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Fig. 1. We present a physics-based planning algorithm for assembly tasks. Our algorithm follows an assembly-by-disassembly routine and utilizes a custom
physics-based simulation to efficiently explore the assembly path space. Our algorithm efficiently determines the feasible assembly order (colored numbers)
for a multi-part assembly and searches for a physically realistic assembly motion path (colored curves) for each assembly step.

Assembly planning is the core of automating product assembly, maintenance,
and recycling for modern industrial manufacturing. Despite its importance
and long history of research, planning for mechanical assemblies when
given the final assembled state remains a challenging problem. This is due
to the complexity of dealing with arbitrary 3D shapes and the highly con-
strained motion required for real-world assemblies. In this work, we propose
a novel method to efficiently plan physically plausible assembly motion and
sequences for real-world assemblies. Our method leverages the assembly-
by-disassembly principle and physics-based simulation to efficiently explore
a reduced search space. To evaluate the generality of our method, we define
a large-scale dataset consisting of thousands of physically valid industrial
assemblies with a variety of assembly motions required. Our experiments
on this new benchmark demonstrate we achieve a state-of-the-art success
rate and the highest computational efficiency compared to other baseline al-
gorithms. Our method also generalizes to rotational assemblies (e.g., screws
and puzzles) and solves 80-part assemblies within several minutes.
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1 INTRODUCTION
Real-world objects, such as vehicles, furniture, and electronic de-
vices, are often complex assemblies made up of hundreds or thou-
sands of parts. Each part is designed using computer aided design
(CAD) software and then arranged into a digital assembly piece by
piece. Considerations for physical assembly, known as Design for
Assembly (DFA), are critical to ensure fast, efficient, and high-yield
manufacturing. Likewise, considerations for physical disassembly,
known as Design for Disassembly (DFD), are key to ensuring indi-
vidual parts can be recycled or reused at end-of-life. The ability to
automatically plan the steps required to assemble and disassemble
designs created in CAD is an enabling technology for a number of
downstream applications. In the design phase, DFA checks can be
performed to correct potential issues before manufacture [Melck-
enbeeck et al. 2020]; assembly planning for high mix, low volume
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products can be greatly simplified with automatic generation of as-
sembly instructions [Agrawala et al. 2003]; and at end-of-life, robotic
disassembly systems [Ong et al. 2021] can be quickly adapted to
recycle product components.
Despite significant research on assembly planning [Ghandi and

Masehian 2015; Santochi et al. 2002], it remains a challenging prob-
lem for several reasons. Firstly, parts to be assembled can be of any
shape — even common parts, such as screws, contain complex sur-
face geometry. Secondly, real-world assemblies often contain tightly
packed parts, requiring assembly planning approaches that work
well in a constrained space. Finally, the lack of large-scale assembly
datasets has limited evaluation to small hand-picked collections.
How well existing methods generalize across large-scale datasets
remains unknown.
To address this challenge, we introduce a novel physics-based

method that takes an assembly-by-disassembly approach for se-
quence and motion planning with rigid assemblies. Given a CAD
model in an assembled state, we use a custom physics-based simu-
lation to disassemble individual parts and recover viable assemble
plans (Figure 1). A key insight of our work is that physics-based
simulation allows us to find disassembly motions using a discrete
set of actions rather than exploring the full continuous 6D motion
space. These discrete actions, represented as forces in canonical
directions, can lead to successful motion when applied in phys-
ical simulation. For example, Figure 2 shows how a washer will
slide along an inclined shaft even if the force is not applied directly
along the disassembly direction. Using this approach our custom
physics-based simulation overcomes the difficulty of navigating
parts through narrow passages with geometric motion planning,
allowing us to explore highly constrained motion spaces without
sampling invalid states in most situations. To evaluate our approach
and enable future research, we define a large-scale benchmark task
for assembly planning consisting of thousands of physically valid
assemblies — two orders of magnitude larger than previous bench-
marks. We make the following contributions in this work:

• We introduce an accurate and efficient physics-based simula-
tor that is customized for assembly.

• We propose a novel physics-based assembly-by-disassembly
planning method for translational and rotational assembly
motion for arbitrary-shaped assemblies.

• We define a large-scale dataset and benchmark for assembly
planning including thousands of physically valid assemblies.

• We evaluate our method on the full dataset and show a state-
of-the-art success rate, computational efficiency, and general-
ization on various types of assemblies scaling to hundreds of
parts.

To facilitate future assembly planning research, our code and
dataset are available at https://github.com/yunshengtian/Assemble-
Them-All.

2 RELATED WORK
Assembly Sequence Planning (ASP). ASP arranges an optimal se-

quence in assembling all the components of a product and is a critical
step for assembly system design [Rashid et al. 2012]. The ASP prob-
lem can be represented as a graph such as AND/OR graph [De Mello
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Fig. 2. Our physics-based planning method is motivated by the observa-
tion that approximate force directions can be used for disassembly. In this
example, the washer can be disassembled from the shaft as long as the
force applied has a positive projection along the true disassembly direction,
assuming no friction exists.

and Sanderson 1990] to establish feasible assembly sequences. Dif-
ferent optimization techniques are applied to find the optimal as-
sembly sequence among the feasible sequences [Chen et al. 2006,
2008; Qin and Xu 2007; Sinanoğlu and Börklü 2005]. The premise of
these methods is that precedence constraints between parts need to
be known such that feasible sequences could be discovered easily.
Otherwise, the precedence relationships need to be annotated by
domain experts or derived from the CAD models [Niu et al. 2003;
Su 2009]. Although many attempts have been made to reduce the
search space, the number of potential assembly sequences can grow
exponentially [Ramos et al. 1998] which makes identifying a feasible
sequence impossible even for complex assemblies.
The idea of assembly-by-disassembly has been proposed as an

important strategy for speeding up ASP, because assembled parts
have better defined precedence and motion constraints than disas-
sembled parts [Homem de Mello and Sanderson 1991], reducing the
search space. When all parts are rigid, a bijection exists between
the assembly and disassembly sequences, meaning an assembly se-
quence can be obtained from the reverse order of its disassembly
sequence with much less complexity. [Ghandi and Masehian 2015]
The assembly-by-disassembly approach has been adopted in several
applications in manufacturing and construction, including mechani-
cal product assembly [Homem de Mello and Sanderson 1991; Wang
et al. 2014], kit assembly [Zakka et al. 2020], and robotic additive
construction [Huang et al. 2021]. However, if the assembling direc-
tion are unknown or the assembling motions are non-linear, then
more sophisticated assembly path planning methods are needed to
make sequence planning feasible, even following an assembly-by-
disassembly strategy.

Assembly Path Planning (APP). APP computes penetration-free
paths for adding parts to a subassembly, given the initial and target
poses of the parts. Early works adopted exact geometric-reasoning
methods that analyze part geometry to determine assembly direc-
tions [Wilson and Latombe 1994]. Halperin et al. [2000] presented
a general framework for finding assembly motion called the mo-
tion space approach. Since geometric-reasoning approaches need
to explicitly construct the Configuration space (C-space), they are
computationally expensive for 3D space and non-linear motions.
With the development of general-purpose path planning algo-

rithm in robotics, sampling-based approaches have been proposed to
solve problems with a large number of parts [Masehian and Ghandi
2021]. Probabilistic Roadmap Method (PRM) [Kavraki et al. 1996]
and Rapidly-exploring Random Tree (RRT) [LaValle et al. 1998] are
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the two notable sampling-based algorithms. PRM, RRT, and their
variants have been presented on assembly problems [Le et al. 2009;
Sundaram et al. 2001; Zhang et al. 2020]. But they usually suffer
from the ‘narrow passage’ problem [Hsu et al. 1999], especially in
high-dimensional space where rotation needs to be considered.
Physics-based motion planning [Zickler and Veloso 2009] was

developed as a competitive alternative to geometric-based motion
planning and showed success with robotic navigation [Sucan and
Kavraki 2011] andmanipulation [Moll et al. 2017]. However, physics-
based motion planning has not been fully explored for assembly
where themotion is muchmore constrained. In our work, we demon-
strate the benefit of using physics-based planning for efficient explo-
ration of assembly paths to overcome the ‘narrow passage’ problem.

