrices. We fix 𝜎𝑔 = 0.02, 𝛼 = 0.05 and

𝑘 = 3000. We use the same function 𝐹𝑜 as Kazhdan et al. [2006],

obtained by convolving a box filter with itself three times.

Formemory efficiency, we use SciPy’s biconjugate gradientmethod

to solve for the distribution mean 𝑓𝑆𝑃𝑆𝑅 , which accounts for approx-

imately 5% of our runtime (around 10 seconds in all 3D examples).

Our main computational bottleneck is Eq. (33) (specifically, the pro-

jection ofKV into the reduced space), covering 90% of our runtime

(around two minutes in all 3D examples).

Input SPSR SPSR + spherical prior

Adding geometric
priors to PSR

Zero

levelset

Zero

levelset

Zero

levelset
Zero

levelset

0

in

out

Fig. 19. Adding a spherical prior to our Stochastic PSR reconstruction helps
us recover spherical objects and also avoid open surfaces in partial scans.

7 EXPERIMENTS

7.1 Deviation from Kazhdan et al. [2006]
Our sole deviation from traditional Poisson Surface Reconstruction

as introduced by Kazhdan et al. [2006] is the symmetrization of

the covariance in Eq. (37). Theoretically, it is clear that both 𝑘𝑃𝑆𝑅
and 𝑘𝑆𝑃𝑆𝑅 converge to the same symmetric 𝐹𝑥 (𝑦) in the limit of

grid refinement. However, we also justify the step by showing that

the difference between these two is small even at a very coarse

resolution in Fig. 8. In PSR, 𝑘𝑃𝑆𝑅 is used to reconstruct a vector field

®𝑉𝑃𝑆𝑅 . In Fig. 7, we show that the interpolated vector field ®𝑉𝑆𝑃𝑆𝑅
obtained with the symmetrized covariance is visually identical. In

Fig. 3, we show that this applies also to the implicit function 𝑓

obtained through the Poisson solve.

7.2 Statistical quantities
Our Stochastic PSR exchanges the functional PSR output for a fully

defined statistical distribution. To explore just how much more

information is contained in this distribution, we show different

statistical quantities meaningful to the shape reconstruction process.

In Fig. 10, we use our computed mean and variance to evalu-

ate each point’s cummulative distribution functions at zero, which

returns the probability of any point in space being contained in

Ω. Similarly, evaluating the probabilistic density function at zero

returns a measure of surface probability, as we show in Fig. 13. We
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Fig. 20. We can use our statistical formalism it to compute statistical quantities like collision chances (bold), unlike traditional PSR (grey).
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Fig. 21. We can use our computed surface likelihood to repair the input
point cloud, naturally drawing points from less certain regions.

use slice planes to visualize these functions for a 3D reconstruction

problem in Fig. 1 and Fig. 11. In Fig. 14, we show our statistical for-

malism applied to the computation of confidence intervals, which

serve as an intuitive tool for visualizing variances.

8 APPLICATIONS
Our main contribution is a novel theoretical understanding of Pois-

son Surface Reconstruction that expands it beyond its traditional

application realm. We explore this with prototypical results.

8.1 Collision detection
Statistical information is critical for robots or autonomous vehicles,

which may capture their surroundings as point clouds with partial

occlusions. When a car is deciding whether to swerve, it does not

want to know only if the maneuvre is secure for the most likely
scenario of its surroundings (the traditional PSR output or the SPSR

mean); rather, it must account for uncertainty and conclude whether

the maneuvre is safe in the vast majority of possible scenarios.
We exemplify this in Fig. 20, where we simulate a 3D scan of

a street and use joint probability queries to compute the collision

chance of an automated vehicle along a given trajectory. We com-

pare this chance against a baseline (in grey), which only checks for

intersections between the car mesh and the traditional PSR zero

isolevel extracted with Marching Cubes [Lorensen and Cline 1987].

We include synthetic Gaussian noise both on the input point posi-

tions and normal vectors. In Fig. 22, we show how one can threshold

our computed probabilities 𝑝 (𝑥 ∈ Ω) to obtain isosurfaces for use

in collision detection applications.

