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Fig. 1. Left: Conversion of a manifold B-Rep solid model S to the neural halfspace representation. NH-Rep is a function Boolean tree, in which each leaf
node corresponds to a B-Rep (sub)patch and associates with a neural implicit function 𝑓𝑖 . The zero isosurface of the Boolean expression ℎ (x) at the tree root
separates the interior and the exterior space of S and represents the boundary surface of S and its sharp features faithfully. ℎ (x) also approximates the
signed distance field of S, as seen from the sliced images of ℎ (x) . Right: Sample applications supported by NH-Rep: sharp shape offsetting using different
offset distances (top); feature blending using different blending radii (middle); CSG operation on two NH-Reps (bottom).

We present a novel implicit representation — neural halfspace representa-
tion (NH-Rep), to convert manifold B-Rep solids to implicit representations.

NH-Rep is a Boolean tree built on a set of implicit functions represented

by the neural network, and the composite Boolean function is capable of

representing solid geometry while preserving sharp features. We propose an

efficient algorithm to extract the Boolean tree from a manifold B-Rep solid

and devise a neural network-based optimization approach to compute the

implicit functions. We demonstrate the high quality offered by our conver-

sion algorithm on ten thousand manifold B-Rep CAD models that contain

various curved patches including NURBS, and the superiority of our learning

approach over other representative implicit conversion algorithms in terms

of surface reconstruction, sharp feature preservation, signed distance field

approximation, and robustness to various surface geometry, as well as a set

of applications supported by NH-Rep.
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1 INTRODUCTION
Implicit solid representations such as constructive solid geome-

try (CSG) and halfspace representations have gained popularity in

computer graphics and CAD/CAM due to many desirable character-

istics: it is easy to perform inside/outside queries; it is unbreakable

in the sense that challenging operations (e.g. , Boolean, round, offset)
can be applied without numerical failure; they support field-driven

design that integrates simulation and manufacturing conditions

into shape optimization, thus significantly improving the design

to manufacturing cycle consistency [Allen 2021]; and it is suitable

for leveraging fast-growing multicore CPU and GPU architectures

for parallelizable computation. Their ability to model signed dis-

tance fields is also demanded by many applications [Chen et al.

2022a]. However, existing CAD solid models are often in the form

of boundary representations (B-Reps), in which the solid bound-

ary is composed of a set of parameterized surface patches, such as

NURBS. To benefit from the aforementioned merits of implicit solid

representations, it is necessary to convert B-Reps to usable implicit

representations with high fidelity.

ACM Trans. Graph., Vol. 41, No. 6, Article 276. Publication date: December 2022.

ar
X

iv
:2

20
9.

10
19

1v
1 

 [
cs

.G
R

] 
 2

1 
Se

p 
20

22

https://doi.org/10.1145/3550454.3555502
https://doi.org/10.1145/3550454.3555502
https://doi.org/10.1145/3550454.3555502


276:2 • Guo, et al.

An early attempt to convert B-Rep solids to halfspace CSG mod-

els is limited to convex solids and B-Reps composed of linear and

quadratic patches with linear boundary edges [Shapiro and Vossler

1993]. High-order solid patches and nonlinear boundary edges are

not supported due to their complexity. Inverse CSG approaches,

such as Du et al. ’s work [2018], are restricted by the limited types

of solid primitives; thus, it is not easy to represent free-form geom-

etry and sharp features. Classic implicit reconstruction methods,

such as Poisson reconstruction [Kazhdan et al. 2006] and recent

neural implicit methods, such as DeepSDF [Park et al. 2019], lack

the ability to faithfully represent sharp features. The requirements

of supporting freeform geometry, preserving sharp features, and

modeling SDFs, are still challenges for the implicit conversion of

B-Reps.

To address the above challenges, we propose a novel halfspace

representation — Neural Halfspace Representation, abbreviated to

NH-Rep, is defined by a Boolean tree-based hierarchy of implicit

functions, where the implicit function at a leaf node corresponds

to a B-rep (sub)patch, and all implicit functions are modeled via

a multilayer perceptron (MLP) network. The composite function

ℎ(x) : x ∈ R3 ↦−→ R by NH-Rep is an implicit representation of a

manifold B-Rep solid. Here, the specific construction of the Boolean

tree offers the ability to model sharp features in an implicit form,

and the use of MLP to represent implicit functions provides a great

fitting capability to various surface geometry. NH-Rep has nice

properties: (1) the zero isosurface ℎ(x) = 0 separates the interior

and exterior of the input B-Rep solid; (2) ℎ(x) = 0 fits the freeform

geometry of the input B-Rep solid tightly with normal agreement

and sharp feature preservation; (3) the SDF of the B-Rep solid can be

approximated by ℎ(x) with good quality, by imposing the eikonal

equation on ℎ(x). An example is illustrated in Fig. 1-left.

Based on the theoretical proof of the existence of NH-Rep for a

given manifold B-Rep solid, we develop a method for computing NH-

Reps, including an efficient Boolean tree construction algorithm and

a learning approach to compute implicit functions. We performed a

large-scale benchmark on 10,000 manifold B-Rep CAD models to

validate the efficacy and robustness of our method. We verified the

superiority of NH-Rep over other representative implicit conversion

and reconstruction methods in terms of solid approximation fidelity,

sharp feature preservation, and robustness to various solid geome-

tries. Our code is available at https://github.com/guohaoxiang/NH-

Rep for facilitating future research and applications.

2 RELATED WORK
Solid representation. Boundary representation (B-Rep) and im-

plicit representation (Imp-Rep) are two common solid representa-

tions [Shapiro 2002]. B-Rep represents a solid as a collection of

surface, curve, and point elements. The surface and curve elements

can be in parametric forms like NURBS, or polygonal forms like tri-

angle facets and polylines. It is easy to model and edit B-Rep models

due to their explicit formulation. Imp-Reps such as Constructive

Solid Geometry (CSG) [Ricci 1973] and Function Representation (F-

Rep) [Pasko et al. 1995] provide a constructive modeling scheme and

possess the advantages mentioned in Section 1. The former applies

Boolean operations to primitive solids; the latter can employ more

general R-functions [Shapiro 2007] based on halfspace functions

for modeling and is also suitable for modeling complex shapes in a

procedural manner. Our NH-Rep belongs to the category of F-Rep.

Representation conversion. To take advantage of both B-Rep and

implicit representations, various applications require conversion

between these two representations. The study of converting im-

plicit representations to B-Reps is mature and many techniques are

available, such as polygonalization [Lorensen and Cline 1987] and

parameterization of algebraic surfaces. However, the opposite con-

version is challenging. The difficulties of converting a B-Rep to a half-

space representation were explored by [Buchele and Crawford 2003;

Shapiro and Vossler 1991a,b, 1993]: additional separating halfspaces
are required in many circumstances. Shapiro et al. convert B-Reps
boundedwith linear and quadratic patches by using linear separators,
but cannot handle high-order patches and nonlinear patch edges. For

B-Rep models consisting of simple primitives such as cubes, spheres,

and cylinders, a series of CSG inversion works are proposed: binary

optimization [Wu et al. 2018], program synthesizer [Du et al. 2018;

Xu et al. 2021], evolutionary algorithm [Friedrich et al. 2019], and

learning from data [Kania et al. 2020; Ren et al. 2021; Sharma et al.

2018; Yu et al. 2022]; but they cannot accurately represent freeform

geometry due to their restricted primitive types. Boundary-sampled

halfspace (BSH) [Du et al. 2021] defines the shape as sparsely placed

samples on the halfspace boundaries and provides greater agility and

expressiveness than CSG for shape modeling, and it also simplifies

the conversion process but has challenges in handling tangentially

contacted surface patches, which are common in CAD models. A

simple failure case is provided in Appendix A.

Reconstruction-based implicit conversion. By treating a B-Repmodel

as a collection of densely sampled points, many implicit-based re-

construction techniques [Berger et al. 2017; Carr et al. 2001; Ohtake

et al. 2003] can be used to convert point clouds into implicit repre-

sentations. For recovering shape features, Kazhdan et al. [2013] use
an indicator field to represent a 3D shape and approximate features

by penalizing the difference between the surface gradients and the

oriented point normals. Oztireli et al. [2009] uses implicit moving

least squares (MLS) to represent 3D shapes while estimating adap-

tive functional weights to handle features and outliers. However,

these methods cannot model 𝐶1
discontinuous features accurately,

as the underlying surface representation is globally smooth, not

piecewise smooth. Recent neural implicit approaches [Chabra et al.

2020; Chen and Zhang 2019; Chibane et al. 2020; Jiang et al. 2020;

Liu et al. 2021; Park et al. 2019; Peng et al. 2020; Yang et al. 2021]

represent the shape geometry as a signed distance field or an oc-

cupancy field, and some works [Gropp et al. 2020; Sitzmann et al.

2020; Williams et al. 2021] overfit the input point cloud to achieve

high accuracy, but the learned function is either piecewise linear

when using MLPs with ReLU [Lei and Jia 2020] or globally smooth;

therefore, it cannot model (curved) sharp features faithfully. The

works of BSP-Net [Chen et al. 2020] and CVXNet [Deng et al. 2020]

infer a Boolean CSG tree of a set of planes to represent a 3D shape in

a simple and compact form. However, their approximation quality

to the input is restricted by the plane geometry and the number of
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planes. By utilizing the B-Rep patch information explicitly and com-

posing the learned neural implicit functions with a Boolean tree, we

obtain faithful implicit conversion with sharp feature preservation.

