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Fig. 1. LaplacianFusion reconstructs a detailed and controllable 3D clothed-human model from a point cloud sequence that contains challenging dynamic
motions. The reconstructed model consists of a base mesh that fits the input scans and a surface function that predicts Laplacian coordinates representing the
details on the body surface. The model can be animated by controlling the human pose applied to the base mesh, and the surface function enables various
shape manipulations, such as detail transfer, smoothing, and sharpening, in addition to detail reconstruction.

We propose LaplacianFusion, a novel approach that reconstructs detailed and
controllable 3D clothed-human body shapes from an input depth or 3D point
cloud sequence. The key idea of our approach is to use Laplacian coordinates,
well-known differential coordinates that have been used for mesh editing,
for representing the local structures contained in the input scans, instead of
implicit 3D functions or vertex displacements used previously. Our approach
reconstructs a controllable base mesh using SMPL, and learns a surface
function that predicts Laplacian coordinates representing surface details on
the base mesh. For a given pose, we first build and subdivide a base mesh,
which is a deformed SMPL template, and then estimate Laplacian coordinates
for the mesh vertices using the surface function. The final reconstruction for
the pose is obtained by integrating the estimated Laplacian coordinates as
a whole. Experimental results show that our approach based on Laplacian
coordinates successfully reconstructs more visually pleasing shape details
than previous methods. The approach also enables various surface detail
manipulations, such as detail transfer and enhancement.
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1 INTRODUCTION
3D reconstruction of clothed human models is crucial for reproduc-
ing digital twins of real world to give the user a sense of reality and
immersion. Clothed human models are useful for various applica-
tions, such as entertainment, virtual reality, and the movie industry.
In particular, with the surging demands for social connections in
virtual spaces, it is valuable to produce realistic 3D human models
in a typical capturing setup.

Parametric human models have been proposed to reconstruct 3D
full body shapes for different poses. Among them, SMPL [Loper
et al. 2015] is a representative model and represents a human model
with shape and pose parameters that are applied to a single tem-
plate mesh with fixed topology. In SMPL, shape deformations are
obtained by linear blend skinning of the template mesh and cannot
be detailed enough for depicting surface details of clothed human
models. This limitation also applies to other parametric models of
human shapes [Joo et al. 2018; Pavlakos et al. 2019].

Recent learning-based methods for clothed human reconstruction
utilize implicit 3D functions [Saito et al. 2021; Wang et al. 2021], but
they learn a function defined in a 3D space and need an additional
polygon extraction step to provide a 3D mesh as the output. An
explicit point cloud representation has been used to reconstruct
loose clothes [Ma et al. 2021a,b], but this approach also needs the
surface reconstruction step to produce a 3Dmesh that can be directly
used for applications. On the other hand, Burov et al. [2021] use an
explicit mesh representation and train a Dynamic Surface Function
Network (DSFN) to estimate vertex displacements for a template
mesh. However, DSFN may not fully exploit the surface details in
the input scans due to the spatial regularization constraint needed
for training.
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In this paper, we present LaplacianFusion, a novel framework that
reconstructs a detailed and controllable 3D clothed human model
from an input depth or point cloud sequence. Our key idea is to use
differential coordinates, instead of implicit 3D function or vertex
displacements, for representing local structures of surface details.
For the differential coordinates, we use Laplacian coordinates [Alexa
2003; Karni and Gotsman 2000; Sorkine et al. 2003] that have been
widely applied to mesh processing and editing [Lipman et al. 2004;
Sorkine et al. 2004]. Intuitively, Laplacian coordinates are the differ-
ence between a point and the average of its neighbors, so they can
naturally encode local shape variations.
In our LaplacianFusion framework, the reconstructed human

model is expressed as combination of a controllable base mesh and
a surface function using a multi-layer perceptron (MLP). In the
training phase, we first reconstruct a base mesh sequence based
on SMPL that fits the input scans. We then train an MLP function
by fusing the Laplacian values estimated at input points on the
surface of the SMPL template mesh. As a result, the MLP function
learns to predict Laplacian coordinates representing the details on
the body surface. To reconstruct a detailed human model for a given
pose, we start from a SMPL template mesh in the canonical space
and obtain a base mesh by deforming the SMPL template using
the pose parameters. We then subdivide the base mesh to have
enough vertices and estimate Laplacian coordinates for the vertices
using the learned MLP function. Finally, the detailed output mesh is
obtained by globally integrating the estimated Laplacian coordinates
as a whole. In this paper, we call the MLP function neural surface
Laplacian function.
We aim for a natural capture scenario where the subject freely

performs actions during the capture. Our approach can handle both
full and partial views of point clouds that are captured by a dome-
shaped multi-camera setup [Collet et al. 2015] and a single RGB-D
camera [Kin 2022], respectively. The reconstructed 3D models are
controllable as the base mesh and the neural surface Laplacian
function are conditioned on SMPL pose parameters. Our approach
restores the surface details of a clothed human body better than the
recent explicit surface-based approach, DSFN [Burov et al. 2021]. In
addition, due to the differential representation and a fixed-topology
base mesh, our approach can be easily adapted for other applications,
including detail transfer, detail enhancement, and texture transfer.
Our codes are publicly available.1

Our main contributions can be summarized as follows:

• We propose LaplacianFusion, a novel framework for recon-
structing surface details of a clothed human body model. Our
framework can handle both partial and full-body point cloud
sequences.

• We introduce an approach to learn Laplacian coordinates
representing surface details from scanned points using a MLP.

• Our reconstructed model is controllable by pose parameters
and supports various shape manipulations, including detail
transfer.

1https://github.com/T2Kim/LaplacianFusion

2 RELATED WORK

2.1 Parametric models for 3D human shapes and clothes
Human body models. PCA-based parametric models have been

proposed for handling human body and pose variations: SMPL [Loper
et al. 2015; Pavlakos et al. 2019; Romero et al. 2017], GHUM [Xu et al.
2020], and Frank model [Joo et al. 2018]. These models can handle
body shape variations and pose-dependent shape deformations that
cannot be modeled with Linear Blend Skinning (LBS) [Lewis et al.
2000]. The models are suitable for expressing human shapes with
coarse meshes, but they alone are not enough for containing rich
details.

Clothed human models. Several approaches represented clothed
humans by extending parametric human models. SMPL [Loper et al.
2015] has been extended to express clothed deformations by directly
adding a displacement vector to each vertex [Alldieck et al. 2019,
2018a,b; Bhatnagar et al. 2020]. CAPE [Ma et al. 2020] proposed
an extended model by adding a cloth style term to SMPL. Other
approaches [Bhatnagar et al. 2019; De Aguiar et al. 2010; Guan et al.
2012; Pons-Moll et al. 2017; Tiwari et al. 2020; Xiang et al. 2020]
used additional parametric models for representing clothes on top
of a parametric human model. Additional approaches for expressing
surface details include GAN-based normal map generation [Lahner
et al. 2018], RNN-based regression [Santesteban et al. 2019], and
style-shape specificMLP functions [Patel et al. 2020]. However, these
approaches are limited to several pre-defined clothes and cannot
recover detailed human shapes with arbitrary clothes from input
scans.

