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Figure 1: (a) Given a front-facing user image as input, (b) our method progressively bridges the domain gap between real faces
and 3D avatars through three stages: (b.1) The stylization stage performs an image space translation to generate a stylized
portrait while normalizing expressions. (b.2) The parameterization stage uses a learnedmodel to find avatar parameters which
match the results of stylization. (b.3) The conversion stage searches for a valid avatar vector matching the parameterization
that can be rendered by the graphics engine. (c) The output is a user editable 3D model which can be animated and applied to
various applications, for example personalized emoji. ©H JACQUOT and Montclair Film.

ABSTRACT
Stylized 3D avatars have become increasingly prominent in our
modern life. Creating these avatars manually usually involves la-
borious selection and adjustment of continuous and discrete pa-
rameters and is time-consuming for average users. Self-supervised
approaches to automatically create 3D avatars from user selfies
promise high quality with little annotation cost but fall short in
application to stylized avatars due to a large style domain gap. We
propose a novel self-supervised learning framework to create high-
quality stylized 3D avatars with a mix of continuous and discrete
parameters. Our cascaded domain bridging framework first lever-
ages a modified portrait stylization approach to translate input
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selfies into stylized avatar renderings as the targets for desired 3D
avatars. Next, we find the best parameters of the avatars to match
the stylized avatar renderings through a differentiable imitator we
train to mimic the avatar graphics engine. To ensure we can ef-
fectively optimize the discrete parameters, we adopt a cascaded
relaxation-and-search pipeline. We use a human preference study
to evaluate how well our method preserves user identity compared
to previous work as well as manual creation. Our results achieve
much higher preference scores than previous work and close to
those of manual creation. We also provide an ablation study to
justify the design choices in our pipeline.

CCS CONCEPTS
• Computing methodologies → Non-photorealistic render-
ing.
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1 INTRODUCTION
An attractive and animatable 3D avatar is an important entry point
to the digital world that has become increasingly prominent in
modern life for socialization, shopping and gaming etc. A good
avatar should be both personalized (reflecting the person’s unique
appearance) and good-looking. Many popular avatar systems adopt
cartoonized and stylized designs for their playfulness and appeal-
ingness to the users such as Zepeto1 and ReadyPlayer2. However,
creating an avatar manually usually involves laborious selections
and adjustments from a swarm of art assets which is both time-
consuming and difficult for average users with no prior experience.

In this paper, we study automatic creation of stylized 3D avatars
from a single front-facing selfie image. To be specific, given a selfie
image, our algorithm predicts an avatar vector as the complete
configuration for a graphics engine to generate a 3D avatar and
render avatar images from predefined 3D assets. The avatar vector
consists of parameters specific to the predefined assets which can
be either continuous (e.g. head length) or discrete (e.g. hair types).

A naive solution is to annotate a set of selfie images and train a
model to predict the avatar vector via supervised learning. How-
ever, large scale annotations are needed to handle a large range of
assets (usually in the hundreds). To alleviate the annotation cost,
self-supervised methods [Shi et al. 2019, 2020] are proposed to train
a differentiable imitator that mimics the renderings of the graphics
engine to automatically match the rendered avatar image with the
selfie image using various losses of identity and semantic segmenta-
tion. While these methods proved effective to create semi-realistic
avatars close to user’s identity, they fall short in application to
stylized avatars since the style domain gap between selfie images
and stylized avatars are too large (see Fig. 7).

Our main technical challenges are two folds: (1) the large domain
gap between user selfie images and stylized avatars and (2) the com-
plex optimization of a mix of continuous and discrete parameters
in the avatar vector. To address these challenges, we formulate a
cascaded framework which progressively bridge the domain gap
while ensuring optimization convergence on both continuous and
discrete parameters. Our novel framework consists of three stages:
Portrait Stylization, Self-supervised Avatar Parameterization, and
Avatar Vector Conversion. Fig. 1 shows the domain gap gradually
bridged across the three stages, while the identity information (hair
style, skin tone, glasses, etc.) is maintained throughout the pipeline.

