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Fig. 1. Top: Our neural physically-based facial assets with stylized appearance. Bottom: cross-identity facial motion re-targeting driven by phone videos.

Production-level workflows for producing convincing 3D dynamic human
faces have long relied on an assortment of labor-intensive tools for geom-
etry and texture generation, motion capture and rigging, and expression
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synthesis. Recent neural approaches automate individual components but
the corresponding latent representations cannot provide artists with explicit
controls as in conventional tools. In this paper, we present a new learning-
based, video-driven approach for generating dynamic facial geometries with
high-quality physically-based assets. For data collection, we construct a
hybrid multiview-photometric capture stage, coupling with ultra-fast video
cameras to obtain raw 3D facial assets. We then set out to model the facial
expression, geometry and physically-based textures using separate VAEs
where we impose a global MLP based expression mapping across the latent
spaces of respective networks, to preserve characteristics across respective
attributes. We also model the delta information as wrinkle maps for the
physically-based textures, achieving high-quality 4K dynamic textures. We
demonstrate our approach in high-fidelity performer-specific facial capture
and cross-identity facial motion retargeting. In addition, our multi-VAE-
based neural asset, along with the fast adaptation schemes, can also be
deployed to handle in-the-wild videos. Besides, we motivate the utility of
our explicit facial disentangling strategy by providing various promising
physically-based editing results with high realism. Comprehensive experi-
ments show that our technique provides higher accuracy and visual fidelity
than previous video-driven facial reconstruction and animation methods.

CCS Concepts: • Computing methodologies→ Motion capture.

Additional Key Words and Phrases: Physically-Based Face Rendering, Facial
Modeling, Digital Human, Video-Driven Animation
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1 INTRODUCTION
High-quality and realistic digital avatars have been increasingly
deployed in feature films, game productions, the entertainment
industry, and most recently immersive experiences in the Meta-
verse. Despite tremendous advances in modeling 3D human body
shapes [Loper et al. 2015], generating 3D dynamic facial assets
at a production quality remains challenging: we humans are ex-
tremely sensitive to the perception of facial idiosyncrasies where
even the slightest inconsistency can be easily detected. Successful
solutions require not only reconstructing high-fidelity geometry,
texture maps, normal maps, etc as in static facial asset generation
but also reproducing realistic facial movement simulations indistin-
guishable from real videos.
To avoid the uncanny valley, production-level workflows com-

monly employ an assortment of tools for building compelling and
convincing dynamic facial assets. They range from scanning real
3D faces via expensive apparatus such as a Light Stage [Debevec
et al. 2000] or a multi-camera dome [Joo et al. 2017], to conduct-
ing physically-based simulations to faithfully reproduce how light
interacts with the soft tissues of the face in terms of appearance
attributes (e.g., diffuse albedo, specular intensity, roughness, nor-
mal/displacement maps) [Li et al. 2020a], and to capturing fine-
grained facial motions [Laine et al. 2017] and transferring them onto
a new performer with different physiognomy while performing a
wide range of expressions [Moser et al. 2021]. Once collected, the
rich raw data at individual stages need to undergo time-consuming
manual post-processing steps, where highly skilled artists need to
carefully adjust both the physically-based textures and the facial
expression models, e.g., following the Facial Action Coding System
(FACS) [Ekman and Friesen 1978]. The standard pipeline is thus
labor-intensive and expensive (in both cost and time) to be deployed
to support a broader audience. To facilitate easier dynamic facial
asset generations, there is an urgent demand to develop a more
automatic workflow to at least reduce, if not fully eliminate, the
manual labor in the production cycle.

Recent deep learning techniques [Lattas et al. 2021; Li et al. 2020b,a]
have provided a viable path to automated facial asset generation
directly from the captured data with minimal human intervention.
In particular, the data-driven strategy employed by learning-based
techniques is applicable to handling datasets of different scales, as
many as thousands of subjects for producing a generic model or
as few as a single subject with different expressions for portrait
animation. For the former, generic models [Bao et al. 2021; Feng
et al. 2021; Li et al. 2020b, 2017; Raj et al. 2021] achieve high robust-
ness despite environment lighting changes and variations in facial
geometry and motion. Their generated assets are readily deployed
to the existing facial animation production pipeline but they still
rely on accurate blendshapes to achieve explicit control, which often
lead to loss of fine-grained details and cannot meet production-level
quality. For the latter, recent performer-specific neural modeling

tools can produce both geometry and appearance with fine details
and conduct compelling end-to-end facial rendering [Cao et al. 2021;
Gafni et al. 2021; Lombardi et al. 2018, 2019, 2021; Wei et al. 2019] at
photo-realism. However, unlike generic models, neural approaches
as an implicit representation cannot yet provide explicit controls
over fine details in geometry, motion or physically-based textures,
and therefore cannot be readily integrated into existing production
pipelines for games or feature films, which undermines the efficacy
and efficiency of producing realistic and controllable facial assets.
In this paper, we present a novel learning-based, video-driven

approach for generating dynamic facial geometry along with high-
quality physically-based textures including pore-level diffuse albedo,
specular intensity and normal maps. Our approach supports both
high-fidelity performer-specific facial capture and cross-identity
facial motion retargeting. It is directly applicable for producing
various physically-based effects such as geometry and material
editing, facial feature (e.g., wrinkle) transfer, etc, as shown in Fig. 1.

We recognize that using videos, instead of separate shots, to pro-
duce physically-based facial assets imposes several challenges. On
the data front, by far there are very few high-quality 3D facial video
datasets publicly available. On processing, there lacks tailored neu-
ral modeling algorithms to handle the spatial-temporal facial data.
On editing, companion tools need to be developed. We hence first
construct a multi-view photometric fast capture stage or FaStage
that extends previous solutions such as the USC Light Stage [De-
bevec et al. 2000] to acquire facial geometry and textures under fast
motion. FaStage employs a high-speed camera dome with 24 2K
video cameras, a dense set of space-and-time-multiplexed illumina-
tion array, and three ultra-fast video cameras (Flex4K). The dome
system is synchronized with the illumination pattern for obtaining
proxy geometry whereas the Flex4K camera triplet can capture 38
gradient illumination patterns for normal and texture recovery at
an ultra-high quality.
We then apply Variational Autoencoders (VAE) [Kingma and