Physics-Based Simulation for Robotic Assembly. With the ability
to create a virtual and low-cost replica of the real world and provide
a fast robotic evaluation platform, physics-based simulation has
been widely used in control policy learning [Andrychowicz et al.
2020; Brockman et al. 2016; Chen et al. 2021b] and motion planning
[Sucan and Kavraki 2011; Zhou et al. 2014; Zickler and Veloso 2009].
Despite its prevalence in robotics, simulating robotic assembly

tasks is still far from perfect. Simulating contact-rich assembly tasks,
such as a screw and nut in Figure 4, requires accurately representing
the object surface while efficiently resolving contact constraints.
Most existing simulators [Coumans and Bai 2016; Makoviychuk
et al. 2021; Todorov et al. 2012] rely on a simplified collision proxy
of the object shape for efficient collision detection and solve the
linear complementary problem for contact handling. However, such
collision proxies sacrifice the resolution of complex geometry shapes
and is only suitable for simple assembly tasks, such as peg-in-hole
[Chebotar et al. 2019; Hou et al. 2020] or box stacking [Aleotti
and Caselli 2009]. Another category of contact-rich simulators uses
penalty-based contact models [Geilinger et al. 2020; Xu et al. 2021],
but most only support collision detection between contact points
and primitive shapes. Our simulation follows the line of penalty-
based contact model, and is specialized for complex-shape assembly
tasks via an extension of a signed-distance-field (SDF) collision
detection. Concurrent to our work, Narang et al. [2022] announced
a GPU-based simulator for assembly tasks, which also utilizes the
SDF shape representation.

Robotic Assembly. Motion planning has been widely studied in
robotic assembly for manufacturing [Chen et al. 2021a; Wan et al.
2017] and building construction [Hartmann et al. 2021; Huang et al.
2021], albeit in less realistic scenarios where planners are limited to
structured environments. Reinforcement Learning (RL) [Sutton and
Barto 2018], on the other hand, has been applied to more industrial
and general-purpose assembly tasks [DeWinter et al. 2021; Fan et al.
2019; Thomas et al. 2018; Yu et al. 2021] in unstructured environ-
ments [Luo and Li 2021]. However, the trained policies are usually
task-specific and struggle with arbitrary unseen objects. Our real-
world dataset and SDF-based simulation can aid RL-based methods
in acquiring more generalized policies. Likewise, our physics-based
planner can generate complex assembly motions that can directly
guide robots or serve as demonstrations to learn from [Roldán et al.
2019; Zhu and Hu 2018].

3 PROBLEM FORMULATION
Given a collection of parts and their assembled state as input, our
goal is to generate a sequence of physically realistic motion paths
that position the parts into an assembled state, identical to the
ground truth assembly.
Formally speaking, a state is defined as a vector 𝑠 that encodes

the position of the part in the state space 𝑆 . In our problem, 𝑆
can be either R3 for translational motion only or 𝑆𝐸 (3) for both
translational and rotational motion. For a given part 𝑖 in an assembly
consisting of𝑀 parts, a state 𝑠𝑖 is defined as a valid state as long as it
does not have penetration with other parts, assuming other parts are
fixed. A state 𝑠𝑖 is regarded as a disassembled state if the convex hull
of the part geometry at 𝑠𝑖 does not have collision with the convex
hull that encloses the geometries of all other parts. A disassembly
path 𝑃𝑖

𝐷
consists of a sequence of 𝑛 valid states {𝑠𝑖0, ..., 𝑠

𝑖
𝑛} that

connects the assembled state 𝑠𝑖0, given as input and a disassembled
state 𝑠𝑖𝑛 . Correspondingly, an assembly path 𝑃𝑖

𝐴
= {𝑠𝑖𝑛, ..., 𝑠𝑖0} exists.

Under these definitions, our problem aims at finding an ordered
sequence of assembly paths for all𝑀 parts that assemble them from
scratch to the ground truth assembly with all the states being valid.
We make the following key assumptions in this problem: 1) As-

semblies are all composed of rigid parts, which makes assembly-
by-disassembly feasible; 2) Gravity or other force constraints and
manipulation constraints are not considered as we mainly address
the assembly planning from the motion level. In other words, we as-
sume the assembly process is fully-actuated; 3) We assume parts can
be completely assembled or disassembled sequentially, though han-
dling of subassemblies could be extended by grouping and treating
subassemblies as single parts.

4 PHYSICS-BASED ASSEMBLY PLANNING
Searching for an assembly strategy to move multiple parts from a
disassembled state to a target assembled state is challenging, espe-
cially when the assembly process requires highly accurate insertion
or screwing operations. This is because in a typical assembly task,
the final assembled state space is much more constrained than the
initial disassembled state space. As a result, an extremely high com-
putational cost is incurred when searching from the less constrained
space to a constrained final state. Motivated by this, we solve the
assembly problem in a reverse process, starting from the assembled
state and searching for a disassembly solution, to reduce the overall
search cost. We also leverage our custom physics-based simulator
to further improve search efficiency.
Our main algorithm pipeline is illustrated in Figure 3. We first

introduce our physics simulation for assembly in Section 4.1 as the
key component to our algorithm. Next, following the assembly-by-
disassembly strategy, we illustrate our disassembly path planning
algorithm for two-part disassembly in Section 4.2, then our disas-
sembly sequence planning algorithm for multi-part disassembly in
Section 4.3. Finally, we present in Section 4.4 how to obtain the as-
sembly sequence and path by reversing solutions from disassembly
planning which completes our assembly-by-disassembly pipeline.
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Disassembly Sequence Planning (Sec 4.3)

Physics-based Disassembly 
Path Planning (Sec 4.2)

Step 1

Step 2

Step 3

Physics-based Disassembly 
Path Planning

Physics-based Disassembly 
Path Planning

Assembly-by-Disassembly (Sec 4.4)

Parts

Input Assembly

Fig. 3. Overview of our physics-based assembly planning algorithm. Given the target assembled state as input (left), our algorithm finds the assembly strategy
in two stages: disassembly and assembly. In the disassembly stage (upper center), our disassembly sequence planning algorithm searches for a feasible
disassembly order for different parts, using a physics-based disassembly path planning algorithm that plans collision-free paths to disassemble each part. In
the assembly stage (lower center), the algorithm reverses the disassembly path to obtain an assemble solution from individual parts (right).

4.1 Physics Simulation for Assembly
The existing robotics simulators [Coumans and Bai 2016; Makoviy-
chuk et al. 2021; Todorov et al. 2012] primarily rely on the convex
hull decomposition of the object shape for efficient collision detec-
tion, which is not suitable for simulating complex geometry shapes
with high concavity. To reliably simulate contact-rich assembly mo-
tion for downstream assembly planning, we build our physics-based
simulation upon the rigid body simulator developed by Xu et al.
[2021] and extend it with the SDF representation of collision shapes
to support complex collision geometries.

Specifically, the simulator developed by Xu et al. [2021] is based
on the reduced coordinate rigid body dynamics formulation of Red-
Max [Wang et al. 2019a], and its dynamics equations are implicitly
integrated in time with BDF1 scheme (backward Euler). To handle
collisions, first the contacting parts are detected between each pair
of collision shapes, where the mesh vertices of the first collision
shape are sampled as contact points, and a distance function as-
sociated with the second collision shape is used to compute the
following relevant collision information for each sampled contact
point:

𝑑 , ¤𝑑 penetration distance and speed
®𝑛 unit-length contact normal direction

Then for each detected contact pair, the contact forces are computed
by a penalty-based contact model as below:

®𝑓𝑐 = (−𝑘𝑛 + 𝑘𝑑 ¤𝑑)𝑑 ®𝑛, (1)

where ®𝑓𝑐 is the contact normal force on each contact pair, 𝑘𝑛 is the
contact stiffness, and 𝑘𝑑 is the contact damping coefficient. In our
work, we assume no friction exists as friction does not affect the
assembly motion under the assumption that every part is rigid. To
efficiently acquire the required distance function, Xu et al.[2021]
restrict one of each pair of collision shapes to be a primitive shape
with an analytical distance function.