Neural B-Rep representation. The complex data structure of B-Rep

representations poses a challenge in integrating B-Rep with mod-

ern machine learning techniques. Several approaches have been

developed to address this challenge. UV-Net [Jayaraman et al. 2021]

converts B-Rep to a face-adjacency graph in which the face and

edge correspond to a parametric surface and curve, respectively. 2D

CNN and 1D CNN are performed in the UV domain of each face and

edge, and the learned features are aggregated by graph convolution.

BRepNet [Lambourne et al. 2021] learns the features on B-Rep faces,

edges, loops, coedges, and vertices by graph convolution. These

works are mainly designed for shape analysis tasks, such as classifi-

cation and segmentation. Recently Willis et al. [2022] associate the
one-hot feature (element type) for B-Rep faces and edges, and pass

messages through the B-Rep graph to predict the joint information

for part assembly. Wu et al. [2021] proposes a generative network to
infer a series of CAD commands to create or reconstruct CAD mod-

els. However, its CAD reconstruction capability from point clouds

is limited by the model complexity and the predefined commands.

Our approach utilizes the patch adjacency of B-Rep to deduce the

Boolean tree for converting B-Rep to implicit representation and

has good scalability to deal with complex models.

Feature-sensitive distance fields. Storing distance field values in

discrete grids [Jones et al. 2006] is a popular way to convert ex-

plicit models to implicit representation. Adaptive octree [Frisken

et al. 2000] and hp-refinement [Koschier et al. 2016] are common

techniques to make storage compact while maintaining sufficient

accuracy. To preserve sharp corners and sharp features, additional

information and operations are required to store, such as directed
distances in the 𝑥-, 𝑦- and 𝑧-direction [Kobbelt et al. 2001], exact

intersection points and normals [Ju et al. 2002], the nearest triangle

information of the grid points to the input mesh [Huang et al. 2001],

offset distance fields [Qu et al. 2004], and density gradient [Novotný

and Srámek 2005]. To represent high-quality surface details and

curved sharp features, high-resolution (adaptive) grids are needed

in all these approaches and take up large storage spaces. In contrast,

the neural implicit representation can approximate the signed dis-

tance field and achieves a good balance between storage efficiency

and approximation accuracy; furthermore, the Boolean operations

of NH-Rep ensure faithful feature preservation.

3 OVERVIEW
Our paper is organized as follows. In Section 4.2, we first intro-

duce the terminologies of boundary representation and halfspace

representation, then present our solution for converting manifold

B-Rep solids to halfspace representation — Neural Halfspace Rep-

resentation (NH-Rep), which is built on a special Boolean tree of a

set of implicit functions. We develop a Boolean tree construction

algorithm (Section 5) and a neural network-based optimization al-

gorithm to determine the implicit functions associated with the

Boolean tree (Section 6). In Section 7, we provide extensive exper-

imental analysis and ablation studies to verify the efficiency and

superiority of our approach. In Section 8, we demonstrate a series

of applications supported by NH-Rep.

4 NEURAL HALFSPACE REPRESENTATION

4.1 Boundary representation and halfspace representation
Boundary representation. AB-Rep solid is a 3D volume surrounded

by a collection of non-overlapped manifold surface patches. For a

solid S with 𝐿 patches, we denote these patches as P1, . . . ,P𝐿 , and

the boundary of S as 𝜕S which satisfies 𝜕S =
⋃

𝑖 P𝑖 . Any surface

patch of a B-Rep solid can be in the form of a parametric surface or

a set of polygonal facets. Without loss of generality, we assume that

all surface patches have a consistent normal orientation, pointing

outside of the volume. For a B-Rep solid S, 𝜕S,I(S) and E(S) de-
note the boundary surface, the interior space and the exterior space

of S, respectively. For convenience, we define I(S) = I(S)⋃ 𝜕S.
In our paper, we assume that 𝜕S is manifold and the solid volume

is not empty.

Feature curves of B-Rep. The boundary

of a B-Rep patch is formed by a set of 3D

curves, each of which is shared by two ad-

jacent B-Rep patches. We call these curves

feature curves. The endpoints of a feature
curve are called feature corners and the

other points on the feature curve are called

feature points. We call a feature point p con-
vex, if the interior dihedral angle at p, denoted by 𝛾p, is smaller than

180°; concave if 𝛾p > 180°; and smooth if 𝛾p = 180°. “Convex” or

“concave” means that 𝜕S is only 𝐶0
smooth at p. Here 𝛾p is called

feature angle at p. We call a feature curve C convex if all feature

points on C are not concave; concave if all feature points on C are

not convex; smooth if all feature points on C are smooth; hybrid if C
contains both convex and concave feature points. We say a feature

curve C sharp ifmaxp∈C |180°−𝛾p | ≥ 𝛿𝑠 , 𝛿𝑠 > 0 is the user-defined
sharp angle threshold. The right inset illustrates a B-Rep solid with

different types of feature curves: convex in black, concave in red,

and smooth in blue.

Halfspace representation. An implicit function 𝑓 : x ∈ R3 ↦→ R
defines a halfspace: {x ∈ R3 : 𝑓 (x) ≤ 0}. For simplicity, we abbre-

viate the notation as 𝑓 ≤ 0. Boolean operations (union, intersection,

subtraction) can be defined over halfspaces using max and min
functions as follows. The union of a set of halfspaces {𝑓𝑖 ≤ 0}𝑚

𝑖=1

is {x ∈ R3 : min
(
𝑓1 (x), · · · , 𝑓𝑚 (x)

)
≤ 0}; their intersection is

{x ∈ R3 : max
(
𝑓1 (x), · · · , 𝑓𝑚 (x)

)
≤ 0}; the difference of two half-

spaces 𝑓 ≤ 0 and 𝑔 ≤ 0 is {x ∈ R3 : max
(
𝑓 (x),−𝑔(x)

)
≤ 0}. By

compositing some Boolean operations on halfspaces, a Boolean ex-
pression, or called CSG expression, is obtained. A Boolean expression

can be rewritten in Boolean tree format: (1) each leaf node stores an

implicit function; (2) each non-leaf node stores a Boolean operation:

max ormin, which is applied to its child nodes; (3) the composite

function at the root node, denoted byℎ(x), is the Boolean expression.
For convenience, we denote the Boolean operation on the non-leaf

tree node r as op(𝑟 ), and use op+ (r) to denote the opposite opera-

tion of op(r), i.e. , op+ (r) := max, if op(r) = min; op+ (r) := min
if op(r) = max.
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(a) (b) (c) (d) (e)

𝑔1 (x) = 0 𝑔2 (x) = 0 ℎ (x) = 0
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max

min 𝑓1 𝑓2 𝑓3 𝑓4

𝑓5 𝑓8

𝑓6 𝑓7

Fig. 2. (a): A 2D B-Rep solid (shaded region) surrounded by eight curve segments {P𝑖 }8𝑖=1. P𝑖 corresponds to an implicit function 𝑓𝑖 whose zero isocurve 𝑐𝑖 is
depicted as a dash line. (b): The Boolean tree of (a). ℎ = max

(
𝑓1, 𝑓2, 𝑓3, 𝑓4,min

(
𝑓5, 𝑓8,max(𝑓6, 𝑓7)

) )
. The red curves in (c), (d), and (e) are the isocurves of

the Boolean expression 𝑔1, 𝑔2 and ℎ, respectively. ℎ (x) = 0 recovers the boundary of the B-Rep solid exactly.

A Boolean tree is a halfspace representation of a B-Rep solid

if its composite function at the tree root can classify the point

membership of S correctly, i.e. , holding the following properties:
ℎ(x) < 0, ∀x ∈ I(S);
ℎ(x) > 0, ∀x ∈ E(S);
ℎ(x) = 0, ∀x ∈ 𝜕S.

(1)

Fig. 2-(b) provides a Boolean tree example that can represent a 2D

B-Rep solid shown in Fig. 2-(a). In Fig. 2-(c,d,e), the zero isocurves

of the Boolean expressions on the tree nodes are also illustrated.

B-Rep to halfspace representation. Any surface patch of a B-Rep

solid can be represented as a subset of the zero isosurface of an im-

plicit function. All implicit functions associated with B-Rep patches

define a set of halfspaces. For a solid S with 𝐿 patches, all half-

spaces partition R3 into 2𝐿 cells (some are possibly empty). The

describability theorem [Shapiro and Vossler 1993] states that there

exists a Boolean expression on these halfspaces that can represent

S if and only if for each nonempty cell, all points in the cell have

the same point membership classification with respect to the solid

volume. This condition implies Eq. (1), but is not easy to satisfy

in general, except for convex solids. Shapiro and Vossler [1993]

proposed adding separators, i.e. , additional halfspaces, to partition

those cells violating the condition until the mixed regions are sep-

arated. Linear separators for B-Rep solids composed of linear and

quadratic patches were studied in their work. Nonlinear separators

are essential for complicated B-Rep solids but their constructions

are unknown. Our work provides an explicit way to compute the

Boolean expression and the halfspace functions for general B-Rep

solids and introduces nonlinear separators via patch decomposition

(Section 5.2) when necessary.