First, the Portrait Stylization stage focuses on 2D real-to-stylized
visual appearance domain crossing. This stage translates input
selfie image to a stylized avatar rendering and remains in image
space. Naively applying existing stylization methods [Pinkney and
Adler 2020; Song et al. 2021] for translation will retain factors
such as expression, which would unnecessarily complicate later
stages of our pipeline. Thus, we create a modified variant from
AgileGAN [Song et al. 2021] to ensure uniformity in expression
while preserving user identity.

1https://zepeto.me/
2https://readyplayer.me/

Next, the Self-Supervised Avatar Parameterization stage focuses
on crossing from image pixel domain to avatar vector domain. We
observed that strictly enforcing parameter discreteness causes opti-
mization to fail to converge. To address this, we use a relaxed for-
mulation called a relaxed avatar vector in which discrete parameters
are encoded as continuous one-hot vectors. To enable differentia-
bility in training, we trained an imitator in similar spirit to F2P [Shi
et al. 2019] to mimic the behavior of the non-differentiable engine.

Finally, the Avatar Vector Conversion stage focuses on domain
crossing from the relaxed avatar vector space to the strict avatar
vector space where all the discrete parameters are one-hot vectors.
The strict avatar vector can then be used by the graphics engine to
create final avatars and for rendering. We employ a novel search
process that leads to better results than direct quantization.

To evaluate our results, we use a human preference study to
evaluate how well our method preserves personal identity relative
to baseline methods including F2P [2019] as well as manual creation.
Our results achieve much higher scores than baseline methods and
close to those of manual creation. We also provide an ablation study
to justify the design choices in our pipeline.

In summary, our technical contributions are:
• A novel self-supervised learning framework to create high-
quality stylized 3D avatars with a mix of continuous and
discrete parameters;

• A novel approach to cross the large style domain gap in
stylized 3D avatar creation using portrait stylization;

• A cascaded relaxation and search pipeline that solves the
convergence issue in discrete avatar parameter optimization.

2 RELATEDWORK
3D Face Reconstruction: Photorealistic 3D face reconstruction

from images has been studied extensively for many years. Ex-
tremely high quality models can be obtained using gantries with
multiple cameras followed by a stereo or photogrammetry recon-
struction [Beeler et al. 2010; Yang et al. 2020]. When only a single
image is available, researchers leverage a parameterized 3D mor-
phable model to reconstruct realistic 3D faces [Blanz and Vetter
1999; Chen and Kim 2021; Deng et al. 2019b; Peng et al. 2017; Xu
et al. 2020]. Excellent surveys [Egger et al. 2020; Zollhöfer et al.
2018] exist providing great insights in this direction. These meth-
ods focus on an accurate reconstruction of the real human, and
the model parameters often lack physical meaning. In contrast our
work focuses on cross domain creation of a stylized avatar which
has parameters with direct meaning to casual users.

3D Caricature: Non-photorealistic 3D face reconstruction has
also received interest recently, a popular style being caricature. Qiu
et al. [2021] created a dataset of 3D caricature models for recon-
structing meshes from caricature images. Some works generate
caricature meshes by exaggerating or deforming real face meshes,
with [Cai et al. 2021; Wu et al. 2018] or without [Lewiner et al. 2011;
Vieira et al. 2013] caricature image input. Sketches can be used to
guide the creation [Han et al. 2017, 2018]. Recent works [Li et al.
2021; Ye et al. 2021] use GANs to generate 3D caricatures given real
images. However, these methods are designed for reconstructing
caricature meshes and/or textures while we focus on cartoonish
avatars constrained by parameters with semantic meaning.
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Avatar Vector Conversion
(Sec. 3.3)
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Figure 2: Pipeline. Our framework consists of three modules: Portrait Stylization for image-space real-to-stylized domain
crossing, Self-supervised Avatar Parametrization for recovering relaxed avatar vector from the stylization latent code, and
Avatar Vector Conversion for discretizing the predicted relaxed avatar vector into a strict avatar vector that can be taken by
the graphics engine directly. ©NGÁO STUDIO.

Game Avatars: Commercial products such as Zepeto and Ready-
Player use a graphics engine to render cartoon avatars from user
selfies.While no detailed description of their methods exists, we sus-
pect these commercial methods are supervised with a large amount
of manual annotations, something this paper seeks to avoid.