4.1.1 Signed Distance Field Collision Detection. To support contact
handling between complex assembly geometries (e.g., screw with

Fig. 4. We construct a signed distance field (right) for each collision shape
(left). The right figure shows the level set of the cross-section signed distance
field of a fine-thread screw.

fine threads), we equip each collision shape with an SDF to provide
the distance function. Being an implicit surface representation for
arbitrary shape geometry, an SDF is a function 𝑔(x) : R3 → R that
maps a point in space to its closest distance to the represented shape
surface (Figure 4). The distance is negative when the point is inside
the geometry while the distance is positive if the point is outside.
Given the SDF of an object and the dynamics state (x, ¤x) of the

contact point, the required collision information can be efficiently
computed. The penetration distance 𝑑 = min(𝑔(x), 0). The contact
normal direction of the penetration is computed by the gradient
of the SDF, i.e., ®𝑛 = ∇𝑔(x). The time derivative of the penetration
distance is computed as ¤𝑑 = ∇𝑔(x) · ¤x. And the relative tangential
speed can be computed by projecting out the normal directional
component from the relative speed between the two collision bodies
®𝑣𝑡 = ®𝑣𝑟 (𝑥) −

(
®𝑛 · ®𝑣𝑟 (𝑥)

)
®𝑛, where ®𝑣𝑟 (𝑥) is the relative speed of two

collision bodies at the contact point xwhich can be readily computed
by rigid body simulator. For details on constructing the SDF grid,
please refer to Appendix A.

4.2 Disassembly Path Planning
For a given part in the assembly state 𝑠0, we look for a sequence of
states {𝑠0, ..., 𝑠𝑛} that removes the part from the rest of the assembly
in a penetration-free manner. The state 𝑠𝑛 here is a valid disassem-
bled state. Different from other path planning tasks, such as naviga-
tion or stacking objects, which usually operate in free space with
infinite valid solution paths, disassembly requires highly constrained
motion, similar to passing through a narrow corridor. This makes

ACM Trans. Graph., Vol. 41, No. 6, Article 278. Publication date: December 2022.
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sampling-based geometric motion planning approaches less effec-
tive because of the low probability of obtaining a penetration-free
state from random sampling. By contrast, humans rely on physics
feedback to disassemble parts. As shown in Figure 2, even though
we may apply forces that are not perfectly aligned with the ground-
truth disassembly motion, we are able to infer the correct motion
direction after the induced movement of the part is observed.
From this key observation, we propose a physics-based planner

that efficiently plans the disassembly motion by leveraging feedback
from physics. We formulate the disassembly path planning as a tree
search problem, which starts from the assembled state and searches
for a sequence of actions until a disassembled state has been found
or some time/depth limitation of the search has been reached. The
outline of our algorithm is illustrated in Algorithm 1.
Specifically, we adopt breadth-first search (BFS) and maintain a

queue 𝑄 to store the states to be searched from. The search starts
with the queue only containing the assembled state 𝑠0. In each iter-
ation, we dequeue a state 𝑠 from 𝑄 , and loop over all actions 𝑎𝑖 in a
pre-defined action space 𝐴 to generate child states of the disassem-
bly tree. In our method, the action space consists of unit forces or
torques of the given state space. More specifically, in translational-
motion-only cases, 𝐴 = {[±1, 0, 0], [0,±1, 0], [0, 0,±1]} which has 6
actions corresponding to 6 translational degrees of freedom (DoF);
similarly, when rotational motion is enabled, 𝐴 has 12 actions for 6
translational DoF and 6 rotational DoF. For each action 𝑎𝑖 ∈ 𝐴, we
continuously apply this action starting from the dequeued state 𝑠
in physics-based simulation with a certain time step Δ𝑡 , until the
new state 𝑠𝑖 becomes either a disassembled state or a similar state to
one that has been searched in the past. If 𝑠𝑖 is a disassembled state,
then the disassembly path planning succeeds and we can obtain
the path from the initial assembled state 𝑠0 to 𝑠𝑖 as a disassembly
path which can be retrieved from backtracking the search tree from
𝑠𝑖 . Otherwise, if 𝑠𝑖 is detected to be a similar state to any previous
state, we stop applying this action, enqueue the current state 𝑠𝑖 , and
continue searching with the rest of actions. Here we measure the
similarity between two states by their translational and rotational
distances. The translational distance is defined by the Euclidean dis-
tance ∥𝑠𝑎𝑡 −𝑠𝑏𝑡 ∥ between two states, where 𝑠𝑎𝑡 and 𝑠𝑏𝑡 are the linear
components of the two states. The rotational distance is defined by
the geodesic distance ∥ln(𝑠−1𝑎𝑟 𝑠𝑏𝑟 )∥ between the quaternions of two
states, where 𝑠𝑎𝑟 and 𝑠𝑏𝑟 are the quaternion representations of the
angular components of two states. Two states are similar if their
translational and rotational distances are within thresholds 𝛿𝑡 and
𝛿𝑟 respectively.

As a result, BFS continuously explores the state space in a hier-
archical manner and we enforce it to always explore novel states
by checking state similarity. Note that the dynamics of our physics-
based simulation constrains BFS to search in a physically valid
subspace rather than the full state space which avoids the narrow
passage problem in previous geometric motion planning methods.
BFS is empirically quite effective because most real-world assem-
blies are designed to be assembled/disassembled within only one
or a few sequential actions, which means that the depth of BFS is
usually small.

ALGORITHM 1: Disassembly path planning guided by BFS
Input: Assembled state 𝑠0, timeout 𝑡max, max BFS depth 𝑑max.
Output: A disassembly path 𝑃𝐷 = {𝑠0, ..., 𝑠𝑛 }.

1 𝑄 = EmptyQueue();
2 𝑄 .Enqueue(𝑠0);
3 while time 𝑡 < 𝑡max and BFS depth 𝑑 ≤ 𝑑max do
4 𝑠 =𝑄 .Dequeue();
5 for 𝑎𝑖 in action space 𝐴 do
6 𝑠𝑖 = 𝑠 ;
7 do
8 𝑠𝑖 = Simulate(𝑠𝑖 , 𝑎𝑖 , Δ𝑡 );
9 if IsDisassembled(𝑠𝑖 ) then
10 return GetPath(𝑠0, 𝑠𝑖 );
11 while 𝑠𝑖 is not similar to any other past states;
12 𝑄 .Enqueue(𝑠𝑖 );
13 return failed;

Our BFS-guided disassembly path planning method works well
for general industrial assemblies as empirically proved by our evalu-
ation. But for rare cases like disassembling parts from a long zig-zag
path, BFS might be less efficient. In this case, we suggest a more
sophisticated search algorithm such as Monte-Carlo Tree Search
(MCTS) [Coulom 2006] along with carefully designed heuristics
might be applied to speed up the search, though it might not per-
form equally well on simpler assemblies.

4.3 Disassembly Sequence Planning
Because of the internal precedence relationship between parts, most
real world assemblies consist of multiple parts and require specific
sequences to assemble/diassemble them. However, the precedence
relationship is usually unknown beforehand. Without a carefully
designed algorithm, the time complexity to figure out the correct
disassembly sequence may grow up quadratically as the number of
parts in an assembly increases. When coupled with the path plan-
ning algorithm, the overall running time for multi-part disassembly
algorithm could be extremely slow [Ebinger et al. 2018].

We propose a method to efficiently plan the disassembly sequence
by progressively expanded BFS, see Algorithm 2. Given the assem-
bled states s = {𝑠10, ..., 𝑠

𝑀
0 } of all 𝑀 parts, we look for an ordered

sequence of disassembly paths P𝐷 = {{𝑠𝐼10 , ..., 𝑠
𝐼1
𝑛 }, ..., {𝑠𝐼𝑀0 , ..., 𝑠

𝐼𝑀
𝑛 }}

that connect the assembled state and an disassembled state for each
part and satisfy precedence relationships. Here, 𝐼1, ..., 𝐼𝑀 correspond
to ordered indices of the part sequence ranging from 1 to 𝑀 . In
each iteration, our sequence planner tries to disassemble each of
the remaining parts of the assembly by our path planner from Al-
gorithm 1. If any part is successfully disassembled, we append its
disassembly path to the sequence P𝐷 . We repeat this procedure
until all parts are disassembled or we reach the timeout.

Executing this procedure naively without limiting the BFS depth
could be time-consuming due to the excessive time wasted on trying
to disassemble parts that are blocked by other parts. Therefore, we
take a progressive approach that starts with a shallow BFS and grad-
ually increases the depth of BFS as the sequence planning progresses.
For example, in the first iteration, we limit our path planning al-
gorithm for disassembling all parts to have a maximal BFS depth
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ALGORITHM 2: Disassembly sequence planning with Prog. BFS

Input: Assembled states s = {𝑠10, ..., 𝑠𝑀0 } of all𝑀 parts, path
planning timeout 𝑡max, sequence planning timeout𝑇max.

Output: An ordered sequence of disassembly paths
P𝐷 = {𝑃 𝐼1

𝐷
, ..., 𝑃

𝐼𝑀
𝐷

} = {{𝑠𝐼10 , ..., 𝑠
𝐼1
𝑛 }, ..., {𝑠𝐼𝑀0 , ..., 𝑠

𝐼𝑀
𝑛 }}.