8.2 Volume rendering
The arbitrary units in the traditional PSR output mean that it cannot

be interpreted as a volume rendering occupancy. Fortunately, our

Stochastic Poisson Surface Reconstruction allows us to compute

𝑝 (𝑥 ∈ Ω), values between 0 and 1 which can be interpreted as

occupancies (this reinterpretation is common in the Neural Radiance

Field literature, e.g., [Mildenhall et al. 2020]). In Fig. 24, we use

Input Probability levelsets

50% 70% 90%

50% 70% 90%

0

+

σ

Fig. 22. We can threshold our computed probability 𝑝 (𝑥 ∈ Ω) to obtain
meshes that can be used for, e.g., collision detection.

standard volume rendering techniques (see [Pharr et al. 2016], Chap.

11) to sample the free path of a ray aimed at a partial reconstruction

of a SpaceWizard vehicle from two different directions. As expected,

rays intersecting regions with higher uncertainty produce a wider

spread of paths, as evidenced by the orange and blue histograms.

8.3 Reconstruction
Scanning integration. Surface reconstruction is the flagship appli-

cation of PSR. Despite this, PSR cannot be fully integrated into the

scanning pipeline, as it fails to provide basic feedback like when a

point cloud is dense enough or where to scan next. In Fig. 15, we

show that our introduced total uncertainty 𝑢 converges to zero as

points are added, giving a clear measure of scan quality. We show

how one can use thresholds on 𝑢 as a scanning stopping criteria in

Fig. 17, obtaining reconstructions of similar quality for the same

threshold value. In Fig. 23, we show our algorithm’s output on a

real-world depth scan obtained with a smartphone app.

The ability to simulate ray casting on our reconstructed shapes

also allows us to score different potential scan positions, as we

show in Figs. 25 and 26. We begin by simulating a scan on a given

groundtruth object using traditional ray tracing in a cone around

some predetermined camera positions (see Fig. 25) placed on the

left side of a race car. We include synthetic Gaussian noise both on

the input point positions and normal vectors. This lets us obtain a

point cloud 𝑃 which we can input to our algorithm and compute its

total uncertainty𝑈𝑆𝑃𝑆𝑅 (𝑃). For each potential new scan position,

we cast a ray and add the resulting intersection 𝑝 as a new point to

the input point cloud, defining the camera score as the change in
total uncertainty from adding the new point (see Fig. 26),

𝑠 = |𝑈𝑆𝑃𝑆𝑅 (𝑃) −𝑈𝑆𝑃𝑆𝑅 (𝑃 ∪ 𝑝) | (35)

We repeat this process ten times for each potential camera po-

sition, to account for the statistical variabilty in the ray casting. A

fundamental part of any scan feedback pipeline, this process helps

us decide on a next best camera view. As expected, scores are highest

for hypothetical cameras on the right side of the car.
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Fig. 23. Our SPSR on real-world scan data. The geometry of our reconstructed surface is the same as PSR, but we provide variances and volumetric quantities.
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Fig. 24. Our probability can be interpreted as a density for ray casting
applications that have no analogue in the traditional PSR formulation.

Point cloud repair. Converting to an implicit function or a trian-

gular mesh is not needed for some downstream applications that

can work directly on point clouds. However, raw scan clouds often

contain holes due to occlusions or missing camera angles. In Fig. 21,

we show how our algorithm can be used to produce possible sur-

face points in the occluded regions by using a Metropolis-Hastings

scheme to sample from our surface probability 𝑝 (𝑥 ∈ Ω).

Incorporating priors. Our novel statistical interpretation of PSR

allows us to build on it even as it applies to its most direct purpose of

recovering surfaces from point clouds; for example, by incorporating

geometric priors as we exemplify in Fig. 19. In Fig. 18, we show

how even very simple primitive geometric priors can be useful for

recovering complex three-dimensional geometry.

9 LIMITATIONS & CONCLUSION
Our work merges the renowned Poisson Surface Reconstruction

with the field of Gaussian Process Implicit Surfaces, both providing

a statistical formalism for PSR and a novel GPIS that can be used

for supervised learning of implicit functions.