4.2 Neural halfspace representation
We present a special halfspace representation — neural halfspace
representation to convert an arbitrary B-Rep solid to an implicit

presentation. To facilitate the definition of neural halfspace repre-
sentation, we first introduce the following useful terminologies.

Definition 4.1. For a B-Rep solid S with 𝐿 patches, a set of sub-

patches {s1, . . . , s𝑛} is called a decomposed patch set of S if (1)⋃𝑛
𝑖=1 s𝑖 = 𝜕S; (2) ∀𝑖, ∅ ≠ s𝑖 ⊆ P𝑘 , ∃𝑘 ∈ {1, · · · , 𝐿}; (3) area(s𝑖 ∩

s𝑗 ) = 0,∀𝑖 ≠ 𝑗 .

Definition 4.2. ABoolean treeT built on a set of implicit functions

{𝑓1, · · · , 𝑓𝑛} is called a patch-based Boolean tree, if there exists a

decomposed patch set {s1, . . . , s𝑛} of S such that s𝑖 lies on the zero

surface of 𝑓𝑖 , i.e. , s𝑖 ⊆ {x ∈ R3 : 𝑓𝑖 (x) = 0},∀𝑖 .

The following theorem guarantees that any manifold B-Rep solid

can be converted to a halfspace representation.

Theorem 4.3. For a B-Rep solid S, there exists a patch-based
Boolean tree T to represent S in half-space representation, i.e. , the
Boolean expression of T satisfies Eq. (1).

The proof of the above theorem includes two parts, sketched as

follows. We first provide an explicit way to build the tree structure

of T and determine the decomposed patch set explicitly, then prove

that there exists a set of implicit functions of T whose composition

function at the root node fulfills Eq. (1). We detail the first part in

Section 5 and leave the proof to Appendix B.

With the guarantee provided by the above theorem and the built

patch-based Boolean tree structure, the computation of implicit

functions of T is formulated as an optimization problem. To maxi-

mize the fitting ability of implicit functions to various and complex

B-Rep patch geometry, we represent all implicit functions by a neu-

ral network, which maps a 3D point to an 𝑛-dimensional vector in

which each entry is the value of an implicit function evaluated at

the given point. The optimization details are presented in Section 6.

As we use neural networks to represent implicit functions of the

patch-based Boolean tree, we name the halfspace representation

under this setup by neural halfspace representation.

5 BOOLEAN TREE STRUCTURE CONSTRUCTION

5.1 Algorithm overview
The design of Boolean tree structures is based on the following

intuitive idea. Notice that the Boolean operations on halfspaces

have clear geometry meaning: union, intersection, and subtraction;

we propose to partition the space via these operations defined over

halfspaces progressively, until one of the partition cells matches

the volume of the input B-Rep, i.e. , satisfying the describability

theorem [Shapiro and Vossler 1993].

We sketch the above idea as follows, using a 2D example shown

in Fig. 3. The initial partition space, denoted by 𝑆𝑝 , is the full space.

We first select a maximal group of patches, each of which shares con-

vex feature curves with its neighbor patches, i.e. , 𝑐1, 𝑐2, 𝑐3, 𝑐4. We

assume that by defining the appropriate implicit functions for these

selected patches, the intersection of their halfspaces can contain

I(S). We update 𝑆𝑝 with this intersected region. We then select a

maximal group of patches from the rest of the unprocessed patches,

ACM Trans. Graph., Vol. 41, No. 6, Article 276. Publication date: December 2022.



Implicit Conversion of Manifold B-Rep Solids by Neural Halfspace Representation • 276:5

(a) (b) (c) (d)

Fig. 3. 2D illustration of Boolean tree construction. (a): An input B-Rep
solid. The zero isocurves of the implicit functions are illustrated, same as
Fig. 2-(a). (b)-(d) are the intermediate partition results. (b): The intersec-
tion of {𝑓1 ≤ 0, 𝑓2 ≤ 0, 𝑓3 ≤ 0, 𝑓4 ≤ 0}. The corresponding Boolean
expression is max(𝑓1, 𝑓2, 𝑓3, 𝑓4) . (c): The union of 𝑓5 ≥ 0 and 𝑓8 ≤ 0

is intersected with the space defined in (b). The corresponding Boolean
expression is max

(
𝑓1, 𝑓2, 𝑓3, 𝑓4,min(𝑓5, 𝑓8)

)
. (d): The region surrounded

by 𝑐6, 𝑐7 is added to the partition. The corresponding Boolean expression
is max

(
𝑓1, 𝑓2, 𝑓3, 𝑓4,min

(
𝑓5, 𝑓8,max(𝑓6, 𝑓7)

) )
, yielding the Boolean tree

shown in Fig. 2-(b).

each of which shares concave feature curves with its unprocessed

neighbor patches, i.e. , 𝑐5, 𝑐8. We also assume that, by defining the

appropriate implicit functions on 𝑐5, 𝑐8, the union of their corre-

sponding halfspaces can be intersected with 𝑆𝑝 , and these patches

become part of the boundary of the intersected region. 𝑆𝑝 is then

updated by this new intersected region. Union and intersection

operations can be executed alternatively until all surface patches

are processed. Finally, 𝑆𝑝 matches the volume of the input B-Rep

solid, as 𝑆𝑝 is tightly surrounded by all B-Rep patches. Fig. 3-(b-d)

illustrates each step. In the next subsection, we turn the above idea

into a rigorous and executable algorithm.

5.2 Tree structure construction
For a B-Rep solid S, we provide a recursive approach to construct a

patch-based Boolean tree. It includes two steps: tree initialization
and tree node creation, and it relies on the following graph structure.

Patch graph. We define an undirected multigraph according to the

adjacency of all surface patches of S. Each graph vertex corresponds

to a surface patch; each graph edge corresponds to a feature curve

shared by two adjacent patches, and each graph edge e is labeled
with its corresponding feature curve type, denoted by type(e). This
multigraph is called patch graph, denoted by G. Fig. 4-(b) depicts
the patch graph of the B-Rep model shown in Fig. 4-(a).

Tree initialization. If G contains multiple maximal connected sub-
graphs (in short, MC subgraph), i.e. , the volume of S contains multi-

ple disconnected components, a tree root node r is created, and each
MC subgraph will be used to create child nodes under the root. The

Boolean operation on r is set to min, to combine all components.

If G contains only one MC subgraph, we set r as a virtual node:

r = ∅ and op(r) = min. The virtual node does not appear in the

final Boolean tree structure.

We take each MC-subgraph and the tree root as input to the

following recursive tree node creation algorithm.

Tree node creation. This step takes an MC-subgraph G′
and a

parent tree node r as input. From G′
, we select graph vertices that

have no connected graph edges with label edgetype(op+ (r)), to
form a vertex set Q. Here, we define edgetype(max) := convex,

edgetype(min) := concave. As the graph vertex is dual to a surface
patch, this selection does the following job: (1) when op(r) = min,
Q collects those surface patches in G′

that have no adjacent patches

in G′
or only share convex or smooth feature curves with other

adjacent patches in G′
; (2) when op(r) = max, Q collects those

surface patches in G′
that have no adjacent patches in G′

or only

share concave or smooth feature curves with other adjacent patches

in G′
. The formed Q is processed as follows.

Case 1: Q = ∅. There are two subcases that Q can be empty.

The first subcase occurs when r is the root node associated with

op(r) = max operation, but S does not contain any convex feature

edges. For this special subcase (depicted in Fig. 5), we only need to

set op(r) = min and construct the Boolean tree directly. The second

subcase occurs when any patch in G′
has both convex and concave

features shared with adjacent patches. Fig. 6-(b) depicts such an

MC-subgraph in this situation. For this subcase, we randomly select

one patch from G′
, denoted by P, and decompose it into a set of

subpatches, such that the boundary curves of any subpatch do not

contain convex and concave feature curve segments of P simulta-

neously. We call this step patch decomposition. Fig. 6-(c) illustrates
the patch decomposition step. We replace P with these subpatches

and update G′
accordingly. Here, any graph edge connecting with

two adjacent subpatches is labeled smooth. We then recompute Q
from the updated G′

and execute the tree node creation algorithm.

Case 2: Q ≠ ∅. A child node r′ is created under r, and the Boolean
operator at r′ is set to the opposite operation of r, i.e. , op(r′) :=
op+ (r). For each graph vertex 𝑣 ∈ Q, a child node is created under

r′. These added child nodes are tree leaf nodes because each of them

corresponds to a surface (sub)patch. G′
is updated by removing the

vertices of Q and their connected edges from G′
. Then we process

every MC-subgraph in the updated G′
by feeding it and r to our

tree node creation algorithm.

The pseudocode of the above recursive node creation algorithm

is provided in Algorithm 1. Fig. 4 illustrates how the Boolean tree is

created for a 2D B-Rep solid, step by step.

Termination of tree construction. Since G has finite graph ver-

tices and patch decomposition always reduces the number of graph

nodes that connect with convex and concave edges, the recursive

algorithm ends in finite steps. The subpatches from patch decom-

position and the original non-decomposed patches form the final

decomposed patch set, and each leaf node corresponds to one of

the (sub)patches. The tree node creation step ensures that max and

min appear alternately in different layers of tree nodes. Thus, the

Boolean tree created is a patch-based Boolean tree.