Welling 2014] tomodel the facial expression, geometry and physically-
based textures of our assets via a unified neural representation. Dif-
ferent from prior work [Lombardi et al. 2018; Moser et al. 2021], we
introduce a multi-VAE framework to model the characteristics of in-
dividual facial attributes and maintain a well-structured latent space,
so that the trained results can be applied to unseen new videos to
support various video-driven facial applications. We further employ
a global Multi-Layer Perceptron (MLP) based expression mapping
across the latent spaces of various VAEs to preserve characteristics
across respective attributes.
Once trained, our neural facial asset can be directly applied to

produce unseen facial animations, effectively enriching current
scarce dynamic facial assets. Specifically, we present a fast adap-
tation scheme on the multi-VAE assets to enable cross-identity,
fine-grained facial animations driven by in-the-wild video footage.
Finally, unlike purely implicit representations, the disentangled fa-
cial attributes in our solution support direct geometry and material
editing on well-established post-production tools, e.g., for producing
stylized character animations. In the following sections, we provide
details about our facial data acquisition and neural asset generation
in Sec. 3 and Sec. 4, respectively, followed by the performer-specific
applications in Sec. 5 (see Fig. 2 for the overview).
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Fig. 2. The neural physically-based facial asset generation pipeline. Our data acquisition system, i.e., the Fast Capture Stage (FaStage), extends the
classical photometric LightStage [Debevec et al. 2000] by combining multi-view cameras and photometric captures for recovering frame-by-frame detailed
facial geometry and physically-based textures at a high frame rate. We then construct a neural representation of the facial asset using specifically designed
multi-VAE architecture and training strategies, to simultaneously tackle geometry, textures, and expressions. The resulting neural asset, which is in neural
representation, can be driven by in-the-wild face videos with matched facial motion and expression with production-level quality.

2 RELATED WORKS
Facial asset generation is a wide field, ranging from high-end pro-
ductions that rely on sophisticated geometry and motion capture
apparatus to low-grade-end consumer applications that use a single
camera. For comprehensive reviews, we refer the readers to the
recent surveys [Morales et al. 2021; Zollhöfer et al. 2018]. Our work
aims to bridge the gap between the two by producing new facial
assets from pre-captured ones driven by unseen, single-view videos,
at production quality.

Monocular Facial Reconstruction. Single-camera-based face ani-
mation methods generally adopt parametric face models with adap-
tion for video observation based on landmark detection and head
shape regression [Blanz and Vetter 1999; Ekman and Friesen 1978].
Though effective and easy to manipulate, parametric models can
not yet reach the highly realistic quality required for production.
Blendshape is a prevalent parametric model where artists need
to elaborately split or adorn the expressions for photorealistic re-
creation and animation [Lewis et al. 2014]. It is also possible to
register a template model to a real 3D scanned face of the performer
under different expressions, e.g., by generating pre-defined blend-
shapes based on FaceWarehouse [Cao et al. 2014] or 3D morphable
models [Egger et al. 2020; Smith et al. 2020]. Weise et al. [2011]
fit the dynamic geometry of face to coarse 3D scans from RGBD
cameras with pre-defined models whereas Bao et al. [2021] extend
the approach for high-fidelity digital avatar generation from RGBD
video inputs. Various strategies have been proposed to improve the
robustness and accuracy of single image facial asset generation [Cao
et al. 2013; Guo et al. 2020, 2018; Paysan et al. 2009; Richardson et al.
2016; Tuan Tran et al. 2017]. Alternative landmark-based reconstruc-
tions [King 2009; Zhang et al. 2014a] are epitomized by the FLAME
model [Li et al. 2017] that trains on a large dataset of spatial-time 4D
scans. To further enhance reconstruction, Cao et al. [2015] set out

to add high-fidelity facial details to low-resolution face tracking re-
sults. Yet one particular challenge is to reliably handle extreme skin
deformation [Chen et al. 2019; Li et al. 2021; Wu et al. 2016] while
preserving realism. DECA [Feng et al. 2021] extends FLAME [Li et al.
2017] by predicting performer-specific animatable details that can
later be added back to the scanned facial assets of real performers.
To animate facial assets, Fyffe et al. [2014] drive high-quality

scans with single-camera inputs whereas Laine et al. [2017] build a
learning-based performer-specific framework for production. Vari-
ous subsequent techniques [Chen et al. 2021; Ma et al. 2021] also
support fine-grained performer-specific facial capture. Olszewski
et al. [2016] process multiple identities within limited viewpoints
whose faces are covered by head-mounted displays. Moser et al.
[2021] apply image-to-image translation and extract a common rep-
resentation for the input video and rendered CG sequence to predict
the weights of the target character’s PCA blendshapes.

Physically-based Texture Generation. In production, physically-
based textures such as diffuse albedo, normal maps, specular maps
and displacement maps have long served as the key ingredients
for creating photo-realistic digital avatars. Ma et al. [2007] pioneer
using gradient illumination and diffuse-specular separation with
polarizers to acquire high-fidelity physically-based textures. By
changing the arrangement of linear polarizers, Ghosh et al. [2011]
successfully adapt the previous method to a multiview setting. To
support dynamic expressions, Fyffe et al. [2011] use Phantom v640
high-speed cameras to achieve facial performance capture at 264
fps. Fyffe and Debevec [2015] use a color polarized illumination
setup to enable texture scanning in a single shot. LeGendre et al.
[2018] modify the camera setting to a mono camera to achieve
more efficient and higher-resolution results. Riviere et al. [2020]
manage to produce high-quality appearance maps from a single
exposure. As for full-body performance capture, Guo et al. [2019]
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combine spherical gradient illumination with volumetric captures
to produce compelling photorealism. With the advances in deep
learning, possibilities of estimating the parameters of a predefined
reflectance field from single image input [Huynh et al. 2018; Saito
et al. 2017; Yamaguchi et al. 2018] have been demonstrated.

Passive facial capture has also made significant progress in recent
years, largely attributed to the open-source multi-view reconstruc-
tion software [Beeler et al. 2010]. By including skin parameters
such as skin color and variations in hemoglobin concentration, Go-
tardo et al. [2018] manage to obtain more detailed facial features.
However, in general, data produced by passive capture methods
still cannot match the photometric ones due to calibration errors,
camera resolutions, reconstruction errors, etc.

Emerging approaches have employed generative adversarial net-
works (GANs) to synthesize or infer textures of competent quality
for industrial uses. Li et al. [2020a] introduce a framework to gen-
erate geometry and physically-based textures from identity and
expression latent spaces, with super-resolution networks to pro-
duce textures that contain pore-level geometry. Lattas et al. [2021]
manage to infer renderable photorealistic 3D faces from a single im-
age. Blendshapes can also be predicted from a single 3D scan of the
neutral expression of the performer and then infer dynamic texture
maps in a generative manner based on expression offsets [Li et al.
2020b]. Differently, we build dynamic textures using wrinkle maps,
which allows us to maintain the authenticity of the high-resolution
textures while avoiding the artifacts generated by super-resolution
networks.

Deep Face Models. It has become increasingly accessible to replace
classical geometry and texture-based models with deep models. A
neural network can potentially extract a latent vector from the
image input and later decode it into high-quality mesh and tex-
tures. Chandran et al. [2020] provide a parametric face model with
semantic control over the identity and expression of the subject.
Lombardi et al. [2018] use a conditional variational autoencoder
(CVAE) framework [Kingma and Welling 2014] to encode geometry
and view-dependent texture information. Yoon et al. [2019] utilize
this model and make it capable of handling monocular input im-
ages under uncontrolled lighting environments. Cao et al. [2021]
further estimate a gain map and a bias map to additionally improve
rendering. [Cao et al. 2022] propose Universal Prior Model (UPM)
and produce photo-realistic performer-specific avatars for unseen
identities.