By using covariance functions with compact support like the

original PSR, we sample the interpolated vector field ®𝑉 efficiently.

However, unlike other GPIS, we require a global Poisson solve to

evaluate even a single implicit function 𝑓 mean or variance query.

When seen as a GPIS, this is a limitation that makes our algorithm

less efficient for applications that require a limited amount of sam-

ples. Also like the original PSR, our algorithm requires an oriented

point cloud as input, and extending it to unoriented point clouds

(e.g., those representing thin sheets [Chi and Song 2021]) would

require orienting them as a preprocessing step (see, e.g., [Alliez et al.

2007; Hornung and Kobbelt 2006; Metzer et al. 2021]).

While computing the mean of our distribution 𝑥𝑆𝑃𝑆𝑅 is just as

computationally expensive as the original PSR output, our covari-

ance matrix computation requires solving a full matrix equation.

We alleviate this by precomputing the Laplacian eigenpairs on a

bounding box of any input. This introduces a trade-off between

memory, runtime and precision when computing this covariance.

Groundtruth

Scan positions

Simulated scan Our stochastic PSR

Fig. 25. Many of our results follow a similar pipeline: we use a groundtruth
object (left) and simulate scanning it from different directions to obtain an
oriented point cloud (middle), which we then pass as input to our Stochastic
PSR algorithm (right) to compute the desired statistical quantity.

Higher cam score

Input noisy
point cloud

Fig. 26. Interpreting our probability as a density and simulating rays from
different cameras, we can score them according to the simulated change in
total uncertainty to aid next view planning.

Our algorithm extends the traditional PSR by Kazhdan et al. [2006]

by separating it into a GP vector field reconstruction and a PDE

solve. It is unclear how our approach could be applied to the Screened
PSR by Kazhdan and Hoppe [2013], which combines both steps to

improve robustness in unsampled regions. We conjecture that the

answer may lie in works on incorporating gradient observations to

Gaussian processes (see 9.4 in [Williams and Rasmussen 2006]).

Our work not only extends our knowledge of Poisson Surface

Reconstruction from the perspective of a Gaussian Process. Indeed,

we have also used PSR to expand our knowledge of Gaussian Pro-

cesses, by introducing a covariance lumping technique which avoids

costly matrix inversions at test time. We believe applying this in the

broader GP context to be a promising avenue for future work.

As 3D acquisition becomes more accessible and attractive to con-

sumers and the lines between real and virtual geometry get blurred,

we believe quantifying and transmitting the uncertainties of the

capture process to be one of the fundamental problems of this era.

We hope our work inspires our geometry processing colleagues,

whose workflow often involves PSR, to study how this statistical

formalism carries over further down the shape processing pipeline.
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A SPSR COVARIANCE CONVERGENCE PROOF
We will prove that the difference between the PSR semicovariance

𝑘𝑃𝑆𝑅 (𝑥,𝑦) = 𝜎𝑔

∑︁
𝑜∈𝑁 (𝑥)

𝛼𝑜,𝑥𝐹𝑜 (𝑦) (36)

and our Stochastic PSR covariance

𝑘𝑆𝑃𝑆𝑅 (𝑥,𝑦) = 𝑘𝑆𝑃𝑆𝑅 (𝑦, 𝑥) =
1

2
(𝑘𝑃𝑆𝑅 (𝑥,𝑦) + 𝑘𝑃𝑆𝑅 (𝑦, 𝑥)) , (37)

vanishes at the limit of grid refinement. We can do so by showing

that 𝑘𝑃𝑆𝑅 (𝑥,𝑦) converges to the gridless covariance function

𝑘★(𝑥,𝑦) = 𝜎𝑔𝐹𝑦 (𝑥) (38)

Let 𝜆 be the Lipschitz constant of 𝐹 . Then, since 𝐹 is symmetric,

|𝐹𝑜 (𝑦) − 𝐹𝑦 (𝑥) | = |𝐹𝑦 (𝑜) − 𝐹𝑦 (𝑥) | ≤ 𝜆∥𝑜 − 𝑥 ∥ (39)