2.2 Implicit clothed human reconstruction
Volumetric implicit representations. Truncated signed distance

function (TSDF) is a classical implicit representation for reconstruc-
tion. TSDF-based approaches that warp and fuse the input depth
sequence onto the canonical volume have been proposed for re-
covering dynamic objects [Innmann et al. 2016; Newcombe et al.
2015]. This volume fusion mechanism is extended to be conditioned
with the human body prior for representing a clothed human [Tao
et al. 2018; Yu et al. 2017]. Optimized approaches for real-time per-
formance capture have also been proposed [Dou et al. 2017, 2016;
Habermann et al. 2020; Yu et al. 2021].

Neural implicit representations. MLP-based neural implicit rep-
resentation has been actively investigated for object reconstruc-
tion [Chen and Zhang 2019; Mescheder et al. 2019; Park et al. 2019].
PIFu [Saito et al. 2019, 2020] firstly adopted this representation
for reconstructing static clothed human from a single image. Dou-
bleField [Shao et al. 2022] uses multi-view RGB cameras and im-
proves visual quality by sharing the learning space for geometry
and texture. With depth image or point cloud input, multi-scale
features [Bhatnagar et al. 2020; Chibane et al. 2020] and human part
classifiers [Bhatnagar et al. 2020] have been used for reconstructing
3D human shapes. Li et al. [2021b] proposed implicit surface fusion
from a depth stream and enabled detailed reconstruction even for
invisible regions.
Neural parametric models have also been proposed for model-

ing shape and pose deformations. NASA [Deng et al. 2020] learns
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Table 1. Comparison of approaches that reconstruct 3D clothed-human
shapes. Our approach explicitly handles a rigged 3D mesh model, so the
reconstruction is animatable and texture map can be readily applied.

Method Shape
representation

2.
5D

in
pu

t

3D
in
pu

t

A
ni
m
at
io
n

re
ad
y

Te
xt
ur
e
m
ap

re
ad
y

Im
pl
ic
it

DynamicFusion [2015] SDF ✓
BodyFusion [2017] SDF ✓

NASA [2020] Occupancy ✓ ✓
IF-Net [2020] Occupancy ✓ ✓
IP-Net [2020] Occupancy ✓ ✓ ✓
NPMs [2021] SDF ✓ ✓ ✓

Neural-GIF [2021] SDF ✓ ✓
SCAnimate [2021] SDF ✓ ✓
MetaAvatar [2021] SDF ✓ ✓ ✓
SNARP [2021] SDF ✓ ✓

POSEFusion [2021b] Occupancy ✓ ✓
LEAP [2021] Occupancy ✓ ✓

Ex
pl
ic
it

CAPE [2020] Coord. (vertex) ✓ ✓ ✓
SCALE [2021a] Coord. (patch) ✓ ✓
PoP [2021b] Coord. (point) ✓ ✓
DSFN [2021] Coord. (vertex) ✓ ✓ ✓

Ours Coord. + Laplacian ✓ ✓ ✓ ✓

pose-dependent deformations using part-separate implicit functions.
LEAP [Mihajlovic et al. 2021] and imGHUM [Alldieck et al. 2021]
learn parametric models that can recover shape and pose parameters
for SMPL [Loper et al. 2015] and GHUM [Xu et al. 2020], respectively.
NPMs [Palafox et al. 2021] encodes shape and pose variations into
two disentangled latent spaces using auto-decoders [Park et al. 2019].
SPAMs [Palafox et al. 2022] introduces a part-based disentangled
representation of the latent space.

For subject-specific clothed human reconstruction from scans, re-
cent implicit methods define shape details in a canonical shape and
use linear blend skinning to achieve both detail-preservation and
controllability. Neural-GIF [Tiwari et al. 2021] learns a backward
mapping network for mapping points to the canonical space and a
displacement network working in the canonical space. In contrast,
SNARF [Chen et al. 2021] proposed a forward skinning network
model to better handle unseen poses. SCANimate [Saito et al. 2021]
learns forward and backward skinning networks with a cycle loss
to reconstruct disentangled surface shape and pose-dependent de-
formations. MetaAvatar [Wang et al. 2021] proposed an efficient
pipeline for subject-specific fine-tuning using meta-learning.

These implicit representations are topology-free and can handle
vastly changing shapes, such as loose clothes. However, they indi-
vidually perform shape reconstruction at every frame and cannot
provide temporally consistent mesh topology needed for anima-
tion. In addition, this approach needs dense point sampling in a 3D
volume to train implicit functions and is computationally heavy.

2.3 Explicit clothed human reconstruction.
Explicit representations for reconstructing clothed humans have
been developed mainly for handling geometric details on the tem-
plate mesh of a parametric model such as SMPL [Loper et al. 2015].

Point-based. SCALE [Ma et al. 2021a] recovers controllable clothed
human shapes by representing local details with a set of points
sampled on surface patches. To avoid artifacts of the patch-based
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Fig. 2. Computing Laplacian coordinates on a mesh and a point cloud. (left)
Mesh editing methods usually calculate Laplacian coordinates (red arrow)
using uniform average of neighbor vertices on amesh. (middle) Our input is a
point cloud, and we approximate Laplacian coordinates by fitting a quadratic
polynomial to a small region (yellow region) in the input point cloud and
then using Laplace-Beltrami operator that produces differentials of a smooth
real function 𝑓 . (right) The approximated Laplacian coordinates differ from
uniform Laplacian coordinates, so we utilize the discrete Laplace-Beltrami
operator to convert Laplacian coordinates to absolute vertex positions.

approach at patch boundaries, PoP [Ma et al. 2021b] represents local
details using point samples on a global 2D map. Point cloud rep-
resentation has a flexible topology and can cover more geometric
details. However, this representation does not provide an explicit
output mesh.

Mesh-based. For subject-specific human reconstruction with a
depth sequence, DSFN [Burov et al. 2021] represents surface details
using vertex offsets on a finer resolution mesh obtained by subdivid-
ing the SMPL template mesh. This approach is the closest to ours.
The main difference is that our method represents surface details
using Laplacian coordinates, instead of vertex offsets. Experimen-
tal results show that Laplacian coordinates are more effective for
recovering surface details than vertex offsets (Section 8).

Table 1 compares our method with related ones in terms of possi-
ble inputs and desirable properties.