Implementation of patch decomposition. We implement patch de-

composition as follows. For a surface patch in polygonal mesh for-

mat, we first employ face-splitting to ensure that no triangle con-

tains feature edge segments with different feature types. Then, on

the dual graph of the mesh, we formulate a facet labeling problem

such that the facets with the same label do not contain convex and

concave feature edges simultaneously. The problem is solved using

the Min-Cut algorithm. The labeling result induces different sub-

patches. For a patch in parametric surface format such as NURBS,

we need to discrete it first as a triangular mesh and then compute
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P1

P2

P3

P4

P5
P6

P7

P8

Fig. 4. Illustration of Boolean tree construction for a 2D B-Rep solid. (a): An input 2D B-Rep solid with eight curve patches. A patch graph is created first as
shown in (b). Graph vertex 𝑣𝑖 corresponds to patch P𝑖 , and the color of graph edges encodes the edge types: red (convex), blue (concave). (c)-(g) illustrate
the tree node creation step by step. (c), (e), (g) are the𝑄 set in each step; (d) and (f) are the updated patch graph by removing vertices of𝑄 created from
previous step. (h), (i) and (j) are the Boolean tree during construction. 𝑓𝑖 corresponds to 𝑣𝑖 and P𝑖 .

f3f2f1 f4

min
P1

P2

P3

P4

Fig. 5. A 2D B-Rep solid formed by four patches contains concave features
only (left). The operation at the root node should be set to min.

Fig. 6. Illustration of patch decomposition. Left: A star-shape B-Rep that
contains 12 patches (in different colors).Middle: 10 vertical patches form a
graph vertex set, triggering the occurrence of the second subcase of Q = ∅.
The yellow patch is chosen for decomposition. Right: Subpatches obtained
by patch decomposition.

the subpatches. Here, we record the parametric coordinates of each

mesh vertex, so that we can access surface points on the parametric

surfaces exactly in the later NH-Rep computation stage, without suf-

fering discretization artifacts. Fig. 6 illustrates patch decomposition

on a simple example.

6 NH-REP COMPUTATION
With a built patch-based Boolean tree structure, our objective is

to compute a set of implicit functions {𝑓𝑖 }𝑛𝑖=1 such that the condi-

tions of Eq. (1) can be met. We rewrite Eq. (1) with respect to the

decomposition patch set {s1, . . . , s𝑛} as follows.

ℎ(x) = 0, ∀x ∈ s𝑖 ,∀𝑖; (2)

ℎ(x) > 0, ∀x ∈ E(S); (3)

ℎ(x) < 0, ∀x ∈ I(S); (4)

𝑓𝑖 (x) = 0, ∀x ∈ s𝑖 ,∀𝑖; (5)

∇x 𝑓𝑖 (x) = n(x), ∀x ∈ s𝑖 ,∀𝑖 . (6)

Algorithm 1: ConstructTreeNode
Input :patch graph G′

, parent tree node r
Result: updated Boolean tree structure

Create Q ;

if Q ≠ ∅ then
create child node r′ under r and set op(r′) := op+ (r);
∀v ∈ Q, create a leaf node under r′ ;
graph update: 𝐺 ′ := 𝐺 ′\Q;

for each MC-subgraph G′′ ⊆ G′ do
ConstructTreeNode(G′′

, r′);
end

end
else

if No convex edges in G′ then
set op(r′) = min;

∀v ∈ Q, create a leaf node under r′;
end
else

Pick v ∈ G′
, decompose its corresponding patch P;

Update G′
based on the updated patch layout;

ConstructTreeNode(G′
, r);

end
end

Here, n(x) is the oriented surface normal at x. We impose Eqs. (5)

and (6) to ensure that the zero surface of 𝑓𝑖 contains s𝑖 and is the

first-order approximation of s𝑖 .
We design a learning approach to compute the implicit functions

that satisfy the above conditions. We use a multilayer perceptron

(MLP) with three hidden layers of size 256 as our network, shown

in Fig. 7. It takes a 3D point coordinate x as the input and output 𝑛

values, each of which is the value of 𝑓𝑖 at x. These𝑛 values are passed

to the Boolean tree to obtain the composite function value ℎ(x;\ )
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Fig. 7. Our network architecture.

(\ denotes the network parameters). Here, we use SoftPlus as the

activation function to ensure that MLPs have sufficient smoothness

to represent smooth patches. The weight of the network is initialized

with geometric initialization [Atzmon and Lipman 2020].

Our loss function consists of the following terms.

Position loss. The position loss 𝐸𝑝 is derived from Eqs. (2) and (5):

𝐸𝑝 :=
1

𝑁

𝑛∑︁
𝑖=1

∑︁
x∈s𝑖

|𝑓𝑖 (x;\ ) | + |ℎ(x;\ ) |. (7)

Here, 𝑁 is the total number of sample points.

Normal loss. The normal loss 𝐸𝑛 is derived from Eq. (6), penalizing

the deviation of ∇𝑓𝑖 at the sample points from their ground-truth

normals.

𝐸𝑛 :=
1

𝑁

𝑛∑︁
𝑖=1

∑︁
x∈s𝑖

∥∇x 𝑓𝑖 (x;\ ) − n(x)∥ . (8)

Eikonal equation loss. We introduce the eikonal equation to ap-

proximate the signed distance field of S. The loss 𝐸𝑒𝑖𝑘 [Gropp et al.

2020] encourages ℎ to satisfy the eikonal equation almost every-

where.

𝐸𝑒𝑖𝑘 := Ex (∥∇xℎ(x, \ )∥ − 1)2 . (9)

Off-surface loss. 𝐸𝑜 is defined to penalize off-surface points whose

function values are close to 0 [Sitzmann et al. 2020].

𝐸𝑜 := Ex
(
exp(−𝛼 |ℎ(x;\ ) |)

)
, 𝛼 ≫ 1. (10)

Consistency loss. To ensure that 𝑓𝑖 (x;\ ) is activated in the Boolean
tree when evaluating ℎ(x;\ ) on s𝑖 , we introduce the following term
to improve this consistency.

𝐸𝑐𝑜𝑛𝑠 :=
1

𝑁

𝑛∑︁
𝑖=1

∑︁
x∈s𝑖

|𝑓𝑖 (x;\ ) − ℎ(x;\ ) |. (11)

Correction loss. During training, some sample points may still

severely disobey the consistency loss. We define a correction loss

𝐸𝑐 to suppress this inconsistency with a high penalty.

𝐸𝑐 :=
1

|D|
∑︁
𝑖

∑︁
x∈s𝑖∩D

𝛽 |ℎ(x;\ ) − 𝑓𝑖 (x;\ ) |, 𝛽 ≫ 1. (12)

Here, D is the point set in which any point violates the constraint:

|𝑓𝑖 (x;\ ) − ℎ(x;\ ) | < 10−5.
The total loss is the sum of the above loss terms, and we set

𝛼 = 𝛽 = 100 empirically. We found that there is no need to add

the constraints of Eqs. (3) and (4) as loss terms to avoid spurious

zero isosurfaces when the off-surface loss and geometric initializa-

tion [Atzmon and Lipman 2020] are used. In this way, we can avoid

sampling the ground-truth occupancy field for training. This strat-

egy makes our conversion algorithm friendly to the B-Rep models

Fig. 8. B-Rep solid samples in the ABC dataset [Koch et al. 2019].

with imperfections such as unwanted seams caused by exchanging

B-Rep data between different software, and extendable to segmented

point clouds where accurate interior and exterior information are

not available (see Section 7.4 and Section 8).

Patch grouping. A B-Rep solid may contain many but small sur-

face patches, which results in a large number of Boolean tree leaf

nodes and implicit functions. We run a standard graph coloring

algorithm on the patch graph of the decomposed patch set to group

some disjointed patches and set their corresponding neural func-

tions to be the same. Due to the universal approximation ability

of MLP, this strategy is practically useful without compromising

conversion quality. To limit the complexity of the group geometry,

we set the maximum patch number in a group as 6. This grouping
strategy reduces the number of implicit functions to around 50% on

average in our experiments and results in a smaller network (fewer

neurons in the last layer) and a shorter training time (10% faster).

7 EXPERIMENTS AND ANALYSIS
We conducted a series of experiments and ablation studies to evalu-

ate the efficacy and robustness of our approach and its superiority

over other alternative methods.

7.1 Experiment setup
Dataset. We choose the ABC dataset [Koch et al. 2019] as our

testbed dataset, in which each B-Rep model is a collection of pa-

rameterized curve segments and surface patches, including NURBS

patches. We choose the first chunk of the ABC dataset that contains

10,000 B-Rep models as our testbed. Some models are illustrated in

Fig. 8. We filter out non-manifold and non-closed models, and very

simple models like boxes and cylinders. For models with multiple

disconnected components, we treat each component as a model

instance for conversion, and the resulting NH-Reps can be easily

combined via union. The total number of model instances is 10,935.
10% models contain NURBS patches. Among them, 24 models re-

quire patch decomposition during tree construction. We utilized

the discretized mesh provided in the ABC dataset for patch decom-

position, where the mesh contains u-v coordinates of the paramet-

ric patch. The average and maximal surface patch numbers for a

model instance are 24.07 and 199, respectively. They are reduced to

10.69 and 144 by our patch grouping algorithm. Fig. 9 illustrate the

Boolean trees of two models computed by our method.
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𝑠𝑖
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Fig. 9. Boolean trees of two B-Rep solids. B-Rep patches are rendered in different colors. The zero isosurfaces of the Boolean functions at tree nodes are also
illustrated (truncated by the bounding box).