Creating semi-realistic 3D avatars has also been explored [Cao
et al. 2016; Hu et al. 2017; Ichim et al. 2015; Luo et al. 2021]. Most
relevant to our framework, Shi et al. [2019] proposed an algorithm
to search for the optimal avatar parameters by comparing the input
image directly to the rendered avatar. Follow-up work improves
efficiency [Shi et al. 2020], and seeks to use the photograph’s texture
tomake the avatarmatchmore closely [Lin et al. 2021]. These efforts
seek to create a similar looking avatar, while this paper seeks to
create a highly stylized avatar with a large domain gap.

Portrait Stylization: Many methods for non-photorealistic styl-
ization of 2D images exist. Gatys et al. [2016] proposed neural style
transfer, matching features at different levels of CNNs. Image-to-
image models focus on the translation of images from a source to
target domain, either with paired data supervision [Isola et al. 2017]
or without [Park et al. 2020; Zhu et al. 2017]. Recent development
in GAN inversion [Richardson et al. 2021; Tov et al. 2021] and in-
terpolation [Pinkney and Adler 2020] methods make it possible to
achieve high quality cross-domain stylization [Cao et al. 2018; Song
et al. 2021; Zhu et al. 2021]. The end result of these methods are in
2D pixels space and directly inspire the first stage of our pipeline.

3 PROPOSED APPROACH
Our cascaded avatar creation framework consists of three stages:
Portrait Stylization (Sec. 3.1), Self-supervised Avatar Parameteriza-
tion (Sec. 3.2), and Avatar Vector Conversion (Sec. 3.3). A diagram
of their relationship is shown in Fig. 2. Portrait Stylization trans-
forms a real user image into a stylized avatar image, keeping as
much personal identity (glasses, hairs, colors, etc.) as possible, while

simultaneously normalizing the face to look closer to an avatar ren-
dering. Next, the Self-supervised Avatar Parameterization module
regresses a relaxed avatar vector from the stylization latent code via
a MLP based Mapper. Finally, the Avatar Vector Conversion module
discretizes part of the relaxed avatar vector to meet the requirement
of the graphics engine using an appearance-based search.

3.1 Portrait Stylization
Portrait Stylization transforms user images into stylized images
close to our target domain. This stage of our pipeline occurs entirely
within the 2D image domain. We adopt an encoder-decoder frame-
work for the stylization task. A novel transfer learning approach
is applied to a StyleGAN model [Karras et al. 2020], including W+
space transfer learning, using a normalized style exemplar set, and
a loss function that supports these modifications.

W+ space transfer learning: We perform transfer learning directly
from the W+ space, unlike previous methods [Gal et al. 2021; Song
et al. 2021] where stylization transfer learning is done in the more
entangled Z/Z+ space. The W+ space is more disentangled and
can preserve more personal identity features. However, this design
change introduces a challenge. We need to model a distribution
prior W of the W+ space, as it is a highly irregular space [Wulff
and Torralba 2020], and cannot be directly sampled like the Z/Z+
space (standard Gaussian distribution). We achieve this by inverting
a large dataset of real face images into a W+ embeddings via a
pre-trained image encoder [Tov et al. 2021], and then sample the
latent codes from that prior. Fig. 3 provides one example of better
preserved personalization. Notice that our method preserves glasses
which are lost in the comparison method.

Normalized Style Exemplar Set: Our stylization method seeks
to ignore pose and expression and produce a normalized image.
In contrast, existing methods are optimized to preserve source to
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(a) Input (b) AgileGAN (c) Our Stylization

Figure 3: Portrait stylization results. Compared with a state-
of-the-art stylization method, AgileGAN [Song et al. 2021],
our stylization does a better job at preserving the user’s
personal identity (e.g. glasses are preserved), and simulta-
neously normalizing the expressions (e.g. mouth is closed)
for easier fitting in the downstream pipeline. ©GregMooney
and Sebastiaan ter Burg.

target similarities literally, transferring specific facial expressions,
head poses, and lighting conditions directly from user photos into
target stylized images. This is not desirable for our later avatar
parameterization stage as we are trying to extract the core personal
identity features only. In order to produce normalized stylizations
we limit the rendered exemplars provided during transfer learn-
ing to contain only neutral poses, expressions and illumination
to ensure a good normalization. Fig. 3 provides an example of a
smiling face. The comparison method preserves the smile, while
our method successfully provides only the normalized core identity.