1 P𝐷 = {}, max BFS depth 𝑑max = 1;
2 while time 𝑡 < 𝑇max do
3 for part 𝑖 in all remaining parts of the assembly do
4 𝑃𝑖

𝐷
= DisassemblyPathPlanning(𝑠𝑖0, 𝑡max, 𝑑max);

5 if 𝑃𝑖
𝐷

≠ failed then
6 P𝐷 .Append(𝑃𝑖

𝐷
);

7 Remove part 𝑖 from the assembly;
8 if all𝑀 parts are disassembled then
9 return P𝐷 ;

10 𝑑max = 𝑑max + 1;
11 return failed;

𝑑max = 1. Then, for each part it tries to disassemble, if our path
planning algorithm fails to find a disassembly path with a single
step of action application, we will temporarily stop trying this part
and move on to other parts. There could be two reasons for this
failure: 1) this part is blocked by other parts, i.e., conflict with the
precedence relationships; 2) this part is not blocked but requires
multiple actions to disassemble. Our progressive approach prevents
us from wasting unnecessary effort in the first case while allowing
us to try more actions in the later stage to handle the second case.
Again, since most real-world assemblies are designed to be easily
assembled/disassembled within one or a few actions, the first case
is much more common and by early termination of the failed at-
tempts we empirically observed a significant speed-up compared to
working with unlimited BFS depth in Section 6.3.

4.4 Assembly-by-Diassembly
After the disassembly sequence and paths have been found, we can
reverse them and connect with the initial states to construct the en-
tire assembly sequence and paths through assembly-by-disassembly
strategy, as illustrated in Algorithm 3. To simplify the notation we
ignore the superscript 𝐼𝑖 for part index. Each disassembly path 𝑃𝐷
obtained from Algorithm 1 and 2 connects the assembled state 𝑠goal
and a disassembled state 𝑠dis, but the path between 𝑠dis and initial
state 𝑠init (which is specified by the user) is still missing. Differ-
ent from the disassembly path, this path does not require highly
constrained motion since both states are disassembled, we can eas-
ily apply a standard geometric motion planning algorithm such
as RRT-Connect [Kuffner and LaValle 2000] to efficiently plan a
collision-free path 𝑃𝐶 between 𝑠init and 𝑠dis. Therefore, we can ob-
tain the assembly path 𝑃𝐴 from initial state 𝑠init to assembled state
𝑠goal by concatenating 𝑃𝐶 and the reversed disassembly path 𝑃𝐷 . By
looping over the disassembly sequence reversely, we finally obtain
an ordered assembly sequence containing all the assembly paths.

5 ASSEMBLY DATASET
To accurately evaluate our method we define a large-scale dataset
for assembly planning. A focus of popular large-scale 3D shape
datasets has been on synthetic assemblies that are semantically

ALGORITHM 3: Assembly by disassembly

Input: Initial states sinit = {𝑠1init, ..., 𝑠
𝑀
init } and assembled states

sgoal = {𝑠1goal, ..., 𝑠
𝑀
goal } of all𝑀 parts.

Output: An ordered sequence of assembly paths P𝐴 =

{𝑃 𝐼𝑀
𝐴

, ..., 𝑃
𝐼1
𝐴
} = {{𝑠𝐼𝑀init, ..., 𝑠

𝐼𝑀
goal }, ..., {𝑠

𝐼1
init, ..., 𝑠

𝐼1
goal }}.

1 Compute ordered disassembly paths P𝐷 from Alg. 2 given sgoal;
2 P𝐴 = {};
3 for 𝑖 in𝑀, ..., 1 do
4 Obtain the disassembled state 𝑠𝐼𝑖dis from disassembly path 𝑃

𝐼𝑖
𝐷
;

5 Compute a collision-free path 𝑃
𝐼𝑖
𝐶

connecting 𝑠𝐼𝑖init and 𝑠
𝐼𝑖
dis by a

standard motion planning algorithm (e.g., RRT-Connect);
6 Connect assembly path 𝑃

𝐼𝑖
𝐴

= 𝑃
𝐼𝑖
𝐶

+ Reverse(𝑃 𝐼𝑖
𝐷
) ;

7 P𝐴 .Append(𝑃
𝐼𝑖
𝐴
);

8 return P𝐴 ;

Table 1. Dataset statistics.

# Parts 2 3-9 10-49 50-235 Total
# Assemblies 8776 2620 1468 106 12970

Fig. 5. Overview of our dataset containing thousands of physically valid
assemblies suitable for use with assembly planning tasks.

segmented [Chang et al. 2015; Mo et al. 2019] with part mobility
labels [Hu et al. 2017; Wang et al. 2019b; Xiang et al. 2020; Yan
et al. 2019]. In comparison, real world CAD assemblies contain
detailed design, such as fastener stacks, and are segmented using
different criteria, such as manufacturing process and ease of repair.
We build upon the recent release of several realistic CAD assembly
datasets [Jones et al. 2021; Koch et al. 2019; Willis et al. 2022, 2021]
to define our dataset and benchmark for assembly planning. To the
best of our knowledge, there does not exist a large-scale open-source
dataset for assembly planning research.
We derive our dataset from assemblies created in Autodesk Fu-

sion 360 and provided by Willis et al. [2022] as well as assemblies
from Ebinger et al. [2018] and Zhang et al. [2020]. To adapt the
data for use with assembly planning we perform several geometric
pre-processing steps to produce watertight, unique, and normal-
ized meshes suitable for accurate collision checking. We filter out
assemblies where parts are in a non-assembled state, or in a state
of overlap. Table 1 lists the total number of assemblies and their
distribution by number of parts in each assembly. Figure 5 shows a
random sampling of assemblies in the dataset. For a more detailed
description of the geometric pre-processing steps on the dataset,
please refer to Appendix B.1.
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6 EVALUATION
In this section, we perform experiments to evaluate our method on
the proposed dataset with thousands of assemblies to demonstrate
the advantage of our physics-based planning approach in terms of
success rate and computational efficiency. For fairness, all baseline
methods also follow the assembly-by-disassembly approach. Finally
in Section 6.4, we show a naive extension of our method to solve
more complicated assemblies that involve simultaneous movements
of parts to disassemble.

We run all our experiments onAmazon EC2 instances (c5.24xlarge)
with 96 vCPUs and 192G memory. The detailed hyper-parameter
settings of all the methods can be found in Appendix C.2.

6.1 Baseline Methods
We choose the following path planning methods which are the most
relevant baselines to compare: RRT: Rapidly-Exploring Random
Tree [LaValle et al. 1998] is one of the most standard geometric
path planning approaches, which requires an explicitly specified
goal state. In our expriments, we use a randomly selected disassem-
bled state as the goal for RRT. T-RRT: Targetless-RRT [Aguinaga
et al. 2008] is a modified version of RRT that is specifically designed
for disassembly planning, which does not require a specified spe-
cific goal state. MV+T-RRT: Mating Vector + Targetless-RRT, a
hybrid approach proposed in [Ebinger et al. 2018] that first uses
face normals of objects as "mating vectors" to try a straight-line
disassembly, then if it fails, T-RRT is applied. This is the state-of-
the-art approach in disassembly path planning to the best of our
knowledge. BK-RRT: Behavioral Kinodynamic Rapidly-Exploring
Random Trees [Zickler and Veloso 2009] is a classic physics-based
planning algorithm similar to our method that uses a physics-based
simulation to randomly explore new states. BK-RRT is shown to be
successful in navigation and manipulation tasks but has not been
evaluated in assembly or disassembly. More details of the baseline
methods can be found in Appendix C.1.

6.2 Two-Part Assembly
We evaluate our path planning algorithm and baseline approaches
on the two-part dataset and report the performance comparison in
Table 2 (left). The reported success rates are calculated based on
a 300s timeout, averaged across results from 6 random seeds. To
further validate that our method generalizes to non-axis-aligned
disassembly directions, we randomly rotate all the assemblies in the
two-part dataset and report performance in Table 2 (bottom).