3 PRELIMINARY

3.1 Laplacian coordinates from a mesh
In the graphics literature, recovering an unknown function from dif-
ferential quantities (Laplacian) has become widely known through
Poisson image editing [Pérez et al. 2003]. This technique was suc-
cessfully expanded to the 3D mesh domain, especially for mesh
editing [Lipman et al. 2004; Sorkine et al. 2004]. In mesh editing,
the differential quantities are used to encode vertex coordinates
and called Laplacian coordinates. Mesh editing based on Laplacian
coordinates includes three steps: Encoding Laplacian coordinates
from the original mesh, interactive editing of control points, and
converting Laplacian coordinates into absolute vertex positions of
the target mesh while satisfying the positional constraints imposed
by edited control points. In the following, we briefly introduce the
encoding and converting steps.
Let the original mesh M = {V, F } be described by the vertex

set V and the triangle set F , where V = {v𝑘 | 𝑘 = 1, . . . , 𝐾}.
v𝑘 denotes the position of the 𝑘-th vertex and 𝐾 is the number of
vertices. Uniform Laplacian coordinates ̂𝜹𝑘 ∈ R3 are defined by:

̂𝜹𝑘 =
∑︁

𝑗 ∈N(𝑘)
𝑤𝑘

(
v𝑘 − v𝑗

)
, (1)
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Fig. 3. System overview. (top blue box) LaplacianFusion takes a 2.5D depth sequence (mint color) or full-body 3D point clouds (olive color), and produces
detailed meshes. In the training phase, (top left) we initially align the SMPL mesh to the input point clouds and obtain the skinned body meshes. (a) Then, we
learn pose-dependent local deformations for the vertices of the skinned body meshes to accurately fit the input data. (b) To capture surface details, we set
training pairs by projecting each raw scan to the base mesh, then learn neural surface Laplacian function that predicts pose-dependent Laplacian coordinates
on the surface of a base mesh. (bottom green box) In the reconstruction phase, we can recover and animate the final 3D shapes using the base mesh controlled
by pose parameters and the neural surface Laplacian function estimating surface details. (c) We conduct Laplacian reconstruction to convert the estimated
Laplacian coordinates to vertex positions. Note that the red and blue colors illustrated on the line segments in (b) and (c) represent Laplacian coordinates.

where𝑤𝑘 = 1
|N (𝑘) | indicates uniform weights, and N(𝑘) denotes

the set of adjacent vertices of the 𝑘-th vertex (Figure 2 left). Regard-
ing all vertices, this equation can be represented in a matrix form:
[̂𝜹1, . . . , ̂𝜹𝐾 ]𝑇 = L̂[v1, . . . , v𝐾 ]𝑇 , where L̂ is the uniform Laplacian
matrix. Notably, the matrix L̂ has rank 𝐾 − 1, so {̂𝜹𝑘 } can be con-
verted intoV by taking the specified position of a selected vertex
as the boundary condition and solving a linear system. For example,
when fixing the 𝑖-th vertex, we can form a sparse linear system
Ax = b, where A = [L̂𝑇 , 1𝑖 ]𝑇 and b = [̂𝜹1, . . . , ̂𝜹𝐾 , v𝑖 ]𝑇 . 1𝑖 denotes
one-hot encoding, where the 𝑖-th element is one.

3.2 Laplacian coordinates from a point cloud
In this paper, we compute Laplacian coordinates from raw 3D scan
data and use them for shape detail reconstruction. Then, we need an
alternative approach to Eq. (1) for computing Laplacian coordinates
as a point cloud does not have edge connectivity. We may consider
directly building edges from the point set, but it may generate a
noisy and non-manifold mesh. To resolve this difficulty, Liang et
al. [2012] defined the Laplace-Beltrami operator on a point cloud by
fitting a quadratic function for the local neighborhood of a point
and computing the differentials of the function (Figure 2 middle).

However, the Laplace-Beltrami operator computes Laplacian coordi-
nates using a continuous function that reflects the non-uniform local
shape in the neighborhood, which differs from the discrete uniform
Laplacian coordinates in Eq. (1). Therefore, Laplacian coordinates
calculated by the Laplace-Beltrami operator need to be converted
into mesh’s vertex positions differently.

Let’s assume that we have a meshM = {V, F }. We can calculate
the discrete Laplace-Beltrami operator on the mesh (Figure 2 right)
as follows [Meyer et al. 2003]:

𝜹𝑘 = ΔM (v𝑘 ) =
1
𝑎𝑘

∑︁
𝑗 ∈N(𝑘)

𝑐𝑜𝑡 (𝛼1
𝑘,𝑗

) + 𝑐𝑜𝑡 (𝛼2
𝑘,𝑗

)
2

(
v𝑘 − v𝑗

)
, (2)

where 𝜹𝑘 is non-uniform Laplacian coordinates, ΔM is the discrete
Laplace-Beltrami operator, 𝑐𝑜𝑡 (·) denotes cotangent function, 𝑎𝑘
is the Voronoi area of v𝑘 , and 𝛼1𝑘,𝑗 and 𝛼

2
𝑘,𝑗

are the two angles
opposite to the edge {𝑘, 𝑗} on M. Similarly to Eq. (1), Eq. (2) can
be represented in a matrix form [𝜹1, . . . , 𝜹𝐾 ]𝑇 = L[v1, . . . , v𝐾 ]𝑇 ,
where L is the non-uniform Laplacian matrix, and we can convert
{𝜹𝑘 } into V by solving a linear system with a boundary condition.
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Compared with global coordinates, which represent exact spatial
locations, Laplacian coordinates naturally encode local shape infor-
mation, such as the sizes and orientations of local details [Sorkine
2006]. In mesh editing, this property has been used to retain desir-
able local shapes during the editing process by encoding Laplacian
coordinates from the original mesh and constraining the edited
mesh to follow the encoded Laplacian coordinates. In this paper,
we use the property for shape reconstruction rather than editing.
We extract and encode the local details from the input scan data
using Laplacian coordinates and restore the desirable details on
the subdivided base mesh by integrating the encoded Laplacian
coordinates.

4 OVERVIEW
Figure 3 shows the overall process of our LaplacianFusion frame-
work. The input is a sequence of point clouds {P𝑡 }𝑡={1,...,𝑇 } , each
of which contains either 2.5D depth map or 3D full scan of a clothed
human body with motion. Our pipeline starts from the SMPL tem-
plate mesh in the canonical T-pose (Section 5.1). SMPL provides
the shape prior for the reconstructed models and enables the con-
trollability using pose parameters. Given an input sequence, we
estimate a single SMPL shape parameter 𝜷 and per-frame SMPL
pose parameters 𝜽 𝑡 , and obtain the posed skin body M𝑡 for each
frame 𝑡 . Since the meshM𝑡 may not accurately fit the input point
cloud, we add pose-dependent local deformations to improve the
fitting and obtain the base mesh B𝑡 (Section 5.2), where the local
deformations are estimated using an MLP function 𝑓𝑑 that computes
vertex displacements forM𝑡 . On top of the base mesh B𝑡 , our novel
neural surface Laplacian function 𝑓𝑙 predicts Laplacian coordinates
that encode the surface details of a clothed human model (Section 6).
Finally, we reconstruct the detailed output mesh S𝑡 by integrating
Laplacian coordinates estimated at the vertices of the subdivided
base mesh (Section 7). Note that 𝑓𝑑 and 𝑓𝑙 are functions of both 3D
positions and pose parameters as the local deformations and cloth
details such as wrinkles are pose-dependent. We outline the training
and inference phases for the two surface functions below.