Loss: Our loss contains non-standard terms to support the needs
of our pipeline. The target output stylization is not exactly aligned
with the input due to pose normalization. Therefore, commonly
used perceptual loss [Zhang et al. 2018] cannot be applied directly
in decoder training. We instead use a novel segmented color loss.

The full objective comprises three loss terms to fine-tune the
generator G𝜙 . Let G𝜙𝑜

and G𝜙𝑡
be the model before and after

fine-tuning. We introduce a color matching loss at a semantic
level. Specifically, we leverage two face segmentation models from
BiSeNet [Yu et al. 2018] pre-trained on real and stylized data sepa-
rately to match the color of semantic regions. Let S = {ℎ𝑎𝑖𝑟, 𝑠𝑘𝑖𝑛}
be the classes taken into consideration, and B𝑘 (𝐼 ) (𝑘 ∈ S) be the
mean color of pixels belonging to class 𝑘 in image 𝐼 . B𝑘

𝑟𝑒𝑎𝑙
and

B𝑘
𝑠𝑡𝑦𝑙𝑒

represent real and stylized models separately. The semantic
color matching loss is:

L𝑠𝑒𝑚 = E𝑤∼W [
∑︁
𝑘∈S

(


B𝑘
𝑟𝑒𝑎𝑙

(G𝜙𝑜
(𝑤)) − B𝑘

𝑠𝑡𝑦𝑙𝑒
(G𝜙𝑡

(𝑤))



2)]

(1)
An adversarial loss is used to match the distribution of the trans-

lated images to the target stylized set distribution Y, where 𝐷 is

(a) Stylization (b) Strict (c) Relaxed

Figure 4: Avatar Parameterization produces errors in final
predictions if discrete types are enforced during training,
such as hair and beard types in this example. Relaxing
the discrete constraint allows easier optimization and thus
better predictions which match the stylization target more
closely.

the StyleGAN2 discriminator [Karras et al. 2020]:

L𝑎𝑑𝑣 = E𝑦∼Y [min(0,−1+𝐷 (𝑦))]+E𝑤∼W [min(0,−1−𝐷 (G𝜙𝑡
(𝑤)))]
(2)

Also, to improve training stability and prevent artifacts, we use
R1 regularization [Mescheder et al. 2018] for the discriminator:
L𝑅1 =

𝛾
2E𝑦∼Y [∥∇𝐷 (𝑦)∥2], where we set 𝛾 = 10 empirically.

Finally, the generator and discriminators are jointly trained to
optimize the combined objectivemin𝜙max𝐷L𝑠𝑡𝑦𝑙𝑖𝑧𝑒 , where

L𝑠𝑡𝑦𝑙𝑖𝑧𝑒 = 𝜆𝑎𝑑𝑣L𝑎𝑑𝑣 + 𝜆𝑠𝑒𝑚L𝑠𝑒𝑚 + 𝜆𝑅1L𝑅1 (3)

𝜆𝑎𝑑𝑣 = 1, 𝜆𝑠𝑒𝑚 = 12, 𝜆𝑅1 = 5 are constant weights set empirically.
Please see the appendix A for more details.

3.2 Self-supervised Avatar Parameterization
Avatar Parameterization finds a set of parameters for the rendering
engine which produces an avatar matching the stylized portrait as
closely as possible. We call the module which finds parameters the
mapper. To facilitate training the mapper, we use a differentiable
neural rendering engine we call the imitator.

A particular avatar is defined by an avatar vector with both con-
tinuous and discrete parameters. Continuous parameters are used
to control primarily placement and size, for example eye size, eye
rotation, mouth position, and head width. Discrete parameters are
used to set individual assets and textures such as hair types, beard
types, and skin tone textures. All parameters are concatenated into
a vector with discrete parameters represented as one-hot vectors.