On this dataset, our approach achieves almost 100% success rate
which is robust to various shapes and disassembly motions. Geo-
metric baseline methods (RRT, T-RRT and MV+T-RRT) show decent
success rates but would fail when disassembly motion is too con-
strained such as the task shown in Figure 6. In this example, the
collision-free disassembly path should be strictly aligned with the
axis of the cylinder, which is unlikely to be sampled from the whole
motion space without assistance of a physics simulator. In contrast,
both our approach and the physics-based baseline (BK-RRT) uti-
lizes the physics simulator to mitigate the narrow passage problem.
However, BK-RRT still fails in the task shown in Figure 6, that is
because the random states explored by BK-RRT make it hard to

Table 2. Success rate (%) comparison on the entire two-part assembly
dataset along with specific comparison on different rotational assemblies.
Our method reaches almost 100% success rate on the two-part dataset and
outperforms baseline methods by a large margin on rotational assemblies.
The bottom row shows the results of our method on the same dataset with
random rotations applied to the data.

Method Two-Part Rotational
Overall Screw Puzzle Others Overall

RRT 84.5 0.0 20.8 0.0 6.9
T-RRT 97.4 2.1 18.8 0.0 6.9
MV+T-RRT 97.8 12.5 18.8 0.0 10.4
BK-RRT 93.7 12.5 62.5 81.3 52.1
Ours 99.8 75.0 87.5 50.0 70.8

Ours (Rotated) 99.8 37.5 62.5 87.5 62.5

Fig. 6. A tightly-fitted two-part disassembly (left: assembled, right: disas-
sembled). This can be easily solved by our method while being challenging
for baseline methods due to the long and narrow passage.

keep moving in a single direction for a long period, thus result in
a oscillatory motion of the ring on the cylinder. In our approach,
the usage of BFS and state similarity check helps move part along
one direction much easier. Another typical failure of the baseline
methods is the difficulty of dealing with assemblies that require
non-trivial rotational motions such as screws, as shown in Figure 7.
For visualization on more results, please refer to Appendix D.

6.2.1 Rotational Assembly. In this section, we specifically evaluate
all algorithms on rotational assemblies, which are notoriously dif-
ficult for existing path planning approaches. In order to showcase
different complexities of rotations, we prepare a rotational assem-
bly dataset that consists of three categories of rotation to evaluate
algorithm performance: 1) Screw for screws and nuts which are the
most common rotational components in industrial assemblies; 2)
Puzzle refers to puzzle assemblies that are mostly for entertainment
purposes but are difficult to disassemble even for humans, gathered
from [Zhang et al. 2020]; 3) Others for all other types of rotations,
e.g., removing a ring along a curved tube. The rotational dataset
has 24 assemblies in total (8 in each category) due to the scarcity of
rotational assemblies. A complete overview of the rotational dataset
can be found in Appendix B.2.
We report the results in Table 2 (right). The reported success

rates are calculated based on a 600s timeout, averaged across results
from 6 random seeds. From the results, we observe significantly
better success rates of physics-based methods (i.e. BK-RRT and
ours) in rotational disassembly path planning in all three categories
of rotations. Our method outperforms other baselines by a large
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Fig. 7. Screw disassembly (left: assembled, right: disassembled). Our method
successfully generates a long sequence of screwing motions and a short
translation at the end to disassemble the screw from the nut.

margin in Screw and Puzzle assemblies while being worse than
BK-RRT in the Others category. Figure 7 shows a screw example
which can be successfully solved by our approach but fails on all
other baseline methods.
For puzzle assemblies, Zhang et al. [2020] proposed a sampling-

based geometric planning approach that combines with a learning-
based geometric feature extractor to guide exploration. Theirmethod
takes hours of computation to find a disassembly path while we
achieve a comparable success rate within several minutes on a sub-
set of their puzzles. However, their approach is more specialized for
solving more complicated puzzles and it is not designed for general
types of assemblies.

6.3 Multi-Part Assembly
We evaluate our sequence planning algorithm on the portion of
dataset with multi-part assemblies. We partition the multi-part
dataset based on the assembly size into Small, Medium and Large
categories corresponding to assemblies of 3-9, 10-49 and 50+ parts
respectively. The statistics of each category are shown in Table 1.
For baseline methods, we apply a similar disassembly sequence
planning procedure as Algorithm 2 but without progressive BFS.
For our method, we compare two variants: Prog. BFS as sequence
planning with progressive BFS illustrated in Algorithm 2 and Full
BFS as Algorithm 2 without limiting the max BFS depth.
We first compare the success rates of different algorithms in

Table 3. The results are produced with a 120s timeout for each
path planning attempt and a 7200s timeout for the entire sequence
planning, averaged from 3 random seeds. Table 3 shows that our
method (either Full BFS or Prog. BFS) outperforms other baselines
on all different assembly sizes.
Furthermore, our method is capable of disassmbling complex

many-part assemblies much faster than existing state-of-the-art
approaches. For example, we successfully disassemble the entire
53-part Engine example (Figure 8) from [Ebinger et al. 2018] in 5
minutes while their MV+T-RRT takes hours to complete. We also em-
pirically demonstrate in Table 4 that our sequence planning method
guided by progressive BFS effectively cuts down the computation
time by 3.5x on average compared to using the full BFS.

6.4 Sub-Assembly and Interlocking Assembly
Although most data in our dataset can be sequentially assembled, in
this section, we extend our method to handle assemblies requiring
simultaneous movements of multiple parts to disassemble. The first
scenario is the use of sub-assemblies, where multiple parts form

Table 3. Success rate comparison (%) on multi-part assembly dataset. Our
method consistently outperform baseline methods on all sizes of assemblies.

Method Multi-Part
Small Medium Large Overall

RRT 90.0 78.1 44.3 84.7
T-RRT 94.0 84.8 52.5 89.7
MV+T-RRT 94.2 85.2 53.8 90.0
BK-RRT 96.4 91.6 51.9 93.6
Ours (Full BFS) 99.1 96.8 71.1 97.6
Ours (Prog. BFS) 99.0 97.3 76.7 97.9

Table 4. Mean disassembly time per part (s) comparison on multi-part
assembly dataset with different sizes of assemblies. Our proposed Prog. BFS
gives large computational efficiency improvement compared to Full BFS.

Small Medium Large Overall

Full BFS 18.5 38.4 30.6 25.6
Prog. BFS 4.5 10.1 19.4 6.7

Fig. 8. 53-part engine disassembly (left: 53 parts left, middle: 11 parts left,
right: 4 parts left). Ourmethodwith progressive BFS disassembles the engine
completely within 5 minutes, an order of magnitude faster than current
state-of-the-art approaches.

a group that must be disassembled together and follow the same
disassembly motion. The second scenario is interlocking assemblies
where multiple parts must follow different motions to free the assem-
bly from the interlocked state. Here we describe a naive extension
of our physics-based planning method to handle sub-assembly and
interlocking assembly:

Given an𝑀-part assembly, assuming at least𝑚 parts (1 < 𝑚 < 𝑀)
need to be moved to disassemble it, we need to figure out which
𝑚 parts to move (sequence planning) and how these parts should
move (path planning). For sequence planning, different from Al-
gorithm 2 where it searches for a single part to disassemble, we
extend it to search for all𝑚-part combinations. For path planning,
sub-assemblies can be treated as single parts and follow the same
procedure in Algorithm 1, but for interlocking assemblies, instead
of searching for single actions for single parts, we need to search
for𝑚 actions to be applied to the𝑚 parts respectively.

Through such an exhaustive search combined with physics-based
planning, Figure 9 shows an example where our extended method
identifies the correct parts to disassemble along with the correct
actions to apply. This is achieved by simultaneously applying a
rotational torque around the z-axis (vertical axis) to the beige block
and a positive translational force along the z-axis to the grey block.

ACM Trans. Graph., Vol. 41, No. 6, Article 278. Publication date: December 2022.



Assemble Them All: Physics-Based Planning for Generalizable Assembly by Disassembly • 278:9

Fig. 9. A 3-part interlocking assembly disassembled by the movement of
2 parts (left: assembled, right: disassembled). Our extended physics-based
planner discovers the correct disassembly strategy by simultaneously apply-
ing a counterclockwise rotational torque on the beige block and an upward
vertical force on the grey block.
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Fig. 10. A failure case of our method disassembling a maze (geometries
shown in the top row). The goal is to disassemble the ring by navigating
through multiple narrow notches of the maze grid (bottom left). Our method
finds difficulty in aligning the gap of the ring with notches of the grid, so
the ring gets stuck in the initial local region (bottom right).

Initially, the translational force applied on the grey block will be
counteracted by the contact force from the beige block, but after the
beige block rotates for 180°, it immediately pulls the grey block up-
wards to disassemble. In this case, the physical interactions between
blocks are crucial to constrain and guide the disassembly motion
towards the correct direction.

7 LIMITATIONS
In this section, we analyze the main failure cases of our method
from the experimental results shown in Section 6.