GAN-based methods [Gecer et al. 2019; Lattas et al. 2021; Li et al.
2020a] separate the shape and expression or using photorealistic
differentiable-rendering-based training to enhance geometry details.
Other identity-agnostic methods [Abrevaya et al. 2020; Burkov et al.
2020; Nirkin et al. 2019] aim to enhance the identity-independence
by imposing constraints on the latent space. Feng et al. [2018] intro-
duce the UV-position map for 3D geometry representation to enable
better regression of CNN. Bi et al. [2021] build a deep face model
capable of producing OLAT (one-light-at-a-time) textures, making
the predicted avatar relightable under novel lighting environments.
In our work, we further improve the quality and editability of the
deep face models by generating physically-based textures, owing to
the high-quality dynamic facial assets we captured.

3 DYNAMIC FACIAL ASSET ACQUISITION

3.1 The FaStage
To construct a performer-specific neural facial asset for product-
level rendering, the most renowned system, the USC Light Stage [De-
bevec et al. 2000], exploits the time-multiplexed lighting to recover
the facial reflectance field at unprecedented high quality. As shown
in Fig. 3, our FaStage adopts a similar semi-dome structure with
evenly mounted space-and-time-multiplexed light units. Distinc-
tively, in our FaStage, we replace the DSLR cameras in the USC Light
Stage with 3 ultra-fast video cameras and 24 2K video cameras to
capture the photos of the subject under 38 gradient illumination pat-
terns and faithfully reconstruct the physically-based dynamic facial
performance at video frame rate. We further provide the detailed
design and a thorough discussion about our FaStage and captured as-
sets with previous systems [Cao et al. 2014; Cheng et al. 2018; Cosker
et al. 2011; Fyffe et al. 2014; Stratou et al. 2011; Yang et al. 2020; Yin
et al. 2009, 2008, 2006; Zhang et al. 2014b] in the supplementary
material.

3.2 Facial Asset Collection
Here we provide the details of collecting topology-consistent assets
for typical facial movements at video frame rate, which is critical for
exploiting deep networks in our neural facial asset training. Specifi-
cally, we capture a total of 5 minutes of facial performance for each
performer at 24 fps and acquire the corresponding facial assets. We
designed our expression span similar to previous works [Ekman and
Friesen 1978; Laine et al. 2017], including rich expressions covering
sufficient combinations of facial muscle motions (please refer to the
supplementary material).

For these representative performances, we reconstruct the high-
quality dynamic facial assets including facial geometry, diffuse
albedo, specular intensity, and normal map from the data captured
by our FaStage. During capture, we send one specific control signal
to turn all the lights on and collect the full-lit images from both
the machine vision and high-speed cameras. Then, we perform the
multi-view stereo technique on full-lit images to extract the facial
geometry and fit a human face model [Li et al. 2020a] to obtain
topology-aligned results similar to previous work [Cosker et al.
2011]. We also follow the work of Li et al. [2020a] to unwarp the
facial geometry into UV maps and uniformly sample 256×256 points
where each pixel represents the location of the corresponding point
on the mesh to generate geometry maps. To obtain physically-based
textures, we apply 38 gradient illumination patterns for every 1/24
second and then use the 38 images from high-speed cameras un-
der the corresponding patterns to recover diffuse albedo, specular
intensity, and object-space normal map at 24 fps using the photo-
metric stereo technique [Ma et al. 2007]. We adopt the standard
fusion method [Ghosh et al. 2011] to merge the corresponding tex-
ture across different views in UV space and further transform the
object-space normal maps into tangent space to reduce temporal
noise.

Temporal Stabilization. We recognize the noticeable temporal
jittery artifacts on the captured physically-based textures after the
above unwrapping and multi-view merging process, especially for
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Fig. 3. Illustration of our data acquisition pipeline. FaStage uses three high-speed cameras to capture polarization gradient patterns for dynamic
physically-based texture acquisition. Multiple machine vision cameras are synchronized at a low frequency for dynamic facial geometry acquisition.

Fig. 4. Pipeline of texture stabilization. We utilize an unsupervised
method to predict the warp field with regard to the neutral textures for
textures of each frame. Stabilized textures, which are produced by applying
the warp field to the textures of each frame, will be used as training data.

our 4D capture setting at video frame rate, leading to unreliable
neural asset training. Thus, we introduce a novel self-supervised
scheme to stabilize the obtained temporal textures, as illustrated in
Fig. 4. We adopt a U-Net structure to predict the temporal warp fields
and wrinkle maps for the original textures in each frame with regard
to the neutral one. Since the subtle appearance details in diffuse
albedo are more suitable for temporal alignment, we only adopt the
diffuse albedo for our stabilization scheme. To this end, given an
input diffuse albedo T𝑡 at 𝑡-th frame, our stabilization network Φ
predicts both a warp field F𝑡 and a corresponding wrinkle mapW𝑡 :

F𝑡 ,W𝑡 = Φ(T𝑡 ). (1)

Here, F𝑡 represents pixel-wise flow and we use F𝑡 (·) to represent
the warping of a texture to the neutral frame where the performer
makes no expressions. The wrinkle mapW𝑡 denotes the element-
wise multiplication maps on top of the neutral texture in the UV
domain to represent the stretch and squeeze of wrinkles from neutral
to current expression caused by facial motions. It ranges from 0
to 1 to maintain the original brightness of captured diffuse albedo.
Then, we formulate the following fidelity loss to ensure temporally

aligned diffuse albedo after applying the warp field F𝑡 to T𝑡 :

L𝑓 𝑖𝑑 = ∥F𝑡 (T𝑡 ) −W𝑡 ⊙ N∥1, (2)

where N is the neutral diffuse albedo and ⊙ is element-wise mul-
tiplication. We also adopt a temporal consistency term to ensure
texture stability between consecutive frames to implicitly align two
textures. Given the network output W𝑡 ,W𝑡+1 from consecutive
frames, the temporal term is formulated as:

L𝑡𝑒𝑚 = ∥W𝑡 −W𝑡+1∥1 . (3)

In addition, we apply a regularization term to restrict and regularize
the estimated flow and its gradient:

L𝑑𝑖𝑠 = ∥F𝑡 ∥2 + ∥∇F𝑡 ∥2 . (4)

Our total loss for texture stabilization is formulated as follows:

L𝑠𝑡𝑎𝑏 = L𝑓 𝑖𝑑 + L𝑡𝑒𝑚 + L𝑑𝑖𝑠 , (5)

where weights for balancing different losses are omitted for the
simplicity of presentation. Note that the diffuse albedo, specular
intensity, and normal map share the same warp field, therefore we
apply F to all the other texture attributes similar to the diffuse
albedo. For training our network Φ, we use all the captured dynamic
textures to optimize L𝑠𝑡𝑎𝑏 . We downsample the input textures to
512×512 to predict the corresponding warp fields and wrinkle maps.
We implement our U-Net architecture and perform the training
process according to Pytorch-UNet [milesial 2022]. Once trained,
we apply the warp fields from Φ to process all the textures to obtain
stabilized ones for the generation of neural facial assets in Sec. 4.