Training phase. We sequentially train the two surface functions
because 3D points on a base mesh B obtained by 𝑓𝑑 are used as the
input of 𝑓𝑙 . We train 𝑓𝑑 to learn a deformation field that minimizes
the Chamfer distance [Barrow et al. 1977] between the input point
cloud and the base mesh B. To train 𝑓𝑙 , for each point in the input
point cloud, we calculate approximate Laplacian coordinates as
described in Section 3.2, and find the corresponding point on the
base mesh B to assign the calculated Laplacian coordinates. 𝑓𝑙 is
then trained to learn the assigned Laplacian coordinates on B by
mininmizing the L2 loss.

Inference phase. We can infer the surface details for a particular
pose using the learned MLP functions 𝑓𝑑 and 𝑓𝑙 . We first obtain
the posed skinned bodyM by applying the given pose parameter
to the SMPL template mesh. We then apply the local deformation
function 𝑓𝑑 to M and obtain the pose-dependent base mesh B.
Since the vertex number of the SMPL template is insufficient to
represent surface details of a clothed human, we subdivide the base
mesh B. We estimate Laplacian coordinates for each vertex of the

subdivided B using neural surface Laplacian function 𝑓𝑙 . Finally,
we reconstruct a detailed clothed human model by integrating the
estimated Laplacian coordinates. Note that the pose parameter used
in the inference phase can be arbitrary, and it does not have to be
one of the pose parameters estimated from the input frames (Section
8.4).

5 POSE-DEPENDENT BASE MESH

5.1 Skinned body acquisition
Our approach starts with building a skinned body. We adopt the
SMPL model [Loper et al. 2015] that can readily manipulate 3D
human shape using identity-dependent parameters 𝜷 and pose-
dependent parameters 𝜽 . SMPL supports rigging and skinning, and
the template mesh can be deformed with an arbitrary pose. As in the
SMPL model, we use the linear blend skinning (LBS) scheme [Lewis
et al. 2000] to compute template mesh deformation:

𝐿𝐵𝑆𝜽 (v) =
©«
∑︁
𝑗

w𝑗 (v)T𝑗 (𝜽 )
ª®¬ v, (3)

where 𝑗 ≤ 𝐽 denotes the index of a joint, 𝐽 is the number of joints,
T𝑗 (𝜽 ) denotes a 4 × 4 rigid transformation matrix for the 𝑗-th joint,
w(v) ∈ R𝐽 is a skinning weight vector of v predefined by SMPL
model, and v is homogeneous vertex coordinates of the base mesh.
We can conduct articulated deformation by applying Eq. (3) to all
mesh vertices.
The canonical neutral SMPL model M𝐶 is in the T-pose, and

we align the model with each input point cloud P𝑡 by estimating
shape and pose parameters, 𝜷 and 𝜽 𝑡 , so that the constructed posed
skinned body M𝑡 can fit P𝑡 well. We apply deep virtual mark-
ers [Kim et al. 2021] toM𝐶 and P𝑡 to obtain the initial geometric
correspondence. We additionally use OpenPose [Cao et al. 2019] to
improve the point matching accuracy if color images are available.
To obtain the parameters 𝜷 and 𝜽 𝑡 forM𝑡 , we optimize them using
the initial correspondence betweenM𝐶 and P𝑡 , and then further
minimize the correspondence alignment error and the Chamfer 𝑙2
distance together. We add the smoothness regularization term in
temporal domain for the optimization so that SMPL’s pose parame-
ters can be changed gradually.
In the face region of the SMPL model, vertices are placed with

uneven distribution to provide a detailed face. However, such distri-
bution does not match with the almost uniform point distributions
in the input raw scans. Therefore, we re-mesh the face region of the
SMPL model, and the skinning weights of new vertices are assigned
from the nearest original vertices.

5.2 Pose-dependent base mesh
Suppose we have obtained a skinned body meshM𝑡 that approxi-
mates the input frame from the previous step. To fit the SMPL model
tighter to the input point cloud, we combine pose-dependent local
deformation with M𝑡 (Figure 3a), and obtain a pose-dependent base
mesh B𝑡 ;

v′ = 𝐿𝐵𝑆𝜽
(
v + 𝑓𝑑

(
𝑄 (v), 𝜽 (v)

))
, (4)

where v′ is a vertex ofB𝑡 . In Eq. (4), the displacements are applied to
the vertices v of the T-posed SMPL mesh with the optimized shape
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parameter 𝜷 before the articulated deformation is performed using
LBS function. 𝑓𝑑 accounts for pose-dependent local deformation
and is implemented as an MLP. 𝑓𝑑 takes as the input a query point
𝑄 (·) and a per-point pose feature 𝜽 (·) that are described in Section
6.1. We observe such local deformations are useful to handle large
shape variations in the input scans.
To optimize 𝑓𝑑 , we formulate an energy function as follows:

𝐸𝑑 =
∑︁
𝑡

∑︁
𝑖

`𝑡,𝑖 × 𝑑𝐶𝐷
(
p𝑡,𝑖 ,B𝑡

)
+ _𝑟𝐸𝑟 , (5)

where p𝑡,𝑖 ∈ P𝑡 is a target point in the point cloud at frame 𝑡 ,
𝑑𝐶𝐷 (𝐴, 𝐵) evaluates Chamfer distance from 𝐴 to 𝐵, and B𝑡 indi-
cates the base mesh for which SMPL pose parameter 𝜽 𝑡 and pose-
dependent local deformation 𝑓𝑑 are applied: B𝑡 = B𝜽 𝑡

= {V ′
𝜽 𝑡
, F },

where V ′
𝜽 𝑡

= {v′
𝑡,𝑘

| 𝑘 ≤ 𝐾} and v′
𝑡,𝑘

denotes the 𝑘-th vertex
deformed by Eq. (4) with 𝜽 𝑡 . _𝑟 is a weight parameter. In all equa-
tions, for simplicity, we omit averaging terms that divide the sum
of Chamfer distances by the number of points.

In Eq. (5), per-point weight `𝑡,𝑖 is used to fully exploit geometric
details captured in the input depth images. Details of nearer objects
to the camera are usually better captured than farther ones, and
it is advantageous to put more weights on the input points closer
to the camera. We then use `𝑡,𝑖 = 𝑒−𝑐 |𝑧𝑡,𝑖 | , where 𝑧𝑡,𝑖 is the depth
value of P𝑡 at frame 𝑡 and the parameter 𝑐 is set to 2. If the input is
a sequence of point clouds, where the distance to the camera is not
clear, we use `𝑡,𝑖 = 1.

To avoid noisy artifact, we use Laplacian regularizer 𝐸𝑟 in Eq. (5)
that is defined by

𝐸𝑟 =
∑︁
𝑡

∑︁
𝑘

�����v′𝑡,𝑘 −
∑
𝑗 ∈N(𝑘) v′𝑡, 𝑗
|N (𝑘) |

�����2, (6)

where N(𝑘) is the set of adjacent vertices of the 𝑘-th vertex. 𝐸𝑟
regularizes the shape of a base mesh B𝑡 to be smooth. During train-
ing time, we construct the total energy by gathering the per-frame
energies of randomly sampled frames and optimize the total energy
using Adam optimizer [Kingma and Ba 2015].
Note that, in contrast to DSFN [Burov et al. 2021], we do not

conduct any mesh subdivision at this stage for efficiency. Indeed, in
our experiments, SMPL topology is sufficient to represent a coarse,
smooth mesh that is needed for learning neural surface Laplacian
function in the following section.