Complex action sequences in path planning. Assemblies that re-
quire very complex sequences of actions could be time-consuming
for our BFS-guided method to explore. For example, in Figure 10, we
test our method on a challenging maze-like assembly from Zhang
et al. [2020]. Here, the motion space is less constrained but the solu-
tion space is extremely narrow. It requires complex action sequences
to navigate the ring through multiple tunnels by correctly aligning
the gap of the ring with the notches of the maze grid.

Computational complexity on large assemblies. Both our method
and baseline methods fail on some large assemblies. This is due to
larger assemblies having much richer contacts that typically result

Fig. 11. Large assemblies with several hundreds of parts and rich contacts
where all tested methods reach the timeout of 2 hours.

in a super-linear increase in the time cost of both the simulation
and sequence planning. Figure 11 shows several examples where all
methods timeout after 2 hours.

The sequence planning complexity is 𝑂 (𝑀2) for𝑀-part sequen-
tial assemblies. However, for using sub-assemblies or interlocking
assemblies, the complexity will grow to 𝑂 (𝑀!) due to the combina-
torial search for multiple parts to disassemble together in each step.
Therefore, our naive extension is by no means an efficient method
for large assemblies that involve sub-assemblies or interlock. In
this case, heuristics or learning-based methods can potentially be
adopted to speed up the sequence search.

8 CONCLUSION AND FUTURE WORK
Planning for assemblies with arbitrary size, shape and motion is
a long-standing and challenging problem. In this paper we have
introduced a novel physics-based method for assembly planning. By
providing a new method, custom simulation approach, and large-
scale dataset we hope to enable future work that solves real world
assembly and disassembly problems. We envision several key exten-
sions would make assembly planning more general and efficient.

First, our assembly-by-disassembly strategy limits the assemblies
to being rigid only. However, geometric-based approaches cannot
handle deformable objects as well since they cannot model the phys-
ical deformation. Therefore, we believe it is interesting to explore
further the direction of physics-based planning for generalization
to deformable assemblies, such as the snap-fit assembly.

Second, it is essential to leverage geometric information beyond
physical feedback in assembly planning. In contrast to the exhaus-
tive search adopted by our method and baseline methods, humans
can instantly infer plausible disassembly sequences and motions
through vision and avoid wasting effort trying blocked parts or
moving parts towards dead ends.
Finally, to facilitate research in robotic assembly, one exciting

future work is adding robotic arms in our simulation to manipulate
assemblies following the planned path generated by our approach.
We believe it is promising to extend the capability of performing
complex assembly autonomously and flexibly on real robots.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments
in revising the paper. We thank Yijiang Huang, Tao Chen, and
Tao Du for their valuable feedback on research idea formulation
and Timothy Ebinger for providing part of the assembly models
in Ebinger et al. [2018]. This work was supported in part by the
National Science Foundation (CAREER-1846368).

ACM Trans. Graph., Vol. 41, No. 6, Article 278. Publication date: December 2022.



278:10 • Yunsheng Tian, Jie Xu, Yichen Li, Jieliang Luo, Shinjiro Sueda, Hui Li, Karl D.D. Willis, and Wojciech Matusik

REFERENCES
Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff Klingner, Pat

Hanrahan, and Barbara Tversky. 2003. Designing effective step-by-step assembly
instructions. ACM Transactions on Graphics (TOG) 22, 3 (2003), 828–837.

Iker Aguinaga, Diego Borro, and Luis Matey. 2008. Parallel RRT-based path planning for
selective disassembly planning. The International Journal of AdvancedManufacturing
Technology 36, 11 (2008), 1221–1233.

Jacopo Aleotti and Stefano Caselli. 2009. Efficient planning of disassembly sequences
in physics-based animation. In 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 87–92.

OpenAI : Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob
McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,
Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Woj-
ciech Zaremba. 2020. Learning dexterous in-hand manipulation. The International
Journal of Robotics Research 39, 1 (2020), 3–20.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. Shapenet:
An information-rich 3d model repository. arXiv:1512.03012 (2015).

Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan
Ratliff, and Dieter Fox. 2019. Closing the sim-to-real loop: Adapting simulation
randomization with real world experience. In 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 8973–8979.

Guanlong Chen, Jiangqi Zhou, Wayne Cai, Xinmin Lai, Zhongqin Lin, and Roland
Menassa. 2006. A framework for an automotive body assembly process design
system. Computer-Aided Design 38, 5 (2006), 531–539.

Hao Chen, Weiwei Wan, and Kensuke Harada. 2021a. Planning to Build Soma Blocks
Using a Dual-arm Robot. In 2021 IEEE International Conference on Development and
Learning (ICDL). IEEE, 1–7.

Tao Chen, Jie Xu, and Pulkit Agrawal. 2021b. A Simple Method for Complex In-hand
Manipulation. Conference on Robot Learning (2021).

Wen-Chin Chen, Pei-Hao Tai, Wei-Jaw Deng, and Ling-Feng Hsieh. 2008. A three-stage
integrated approach for assembly sequence planning using neural networks. Expert
Systems with Applications 34, 3 (2008), 1777–1786.

Rémi Coulom. 2006. Efficient selectivity and backup operators in Monte-Carlo tree
search. In International conference on computers and games. Springer, 72–83.

Erwin Coumans and Yunfei Bai. 2016. Pybullet, a python module for physics simulation
for games, robotics and machine learning. (2016).

LS Homem De Mello and Arthur C Sanderson. 1990. AND/OR graph representation of
assembly plans. IEEE Transactions on robotics and automation 6, 2 (1990), 188–199.

Joris De Winter, Ilias EI Makrini, Greet Van de Perre, Ann Nowé, Tom Verstraten,
and Bram Vanderborght. 2021. Autonomous assembly planning of demonstrated
skills with reinforcement learning in simulation. Autonomous Robots 45, 8 (2021),
1097–1110.

Timothy Ebinger, Sascha Kaden, Shawna Thomas, Robert Andre, Nancy M Amato, and
Ulrike Thomas. 2018. A general and flexible search framework for disassembly
planning. In 2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 3548–3555.

Yongxiang Fan, Jieliang Luo, and Masayoshi Tomizuka. 2019. A learning framework
for high precision industrial assembly. In 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 811–817.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body
Systems with Frictional Contact. ACM Trans. Graph. 39, 6, Article 190 (Nov. 2020),
15 pages.

Somaye Ghandi and Ellips Masehian. 2015. Review and taxonomies of assembly and
disassembly path planning problems and approaches. Computer-Aided Design 67
(2015), 58–86.

Dan Halperin, J-C Latombe, and Randall H Wilson. 2000. A general framework for
assembly planning: The motion space approach. Algorithmica 26, 3 (2000), 577–601.

Valentin Noah Hartmann, Andreas Orthey, Danny Driess, Ozgur S Oguz, and Marc
Toussaint. 2021. Long-horizon multi-robot rearrangement planning for construction
assembly. arXiv preprint arXiv:2106.02489 (2021).

L.S. Homem de Mello and A.C. Sanderson. 1991. A correct and complete algorithm for
the generation of mechanical assembly sequences. IEEE Transactions on Robotics
and Automation 7, 2 (1991), 228–240. https://doi.org/10.1109/70.75905

Zhimin Hou, Jiajun Fei, Yuelin Deng, and Jing Xu. 2020. Data-efficient hierarchical
reinforcement learning for robotic assembly control applications. IEEE Transactions
on Industrial Electronics 68, 11 (2020), 11565–11575.

David Hsu, Jean-Claude Latombe, Rajeev Motwani, and Lydia E Kavraki. 1999. Captur-
ing the connectivity of high-dimensional geometric spaces by parallelizable random
sampling techniques. In Advances in randomized parallel computing. Springer, 159–
182.

Ruizhen Hu, Wenchao Li, Oliver Van Kaick, Ariel Shamir, Hao Zhang, and Hui Huang.
2017. Learning to predict part mobility from a single static snapshot. ACM Transac-
tions on Graphics (TOG) 36, 6 (2017), 1–13.

Yijiang Huang, Caelan R Garrett, Ian Ting, Stefana Parascho, and Caitlin T Mueller.
2021. Robotic additive construction of bar structures: Unified sequence and motion
planning. Construction Robotics 5, 2 (2021), 115–130.

Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, Vladimir G. Kim, and
Adriana Schulz. 2021. AutoMate: A Dataset and Learning Approach for Automatic
Mating of CAD Assemblies. ACM Transactions on Graphics (TOG) 40, 6 (2021).