4 NEURAL FACIAL ASSET GENERATION
From captured dynamic facial assets of a specific performer, we
intend to transform them into a drivable neural representation. Tra-
ditional human facial performance capture relies on heavy manual
labor to align geometry and textures, rigging, and expression defor-
mation. This process can be potentially bypassed by a neural-based
approach. To this end, we build a learning framework with three
networks for disentangling the expression, facial geometry and
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Fig. 5. Neural physically-based facial asset. For each frame, the training input consists of multi-view facial images captured in FaStage, as well as the
coarse geometry and physically-based textures. Our approach trains three deep Variational Auto-Encoders to obtain three latent spaces separately on captured
image, geometry and textures. Then two multilayer perceptrons are trained for latent space translation from expression to geometry and textures.

Fig. 6. Architecture of expression network.We constrain the encoder
to disentangle expression and view.

physically-based texture. The whole training pipeline is illustrated
in Fig. 5.

4.1 Expression and Viewpoint Disentanglement
We train a VAE to learn a global representation for expressions and
viewpoints from training footage, as illustrated in Fig. 6. Given an
input image 𝐼 from view 𝑖 at frame 𝑡 , our expression encoder E𝑒 en-
codes it to an expression latent code 𝑍𝑒 and a viewpoint latent code
𝑍𝑣 , while our expression decoder D𝑒 predicts the reconstructed
image 𝐼 given these two latent codes. To ensure latent space consis-
tency between the encoder and decoder, we predict cycled latent
codes𝑍𝑒 , 𝑍𝑣 , (𝑍 = E[D(𝑍 )]), from reconstructed image 𝐼 , and adopt
the reconstruction and latent consistency loss:

L𝑟𝑒𝑐 = ∥𝐼 − 𝐼 ∥1, L𝑐𝑦𝑐 = ∥𝑍𝑒 − 𝑍𝑒 ∥2 + ∥𝑍𝑣 − 𝑍𝑣 ∥2 . (6)

Notice we omit view and frame index 𝑖 and 𝑡 in the equation for
simplicity in presentation.

Triplet supervision for expression encoding. We designed a triplet
training scheme which applies a latent swapping method [Aberman
et al. 2019; Huang et al. 2018; Park et al. 2020] that focuses on
retrieving consistent expression and viewpoint information across
views and frames. In each training iteration, we randomly pick two
frames 𝑠, 𝑡 , and two random views 𝑖, 𝑗 . Notice all frames and views
data are from the same performer. Given the input images 𝐼𝑡,𝑖 , 𝐼𝑡, 𝑗 ,
𝐼𝑠,𝑖 , our encoder E𝑒 predicts the performer’s expressions and the
camera’s viewpoint latent codes for each of them, i.e., 𝑍 𝑡,𝑖 , 𝑍 𝑡, 𝑗 , 𝑍𝑠,𝑖 :
Notice the performer exhibits the same expression in 𝐼𝑠,𝑖 and 𝐼𝑠,𝑗 ,
while in 𝐼𝑠,𝑖 and 𝐼𝑡,𝑖 , the viewpoints are the same. Therefore, we
minimize the distance between the expression latent code and the
view latent code to achieve expression-viewpoint disentanglement:

L𝑒𝑥𝑝 = ∥𝑍 𝑡,𝑖
𝑒 − 𝑍

𝑡, 𝑗
𝑒 ∥2, L𝑣𝑖𝑒𝑤 = ∥𝑍 𝑡,𝑖

𝑣 − 𝑍
𝑠,𝑖
𝑣 ∥2 . (7)

Besides constraining the encoder, we want the decoder to focus on
recovering the expression despite the disturbances from viewpoint
changes. Therefore, the subsequent reconstruction is done in a cross
frame and view manner:

𝐼𝑡,𝑖 = D𝑒 (𝑍 𝑡, 𝑗
𝑒 , 𝑍

𝑠,𝑖
𝑣 ),

𝐼𝑡, 𝑗 = D𝑒 (𝑍 𝑡,𝑖
𝑒 , 𝑍

𝑡, 𝑗
𝑣 ),

𝐼𝑠,𝑖 = D𝑒 (𝑍𝑠,𝑖
𝑒 , 𝑍

𝑡,𝑖
𝑣 ).

(8)

The decoded result 𝐼𝑡,𝑖 should be the same as the original image
𝐼𝑡,𝑖 , since the encoded expression and viewpoint information are
supposed to be the same. The corresponding reconstruction error
at this stage is formulated as:

L𝑐𝑟𝑜 = ∥𝐼𝑡,𝑖 − 𝐼𝑡,𝑖 ∥1 + ∥𝐼𝑡, 𝑗 − 𝐼𝑡, 𝑗 ∥1 + ∥𝐼𝑠,𝑖 − 𝐼𝑠,𝑖 ∥1 . (9)

Then the total loss for our expression network can be formulated as
follows:

L𝐸 = L𝑟𝑒𝑐 + L𝑐𝑦𝑐 + L𝑒𝑥𝑝 + L𝑣𝑖𝑒𝑤 + L𝑐𝑟𝑜 . (10)
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Fig. 7. Architecture of geometry network. We constrain the encoder to
disentangle geometry and pose.

This loss helps us to constraint 𝑍𝑒 so that it only contains the ex-
pression features, and the viewpoint information is in 𝑍𝑣 . Notice
we omit balancing weights for simplicity in presentation.

4.2 Geometry Extraction
Recall that we represent the facial geometry with a 2D-geometry
map in UV space where each pixel represents the 3D coordinate
of the corresponding vertex. Therefore, we can regard geometry
inference as an image reconstruction task. To extract better geom-
etry features and eliminate the minor head pose errors, we adopt
a similar network structure to the one developed for expression
encoding. For improving robustness, we apply random rotations
and translations to the scanned geometries for data augmentation.
As illustrated in Fig. 7, given an input geometry map𝐺 from frame 𝑡
with augmentation operation 𝑎, our geometry encoder E𝑔 encodes it
to a geometry latent code 𝑍 𝑡,𝑎

𝑔 and a pose latent code 𝑍 𝑡,𝑎
𝑝 , while our

geometry decoder D𝑔 predicts the reconstructed image 𝐺𝑡,𝑎 given
these two latent codes. Similar to the expression disentanglement,
we randomly pick frames with 𝑠, 𝑡 and augmentation operations 𝑎, 𝑏
for training. Note that we choose 𝑠, 𝑡 from the same dynamic clip
and make sure they are temporally close to ensure both geometries
without augmentation have similar poses. Specifically, when we
fix the geometry latent code and change the pose latent code, the
geometry maps generated by the decoder should exhibit similar
geometry and only differ in rotation and translation. Therefore, the
decoding process itself is designed to be independent of the pose
latent code, which could be formulated as:

D𝑔 (𝑍𝑔, 𝑍𝑝 ) = M𝑝 (𝑍𝑝 ) ⊗ D†
𝑔 (𝑍𝑔), (11)

where M𝑝 is a multilayer perceptron (MLP) for transforming the
pose latent code with a rotation and translation matrix, D†

𝑔 repre-
sents the network only for decoding the geometry latent code, and
⊗ represents matrix-vector multiplication. Notice we omit the frame
index 𝑡 and the augmentation operation 𝑎 for simplicity. In this way,
our network is able to predict the performer’s facial geometry free
from the disturbance of head pose variance.
We use the same triplet supervision strategy as the expression

network to disentangle the facial geometry and head pose, which

Fig. 8. Architecture of texture network. To enable high-resolution dy-
namic textures, our texture network outputs wrinkle maps instead of tex-
tures themselves.

has the following metrics:

L𝑟𝑒𝑐 = ∥𝐺𝑡,𝑎 −𝐺𝑡,𝑎 ∥2,
L𝑐𝑦𝑐 = ∥𝑍 𝑡,𝑎

𝑔 − 𝑍
𝑡,𝑎
𝑔 ∥2 + ∥𝑍 𝑡,𝑎

𝑝 − 𝑍
𝑡,𝑎
𝑝 ∥2,

L𝑔𝑒𝑜 = ∥𝑍 𝑡,𝑎
𝑔 − 𝑍

𝑡,𝑏
𝑔 ∥2,

L𝑝𝑜𝑠 = ∥𝑍 𝑡,𝑎
𝑝 − 𝑍

𝑠,𝑎
𝑝 ∥2,

L𝑐𝑟𝑜 = ∥𝐺𝑡,𝑎 − 𝐺̃𝑡,𝑎 ∥2 + ∥𝐺𝑡,𝑏 − 𝐺̃𝑡,𝑏 ∥2 + ∥𝐺𝑠,𝑎 − 𝐺̃𝑠,𝑎 ∥2 .

(12)

Where L𝑟𝑒𝑐 , L𝑐𝑦𝑐 are reconstruction and cycled latent loss. L𝑔𝑒𝑜

and L𝑝𝑜𝑠 are the distances between latent codes. L𝑐𝑟𝑜 is the cross
inference loss, similar to the definition in Eq. 9. The total loss for
the geometry network is formulated as follows:

L𝐺 = L𝑟𝑒𝑐 + L𝑐𝑦𝑐 + L𝑔𝑒𝑜 + L𝑝𝑜𝑠 + L𝑐𝑟𝑜 . (13)

4.3 Learning Textures
The stabilized textures are view-independent and only contain ex-
pression information. Therefore, we build a similar VAE with only
one latent space to learn the representations for the three types
of textures (diffuse albedo, specular intensity, and normal maps)
simultaneously. The network structure is illustrated in Fig. 8. Notice
the captured texture is at 4K resolution, yet the output resolution of
the network is typically 512, which inevitably leads to a significant
loss of details. To retain the ability of rendering and editing at 4K
resolution, we enforce this network to predict wrinkle maps (we
borrow this term from the CG industry ) instead of predicting the
textures directly. Given an input texture 𝑇 at frame 𝑡 , our texture
encoder E𝑡𝑒𝑥 encodes it to a texture latent code 𝑍𝑡𝑒𝑥 , while our
texture decoder D𝑡𝑒𝑥 predicts the corresponding wrinkle maps 𝑊̂
from the texture latent code 𝑍𝑡𝑒𝑥 :

𝑊̂ = D𝑡𝑒𝑥 (𝑍𝑡𝑒𝑥 ), 𝑇 = 𝑊̂ ⊕ N, (14)

where N is the neutral texture, 𝑇 represents the reconstructed tex-
tures, and ⊕ represents the addition operation. Similarly, we com-
pute the texture reconstruction loss and cycled latent loss. During
the training process, the losses are formulated as:

L𝑟𝑒𝑐 = ∥𝑇 −𝑇 ∥1, L𝑐𝑦𝑐 = ∥𝑍𝑡𝑒𝑥 − 𝑍𝑡𝑒𝑥 ∥2, (15)

and the total loss for the texture network is formulated as follows:

L𝑇 = L𝑟𝑒𝑐 + L𝑐𝑦𝑐 . (16)
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4.4 Unified Expression Representation
For each training frame 𝑡 , our previously discussed three networks
predict the expression latent code 𝑍𝑒 , the geometry latent code
𝑍𝑔 and the texture latent code 𝑍𝑡𝑒𝑥 respectively. Intuitively, we
can learn a mapping from expressions to geometries and textures,
as we have disentangled head pose and viewpoint into separate
latent codes. We train an MLP M𝑒 to learn mappings from the facial
expression latent code to the geometry and texture latent codes.
Given an expression 𝑍𝑒 as input, M𝑒 directly predicts 𝑍𝑔 and 𝑍𝑡𝑒𝑥
as:

𝑍𝑔, 𝑍𝑡𝑒𝑥 = M𝑒 (𝑍𝑒 ). (17)

The mapping loss is straightforward which minimizes the distance
between the encoded and mapped latent codes:

L𝑚𝑎𝑝 = ∥𝑍𝑔 − 𝑍𝑔 ∥2 + ∥𝑍𝑡𝑒𝑥 − 𝑍𝑡𝑒𝑥 ∥2 . (18)

4.5 Training and Inference
Training. Here we introduce an effective training scheme for

our neural representation. We first separately train our expression,
geometry and texture VAE branches (Sec. 4.1, 4.2, 4.3 respectively), to
learn latent representations independently. After the three networks
converge, we fix VAEs in all three branches and only train the latent
mapping MLP M𝑒 . Then, we apply an additional fine-tuning process
to optimize the total loss. In this fine-tuning stage, we only lock the
parameters of the expression network, and jointly train all other
parts of the whole network (i.e., the geometry, texture, and mapping
network). This strategy keeps the expression latent code stable and
allows for more precise geometry and texture adjustment by fine-
tuning the geometry and texture latent representations. Note that in
the actual implementation, we minimize the Kullback-Leibler (KL)
divergence loss for the latent codes in VAEs as well.