Training data preparation. We randomly sample 50,000 points

uniformly from each B-Rep model for training, and the correspond-

ing surface normals are assigned to the sampled points. The set

of these sample points is denoted as 𝑃𝑆 . On average, we sample

⌈50000/𝐿⌉ points on each patch, where 𝐿 is the number of patches

in the decomposed patch set. We also ensure that each patch con-

tains at least 50 sampled points, to avoid extremely insufficient

sampling. The sampled point cloud is normalized to fit inside a

[−0.9, 0.9]3 box.

Training details. We train the network to convert a single B-Rep

solid to NH-Rep, on an Nvidia GTX 1080 Ti GPU with the PyTorch

framework [Paszke et al. 2017]. We use Adam Optimizer for 15 000
iterations with an initial learning rate of 0.005 scheduled to drop

by a factor of 2 every 2000 iterations. The correction loss term is

enabled after 10,000 iterations. We randomly select 16,384 points

from 𝑃𝑆 in each iteration to calculate 𝐸𝑝 , 𝐸𝑛 , 𝐸𝑜 , and 𝐸𝑐𝑜𝑛𝑠 , where

16384/𝐿 points are sampled on each patch. To calculate 𝐸𝑒𝑖𝑘 and

𝐸𝑜 , we randomly sample a set of points within [−1, 1]3 in each

iteration. These points fall into two categories: local samples and
global samples. Local samples are points perturbed from the sam-

pled points with a normal distribution (mean: 0, stdev: 𝜎) along a

random direction, where 𝜎 is the shortest distance from the given

sample point to the densely sampled point cloud. In total, the local

samples contain 16,384 points. Global samples contain 2048 points

randomly sampled in [−1, 1]3 according to a normal distribution

(mean: 0, stdev: 1.8). 𝐸𝑒𝑖𝑘 uses all local and global sample points,

and 𝐸𝑜 uses global samples only. The average training time for a

single model is about 10 minutes.

Isosurface extraction. For evaluating the approximation quality of

NH-Rep to the input B-Rep boundary, we extracted the isosurface

of NH-Rep as a polygon mesh with feature preservation by the ad-

vanced isosurfacing algorithms [Ju et al. 2002; Kobbelt et al. 2001] as

follows. On each edge of the cube, we compute its intersection point

with ℎ = 0, and also record the functional gradient as the point nor-

mal. All intersection computations are performed in parallel in GPU.

The intersection points with normals are fed to the feature-aware

marching cube algorithm to extract a mesh surface. The default grid

resolution is 2563 and we increase the resolution to 5123 automati-

cally if the isosurfacing algorithm generates very long mesh edges,

indicating that the model may contain extremely narrow geometry.

For models with very sharp features, we found that the dual con-

tour algorithm [Ju et al. 2002] is more stable and accurate than the

algorithm of [Kobbelt et al. 2001]. In our implementation, we used

an octree structure to speed up isosurface extraction. Here, we note

that recent learning-based isosurfacing works [Chen et al. 2022b;

Chen and Zhang 2021] are different from our work. These methods

take discrete signals as input without access to surface gradients,

such as a distance field grid, and predict mesh vertex location and

edge crossing in cube cells for robustly reconstructing mesh facets

and sharp edges. They are designed for mesh reconstruction and do

not have access to ground-truth isosurfaces during the test phase.

In our work, any isosurface of NH-Rep can be accurately evaluated,

and thus the isosurface extraction step is just a conversion from

implicit surfaces to mesh format.

Evaluation metrics. Wemeasure the quality of implicit conversion

with respect to the following metrics.

- Chamfer distance (CD) and two-side Hausdorff Distance (HD)
between the extracted zero surface and the corresponding B-Rep

surface. 50,000 points are randomly sampled on both surfaces for

computation.

- Average normal error (NAE): Chamfer distance with respect to

surface normals, using the same sample points as used for CD.
- Feature Chamfer distance (FCD) and feature angle error (FAE).
We first detect sharp feature edges onM with the dirhedral angle

threshold: 𝛿𝑠 = 30°, then uniformly sample points on the detected

feature edges where the point distance interval is 0.004. We also

record the dihedral angle for each edge sample point. A similar

sampling is also done on 𝜕S. The Chamfer distance between these

sample points defines FCD, and the sum of the absolution error

of the dihedral angles between any nearest paired points in the

FCD computation defines FAE.
- Occupancy IoU (IoU) with respect to the ground-truthmeshmodel

provided in the ABC data set, calculated on a set of random sample

points in [−1, 1]3.
- The sum of the relative error of the predicted SDF with the real

SDF (DE), calculated on a set of random sample points in [−1, 1]3.
The real SDF is calculated on the ground-truth mesh model.

Here, CD and HD measure the overall quality of the zero surfaces;

FCD and FAEmeasure the sharp feature quality of the zero surfaces;
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Input SPR RIMLS SIREN IGR Neural Spline Ours Ground truth

#patches: 184

#patches: 52

#patches: 65

Fig. 10. Visual comparison of different approaches for implicit conversion. We render the input B-Rep models as point clouds that are the inputs to the
compared methods, different B-Rep patches in random colors. The detected feature edges are illustrated in black. Only our method can reproduce correct
sharp features after implicit conversion. The zoom-in views highlight the artifacts of the results from other methods.

DE and IoU measure the implicit field quality. The exact metric

formulas are provided in Appendix C.

7.2 Experiment analysis
Benchmark and comparison. We applied our method to convert

10,935B-Repmodels to implicit representations. For comparison, we

choose two classic feature-aware reconstruction methods: Screened

Poisson Reconstruction (SPR) [Kazhdan and Hoppe 2013] and Ro-

bust Implicit Moving Least Squares (RIMLS) [Oztireli et al. 2009], and

three representative learning-based implicit approaches: IGR [Gropp

et al. 2020], SIREN [Sitzmann et al. 2020], Neural Spline (NS) [Williams

et al. 2021]. The input to these competitive methods is the same

sample points from the B-Rep model as we described in Section 7.1.

Note that these methods cannot leverage patch adjacency infor-

mation as ours. The SPR and RIMLS implementations are from

MeshLab [Cignoni et al. 2008] with default settings. For SPR, its

interpolation weight is set to 50 for better feature preservation. For

IGR, SIREN, and NS, we use their default network and the suggested

optimal parameter settings. The average training time for a single

model is 40 minutes for IGR, 20 minutes for SIREN, and 1 minute for

NS. Our network parameter size is 137k on average, which is smaller

than SIREN (198k), IGR (1837k) and NS (250k). For IGR and SIREN,

we apply our surface extraction algorithm to recover sharp features,

as their implicit functions are easy to access. For SPR, RIMLS, and

NS, we use the marching cube algorithm supplied by their original

implementation. For SIREN, we also remove unwanted small com-

ponents and pick the largest component for evaluation. The failure

cases of RIMLS (126 models) and SPR (3 models) are not counted in

the performance report.

The performance of all methods is reported in Table 1. SPR, IGR,

and our approach have comparable quality in terms of CD, HD and

input two rendered views of ℎ (x) = 0

Fig. 11. NH-Rep conversion of three complicated B-Rep models. The patch
numbers (from top to bottom) are: 121, 178, 191. The zero isosurfaces of
ℎ (x) are rendered from two different views for better visualization.

NAE, while RIMLS, SIREN, and NS perform worse. Our approach

achieves the best performance on the sharp-feature-related metrics

(FCD, FAE) and IoU. The DE of ours is worse than IGR, as NH-Rep

does not recover the exact signed distance function due to the use

of Boolean operations. The visual comparison shown in Fig. 10

further confirms the superiority of our method in preserving sharp

features and recovering surface geometry. The robustness of our

conversion method to B-Rep inputs with many surface patches is

also illustrated in Fig. 10-bottom and Fig. 11 where the inputs have

more than 100 patches. In our supplemental material, we provide

metric histograms and more conversion results for further analysis.
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Table 1. Quantitative evaluation of implicit conversion of different methods
on 10,935 B-Rep models. CD, HD and FCD are scaled by 103.

Method CD ↓ HD ↓ NAE ↓ FCD ↓ FAE ↓ DE ↓ IoU ↑
SPR 5.07 21.5 4.14° 14.5 43.3° n/a 0.979

RIMLS 6.17 32.6 4.07° 20.7 31.1° n/a 0.325

SIREN 14.3 87.3 4.57° 25.6 28.4° 0.657 0.889

IGR 7.10 41.0 2.92° 13.5 9.61° 0.039 0.965

NS 16.7 95.7 6.97° 30.3 48.4° n/a 0.762

ours 5.31 24.3 2.42° 7.07 3.69° 0.064 0.979

Table 2. Quantitative evaluation of implicit conversion of different methods
on Fig. 10-bottom model under equal-time setting.