Mapper Training: The Mapper takes the results of portrait styl-
ization as input and outputs an avatar vector which defines a similar
looking avatar. Rather than using the stylized image itself as input,
we use the latent code 𝑤+ derived from the stylization encoder,
since it is a more compact representation and contains facial se-
mantic styles from coarse to fine [Karras et al. 2019].

The Mapper is built as an MLP, and trained using a Mapper
Loss which measures the similarity between the stylized image,
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(a) Relaxed Result (b) Directly Classify (c) Our Conversion

Figure 5: Avatar Vector Conversion is necessary to convert
the relaxed result produced during parameterization into
discrete types suitable for the graphics engine. Direct classi-
fication often fails to select the best type. Our conversion se-
lects the bestmatch to the relaxed type by searching through
all available discrete types. Notice in this example that the
skin tone and hair type are much closer using our method.

I𝑠𝑡𝑦𝑙𝑒 , and the imitator output, I𝑖𝑚𝑖𝑡𝑎𝑡𝑒 . This loss function contains
several terms to measure the global and local similarity.

To preserve global appearance, we incorporate identity loss L𝑖𝑑

measuring the cosine similarity between two faces built upon a
pretrained ArcFace [Deng et al. 2019a] face recognition network
R: L𝑖𝑑 = 1 − 𝑐𝑜𝑠 (R(𝐼𝑠𝑡𝑦𝑙𝑒 ),R(𝐼𝑖𝑚𝑖𝑡𝑎𝑡𝑒 )). For a more fine-grained
similarity measurement, LPIPS loss [Zhang et al. 2018] is adopted:
L𝑙𝑝𝑖𝑝𝑠 = ∥F (𝐼𝑠𝑡𝑦𝑙𝑒 ) − F (𝐼𝑖𝑚𝑖𝑡𝑎𝑡𝑒 )∥2, where F denotes the percep-
tual feature extractor. Additionally, we use a color matching loss to
obtain more faithful colors for the skin and hair region:

L𝑐𝑜𝑙𝑜𝑟 =
∑︁
𝑘∈S

(


B𝑘
𝑠𝑡𝑦𝑙𝑒

(𝐼𝑠𝑡𝑦𝑙𝑒 ) − B𝑘
𝑠𝑡𝑦𝑙𝑒

(𝐼𝑖𝑚𝑖𝑡𝑎𝑡𝑒 )



2) (4)

The final loss function is:
L𝑚𝑎𝑝𝑝𝑒𝑟 = 𝜆𝑖𝑑L𝑖𝑑 + 𝜆𝑙𝑝𝑖𝑝𝑠L𝑙𝑝𝑖𝑝𝑠 + 𝜆𝑐𝑜𝑙𝑜𝑟L𝑐𝑜𝑙𝑜𝑟 (5)

where 𝜆𝑖𝑑 = 0.4, 𝜆𝑙𝑝𝑖𝑝𝑠 = 0.8, 𝜆𝑐𝑜𝑙𝑜𝑟 = 0.8 are set empirically.
We empirically choose the best loss terms to provide good results.

An ablation study of these terms is provided in the results section.

Differentiable Imitator: The imitator is a neural renderer trained
to replicate the output of the graphics engine as closely as possi-
ble given an input avatar vector. The imitator has the important
property of differentiablity, making it suitable for inclusion in an
optimization framework. We leverage an existing neural model
[Karras et al. 2019] as the backbone generator, which is capable
of generating high quality avatar renderings. We train it with syn-
thetic avatar data supervisedly. See the appendix B.1 for details.

Discrete Parameters: Solving for discrete parameters is challeng-
ing because of unstable convergence. Some methods handle this
via quantization during optimization [Bengio et al. 2013; Cheng
et al. 2018; Jang et al. 2016; Van Den Oord et al. 2017]. However,
we found that quantization after optimization, which relaxes the
discrete constraint during training and re-apply it as postprocess-
ing, is more effective for our task. Below we describe the relaxed
optimization and in Sec. 3.3 we present the quantization method.