Inference. Our neural facial asset representation unifies the per-
son’s specific expression, geometry, and texture latent codes. It
grants us the ability to decode the geometry and physically-based
texture assets directly from expressions. At the inference stage, the
input is a face image with certain expressions, we then generate
the expression latent code using E𝑒 and use M𝑒 to translate the en-
coded expression latent code to geometry and texture latent codes.
Subsequently, we use the geometry and texture decoders D𝑔 and
D𝑡𝑒𝑥 to generate the facial geometry, albedo, specular map, and
normal map. We formulate the inference process as: given an input
image I, we predict both the geometry G̃ and the textures T̃ with
our expression encoder, latent mapping multilayer perceptron, and
geometry and texture decoder:

𝑍𝑒 = E𝑒 (𝐼 ),
𝑍𝑔, 𝑍𝑡𝑒𝑥 = M𝑒 (𝑍𝑒 ),

𝐺̃ = D𝑔 (𝑍𝑔),
𝑊̃ = D𝑡𝑒𝑥 (𝑍𝑡𝑒𝑥 ),
𝑇 = 𝑊̃ ⊕ N,

(19)

where the viewpoint latent code and the geometry pose latent code
are ignored since we intend to produce results that only depend
on the facial expressions of the performer. Such pipeline produces

Fig. 9. Indicator variable. The indicator variable informs the decoder of
which domain it should decode the image into.

consistent geometry and textures across different views of the input
images due to our latent disentanglement network design.

We provide the implementation details of our framework in our
supplementary material. For further application of cross-identity
neural retargeting, which will be mentioned in Sec. 5.2, inspired
by Lombardi et al. [2018], we propose a similar but different net-
work design. In our expression decoder, we concatenate a channel
of zeros to each input before convolutional layers, denoted as indi-
cator channel, which will be further used for cross-identity neural
retargeting in Sec. 5.2.

5 APPLICATIONS
Once our neural facial asset generator is trained for a specific per-
former, we can apply it in several scenarios with slight modification
of our network. We can generalize our network to predict the per-
former’s appearances with novel expressions, even animated by
another person’s in-the-wild face video. We also introduce various
editing effects using our facial assets, including material editing,
character animation and wrinkle transfer.

5.1 Performer-specific neural facial asset
Once trained, our neural facial asset can be directly applied to pro-
duce unseen facial animations of the performer. It takes the monoc-
ular camera footage as input and outputs the geometry and corre-
sponding multi-channel wrinkle maps, producing photo-realistic
rendering results under novel facial animations from novel views
and lighting. Thus, it can effectively enrich current scarce dynamic
facial assets, and makes it possible to preview the dynamic facial
assets instantly. Such strategy removes the process to capture and
reconstruct unseen facial animations using the complex hardware
setup.

5.2 Cross-identity neural retargeting
The movie and game industry has always had a keen interest in
facial performance capture. A common request from the industry
is to drive the face animation of a digital character from the facial
expressions of a real performer. Recall that our expression encoder
can extract the performer’s expressions, hence it only needs minor
refinement when we apply it to another individual, as presented in
Fig. 9.
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Fig. 10. Illustration of geometry and texture editing pipeline. We
can produce the realistic appearance of a novel character with consistent
expressions.

Specifically, given a well-trained neural physically-based facial
asset, first, we extend the expression training dataset with footage of
the new subject with different expressions and varying head poses.
Then, we refine the expression network by training on this extended
dataset. Besides the losses mentioned in Eq. 10, we simultaneously
minimize the reconstruction loss of images from the new subject
with a strategy similar to the ones used in [Higgins et al. 2016] and
[Lombardi et al. 2018]. To let the expression decoder reconstruct
images for the driving subject, we set the indicator channel of
the decoder to 1 for images from footage of the driving subject and
0 for images from the original dataset. This indicator allows the
expression latent code to contain no identity-specific information
but only expressions. Moreover, to ensure the encoder produces the
expression latent code independent from identity, we further add a
discriminator with RevGrad layer Ganin and Lempitsky [2015] to
supervise the expression latent code.
Once trained the modified expression network, we lock its pa-

rameters and then refine both the geometry network and texture
network together with the latent mapping MLP M𝑒 on the original
training dataset. Then, the new subject’s performance can be trans-
ferred to the original performer. The disentanglement of expression
and viewpoint also allows the encoder to stably work with images
taken under varying head poses, which means the new subject can
even drive the performer with portable capture devices, such as
cellphones.

5.3 Geometry and texture editing
Animation of computer augmented faces is essential for the movie
and game industry, which involves geometry and texture editing
of the captured face model and requires artist labor. For instance,
animating digital characters in the Avatar movie involves manual
creation of novel appearances and hundreds of FACS action units and
corresponding textures in order to generate realistic appearances,
expressions and wrinkles. Previous works focus on high-precision
facial capture or neural rendered final effects, yet they can not
provide the artists with sufficient editability in textures, geometry,
and shader to release the manual editing burden. In contrast, with
ourmethod, driving a stylized character becomesmuch easier, where
only the neutral geometry and textures for the fictional character are

needed. The editing effort can be significantly reduced, as presented
in Figure 10.
To drive the stylized character, we first create the character un-

der neutral expression with artificial facial details and novel skin
appearances. We can modify the geometry to change facial features,
e.g. longer ears and thinner cheeks. Similarly, we can modify the
textures by painting on diffuse albedo, changing micro-geometry
on normal map and editing specular intensity. We expect this new
character to exhibit similar movements in facial muscle and wrinkle
details. Then, we transfer the dynamic facial geometry as well as
wrinkle maps under different expressions to drive this new charac-
ter.
Taking the driving subject’s facial performance video as input,

our neural facial asset can predict per-frame dynamic geometry.
We calculate the facial movement, which we regard as an offset
field, and then apply the offset to the neutral geometry map of
stylized character to obtain the geometry with the same expression.
During the texture compositing stage, we replace the original neutral
textures with an exquisitely drawn one. Because our network is
designed to predict wrinkle maps, it can transfer the performer’s
wrinkles to the stylized character.

6 RESULTS
In this section, we demonstrate the capability of our approach in
a variety of scenarios. We first report the implementation details
of our approach and the dataset captured by our FaStage, and then
analyze our results in various editing scenarios. We further provide
a comparison with previous methods and evaluations of our main
technical components, both qualitatively and quantitatively. The
limitation and discussions regarding our approach are provided in
the last subsection.

Dataset and Implementation Details. To train and evaluate our
method, we capture a dynamic facial asset dataset with physically-
based textures using our FaStage system. Our capture system is
shown in Fig. 3, where all the cameras are calibrated and synchro-
nized with lighting in advance. During capture, the machine vi-
sion camera array produces 24 RGB streams at 2592×2048 resolu-
tion, while the high-speed camera array generates 3 RGB streams
at 4096×2304 resolution. After data pre-processing, we produce
4096x4096 unwrapped physically-based textures for each frame,
including diffuse albedo, normal map, and specular intensity. Our
dataset consists of three performers and we capture a total number
of 7200 frames for each performer, respectively. In our implemen-
tation of facial motion re-targeting, we use the first 30 seconds of
the in-the-wild video clip for refinement. We crop the frames in the
clip to 256x256 with faces in the center using the landmark detec-
tor from Dlib [King 2009], and only compute reconstruction loss
within the face region. Additionally, we adopt Blender’s Eevee as our
main render engine as it is free, open-source, fast, and convenient.
Rendering a frame with textures of 4K resolution takes less than
1 second with the Eevee engine. We further utilize the rendering
shader provided in the Heretic [Unity Technologies 2020] to achieve
real-time performance. Fig. 11 demonstrates several neural facial
assets generated using our approach for high-realistic facial capture
and physically-based editing.
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Fig. 11. Driving and re-targeting of facial motions from videos using our neural physically-based facial assets. Each tuple includes driving frames
and facial assets, with style of the actor himself (left), Guan Yu (middle), and Alita (right).