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. 1996. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces. IEEE
transactions on Robotics and Automation 12, 4 (1996), 566–580.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A big
CAD model dataset for geometric deep learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 9601–9611.

James J Kuffner and Steven M LaValle. 2000. RRT-connect: An efficient approach to
single-query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), Vol. 2. IEEE, 995–1001.

Steven M LaValle et al. 1998. Rapidly-exploring random trees: A new tool for path
planning. (1998).

Duc Thanh Le, Juan Cortés, and Thierry Siméon. 2009. A path planning approach
to (dis) assembly sequencing. In 2009 IEEE International Conference on Automation
Science and Engineering. IEEE, 286–291.

Jieliang Luo and Hui Li. 2021. A Learning Approach to Robot-Agnostic Force-Guided
High Precision Assembly. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2151–2157.

ViktorMakoviychuk, LukaszWawrzyniak, Yunrong Guo,Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. 2021.
Isaac Gym: High Performance GPU Based Physics Simulation For Robot Learning.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).

Ellips Masehian and Somayé Ghandi. 2021. Assembly sequence and path planning for
monotone and nonmonotone assemblies with rigid and flexible parts. Robotics and
Computer-Integrated Manufacturing 72 (2021), 102180.

Ine Melckenbeeck, Sofie Burggraeve, Bart Van Doninck, Jeroen Vancraen, and Albert
Rosich. 2020. Optimal assembly sequence based on design for assembly (DFA) rules.
Procedia CIRP 91 (2020), 646–652.

Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and
Hao Su. 2019. Partnet: A large-scale benchmark for fine-grained and hierarchical
part-level 3d object understanding. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 909–918.

Mark Moll, Lydia Kavraki, Jan Rosell, et al. 2017. Randomized physics-based motion
planning for grasping in cluttered and uncertain environments. IEEE Robotics and
Automation Letters 3, 2 (2017), 712–719.

Yashraj Narang, Kier Storey, Iretiayo Akinola, Miles Macklin, Philipp Reist, Lukasz
Wawrzyniak, Yunrong Guo, Adam Moravanszky, Gavriel State, Michelle Lu, et al.
2022. Factory: Fast Contact for Robotic Assembly. arXiv preprint arXiv:2205.03532
(2022).

Xinwen Niu, Han Ding, and Youlun Xiong. 2003. A hierarchical approach to generating
precedence graphs for assembly planning. International Journal of Machine Tools
and Manufacture 43, 14 (2003), 1473–1486.

SKOng,MMLChang, and AYCNee. 2021. Product disassembly sequence planning: state-
of-the-art, challenges, opportunities and future directions. International Journal of
Production Research 59, 11 (2021), 3493–3508.

YF Qin and ZG Xu. 2007. Assembly process planning using a multi-objective optimiza-
tion method. In Proceedings of the 2007 IEEE international conference on mechatronics
and automation, ICMA, Vol. 4303610. 593–598.

Carlos Ramos, Joao Rocha, and Zita Vale. 1998. On the complexity of precedence graphs
for assembly and task planning. Computers in industry 36, 1-2 (1998), 101–111.

Mohd Fadzil Faisae Rashid, Windo Hutabarat, and Ashutosh Tiwari. 2012. A review
on assembly sequence planning and assembly line balancing optimisation using
soft computing approaches. The International Journal of Advanced Manufacturing
Technology 59, 1 (2012), 335–349.

Juan Jesús Roldán, Elena Crespo, Andrés Martín-Barrio, Elena Peña-Tapia, and Antonio
Barrientos. 2019. A training system for Industry 4.0 operators in complex assemblies
based on virtual reality and process mining. Robotics and computer-integrated
manufacturing 59 (2019), 305–316.

Marco Santochi, Gino Dini, and Franco Failli. 2002. Computer aided disassembly
planning: state of the art and perspectives. CIRP Annals 51, 2 (2002), 507–529.

Cem Sinanoğlu and H Rıza Börklü. 2005. An assembly sequence-planning system for
mechanical parts using neural network. Assembly Automation (2005).

Qiang Su. 2009. A hierarchical approach on assembly sequence planning and optimal
sequences analyzing. Robotics and Computer-Integrated Manufacturing 25, 1 (2009),
224–234.

ACM Trans. Graph., Vol. 41, No. 6, Article 278. Publication date: December 2022.

https://arxiv.org/abs/arXiv:1606.01540
https://doi.org/10.1109/70.75905


Assemble Them All: Physics-Based Planning for Generalizable Assembly by Disassembly • 278:11

Ioan A Sucan and Lydia E Kavraki. 2011. A sampling-based tree planner for systems
with complex dynamics. IEEE Transactions on Robotics 28, 1 (2011), 116–131.

Sujay Sundaram, Ian Remmler, and Nancy M Amato. 2001. Disassembly sequencing
using a motion planning approach. In Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164), Vol. 2. IEEE, 1475–1480.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction.
MIT press.

Garrett Thomas, Melissa Chien, Aviv Tamar, Juan Aparicio Ojea, and Pieter Abbeel.
2018. Learning robotic assembly from cad. In 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 3524–3531.

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ international conference on intelligent robots
and systems. IEEE, 5026–5033.

Weiwei Wan, Kensuke Harada, and Kazuyuki Nagata. 2017. Assembly sequence plan-
ning for motion planning. Assembly Automation (2017).

Hui Wang, Yiming Rong, and Dong Xiang. 2014. Mechanical assembly planning using
ant colony optimization. Computer-Aided Design 47 (2014), 59–71.

Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. 2019b.
Shape2motion: Joint analysis of motion parts and attributes from 3d shapes. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 8876–8884.

Ying Wang, Nicholas J Weidner, Margaret A Baxter, Yura Hwang, Danny M Kaufman,
and Shinjiro Sueda. 2019a. REDMAX: Efficient & flexible approach for articulated
dynamics. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–10.

Karl DDWillis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele
Grandi, Aditya Sanghi, Linh Tran, Joseph G Lambourne, Armando Solar-Lezama, and
Wojciech Matusik. 2022. JoinABLe: Learning Bottom-up Assembly of Parametric
CAD Joints. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne,
Armando Solar-Lezama, and Wojciech Matusik. 2021. Fusion 360 Gallery: A Dataset
and Environment for Programmatic CAD Construction from Human Design Se-
quences. ACM Transactions on Graphics (TOG) 40, 4 (2021).

Randall H Wilson and Jean-Claude Latombe. 1994. Geometric reasoning about mechan-
ical assembly. Artificial Intelligence 71, 2 (1994), 371–396.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua
Liu, Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas,
and Hao Su. 2020. SAPIEN: A SimulAted Part-based Interactive ENvironment. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shinjiro Sueda,
and Pulkit Agrawal. 2021. An End-to-End Differentiable Framework for Contact-
Aware Robot Design. In Proceedings of Robotics: Science and Systems. Virtual. https:
//doi.org/10.15607/RSS.2021.XVII.008

Zihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen, Oliver van Kaick, Hao Zhang,
and Hui Huang. 2019. RPM-Net: Recurrent Prediction of Motion and Parts from
Point Cloud. Annual Conference on Computer Graphics and Interactive Techniques
Asia (SIGGRAPH Asia) 38, 6 (2019), 240:1–240:15.

Mingxin Yu, Lin Shao, Zhehuan Chen, Tianhao Wu, Qingnan Fan, Kaichun Mo, and
Hao Dong. 2021. RoboAssembly: Learning Generalizable Furniture Assembly Pol-
icy in a Novel Multi-robot Contact-rich Simulation Environment. arXiv preprint
arXiv:2112.10143 (2021).

Kevin Zakka, Andy Zeng, Johnny Lee, and Shuran Song. 2020. Form2fit: Learning
shape priors for generalizable assembly from disassembly. In 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 9404–9410.

Xinya Zhang, Robert Belfer, Paul G Kry, and Etienne Vouga. 2020. C-Space tunnel
discovery for puzzle path planning. ACM Transactions on Graphics (TOG) 39, 4
(2020), 104–1.

Hongkai Zhao. 2005. A fast sweeping method for eikonal equations. Mathematics of
computation 74, 250 (2005), 603–627.

Yahan Zhou, Shinjiro Sueda, Wojciech Matusik, and Ariel Shamir. 2014. Boxelization:
Folding 3D Objects into Boxes. ACM Trans. Graph. 33, 4, Article 71 (Jul 2014),
8 pages.