Method CD ↓ HD ↓ NAE ↓ FCD ↓ FAE ↓ DE ↓ IoU ↑
SPR 7.86 28.2 6.00° 2.28 42.9° n/a 0.997
NS 8.89 154 7.45° 5.50 45.3° n/a 0.326

ours 7.93 30.6 6.30° 2.07 7.59° 0.0668 0.987

NS

Ours

SPR

Ground truth

Fig. 12. Visual comparison of different approaches for implicit conversion
under equal-time setting. Our method reproduces features more accurately
than other methods.

Equal-time comparison with SPR and NS. As both NS and SPR with

their default settings have less running time than our approach, we

feed more sample points (5M points) and enable longer iterations

(SPR: 800 iterations, NS: 200 iterations) and higher resolution for

mesh extraction (NS: depth = 9, SPR: depth = 10), to maximize their

conversion capacity. We used the complex model shown at the bot-

tom of Fig. 10 as a test example. NS and SPR took 40 and 10 minutes

to compute, respectively. The results of the comparison are reported

in Table 2 and Fig. 12. NS produces bumpy geometry and spurious

zero surface, and SPR achieves comparable accuracy (CD&HD) to

our result trained with 50K points, but still has larger feature errors

and contains tiny fluctuation in the flat region; furthermore, its

implicit field storage is huge, exceeding 1.8GB memory.

Training with sharp feature samples. Our default point sampling

strategy does not include many sharp feature points for training. We

design an additional test to check whether IGR and SIREN training

with more sharp feature points can outperform our method. We

selected 100 B-Rep models randomly from our benchmark dataset

Table 3. Qualitative evaluation of implicit conversion of different methods
using additional sharp feature points on 100 B-Rep models. Fea. indicates
whether these additional points are used.

.

Method Fea. CD ↓ HD ↓ NAE ↓ FCD ↓ FAE ↓ DE ↓ IoU ↑
IGR ✓ 7.21 42.6 3.11° 5.16 9.94° 0.0444 0.981

SIREN ✓ 7.07 29.5 4.17° 8.49 29.4° 0.4570 0.968

ours × 5.49 22.7 2.67° 3.80 3.75° 0.0583 0.989

ours ✓ 5.42 21.7 2.57° 3.45 3.43° 0.0526 0.992

BSP-Net CSG-Stump CAPRI-Net Ours Ground truth

Fig. 13. Comparison with BSP-Net, CSG-Stump and CAPRI-Net on implicit
conversion. Inputs are selected from ShapeNet. We illustrate the bound-
ary surfaces extracted from different methods. BSP-Net, CSG-Stump and
CAPRI-Net fail to approximate CAD models accurately due to the limited
representation power and inaccurate prediction.

and added 10k points sampled at feature edges for each model, with

the original sampled points. As seen in the qualitative evaluation

(Table 3), IGR and SIREN with these additional inputs cannot yet

compete with our method which does not utilize sharp feature

points, while these additional inputs slightly improve our method.

Comparisonwith CSG-basedmethods. Wealso compared ourmethod

with BSP-Net [Chen et al. 2020], CSG-Stump [Ren et al. 2021], and

CAPRI-Net [Yu et al. 2022], which predict the CSG tree and a set of

primitives to approximate the input solid. As these methods were

trained on ShapeNet [Chang et al. 2015], we selected five typical

models from their test sets and used their trained networks and

prepared input data for comparison. The inputs are voxel cells (res-

olution 643) for BSP-Net, 2048 points for CSG-Stump, and 8192
points with normal vectors for CAPRI-Net. For our method, we

detect sharp features of the input mesh models and segment each

mesh into a set of patches to construct a B-Rep for implicit conver-

sion. We extracted the zero isosurfaces of these methods for visual

comparison. As seen in Fig. 13, BSP-Net, CSG-Stump and CAPRI-Net

approximate the inputs roughly with compact and simple elements

but cannot accurately represent the input solids; while our method

achieves more accurate implicit conversion results.
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(a): w/o 𝐸𝑛 (b): w/o 𝐸𝑜 (c): w/o 𝐸𝑐𝑜𝑛𝑠&𝐸𝑐 (d) Default Ground truth

Fig. 14. Ablation study of loss terms. Artifacts are highlighted by red boxes.

Table 4. Ablation study of loss terms on 100 models.

Config. CD ↓ HD ↓ NAE ↓ FCD ↓ FAE ↓ DE ↓ IoU ↑
w/o 𝐸𝑛 26.0 207 12.7° 39.7 24.3° 0.3440 0.625

w/o 𝐸𝑜 6.07 41.3 2.75° 4.88 4.10° 0.0612 0.986

w/o 𝐸𝑐&𝐸𝑐𝑜𝑛𝑠 5.50 24.7 2.69° 3.82 3.85° 0.0868 0.989
default 5.49 22.7 2.67° 3.80 3.75° 0.0583 0.989

7.3 Ablation study
We validate our loss design and network design through a set of

ablation studies, performed on 100 B-Rep models randomly selected

from the benchmark dataset.

Efficacy of loss terms. We validate the efficacy of each loss term

by dropping one of them during training. The performance of these

ablations is reported in Table 4. We have the following observations.

• The missing of 𝐸𝑛 produces the highest errors in all metrics,

since the normal orientation of ℎ on the surface points could

be very different from the ground truth. Fig. 14-(a) illustrates

typical artifacts such as distorted and non-smooth geometry, even

additional parts, and missing sharp features.

• Without 𝐸𝑜 , the network has less ability to constrain ℎ = 0 on

the input patches; thus, it may produce additional components as

shown in Fig. 14-(b), and lead to a higher HD error.

• Without 𝐸𝑐𝑜𝑛𝑠 and 𝐸𝑐 , 𝑓𝑖 may be inactivated when evaluating

ℎ on patch s𝑖 , resulting in a higher HD error than our default

setting, as shown in Fig. 14-(c).

• Our default setting achieves the lowest error in all metrics, being

more faithful to the input.

Impact of network size. We tested our network performance with

different numbers of MLP layers and neurons. The network config-

uration is indicated as 𝑁 ×𝑀 , 𝑁 is the number of neurons in each

MLP layer, and𝑀 is the number of MLP layers. Table 5 reports the

average performance. With a fixed𝑀 (𝑀 = 3), a larger 𝑁 helps to

improve all metrics; when 𝑀 = 7, the improvement brought by a

larger 𝑁 is less significant and worse on some metrics such as HD

and FAE possibly due to overfitting. Our default setting 256 × 3
balances network performance and network size. It obtains the best

performance on feature preservation and is slightly worse than the

configuration of 256 × 7 in other metrics.

Table 5. Network performance with different network configurations on
100 models. 256 × 3 is our default setting.

Config. CD ↓ HD ↓ NAE ↓ FCD ↓ FAE ↓ DE ↓ IoU ↑
64 × 3 5.79 34.7 3.06° 4.33 4.28° 0.0839 0.981

128 × 3 5.66 27.9 2.81° 3.98 3.89° 0.0669 0.981

256 × 3 5.49 22.7 2.67° 3.80 3.75° 0.0583 0.989

256 × 7 5.44 21.3 2.63° 3.81 5.02° 0.0569 0.990
512 × 7 5.46 23.4 2.70° 3.61 6.18° 0.0477 0.988

Input Separated MLPs Shared MLPs Ground truth

B

A

Fig. 15. Ablation study of shared MLPs and separated MLPs on two models.

Table 6. Qualitative evaluation of implicit conversion of models in Fig. 15.

Model Config. CD ↓ HD ↓ NAE ↓ FCD ↓ FAE ↓ DE ↓ IoU ↑
A sep. 4.26 17.4 2.98° 1.31 0.522° 0.0742 0.989

A shared 4.23 16.3 3.06° 1.34 0.625° 0.0712 0.990

B sep. 7.90 28.3 1.61° 6.97 7.67° 0.0590 0.996

B shared 7.86 29.6 1.58° 7.22 7.45° 0.0303 0.997

Separated MLPs for individual patches. In our network architec-

ture, the MLP layers are shared to predict individual 𝑓𝑖s. We con-

ducted an ablation study on two models (see Fig. 15) to verify

whether the use of separated MLPs for individual patches could

improve the accuracy of implicit conversion. We find that the im-

plicit conversion qualities of both versions are comparable (see

Table 6). However, the network size of using separated MLPs is

much larger, as it is proportional to the number of patches. Our

shared MLP strategy provides a great balance between model size

and implicit conversion quality.
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Noisy input SIREN IGR Ours Ground truth

Fig. 16. NH-Rep conversion from Noisy B-Rep inputs.

Input Segmentation Ours Ground truth

Fig. 17. Conversion from segmented point clouds to NH-Reps. Some sharp
features (bottom) are missed due to incorrect segmentation by [Sharma
et al. 2020]: the green points occupy two different surface regions. Each
model has 10000 sample points.