Our solution to training discrete parameters in themappermakes
use of the imitator’s interpolation property. When mixing two
avatar vectors, the imitator still produces a valid rendering. That is,
given the one-hot encoding v1 and v2 of two hair or beard types,
their linear interpolation v𝑚𝑖𝑥 = (1 − 𝛼) · v1 + 𝛼 · v2 (𝛼 ∈ [0, 1])
produces a valid result. Please see the appendix B.1 for details.

Thus, when training the mapper we do not strictly enforce dis-
crete parameters, and instead apply a softmax function to the final
activation of the mapper to allow a continuous optimization space
while still discouraging mixtures of too many asset types.

We compare our relaxed training with a strict training method
performing quantization during optimization. In the forward pass,
it quantizes the softmax result by picking the entry with maximum
probability. In the backward pass, it back-propagates unaltered
gradients in a straight-through way [Bengio et al. 2013]. In Fig. 4,
our method produces a much closer match to the stylization results.

3.3 Avatar Vector Conversion
The graphics engine requires discrete inputs for attributes such as
hair and glasses. However the mapper module in Avatar Parameter-
ization produces continuous values. One straightforward approach
for discretization is to pick the type with the highest probability
given the softmax result. However, we observe that this approach
does not achieve good results, especially when dealing with multi-
class attributes (e.g. 45 hair types). The challenge is that the solution
space is under-constrained. Medium length hair can be achieved
by selecting the medium length hair type, or by mixing between
short and long hair types. In the latter case, simply selecting the
highest probability of short or long hair is clearly not optimal.

We discretize the relaxed avatar vector via searching over all
candidates from the asset list for each attribute, while fixing all
other parameters. Using the image result from the imitator I𝑖𝑚𝑖𝑡𝑎𝑡𝑒

as target, we use the loss function from Eq. 5 as an objective to
measure the similarity between I𝑖𝑚𝑖𝑡𝑎𝑡𝑒 and the candidate result
I𝑐𝑎𝑛𝑑 . By minimizing the objective, we can find the best solution
for each attribute. The selections for each attribute are combined to
create the avatar vector used for graphics rendering and animation.
Fig. 5 provides a comparison of direct classification and our method.
Note that direct classification makes incorrect choices for hair type
and skin color while ours closely matches the reference image.

4 EXPERIMENTAL ANALYSIS
Cascaded Domain Bridging: To illustrate the effect of each stage

in the proposed three-stage pipeline, the intermediate results are vi-
sualized in Fig. 6. Notice how the three stages progressively bridge
the domain gap between real images and stylized avatars. To mea-
sure how close the intermediate results are in comparison to the
target avatar domain, we use the perceptual metric FID [Kilgour
et al. 2019]. Notice that the FID becomes lower after each stage,
demonstrating the gradual reduction of domain gap.

Visual Comparison with Baseline Methods: We compare the pro-
posed method against a number of baselines, shown in Fig. 7. CNN
is a naive supervised method using rendered avatar images to train
a CNN [Sandler et al. 2018] to fit ground truth parameters. The
CNN is then applied on the segmented head region of the input
image. The domain gap causes the CNN to make poor predictions.
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FID = 236.8 FID = 38.7 FID = 17.9 In domain

(a) Input (b) Stylized (c) Parameterized (d) Converted

Figure 6: Progressive domain crossing. (b) At the portrait
stylization stage, the images may still contain characteris-
tics outside the domain of a graphics avatar, such as hair
shape and non-frontal pose. (c) At the parameterization
stage, the images are within the target domain, but may con-
tain mixtures of components. (d) Finally, after vector con-
version the output is a strict avatar vector which can be ren-
dered by the graphics engine. Using FID as a measure of im-
age distribution similarity, notice that each step brings us
closer to the final target avatar domain. ©Marcin Wichary,
TechCrunch and Vanity Productions.

Our stylization + CNN narrows the domain gap by applying the
CNN to our stylized results. This noticeably improves predictions,
however errors in hair and face coloration remain. Since the CNN
is only trained on synthetic data, it cannot regress the parameters
properly due to the domain gap between training and test data even
for stylized images. F2P [2019] is a self-supervised optimization-
based method designed for semi-realistic avatars. This method fails
to do well, likely because it naively aligns the segmentation of real
faces and the avatar faces, without considering the domain gap.
Manual results were created by expert-trained users. Given a real
face, the users were asked to build an avatar that preserves personal
identity while demonstrating high attractiveness based on their
own judgement. Visually, our method shows a quality similar to
manual creation, demonstrating the utility of our method.