Zuyuan Zhu and Huosheng Hu. 2018. Robot learning from demonstration in robotic
assembly: A survey. Robotics 7, 2 (2018), 17.

Stefan Zickler and Manuela M Veloso. 2009. Efficient physics-based planning: sampling
search via non-deterministic tactics and skills.. In AAMAS (1). Citeseer, 27–33.

ACM Trans. Graph., Vol. 41, No. 6, Article 278. Publication date: December 2022.

https://doi.org/10.15607/RSS.2021.XVII.008
https://doi.org/10.15607/RSS.2021.XVII.008


278:12 • Yunsheng Tian, Jie Xu, Yichen Li, Jieliang Luo, Shinjiro Sueda, Hui Li, Karl D.D. Willis, and Wojciech Matusik

A SDF CONSTRUCTION IN SIMULATION
We construct the SDF grid for an object using the Fast Sweeping
Algorithm [Zhao 2005] once at the initialization stage of the simula-
tion. The Fast Sweeping Algorithm computes the distance function
at the grid points around the object surface, and then updates the
remaining grids with eight sweeps. Given the SDF grid, the distance
of an arbitrary point in the space can acquired in O(1) by trilinearly
interpolating among surrounding grid cells and the gradients are
computed in O(1) via finite-differencing. Our assembly dataset con-
tains thousands of objects with dramatically different sizes and also
contains objects having different sizes in different dimensions (e.g.
long poles). In order to capture the surface texture details of those
objects while keeping the algorithm as fast and low-memory as
possible, we use an adaptive SDF grid with cell sizemin(0.05, 𝐿𝑖/20)
in each dimension 𝑖 for an object, where 𝐿𝑖 is the length of the object
along the 𝑖-th dimension and assuming each assembly is scaled to
fit in a 10x10x10 unit cube.

B DATASET DETAILS

B.1 Dataset Pre-Processing
Our dataset pre-processing consists of several steps to adapt the
previous CAD assembly datasets for assembly planning. Specifically,
in each assembly that contains two or multiple parts (meshes), we
sequentially do the following steps:

(1) Loadmeshes from the source datasets with correct transforms
to the assembled states applied.

(2) Remove non-watertight meshes since the distance query is
poorly defined on non-watertight meshes.

(3) Remove duplicate meshes with the same geometry and posi-
tion as other meshes, which is a rare design mistake.

(4) Removemeshes that overlapmore than 10%with othermeshes
because assembly planning will less likely give a plausible
result for such a large penetration. The overlap percentage
is computed by sampling points inside the mesh volume and
checking the ratio of points contained by other meshes.

(5) Remove thin meshes, which are difficult for SDF-based col-
lision detection to compute distance correctly. This step is
optional if the simulation is not based on SDF for collision
detection and can handle thin structures well. In our imple-
mentation, we first compute the mesh’s oriented bounding
box (OBB). Next, we filter out meshes whose thinnest edge
of OBB is smaller than 1% of the largest scale of the whole as-
sembly, where the scale is defined by the length of the largest
edge of the assembly’s bounding box.

(6) Remove all other parts except the largest connected subset
of the assembly. For example, all single floating parts will be
removed. This step makes the assembly data more meaning-
ful for evaluating assembly planning methods because parts
floating in the air are already disassembled or very close to
being disassembled. In our implementation, two connected
parts are defined as having a collision between their convex
hulls.

(7) Normalize all the remaining meshes in an assembly to fit in a
10x10x10 bounding box. This makes all assemblies have simi-
lar scales, thus benchmarking assembly planning methods on

the whole dataset becomes much easier, considering setting
a single set of hyper-parameters of the algorithm that gener-
alize to the entire dataset (e.g., collision detection threshold,
state similarity threshold, step size of RRT).

(8) Remove assemblies that are not disassemblable as rigid parts.
This is donemanually since an oracle does not exist to check if
an assembly is disassemblable. This step is not guaranteed to
be highly accurate considering the manual nature and dataset
size.

(9) Subdivide the meshes such that the largest edge of the mesh
is no larger than 0.5. This is because our simulation relies
on a point-based contact model and does not support edge-
edge collision detection yet. Increasing the density of mesh
vertices helps the simulation handle contacts more robustly.
This step is optional if the simulation can handle edge-edge
collision well.

Note that we do not remove meshes with slight overlaps (pene-
tration) with other meshes. This is because assembly CAD models
designed by human designers typically have small penetration er-
rors between parts. Rather than requiring the assembly model to
be perfectly penetration-free, we set an adaptive threshold for colli-
sion detection based on the amount of initial penetration (for both
our method and baseline methods). This allows path planners to
generate plausible disassembly paths while some slight penetration
exists.

B.2 Rotational Dataset Overview
Figure 12, 13 and 14 show a complete overview of our rotational
dataset, which consists of rotational assemblies that require various
types of assembly motion.

C EXPERIMENTAL SETUP

C.1 Baseline Methods
In this section, we describe some of our baseline methods in more
details:
RRT [LaValle et al. 1998]: RRT iteratively grows a tree in the

state space to reach the user-defined goal state. In Each iteration it
either samples a random state in the space or chooses the goal state
and then extends towards it from the nearest node in the existing
tree. However, it requires an explicitly specified goal state, which
can be an arbitrary disassembled state in disassembly path planning.
Therefore, we use a randomly selected disassembled state as the
goal for RRT.

T-RRT [Aguinaga et al. 2008]: Instead of choosing a random dis-
assembled goal state like RRT, when expanding the tree, Targetless-
RRT takes as the goal the nearest state outside the bounding box
of the rest of the assembly. This goal heuristic is empirically more
suitable for disassembly than random.
BK-RRT [Zickler and Veloso 2009]: See Algorithm 4 for a com-

plete illustration of BK-RRT in disassembly path planning.

C.2 Hyper-Parameters
In this section, we present all hyper-parameters used in experimen-
tal evaluation. Specifically, Table 5 summarizes the main hyper-
parameters used in our physics-based simulation, Table 6 shows the
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Fig. 12. Screw category of the rotational dataset.

Fig. 13. Puzzle category of the rotational dataset.

Fig. 14. Others category of the rotational dataset.

ACM Trans. Graph., Vol. 41, No. 6, Article 278. Publication date: December 2022.



278:14 • Yunsheng Tian, Jie Xu, Yichen Li, Jieliang Luo, Shinjiro Sueda, Hui Li, Karl D.D. Willis, and Wojciech Matusik

ALGORITHM 4: BK-RRT for Disassembly Path Planning
Input: Assembled state 𝑠0, timeout 𝑡max, simulation time step Δ𝑡 .
Output: A disassembly path 𝑃𝐷 = {𝑠0, ..., 𝑠𝑛 }.

1 𝑇 = EmptyTree();
2 𝑇 .AddNode(𝑠0);
3 while 𝑡 < 𝑡max do
4 𝑠𝑟 = SampleRandomState();
5 𝑠𝑖 = NearestNeighbor(𝑇 , 𝑠𝑟 );
6 𝑎𝑖 = RandomAction();
7 𝑠𝑖+1 = Simulate(𝑠𝑖 , 𝑎𝑖 , Δ𝑡 );
8 𝑇 .AddNode(𝑠𝑖+1);
9 𝑇 .AddEdge(𝑠𝑖 , 𝑠𝑖+1, 𝑎𝑖 );

10 if IsDisassembled(𝑠𝑖+1) then
11 return𝑇 .GetPath(𝑠0, 𝑠𝑖+1);
12 return failed;

Table 5. Hyper-parameters of physics-based simulation.

Name Value

Contact stiffness 𝑘𝑛 1e6
Contact damping coefficient 𝑘𝑑 0
Simulation time step 1e-3

Table 6. Hyper-parameters of physics-based path planners.

Name Value

Path planning time step Δ𝑡 1e-1
Penetration threshold for collision detection 0.01
Force/torque magnitude of each action 100
State similarity threshold (translation) 𝛿𝑡 0.05
State similarity threshold (rotation) 𝛿𝑟 0.5

Table 7. Hyper-parameters of geometric-based path planners.

Name Value

Step size of tree extension 0.01
Maximum penetration allowed 0.01
Goal probability of T-RRT 0.2

hyper-parameters for physics-based path planners (our method and
BK-RRT), and Table 7 shows the hyper-parameters for geometric-
based path planners (RRT, T-RRT, MV+T-RRT).

D MORE RESULTS
See Figure 15 for more assembly motion produced by our method
which have a low success rate on other baseline methods.
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Fig. 15. More successful examples of two-part disassembly motion produced by our method while failing on baseline methods.
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