7.4 Robustness test
Data noise. To test the robustness of our algorithm to noise, we

add random noise in the range of [−0.018, 0.018] to point positions
along normal directions and perturb normal directions within the

angle interval [−3°, 3°]. Here, for our method, we assume that the

patch information and feature convexity are correct, and we also

drop the correction loss in our training because this loss function is

sensitive to noise. Fig. 16 shows the reconstruction results generated

by our method, as well as SIREN and IGR, on two noisy inputs. The

results show that our approach and IGR are less affected by noise,

whereas our approach achieves the best result possibly because we

have fewer MLP layers than IGR that avoid the overfitting problem,

and our CSG operations are good for recovering sharp features.

Segmented point clouds. In practice, CAD models are obtained by

scanning, in point cloud format, without B-Rep information. It is

possible to segment the point cloud first, then use our method to

convert it to NH-Rep. In Fig. 17, we utilize ParseNet [Sharma et al.

2020] to obtain the segmentation and recognize the type of feature

curves (convexity or concavity) between two adjacent patches ac-

cording to the majority of normal variations at the boundary points.

The input models are selected from the ParseNet test set. The zero

isosurfaces in the figure show that our method recovers the CAD

mesh in good quality if the segmentation is reliable. For the im-

perfect segmentation shown in the bottom row, our approach still

approximates the input but fails to model some sharp features due

to the wrong segmentation (dark green region), which consists of

two disjoint parts that cross the feature region.

Sensitivity to patch decomposition. In our patch decomposition

algorithm, random patch selection can introduce different decom-

posed patch sets, but has a minor impact on the quality of converted

NH-Reps. We select a complicated model (Fig. 18-a) that requires

(a) (b) (c) (d)

Fig. 18. NH-Rep generated from different patch decompositions. (a): Input
patches of the input model. (b): Two different decomposed patches due
to random initialization. (c): Zero surfaces of the generated NH-Reps; (d):
Ground truth. Patches are rendered in different colors.

Table 7. Qualitative evaluation of implicit conversion of the model in Fig. 18.

Model CD ↓ HD ↓ NAE ↓ FCD ↓ FAE ↓ DE ↓ IoU ↑
Top 5.87 22.7 5.20° 3.11 11.7° 0.0531 0.991

Bottom 5.85 24.9 5.19° 2.88 11.4° 0.0619 0.993

Before merging After merging NH-Rep Ground truth

#patches: 868 #patches: 11

Fig. 19. Patch merging for NH-Rep. From left to right: Patches of the input
model before and after merging, the zero surface of NH-Rep after patch
merging, and the ground truth.

patch composition to evaluate the impact of different decompo-

sitions. Two different decomposed patch sets are generated (see

Fig. 18-b top and bottom). Both the zero isosurfaces of the resulting

NH-Reps (Fig. 18-c) are close to ground truth, and the quality of

two different NH-Reps is comparable (see Table 7).

Scalability. For CADmodels with a large number of patches in the

ABC dataset, we find that many patches are very small and narrow,

and many of the shared feature curves are not sharp. If we naively

apply our implicit conversion algorithm, dense sample points on and

around small patches are needed to keep the approximation error

low. A practical way is to merge small patches with its neighbors to

reduce the patch number if their shared edges are smooth. We tested

this strategy on a model with 868 patches. Fig. 19 shows that the

total number of patches can be reduced to 11, and our conversion

algorithm can perform well.

8 APPLICATIONS
NH-Rep representation can be incorporated with many applications,

such as inside / outside query, surface offset, Boolean operations,

feature edge blending, and mesh repair.

Fast inside/outside query. Due to the implicit representation of

NH-Rep and parallel computation on GPU, it is easy to perform

inside/outside queries efficiently. We selected five models from our

benchmark dataset, and query the functional values on 217 points
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SIREN

IGR

Ours

−0.1 0 0.1 0.2

Fig. 20. Level sets of SIREN (top), IGR (middle), and our method (bottom)
with different isovalues: -0.1, 0, 0.1, 0.2, (from left to right).

𝐴 𝐵 𝐴 ∩ 𝐵

𝐴 ∪ 𝐵 𝐴 − 𝐵 𝐵 −𝐴

Fig. 21. Zero surfaces of applying boolean operations on two shapes 𝐴 and
𝐵 represented by NH-Rep.

randomly sampled inside [−1, 1]3. The average query time on a

single model is 33ms, which is faster than IGR (93ms), and slightly
slower than SIREN (30ms).

Offset surfaces. The implicit nature of NH-Rep enables us to per-

form sharp offsets via changing the level sets of ℎ(x). Fig. 20 il-

lustrates the offset surfaces at iso values: −0.1, 0, 0.1, 0.2. NH-Rep
maintains sharp features in all offset results. In contrast, IGR can-

not model sharp offsets and its offset surfaces are also bumpy with

larger iso values; SIREN does not produce plausible offset results.

Boolean operations. NH-Rep supports fast and robust Boolean

operations, as no explicit surface intersection is needed. The inter-

section, union, and complement operated on shapes correspond

to max,min,− operated on implicit functions. Fig. 21 shows the

results of applying Boolean operations on two complicated surfaces

represented by NH-Rep.

Feature blending. NH-Rep can be combined with R-functions

[Shapiro 2007] to blend feature edges of solids so that two adjacent

patches with sharp features can be joined smoothly. We achieve this

goal by replacing the operationmax,minwith 𝜌-blending function,

Input B-Rep NH-Rep Feature Blending

Fig. 22. Feature edge blending of NH-Rep using R-functions. 𝜌 is set to
0.05.

Input mesh Sample points Repaired mesh

Fig. 23. Mesh repairing. The input meshes are not watertight and contains
many small seams (mismatched edges), highlighted with different colors.
By sampling dense points on the input mesh (middle) and convert them
to NH-Rep by our algorithm, a watertight mesh with feature preserving
can be extracted from the zero isosurface of NH-Rep. The zoom-in views
highlight the gap before repairing and the seamless results after repairing.

which is defined as follows:

𝐵(𝑓 , 𝑔) = 𝑓 + 𝑔 + 𝑠

√︄
𝑓 2 + 𝑔2 +

𝑠𝜌 (𝑠𝜌 − |𝑠𝜌 |)
8𝜌2

, (13)

where 𝑓 , 𝑔 are the input functions for max or min, 𝜌 controls the

blend radius and 𝑠𝜌 = 𝑓 2 + 𝑔2 − 𝜌2. 𝑠 = 1 for operation max and

𝑠 = −1 formin. Here, since the 𝜌-blending function is bivariable, we

rewrite the multivariate Boolean operation of NH-Rep as bivariable

operations first, such as max{𝑓1, 𝑓2, 𝑓3} = max{max{𝑓1, 𝑓2}, 𝑓3},
then replace the operator by the 𝜌-blending function. Fig. 22 shows

the two examples of feature blending.
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Mesh repairing. Solid models in B-Rep format are often converted

to triangle meshes for different purposes such as file exchange

between different 3D software. The conversion may discretize B-Rep

patches individually, resulting in mismatching patch edges between

adjacent patches, as shown in Fig. 23-left. Thus, the converted mesh

is not watertight and exhibits many visible seams which are not

good for downstream tasks such as 3D printing. These problems can

be repaired using NH-Rep. We first segment the mesh based on the

existing seams and sharp features and build the adjacent graph on

the segmented patches. Here, we regard two disconnected patches

with small seams as connected when constructing the Boolean tree.

We then sample dense points on the mesh and fit the NH-Rep to

them. The formulation of NH-Rep guarantees that a closed mesh

with sharp feature preservation can be extracted. Fig. 23 shows the

repaired results of two models. Here, we note that our approach is

not designed to fix other kinds of mesh imperfections, such as big

holes, non-manifold connectivity, and self-intersection.

9 CONCLUSION
We present neural halfspace representations to convert B-Rep solid

models to implicit solids. The efficacy and robustness of our ap-

proach are validated through extensive experiments on a large CAD

dataset. Compared to other implicit conversion/reconstruction al-

gorithms, our approach offers superior approximation quality and

preserves sharp features more faithfully. As demonstrated in Sec-

tion 8, NH-Rep is useful for various applications and it is promising

to integrate it with advanced operations applied to function repre-

sentations [Pasko et al. 1995; Shapiro 2007], to obtain more shape

modeling and optimization capabilities.

Some limitations remain in our work and deserve future devel-

opment. First, unlike the traditional CSG representation and the

boundary-sampled halfspace representation [Du et al. 2021] that are

easy to edit by manipulating their primitives via moving, scaling,

rotating, and other simple geometry operations, it is not intuitive

to manipulate the halfspace functions of NH-Rep for shape edit-

ing, as its halfspace functions usually do not correspond to simple

solids. Second, the time-consuming learning step hinders interactive

shape modeling and implicit conversion. The recent exploration

of multilevel and adaptive feature volumes for computing neural

implicits [Müller et al. 2022; Takikawa et al. 2021] is promising for

accelerating our algorithm. Third, conversion from unsegmented

3D scans to NH-Rep requires reliable segmentation, which is chal-

lenging when the input contains large noise, outliers, or insufficient

sampling. Lastly, NH-Rep does not support non-manifold B-Rep

models. Integrating other representations such as multiphase im-
plicit functions [Yuan et al. 2012] into our formulation could be an

interesting research direction.
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Fig. 24. Left: The input B-Rep. Middle: The reconstruction result by BSH [Du
et al. 2021]. Right: The zero isosurface of our NH-Rep.