Since trilinear interpolation weights sum up to one, this means

|𝑘𝑃𝑆𝑅 (𝑥,𝑦) − 𝑘★(𝑥,𝑦) | ≤ 𝜎𝑔𝜆∥𝑜 − 𝑥 ∥ , (40)

Symmetrically, we get

|𝑘𝑃𝑆𝑅 (𝑦, 𝑥) − 𝑘★(𝑥,𝑦) | ≤ 𝜎𝑔𝜆∥𝑜 − 𝑥 ∥ , (41)

which, by definition of 𝑘𝑆𝑃𝑆𝑅 , means

|𝑘𝑆𝑃𝑆𝑅 (𝑥,𝑦) − 𝑘𝑃𝑆𝑅 (𝑥,𝑦) | ≤ 𝜎𝑔𝜆∥𝑜 − 𝑥 ∥ . □ (42)

B JUSTIFICATION FOR COVARIANCE LUMPING
Consider a simple Gaussian Process A = {𝐴(𝑥)}𝑥 ∈𝐷 with zero

mean and covariance function 𝑘 : 𝐷 × 𝐷 → R, with two different

training observations {(𝑥1, 𝑎1), (𝑥2, 𝑎2)} and one test point 𝑥3. For

clarity, let 𝑘𝑖 𝑗 = 𝑘 (𝑥𝑖 , 𝑥 𝑗 ). Then, since 𝑘11 = 𝑘22, 𝑘12 = 𝑘21, we

have

K3 =

(
𝑘11 𝑘12
𝑘12 𝑘11

)
, k2 =

(
𝑘13
𝑘23

)
(43)

Training
observations

Test point

(1) (2) (3)

Asymptotic justification for covariance matrix lumping

Fig. 27. Cases where our lumping has correct asymptotics: (1) when training
data are far from one another, (2) when test points are far from training
data and (3) when training data are so close that their features are similar.

Traditionally, one uses these matrices to compute the GP posterior

mean k⊤2K
−1
3 a and covariance k⊤2K

−1
3 k2. Let us write both of these

as k⊤2K
−1
3 c for some generic feature vector c. Then,

k⊤2K
−1
3 c =

1

𝑘211 − 𝑘212

((𝑘11𝑘13−𝑘12𝑘23)𝑐1 + (𝑘11𝑘23−𝑘12𝑘13)𝑐2)

which is

1

𝑘211 − 𝑘212

((𝑘11−𝑘21)𝑘13𝑐1+(𝑘11−𝑘21)𝑘23𝑐2+𝑘12 (𝑘23−𝑘13) (𝑐1−𝑐2)) ,

or, equivalently,

k⊤2K
−1
3 c =

𝑘13𝑐1 + 𝑘23𝑐2
𝑘11 + 𝑘12

+ 𝑘12 (𝑘23 − 𝑘13) (𝑐1 − 𝑐2)
𝑘211 − 𝑘212

, (44)

Note that the denominator 𝑘11+𝑘12 is (assuming 𝑘 is monotonically

decreasing with distance) nothing but a measure of sampling density,

meaning that we write the left term in the sum as

k⊤2K
−1
3 c = k⊤2D

−1c + 𝑘12 (𝑘23 − 𝑘13) (𝑐1 − 𝑐2)
𝑘211 − 𝑘212

, (45)

where D is our lumped covariance matrix. Therefore,��k⊤2K−1
3 c − k⊤2D

−1c
�� ≤ 𝑘12

𝑘211 − 𝑘212

|𝑘23 − 𝑘13 | |𝑐1 − 𝑐2 | (46)

Thus, while our lumping introduces error, it is bounded and has the

correct asymptotic behaviour (see Fig. 27 when the training samples

are far from one another (𝑘12 → 0), when the test samples are far

enough from the training samples (𝑘23 − 𝑘13 → 0), and when the

training samples are close enough that the training features are close

(𝑐1 − 𝑐2 → 0). Assuming independent samples without accounting
for sampling density would have meant approximating 𝑘11 + 𝑘12 in

Eq. (44) by a constant factor, instead of recognizing it as a measure

of the relative positions of 𝑥1 and 𝑥2. This would have introduced

further error and abandoned the asymptotic convergence.
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