Fig. 12. Video-driven Neural Physically-based Facial Asset. Our dynamic textures effectively enhance the appearance of the performer: (a,d) driven facial
assets with only static neutral physically-based textures, (b,e) driven facial assets with dynamic physically-based textures, (c,f) zoom-in view. Our method
successfully models the dynamic textures and preserves facial details at high resolution.

6.1 Video-driven Applications on Novel Expressions
Our multi-VAE-based neural facial assets enable various video-
driven applications, ranging from fine-grained facial capture to
cross-identity facial motion retargeting, and to geometry and physically-
based texture editing. As shown in Fig. 12, our approach enables
high-quality dynamic facial geometry generation with pore-level
dynamic textures on complicated expressions of the specific per-
former, such as frowning or winking. Fig. 13 further provides the
video-driven results using the RGB footage of different performers.
In addition to driving the captured performer, our method further

enables convenient physically-based editing for generating and driv-
ing an artistically stylized avatar, as shown in Fig. 14. Besides, our
retargeted animations are temporally consistent, which is provided
in the accompanying video.

6.2 Comparisons
To demonstrate the video-driven performance of our approach, we
compare against various video-driven facial reconstruction and ani-
mationmethods, including parametric facial model 3DDFA proposed
by Guo et al. [2020] and DECA proposed by Feng et al. [2021], a
performer-specific method for production proposed by Laine et al.
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Fig. 13. Cross-identity video driven results. We extend the expression network for new subjects with different expressions and varying head poses: (a,e)
the upper image is the new performer’s expression, and the lower image is the neural retargeting results from our expression decoder, (b,f) driven facial asset
in front view, (c,g) driven facial asset in the left view, (d,h) zoom-in view. Our method achieves detailed video-driven results from different identities with
dynamic textures, which leads to photo-realistic rendering.

Fig. 14. Geometry and texture editing results.We edit the video-driven facial assets (a,e) in various ways: (b) We paint the diffuse albedo with the style
of Guan Yu, the most famous red-face character in traditional Chinese Peking Opera; (c) We stylize the geometry of the performer to the blue alien from
the feature film AVATAR with a novel facial structure but consistent identity features; (d) We add a metal SIGGRAPH logo to the cheek of the performer by
modifying the textures; (f) We paint the diffuse albedo with the style of Yu Ji, the beloved concubine of Xiang Yu, the hegemon of Western Chu, from the
famous Peking Opera Farewell My Concubine; (g) We alter the performer’s facial structure, and added realistic face painting by jointly modifying the diffuse
albedo and the normal map; (g) We adjust the facial roughness to give the skin a more shiny look.
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Fig. 15. Qualitative comparison of video-driven result on in-the-wild monocular RGB inputs. (a) the input in-the-wild image, (b) rendered result of
our method with textures, (c) predicted geometry of our method with normal map, after the refinement using in-the-wild images, (d) predicted geometry of
our method with normal map, before the refinement using in-the-wild images, (e) predicted geometry of Lombardi et al. [2018], trained with in-the-wild
images, (f) predicted geometry of Lombardi et al. [2018], trained without in-the-wild images, (g) predicted geometry of Laine et al. [2017], (h) predicted
geometry of Feng et al. [2021], (i) predicted geometry of Guo et al. [2020]. With a quick refinement, our method can deal with head pose and lighting variance
better than other methods.
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Laine et al. [2017] 2.237 1.565 4.157
Lombardi et al. [2018] 1.866 1.174 3.076

Ours 1.516 1.164 2.750

Fig. 16. Quantitative comparison against several state-of-the-art
methods.We compare the per-frame geometric reconstruction errors on
an image sequence in our testing dataset (upper) and overall geometric
reconstruction errors on the images from our testing dataset (lower). Our
method outperforms others, indicating the better expression ability of our
network.

[2017], and Deep Appearance Model proposed by Lombardi et al.
[2018]. We adopt the official pre-trained PyTorch model for the
method of Feng et al. [2021] and Guo et al. [2020], and faithfully
re-implement both the methods of Laine et al. [2017] and Lombardi
et al. [2018] and train their models using the same training dataset
as ours for a fair comparison.

We divide 20% of the total frames of an individual as our testing
set. We provide multi-view images as input for both the methods of
Laine et al. [2017] and Lombardi et al. [2018] in the training process.
Fig. 15 provides the qualitative comparison of our testing dataset

for the task of facial geometry capture from in-the-wild monocular
video input. It is worth noting that compared to other methods, our
approach generates more realistic pore-level facial details which are
exhibited in normal maps. Besides, our approach generates more
realistic video-driven facial animation results even under challeng-
ing expressions, which compares favorably to other methods. For
fair quantitative comparison, we first transform the output models
on our testing dataset from both Laine et al. [2017] and Lombardi
et al. [2018] into our geometry map representation. Note that the
unit of coordinates is transformed into millimeters and we adopt
RMSE as the metric. As shown in Fig. 16, our approach consistently
outperforms the baselines, which demonstrates the effectiveness of
our approach for dynamic video-driven facial capture and modeling.
More importantly, our approach enables various physically-based
applications like geometry and material editing or facial feature
transfer, which are rare in the above methods.

6.3 Ablation Study
Here, we evaluate the performance of different training strategies
and demonstrate the effectiveness of ourmulti-VAE network designs.
Specifically, we evaluate the temporal stabilization, the expression
disentanglement, the pose enhancement, and wrinkle-based texture
prediction in our expression, geometry, and texture VAE, respec-
tively.

Temporal stabilization. We compare the stability of our textures
with or without the temporal stabilization. Let w/o stabilization
denote the results of our original textures without temporal stabi-
lization. We compare the difference of textures between consecutive
frames, where the lower difference indicates less temporal instabil-
ity. As illustrated in Fig. 17, our temporal stabilization significantly
improves the stability of textures for later network training.
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Fig. 17. Effectiveness of temporal stabilization. The upper figures show
the per-pixel difference of diffuse textures from consecutive frames with
and without temporal stabilization. The lower curve shows the average
difference of consecutive diffuse textures in our first 1000 frames. With tem-
poral stabilization applied, we significantly reduce the difference between
consecutive frames and provide more consistent textures.