A A FAILURE CASE OF BOUNDARY-SAMPLED
HALFSPACE

The limitation of BSH [Du et al. 2021] in handling patches tangen-

tially contacted occurs often in CADB-Repmodels. Fig. 24 illustrates

a simple failure case. The input B-Rep model consists of two cylin-

drical halfspaces and four planar halfspaces. Each cylindrical patch

and its adjacent planar patch are contacted tangentially. The BSH

algorithm cannot produce the correct result, while our approach

works well.

B EXISTENCE OF IMPLICIT FUNCTIONS
In this section, we prove that for a decomposed patch set {s1, . . . , s𝑛}
of a B-Rep solidS, there exist a series of implicit functions {𝑓1, . . . , 𝑓𝑛}
such that their composite function ℎ satisfies Eq. (1).

It is known that an implicit function 𝐹 can be induced from an ori-

ented manifold surfaceZ (open or closed without self-intersection),

with the condition that Z belongs to the zero isosurface of 𝐹 . To

prove the existence of {𝑓𝑖 }𝑛𝑖=1, it is equivalent to proving that there

exists a set of orientable manifold surfaces: {Z𝑖 }𝑛𝑖=1 which can in-

duce {𝑓𝑖 }𝑛𝑖=1 to satisfy Eq. (1).

We prove the existence of {Z𝑖 }𝑛𝑖=1 in a constructive way by creat-

ing Z𝑖 from top to bottom along the Boolean tree, as follows. With-

out loss of generality, we show how to create relevant Z𝑖s on an

arbitrary Boolean tree node. We assume that a tree node 𝑟 has child

patches Q1, . . . ,Q𝑚 , child nodes 𝑟1, . . . , 𝑟𝑑 . Here Q𝑖 , 𝑖 = 1, . . . ,𝑚
are a subset of {s𝑘 }𝑛𝑘=1. We denote Q𝑚+𝑖 as the union of patches

contained in 𝑟𝑖 and its descendants. In the following construction

process, we assume op(𝑟 ) = max. When op(𝑟 ) = min, the process
is symmetric.

We process Q𝑠 , 𝑠 = 1, . . . ,𝑚 + 𝑑 in sequence as follows. If Q𝑠 lies

on the outer boundary of the shape (e.g. , Q1 in Fig. 25), we can

extend Q𝑠 from the boundary of Q𝑠 to form an open orientable

and non-self-intersecting surface ZQ𝑠
. The extension of Z𝑠 should

also avoid intersecting with other Q𝑖 ’s except at the boundary of

Q𝑠 . This can be achieved because Q𝑠 lies on the boundary of a

connected region and the boundary feature curves of Q𝑠 are all

convex. All constructed zero surfaces have no intersection with

the boundary surface of S except on feature curves (or corners in

2D). Next, we need to remove all the other intersections of Z𝑖 ’s

outside S, otherwise, the composited halfspace will have outlier

regions. Unwanted intersections can be removed by exchanging and

smoothing the intersected parts, as shown in Fig. 26.

If Q𝑠 lies on the boundary of a cavity region of the solid (e.g. ,
Q2 in Fig. 27), the zero surface can be constructed in a similar way,

but the resulting surface would be a closed one. If the composited

halfspace has an interior outlier region within the cavity, the zero

surfaces should be expanded to cover the outlier region, as shown

in Fig. 27(c).
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Fig. 25. Construction of extended curves on a 2D model. The extended
curves are trimmed by the bounding box for better illustration.

After constructing zero surfaces for all Q𝑖 ’s, the subpatches of

Q𝑚+𝑖 , 𝑖 = 1, . . . , 𝑑 should also be replaced with their extended ver-

sions. Suppose that R 𝑗 ’s are the subpatches of Q𝑚+𝑖 , then R 𝑗 should

be extended along 𝜕R 𝑗 ∩ 𝜕Q𝑚+𝑖 , so that the union of all extended

R 𝑗 ’s is ZQ𝑚+𝑖 . In this way, the generated zero surfaces in the child

nodes of 𝑟 follow that of 𝑟 .

The above procedure is executed from top to bottom; we can

obtain a series of {Z𝑖 }𝑛𝑖=1 at each leaf node. From {Z𝑖 }𝑛𝑖=1, we can
induce a set of implicit functions: {𝑓𝑖 }𝑛𝑖=1. Due to the construction

process and the above properties, it is easy to verify that Eq. (1) can

be fulfilled.

In Fig. 25 and Fig. 27, we illustrate the concept of surface extension

in two 2D examples. Fig. 25-(a) presents an input shape with six

decomposed patches s1, . . . , s6. Its Boolean tree is illustrated in

Fig. 25-(b), 𝑓𝑖 corresponds to s𝑖 . Fig. 25-(c) is the grouped patches at

the second layer of the Boolean tree, where Q5 is the union of s1 and
s2. The extended curves ZQ1

, . . . ,ZQ4
are illustrated in Fig. 25-(c),

denoted by 𝑧1, . . . , 𝑧4. Q5 is processed at the child node (Fig. 25-(f))

and the corresponding extended curves are 𝑧′1 and 𝑧′2 shown in

Fig. 25-(g). By applying the union operation (corresponding to min
operation), 𝑧5 is constructed as shown in Fig. 25-(e). In Fig. 25-(h),

all extended curves are plotted. Fig. 27(a) shows another example

whose input is with genus 1. The extended curves of Q1,Q2, Q3

and Q4 are closed curves as depicted in Fig. 27-(c).

Here, note that a dedicated and complicated algorithm is needed

to implement the above surface extension procedure, and we turn to

train a neural network to compute the appropriate implicit functions

directly.

C EVALUATION METRICS
We denote 𝑀𝑒 as the extracted zero isosurface from any method,

and𝑀𝑔 as the boundary surface of B-Rep. P𝑒 and P𝑔 are randomly

sampled points on 𝑀𝑒 and 𝑀𝑔 , and F𝑒 and F𝑔 are randomly sam-

pled points on the feature edges of 𝑀𝑒 and 𝑀𝑔 , respectively. For

a point set H and a query point x ∈ R3, we define the operation

unwanted

intersection

Fig. 26. Removal of unwanted intersection by exchanging and smoothing
when constructing 2D zero curves.

(a) (b) (c)

Q1

Q2

Q3

Q4

𝑧1

𝑧2
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𝑧4

Interior outlier

𝑧1

𝑧2

𝑧3

𝑧4

Fig. 27. Construction of extended curves on a 2D model with genus 1. (a):
Input model with 4 patches. (b): Improper zero surfaces lead to interior
outliers. (c): After expanding the zero surfaces, interior outliers can be
removed.

𝑄 (x,H) = argminy∈H ∥x − y∥ that returns the nearest point to x
in H , the operator n(x) that returns the surface normal at x, and
the operator \ (x) that returns the dihedral angle at a feature point
x. The evaluation metrics Section 7.1 are listed below.

CD(𝑀𝑒 , 𝑀𝑔) =
1

2|P𝑒 |
∑︁
p∈P𝑒

∥p −𝑄 (p,P𝑔)∥ +
1

2|P𝑔 |
∑︁
p∈P𝑔

∥p −𝑄 (p,P𝑒 )∥;

HD(𝑀𝑒 , 𝑀𝑔) =max{max
p∈P𝑒

∥p −𝑄 (p,P𝑔)∥,max
p∈P𝑔

∥p −𝑄 (p,P𝑒 )∥};

NAE(𝑀𝑒 , 𝑀𝑔) =
180°

2|P𝑒 |𝜋
∑︁
p∈P𝑒

arccos
(
n(p) · n(𝑄 (p,P𝑔))

)
+ 180°

2|P𝑔 |𝜋
∑︁
p∈P𝑔

arccos
(
n(p) · n(𝑄 (p,P𝑒 ))

)
;

FCD(𝑀𝑒 , 𝑀𝑔) =
1

2|F𝑒 |
∑︁
p∈F𝑒

∥p −𝑄 (p, F𝑔)∥ +
1

2|F𝑔 |
∑︁
p∈F𝑔

∥p −𝑄 (p, F𝑒 )∥;

FAE(𝑀𝑒 , 𝑀𝑔) =
1

2|F𝑒 |
∑︁
p∈F𝑒

∥\ (p) − \ (𝑄 (p, F𝑔))∥

+ 1

2|F𝑔 |
∑︁
p∈F𝑔

∥\ (p) − \ (𝑄 (p, F𝑒 ))∥ .

For a B-Rep solid, we compute its “ground-truth” signed distance

field F𝑔 based on the accompanied triangle mesh in the ABC dataset,

we measure the approximation error between the learned function

F𝑒 to F𝑔 as follows:

DE(F𝑒 , F𝑔) =
1

|𝐺 |
∑︁
p∈𝐺

|F𝑔 (p) − 𝑓 (p) |
|F𝑔 (p) | + 𝛿

.

Here 𝐺 is a set of points randomly sampled in [−1, 1]3, |𝐺 | = 217

and 𝛿 > 0 is a tiny value to avoid zero division and is set to 10−9.
IoU is the volumetric intersection of𝑀𝑔 and𝑀𝑒 divided by their

volume union. 217 points are randomly sampled in [−1, 1]3 and

their occupancy values are evaluated for computing IoU.
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