6 NEURAL SURFACE LAPLACIAN FUNCTION
To fully exploit the fine-level details in the input point cloud, we
construct a neural surface Laplacian function 𝑓𝑙 that is an MLP
defined on the surface of a pose-dependent base mesh B𝑡 . The input
of 𝑓𝑙 is the same as for 𝑓𝑑 , but the output is approximate Laplacian
coordinates, whereas 𝑓𝑑 produces a displacement vector.

6.1 Function input
Query point. In the inputs of functions 𝑓𝑑 and 𝑓𝑙 , we use the

concept of query point to neutralize shape variations of the base
meshes for different subjects and at different frames. We define a
query point 𝑄 (·) as a 3D point on the T-posed canonical neutral
SMPL modelM𝐶 . Consider two base meshes B𝑡1 and B𝑡2 for the

𝐯𝑡1,𝑘

𝐯𝑡2,𝑘

𝑄 𝐯∗,𝑘

𝐰(𝐯1)

(Head)

𝐰(𝐯𝟐)

(Left knee)

ഥ𝜽(𝐯2)

ഥ𝜽(𝐯1)

(Left hip)

𝐯1

𝐯2

𝜽

(a) Query point (b) Pose feature

Fig. 4. Input parameters for neural surface Laplacian function. (a) Query
points are defined on the canonical neutral SMPL model, so they can be
shared among various subjects and different poses. (b) A pose feature is a
masked SMPL pose parameter 𝜽 to focus on the relevant joints for a body
part. The yellow and gray regions indicate active/inactive parts, respectively.

same subject at different frames and their 𝑘-th vertices v𝑡1,𝑘 and
v𝑡2,𝑘 , respectively. 3D positions of v𝑡1,𝑘 and v𝑡2,𝑘 may differ, but
their query points 𝑄 (v𝑡1,𝑘 ) and 𝑄 (v𝑡2,𝑘 ) are defined to be same
as they share the same vertex index (Figure 4a). Similarly, 𝑄 (·) is
defined to be the same for the vertices of base meshes representing
different subjects if the vertices have been deformed from the same
vertex of M𝐶 . In addition, 𝑄 (·) can be defined for any point on a
base mesh other than vertices by using the barycentric coordinates
in the mesh triangles. Once determined, a query point is converted
to a high-dimensional vector via a positional encoding𝛾 [Mildenhall
et al. 2020], and we choose the dimension of ten in our experiments.

Pose feature. For a query point, our two MLPs 𝑓𝑑 and 𝑓𝑙 should
estimate pose-dependent deformation and Laplacian coordinates,
respectively. To provide the pose-dependency, we could simply
include the pose parameter 𝜽 in the input of the MLPs. However, a
query point is not affected by every joint but strongly associated
with nearby joints. For example, the joint angle at the shoulder
is irrelevant to local details on a leg. To exploit the correlations
between query points and joint angles in a pose parameter 𝜽 , we
convert 𝜽 to a per-point pose feature 𝜽 (v) that retains only relevant
joint angles for a query point v. Inspired by Pose Map [Saito et al.
2021], we apply the joint association weight map W ∈ R𝐽 ×𝐽 and
skinning weights w(v) ∈ R𝐽 of v to the original pose parameter
𝜽 ∈ R𝐽 ×3. Our pose feature used as the input of MLPs is defined by

𝜽 (v) = ⌈𝑑𝑖𝑎𝑔 (Ww(v))⌉𝜽 , (7)

where 𝑑𝑖𝑎𝑔(·) converts an input vector to a diagonal matrix, and
⌈·⌉ is an element-wise ceiling operation. We manually define the
weight map W to reflect our setting. For example, the details of the
head are not correlated with any joint in our reconstructed model,
and the details of a leg are affected by all nearby joints together.
Then, for the head joint, we set zero for the association weight of
any joint inW. For a joint around a leg, we set higher association
weights for all nearby joints (Figure 4b).

6.2 Training pairs
To train the neural surface Laplacian function 𝑓𝑙 , we calculate the
ground-truth (GT) approximate Laplacian coordinates of scan points
and localize them onM𝐶 to the corresponding query points.
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(a) Scan (b) Local coordinate system (c) Quadric surface

Fig. 5. Illustration of GT Laplacian coordinates approximation. To compute
Laplacian coordinates on a point cloud (a), we initially define a local coordi-
nate system (b), and compute a quadratic polynomial that locally fits the
point cloud. Then, the coefficients of the quadratic polynomial are used to
obtain Laplacian coordinates.

GT Laplacian coordinates approximation. As discussed in Section
3.2, we use an approximation method [Liang et al. 2012] for cal-
culating Laplacian coordinates from scan points that do not have
connectivity. We first locally fit a degree two polynomial surface
for each point in the moving least squares manner. In our exper-
iments, we use 20-30 neighbor points for the local surface fitting.
Figure 5 shows illustration. Our approximate Laplacian coordinates
are defined on a continuous domain, unlike in conventional mesh
editing methods [Lipman et al. 2004; Sorkine et al. 2004] that formu-
late Laplacian coordinates in a discrete domain using mesh vertices.
To apply our Laplacian coordinates to a discrete mesh, we take
advantage of a pose-dependent base mesh (Section 7).

Localization. Although the base mesh B𝑡 nearly fits the input
point cloud, points may not reside exactly on the mesh. To obtain
the corresponding query point, we project each point p in the in-
put point cloud P𝑡 onto the base mesh B𝑡 : p = Π (B𝑡 , p), where Π
denotes the projection operation from a point to a pose-dependent
base mesh (Figure 3b). The position of p𝑡,𝑖 is determined by the
barycentric coordinates in a triangle of B𝑡 , so we can easily com-
pute the query point, skinning weights, and pose feature using the
barycentric weights.

6.3 Optimization
neural surface Laplacian function. For a given surface point p and

pose 𝜽 , the MLP 𝑓𝑙 estimates Laplacian coordinates:

𝜹 ′(p) = 𝐿𝐵𝑆𝜽
(
𝑓𝑙

(
𝑄 (p), 𝜽 (p)

))
. (8)

The estimation is conducted in the canonical space and transformed
into the posed space. Working in the canonical space is essential
because Laplacian coordinates are not invariant to rotation. In Eq.
(8), we discard the translation part in Eq. (3) as Laplacian coordinates
are differential quantity. The estimated 𝜹 ′ is non-uniform Laplacian
coordinates, as described in Section 3.2.

We train the MLP 𝑓𝑙 by formulating a per-point energy function:

𝐸𝑙 =
∑︁
𝑡

∑︁
𝑖

`𝑡,𝑖

���𝜹 ′
𝑡,𝑖 − 𝜹𝑡,𝑖

���2, (9)

where 𝜹 ′
𝑡,𝑖 is the Laplacian coordinates of p𝑡,𝑖 predicted by 𝑓𝑙 us-

ing Eq. (8), 𝜹𝑡,𝑖 is the GT approximate Laplacian coordinates of
p𝑡,𝑖 , and `𝑡,𝑖 is the weight used in Eq. (5). During training, we con-
struct the total energy by summing per-point energies of randomly

sampled input points, and optimize the total energy using Adam
optimizer [Kingma and Ba 2015].