Expression disentanglement. We compare the performance of our
model with or without the expression disentanglement training
scheme. Let w/o disentanglement denote the variation of our
approach without triplet input for both expression and geometry
VAEs. We utilize the same multi-view images as input for training
but ignore the viewpoint information. During the training process
of the expression network, we only adopt the loss L𝑟𝑒𝑐 in Eq. 6,
and remove viewpoint latent code from our network. As shown
in Fig. 18, our scheme with expression disentanglement enables
more accurate and consistent prediction for geometry, especially
when the input viewpoint changes. Our expression disentanglement
training scheme facilitates the robustness of our model to handle
viewpoint variance.

Pose extraction. Here we compare against our variation without
encoding the pose latent code from geometry while keeping the
input geometry intact without augmentation, denoted as w/o pose.
During the training process, we only adopt the first two loss items
in Eq. 13. As illustrated in Fig. 19, the results of w/o pose are tem-
porally unstable. We observe several sudden changes in geometry,
leading to the spikes of the curves in Fig. 19. Such an unstable
phenomenon compromises the performance of facial animation,
causing manual correction in post-production. Differently, our pose

Fig. 18. Qualitative evaluation of our expression disentanglement.
After training the network with the same dataset, we tested it with images
from novel viewpoints. The variation without expression disentanglement
suffers from inconsistency when the viewpoint changes. The absence of
expression and viewpoint disentanglement leads to a reduced ability of
generalization for our model. As a comparison, the results given by our
model with expression disentanglement training handled viewpoint change
with no deterioration in performance.
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Fig. 19. Quantitative evaluation of our pose augmentation.We eval-
uate the stability of the predicted geometries with and without pose aug-
mentations. The curve shows the mean distances of vertices to their stable
coordinates, which are expected to be fixed. Our training scheme with pose
augmentation leads to more stable face geometries, while the results given
by the variation without it jitters while testing.

enhancement handles the head pose variance and alleviates the
unstable artifact.

Texture prediction strategy. We further evaluate our wrinkle-map-
based texture prediction strategy. Let w/o wrinkle denote our vari-
ation that directly predicts pixel-aligned textures instead of wrinkle
maps and subsequently adopts an extra super-resolution network
to upscale the predicted textures to 4K resolution. As shown in
Fig. 20, our scheme models the wrinkle maps including shading
maps, which enables better preservation of facial details. Our wrin-
kle map models the discrepancies on top of the neutral textures
and can be scaled to high-resolution without suffering from blur or
block-wise artifacts.
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Fig. 20. Qualitative evaluation of our texture predicting strategy. Our
variation without predicting wrinkles suffers from repeated artifacts and
loses a lot of real details. The wrinkle map preserves more facial details and
sharpens the textures and avoids scale-like artifact.

6.4 Limitations and Discussions
Though our neural physically-based facial asset has demonstrated its
ability in a variety of applications with high-fidelity rendering per-
formance, it is still subject to several limitations. Our approach lacks
semantic animation controls. We choose implicit representation to
model the expressions over explicit parametric methods, therefore
the re-targeting results of the asset cannot be easily edited by an
artist. While this remains a limitation to our method, there are alter-
natives: one can either replace our in-the-wild data with rendered
images from parametric models analogous to [Moser et al. 2021]
or directly map extracted explicit parameters from the in-the-wild
images to our latent variables. Our approach achieves cross-identity
facial motion re-targeting with robust expression disentanglement.
Yet we capture the facial asset in a performer-specific paradigm,
hence it can not well handle extremely challenging identity and envi-
ronmental variance, similar to other performer-specific work [Laine
et al. 2017; Lombardi et al. 2018]. Besides, our cross-identity facial
motion retargeting relies on actor-specific training when applying
to a new performer. It’s an interesting direction to further design a
generalizable expression network structure to simultaneously han-
dle various identities, similar to those general facial models [Feng
et al. 2021]. Moreover, we don’t simulate the lighting conditions
and background as well as previous methods (i.e. Klaudiny et al.
[2017]). In future works, we plan to apply single-image relighting
techniques with portrait matting (i.e. Zhang et al. [2021]) to simulate
novel lighting environments.

Our geometry network only models soft tissues of the face with
high fidelity, we still need other face components like teeth, gums,
eyeballs, eye occlusion, and eyelashes, to improve the realism of our
facial assets. Previous works apply different types of deformations,
such as linear and laplacian deformations, to model the movements
of these components, which may not be able to achieve high realism.
In future works, we will incorporate eye movement capture and
jaw adaptation algorithms into our model, and use a biologically
sound parametric skull model as prior. Apart from face components,

we also need realistic hair with correct deformations to build a
production-level digital avatar. Rendering hair with high fidelity
remains a challenging problem in computer graphics due to its com-
plex physical forms. Existing solutions are mostly computationally
expensive, yet recent work using neural radiance field [Mildenhall
et al. 2020] to render fuzzy objects has shown promising results.
Hence, we plan to further improve our method by rendering hair
simultaneously using the method of [Luo et al. 2021].
In our practice, we separate textures into neutral textures and

multi-channel wrinkle maps for modifying high-resolution textures.
They can not simulate certain phenomena, such as pore squeezing.
A possible solution is to apply a similar strategy as we use at the data
processing stage, where we disentangle textures into warp fields and
neutral textures to eliminate pixel drifts for alignment.We have tried
such approach for modeling skin stretch and compression when
generating textures, but failed due to jittering noise in the data. In
future works, we will further improve our data processing pipeline,
which upgrades the current wrinkle-map-based texture inference
framework to a warp-field-based one. In the new framework, the
dynamic texture generated by our network will be able to simulate
pore-level deformation effects.

7 CONCLUSION
We have presented a neural approach to generate video-driven
dynamic facial geometries with high-quality physically-based tex-
ture assets from FaStage data. Our neural approach enables high-
fidelity performer-specific facial capture and even cross-identity
facial motion re-targeting without manual labor. It also enables
various physically-based facial editing effects, like geometry and
material editing or wrinkle transfer. The core of our approach is
a new multi-VAE-based design to disentangle facial attributes ex-
plicitly and effectively with the aid of a global MLP-based mapping
across latent spaces. Our explicit expression and viewpoint disentan-
glement as well as the novel triplet semi-supervision scheme enable
effective latent space construction for both the expression and ge-
ometry VAEs. Our wrinkle maps and view-independent texture
inference in our physically-based texture VAE achieve high-quality
4K rendering of dynamic textures and convenient neutral-based
editing for post-production. We showcase extensive experimental
results and video-driven applications for high-fidelity facial anima-
tion, facial motion retargeting, and physically-based editing with
high realism. We believe that our approach significantly improves
the video-driven production-level workflow of generating dynamic
facial geometries with physically-based assets. It serves as a critical
step for automatic, high-quality, and controllable dynamic facial
asset generation in the neural era, with many potential applications
for believable digital human, film, game production, and immersive
experience in VR/AR and the Metaverse.
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