7 LAPLACIAN RECONSTRUCTION
Once the training is over, for a given pose 𝜽 , we can obtain the
pose-dependent base mesh B𝜽 and the Laplacian coordinates for
the vertices of B𝜽 . In the reconstruction step, we aggregate the
estimated Laplacian coordinates to restore a whole body model.

Subdivision. For detailed surface reconstruction, we subdivide the
base mesh B𝜽 as the SMPL model does not have enough number
of vertices for representing fine details. The new vertices of the
subdivided mesh B reside on the midpoints of edges of B𝜽 . We
conduct subdivision twice, and the number of triangles increases
16 times. As a result, we have the subdivided pose-dependent base
meshB = {U, F ′}, whereU = {u𝑘 | 𝑘 ≤ 𝐾 ′} and𝐾 ′ is the number
of vertices of B.

Reconstruction. Using the base mesh B, as illustrated in Figure 3c,
we reconstruct a detailed mesh S = (U ′, F ′), where U ′ = {u′

𝑘
|

𝑘 ≤ 𝐾 ′}, by minimizing the following error functional [Lipman et al.
2004; Sorkine et al. 2004]:

𝐸 (U ′) =
∑︁
𝑘

ΔB
(
u′
𝑘

)
− 𝜹 ′ (u𝑘 )

2 + ∑︁
𝑘∈ 𝑎𝑛𝑐ℎ𝑜𝑟

u′
𝑘
− u𝑘

2, (10)

where ΔB is the Laplace-Beltrami operator of B defined in Eq. (2),
𝜹 ′(u𝑘 ) is the non-uniform Laplacian coordinates of u𝑘 predicted by
the neural surface Laplacian function 𝑓𝑙 using Eq. (8), and 𝑎𝑛𝑐ℎ𝑜𝑟 is
a set of indices of the constraint vertices on B, which play the role
of boundary conditions. In Eq. (10), the first term preserves desirable
Laplacian coordinates on the whole surface, and the second term
constrains the global position of the final shape using the anchor
points.

Laplace-Beltrami operator. To compute the Laplace-Beltrami op-
erator ΔB using Eq. (2), we need the angles 𝛼1

𝑘,𝑗
and 𝛼2

𝑘,𝑗
for each

edge connecting vertices u𝑘 and u𝑗 in B. For efficient computation,
we use uniform angle 𝛼 = 𝛼1 = 𝛼2 = 𝜋

2 − 𝜋
|N (𝑘) | for all edges of B.

Then, Eq. (2) is reduced to

ΔB
(
u′
𝑘

)
=
𝑐𝑜𝑡 (𝛼)
𝑎𝑘

©«|N (𝑘) | u′
𝑘
−

∑︁
𝑗 ∈N(𝑘)

u′𝑗
ª®¬ , (11)

where 𝑎𝑘 is the Voronoi area of a vertex u𝑘 of B. As shown in the
experimental results (Section 8), this approximation successfully
reconstructs S from the predicted non-uniform Laplacian coordi-
nates.

Anchor points. Theoretically, we are able to recover the original
mesh from the Laplacian coordinates of vertices by fixing one vertex
position as an anchor and solving a linear system [Sorkine et al.
2004]. However, in our setting, one anchor may not suffice for recon-
structing the accurate final surface S, as the Laplacian coordinates
are approximate ones predicted by a neural surface Laplacian func-
tion 𝑓𝑙 , not computed directly from S. To improve the accuracy of
reconstruction, we set anchor points of a sufficient number as the
boundary condition. We select a set of 𝑛 vertex indices as the 𝑎𝑛𝑐ℎ𝑜𝑟
in Eq. (10) in advance by uniformly sampling [Yuksel 2015] vertices
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𝑛 = 1 𝑛 = 10 𝑛 = 100 𝑛 = 500 𝑛 = 1000

Anchor

Fig. 6. Effect of the number of anchor points. On the left, the red dot
represents a single anchor point used for reconstruction. Too few anchor
points (𝑛 ≤ 500) introduce distortions in the reconstruction results.

from the canonical neutral SMPL model M𝐶 , where 𝑛 = 800 in our
experiments. Figure 6 shows reconstruction results with varying
numbers of anchor points.

Reliable anchors. Since anchor points are fixed for solving Eq.
(10), they should be as close to the input point cloud as possible.
To achieve this property, we set an additional energy term and
optimize it along with Eq. (5) when we train the pose-dependent
local deformation function 𝑓𝑑 :

𝐸𝑎 = _𝑎

∑︁
𝑡

∑︁
𝑘∈ 𝑎𝑛𝑐ℎ𝑜𝑟

𝑑𝐶𝐷

(
v′
𝑡,𝑘
,P𝑡

)
, (12)

where 𝑑𝐶𝐷 measures a vertex-to-point cloud Chamfer distance, P𝑡
is the input point cloud at frame 𝑡 , and _𝑎 is a weight parameter.
When the input is a depth map sequence, we apply this term to only
visible anchors from the camera viewpoint.

8 RESULTS

8.1 Experiment details
Implementation and training details. Pose-dependent local defor-

mation function 𝑓𝑑 and neural surface Laplacian function 𝑓𝑙 are
represented as 5- and 3-layer MLPs with ReLU activation, and 600
and 800 feature channels are used per intermediate layer, respec-
tively. In our experiments, we set _𝑟 = 0.1 ∼ 2 and _𝑎 = 2. We
optimize 𝑓𝑑 and 𝑓𝑙 with a learning rate of 1.0 × 10−3, batch sizes of
10 frames and 5000 points, and 300 and 100 epochs, respectively. The
training time is proportional to the numbers of points and frames
in the scan data. For instance, the point cloud sequence used for
reconstruction in Figure 7 consists of 39k∼56k points per frame
with 200 frames. In that case, it takes about 20 and 30 minutes to
train MLPs 𝑓𝑑 and 𝑓𝑙 , respectively.

Datasets. We evaluate the results of our method qualitatively and
quantitatively on single-view and full-body point cloud sequences.
We capture RGB-D sequences using an Azure Kinect DK [Kin 2022]
with 1280p resolution for color images and 1024 × 1024 for depth
images. Additionally, we use RGB-D sequences that are provided in
DSFN [Burov et al. 2021]. RGB-D sequences used for experiments
contain 200 to 500 frames. We also evaluate our method on full-body
point clouds using synthetic datasets: CAFE [Ma et al. 2020], and
Resynth [Ma et al. 2021b]. We show the reconstruction result from
a 2.5D depth point cloud in mint color and the result of a full-body
3D point cloud in olive color.

Scans Base mesh + displacement Ours

𝑑𝐶𝐷: 0.32 cm 𝑑𝐶𝐷: 0.37 cm

𝑁𝐶: 0.944 𝑁𝐶: 0.944

Fig. 7. Comparison with using a regularization-free displacement function
on the base mesh. Although the surface displacement function is trained
in the same condition as our neural surface Laplacian function, it cannot
capture structure details (middle). In contrast, our results (right) successfully
restore details from the input scan (left).

Timings. In the reconstruction step, for the example in Figure 7,
it takes 3ms and 35ms per frame to evaluate the MLPs 𝑓𝑑 and 𝑓𝑙 ,
respectively. For solving a sparse linear system to obtain the final
detailed mesh S that minimizes Eq. (10), it takes 4 seconds for the
matrix pre-factorization step and 130ms to obtain the solution for
each frame when the mesh contains 113k vertices.

8.2 Analysis
Effect of Laplacian coordinates. Our approach using Laplacian co-

ordinates preserves local geometric details better than the approach
using absolute coordinates of mesh vertices. To verify the claim, we
conduct an experiment by changing the neural surface Laplacian
function to estimate displacements instead of Laplacian coordinates.
We think that this surface function mimics a pose-dependent dis-
placement map. To optimize the surface displacement function, we
use the same energy function as Eq. (9) with the change of 𝜹 to
the displacement between surface point p and scan point p. There
is no regularization term in Eq. (9), and the maximal capability of
the displacement function is exploited for encoding surface details.
Nevertheless, the resulting displacement function cannot properly
capture structure details, producing rather noisy surfaces (Figure
7 middle). In contrast, our results using Laplacian coordinates are
capable of capturing structure details (Figure 7 right) from the input
point clouds (Figure 7 left). In Figure 7, we include quantitative
results (Chamfer distance 𝑑𝐶𝐷 and normal consistancy 𝑁𝐶) on our
dataset. The normal consistency 𝑁𝐶 is computed using the inner
products of the ground truth normals at input points and the nor-
mals of the corresponding points on the reconstructed surface. Our
result shows a slightly higher Chamfer distance error than the dis-
placement function, but produces more visually pleasing results.
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Scan

Ours

𝜆𝑟 = 3.0 𝜆𝑟 = 2.0 𝜆𝑟 = 1.5 𝜆𝑟 = 1.0

𝜆𝑟 = 0.8 𝜆𝑟 = 0.6 𝜆𝑟 = 0.4 𝜆𝑟 = 0.1

Fig. 8. Pose-dependent local deformation (Sec. 5.2) applied to the subdivided
base mesh used for our final reconstruction. (left) We train the deformation
function with varying regularization weights. It is hard to find the best
weight for regularization as the structures and sizes of shape details are spa-
tially varying in the raw scan (top right). (bottom right) The reconstruction
result from our complete pipeline restores shape details with appropriate
structures and sizes.

(d) w/ weight(c) w/o weight(a) Frame 1 (b) Frame 180

Fig. 9. Effect of selective weighting. Without selective weighting (c), surface
functions may learn geometric information from low-quality frames (a).
Our selective weighting (d) encourages surface functions to learn sharp
geometric details (b) in the input depth map sequence.

Unclear best weight for smoothness regularization on local deforma-
tion. We conduct an experiment that learns the local deformation
defined in Sec. 5.2 for a subdivided base mesh that has the same
topology as our final mesh. The results (Figure 8 left) show that
estimating absolute coordinates is sensitive to the regularization
weight _𝑟 defined in Eq. (5). With a large value of _𝑟 , shape details
are smoothed out in the reconstructed model. With a small _𝑟 , too
small details are reconstructed. Then, it is hard to find the best regu-
larization weight to handle spatially varying structures and sizes of
shape details in the input scan (Figure 8 top right). On the contrary,
our complete pipeline that learns differential representation per-
forms better without a regularization term (Figure 8 bottom right).
Note that all meshes in Figure 8 has the same number of vertices.

Scans DSFN Ours

Fig. 10. Comparison with DSFN [Burov et al. 2021] on DSFN real dataset
captured by a single RGB-D camera.

Effect of selective weighting. We use selective weighting `𝑡,𝑖 in Eq.
(5) and Eq. (9) to obtain the best details from the input depth map
sequence. This weighting is especially effective in the face region
(Figure 9).

8.3 Comparisons
We compare our LaplacianFusion with recent representations devel-
oped for controllable 3D clothed human reconstruction. The com-
pared representations are based on mesh [Burov et al. 2021], signed
distance function (SDF) [Wang et al. 2021], and point cloud [Ma
et al. 2021b].

Comparison with DSFN (Mesh). DSFN [Burov et al. 2021] utilizes
an explicit mesh to reconstruct a controllable 3D clothed human
model from a RGB-D sequence. It represents local details with an
offset surface function (dense local deformation), but its spatial
regularization smooths out geometric details. Since the source code
of DSFN is not published, we compared our results with DSFN on
the dataset provided by the authors.

Their real data inputs are captured using an Azure Kinect DK [Kin
2022] with 1920 × 1080 pix. for color images, and 640 × 576 pix. for
depth images. Figure 10 shows results on the real dataset provided
by DSFN, and our approach produces more plausible details than
DSFN. Note that, in this dataset, the captured human stands away
from the camera, so input point cloud lacks high-frequency details.
For quantitative evaluation, DSFN uses synthetic 640 × 480 pix.

RGB-D sequences rendered from BUFF [Zhang et al. 2017], where
the camera moves around a subject to cover the whole body. Figure
11 shows the comparison results, and our method preserves the
details of the input better. Table 2 shows the measured IOU, chamfer
distance (𝑑𝐶𝐷 ), normal consistency (𝑁𝐶) scores. All three scores of
our approach rate better than DSFN.

Comparison with MetaAvatar (SDF). Wang et al. [2021] propose
MetaAvatar that represents shape as SDF defined on 3D space. The
resulting shape tends to be smoothed due to the limited number
of sampling points in the training time. MetaAvatar utilizes the
given SMPL parameters for reconstruction, and we use them in the
comparison. MetaAvatar evaluates the reconstruction quality using
unseen poses with the interpolation capability aspect. Similarly,
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Fig. 11. Comparison with DSFN [Burov et al. 2021] on BUFF dataset [Zhang
et al. 2017]. Note that the training input is not a ground truth sequence
(bottom row) but a rendered RGB-D sequence with 640 × 480 resolution.
The red and blue boxes highlight qualitative differences.

Table 2. Quantitative comparisons with DSFN [Burov et al. 2021] using a
sequence of the BUFF dataset [Zhang et al. 2017].

Method IoU ↑ 𝑑𝐶𝐷 (cm) ↓ 𝑁𝐶 ↑
DSFN [2021] 0.832 1.56 0.917

Ours (same vertex density as DSFN) 0.863 0.99 0.933
Ours 0.871 0.94 0.941

Table 3. Comparisons with MetaAvatar & PoP on CAPE [Ma et al. 2020].

Method 𝑑𝐶𝐷 (cm) ↓ 𝑁𝐶 ↑
MetaAvatar [2021] 0.47 0.946
PoP [2021b] (50k) 0.32 0.977

Ours 0.45 0.959

we sample every 4th frame in the CAPE dataset [Ma et al. 2020]
and measure the reconstruction accuracy on every second frame
excluding the training frames. The results are shown in Figure
12. In Table 3, we show quantitative results, and the scores of our
approach rate better than MetaAvatar.

Scans MetaAvatar Ours

Fig. 12. Comparison with MetaAvatar [Wang et al. 2021] on CAPE
dataset [Ma et al. 2020]. (From left to right) raw 3D point clouds, results of
MetaAvatar, and our results.

Comparison with PoP (Point cloud). Ma et al. [2021b] utilize point
cloud representation to deal with topological changes efficiently.
We evaluate their method on CAPE dataset in the same configu-
ration used for MetaAvatar in Table 3. In addition, we compare
our results with PoP on Resynth dataset [Ma et al. 2021b], which
has various cloth types with abundant details. However, Resynth
dataset includes human models wearing skirts that cannot be prop-
erly handled by our framework (Figure 18), so we do not conduct
quantitative evaluation using all subjects. Instead, we select five
subjects not wearing skirts to compare our results with PoP quan-
titatively. We then split the training and test datasets in the same
manner as on CAPE dataset.
The original implementation of PoP queries the feature tensor

with a 256 × 256 UV map, resulting in a point cloud with 50k points.
Since they are insufficient for representing details on the Resynth
dataset, we modified the code to adopt 512×512 UVmap, and obtain
191k points. Table 4 shows quantitative comparisons with the above
two settings, and our reconstruction is comparable with the original
PoP. Figure 13 presents qualitative results where our mesh is more
plausible than the original PoP, and comparable to dense PoP.

ACM Trans. Graph., Vol. 41, No. 6, Article 216. Publication date: December 2022.



LaplacianFusion • 216:11

Scans PoP (50k) PoP (153k) Ours

Fig. 13. Comparison with two different settings of PoP [Ma et al. 2021b] on
Resynth [Ma et al. 2021b] dataset. (From left to right) raw 3D point clouds,
results of PoP (coarse and dense), and our results. Although our mesh has
113k vertices, it can sufficiently preserve geometric details with the aid of
Laplacian coordinates.

Scan PoP (50k) PoP (meshed) Ours

Fig. 14. Seam artifacts of PoP [Ma et al. 2021b]. (From left to right) raw
3D point cloud, result of PoP, mesh result of PoP obtained using screened
Poisson reconstruction [Kazhdan and Hoppe 2013], and our result. In the
red box, we highlight seam artifacts of PoP.

Table 4. Comparison with PoP on Resynth [Ma et al. 2021b]

Method 𝑑𝐶𝐷 (cm) ↓ 𝑁𝐶 ↑

PoP [2021b] (50k) 0.43 0.970
(153k) 0.33 0.968

Ours 0.41 0.964

In Figure 14, the mesh result obtained from a reconstructed point
cloud of PoP contains a vertical line on the back because PoP uses
UV coordinates for shape inference. In contrast, our approach can
reconstruct clear wrinkles without such artifacts.

8.4 Applications
Detail transfer. Our neural surface Laplacian function encodes

detailed shape information as the Laplacian coordinates defined
at query points in a common domain. As a result, we can easily

Source Target Result

× 0.5 Original × 1.5

Fig. 15. Detail transfer (top) and smoothing & sharpening (bottom). (top) In
our method, the optimized neural surface Laplacian function can be applied
to another subject. (bottom) The amount of details can be easily adjusted
by scaling Laplacian coordinates.

Fig. 16. Animating examples. See our supplementary video.

transfer shape details to other models by evaluating the original
surface Laplacian function on the target pose-dependent base mesh.
Figure 15 shows an example.

Sharpening & Smoothing. Laplacian coordinates predicted by a
neural surface Laplacian function in the Laplacian reconstruction
step (Section 7) can be scaled to change the amount of reconstructed
shape details. Multiplying a value greater than 1.0 to the predicted
Laplacian coordinates performs detail sharpening, and the opposite
performs detail smoothing. Figure 15 shows examples.

Animating. The pose parameters used for evaluating surface func-
tions 𝑓𝑑 and 𝑓𝑙 can be arbitrary. In the case of reconstructing a
scanned animation sequence, we would use the pose parameters
𝜽 𝑡 estimated from the input scans (Section 5.1). On the other hand,
once the functions 𝑓𝑑 and 𝑓𝑙 have been optimized, any parameters
𝜽 other than 𝜽 𝑡 can be used to produce unseen poses of the subject.
In that case, the validity of shape details of the unseen poses is
not guaranteed but our experiments generate reasonable results.
In Figure 16, we optimized the functions 𝑓𝑑 and 𝑓𝑙 on BUFF and
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Fig. 17. Texture mapping examples. (left) texture sources from RenderPoeple
models [ren 2022]. (top) our reconstructed models. (others) texture transfer
results. From the second column, each column shows the same shape with
various textures. Since we use a fixed topology mesh, all our meshes have a
common UV parametric domain. As a result, a single texture map can be
shared among different reconstructed models without manual annotation.

CAPE datasets and adopted synthetic motions from AIST++ [Li
et al. 2021a]. The results show natural variations of shape details
depending on the motions.

Texture mapping. In our LaplacianFusion framework, all recon-
structed models have the same fixed topology resulting from the sub-
division applied to the SMPL model. Then, we can build a common
UV parametric domain for texture mapping of any reconstructed

Fig. 18. Failure case. (left) raw 3D point cloud of a human model wearing
skirt in Resynth dataset [Ma et al. 2021b]. (right) our reconstruction result.
Our pose-dependent base mesh cannot represent a seamless surface cover-
ing both legs (red circles) as its topology is originated from the T-pose of
the SMPL model.

model. In Figure 17, we initially transfer a texture from a RenderPoe-
ple model [ren 2022] to the T-posed canonical neutral SMPL model
M𝐶 by using deep virtual markers [Kim et al. 2021]. Then, the
texture ofM𝐶 can be shared with different reconstructed models
through the common UV parametric domain.

9 CONCLUSIONS
We presented a novel framework, LaplacianFusion, that can recon-
struct a detailed and controllable 3D clothed human body model
from a 3D point cloud sequence. The key of our framework is Lapla-
cian coordinates that can directly represent local shape variations.
We introduce a neural surface Laplacian function that uses Laplacian
coordinates for encoding shape details from raw scans and then
predicting desirable shape details on a pose-dependent base mesh.
The final model is reconstructed by integrating the Laplacian co-
ordinates predicted on a subdivided base mesh. Our approach can
also be utilized for other applications, such as detail transfer.

Limitations and future work. Since our framework uses a fixed
topology mesh, we cannot cover topological changes, such as open-
ing a zipper. In addition, our base mesh is initialized from a skinned
body shape, so it is hard to deal with loose clothes, such as skirts
(Figure 18). Our framework relies on registration of the SMPL model
to the input scan sequence, and the reconstruction quality is affected
by the registration accuracy. Currently, we use simple mid-point
subdivision to increase the number of vertices in a base mesh, but
a data-driven subdivision approach [Liu et al. 2020] could be con-
sidered. Our neural surface Laplacian function is trained for one
subject, and generalization of the function to handle other subjects
remains as future work. We also plan to generalize our framework
for non-human objects.
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