Numerical Comparison with Baseline Methods: To evaluate results
numerically we rely on judgements made by human observers
recruited through Amazon Mechanical Turk 3. We conduct two
user studies for quantitative evaluation: Attribute Evaluation and
Matching. We perform attribute evaluation to evaluate whether
users believe that specific identity attributes such as hair color and
style match the source photograph using a yes/no selection. 330
opinions were collected for each of 6 attributes. Table 1 shows
results, indicating that our method retains photograph identity

3https://www.mturk.com/

Table 1: Numerical results from two user studies. Our
method is judged to produce better avatars than the base-
line methods, approaching the quality of manual work. At-
tribute evaluation: judge whether a specific attribute of the
created avatar matches the human image. Matching: choose
the correct one out of four avatars which matches the hu-
man image.

Attribute Evaluation Match
Taskbeard

type
face
shape

brow
type

hair
color

hair
style

skin
tone

F2P [2019] 0.36 0.46 0.22 0.21 0.12 0.36 0.67
CNN 0.17 0.54 0.22 0.46 0.30 0.50 0.57
Stylization+CNN 0.45 0.69 0.38 0.57 0.43 0.66 0.82
Ours 0.82 0.94 0.88 0.82 0.72 0.82 0.92

Manual 0.94 0.97 0.85 0.90 0.86 0.94 0.96

Table 2: Ablation study for mapper training losses. Users
picked the bestmatching avatar from the six candidates pro-
duced by loss combinations. The scores show the fraction
of each combination picked. L𝐿𝑃𝐼𝑃𝑆 is the most significant
component, while L𝑖𝑑 and L𝑐𝑜𝑙𝑜𝑟 also improve the results.

ID LPIPS ID+LPISP ID+Color LPIPS+Color ID+LPIPS+Color
9.3% 17.8% 18.7% 14.8% 19.1% 20.3%

better than the baseline. In the matching task, we evaluate whether
an avatar retains personal identity overall. Four random and diverse
images were used to create avatars, and the subject must choose
which is the correct match to a specific photograph. A total of 990
judgements were collected. Avatars created with our method were
identified correctly significantly more often than baseline methods,
approaching the level of manually created avatars.

Portrait Stylization Ablation: To study the impact of Portrait
Stylization on the complete avatar creation pipeline we compare
three options, shown in Fig. 8. No stylization removes this stage
entirely and uses the real image as input to parameterization loss
calculation. Without stylization, the parameterization module tries
to match the real image with the target stylized avatar, leading to
poor visual quality. AgileGAN [Song et al. 2021] is a state-of-the-art
stylization method. It provides stylization and thus improves the
final avatar attractiveness compared to no stylization. However,
it cannot remove the impact of expressions and does not handle
glasses well. In Row 1 (b), the smile expression is explained as a big
mouth in the fitting stage, and personal information like glasses is
not preserved in Row 2 (b). Our method addresses these issues and
achieves better results in both visual quality and personal identity.

Mapper Losses Ablation: To study the importance of including all
losses while training theMapper, we generate results using different
permutations of loss terms (identity, LPIPS, color).We then collected
990 user judgements from Amazon Mechanical Turk, to select the
best matching results to the input image among six permutation
results. Table 2 shows the fraction of each option selected. The full
set of losses achieves the best score by a small margin, matching
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(a) Input (b) Ours (c) CNN (d) Stylization + CNN (e) F2P [2019] (f) Manual

Figure 7: Results comparison. (a) Given an input image, (b) our method produces an avatar in the target cartoon style that
looks similar to the user. (c) A CNN trained on synthetic data produces incorrect beard, hair style, and glasses on real image
inputs due to the significant domain gap. (d) Applying the CNN instead to the results of stylization reduces the domain gap
and thus improves results, however significant errors remain. (e) F2P, a baseline method intended to produce semi-realistic
avatars does not consider the domain gap and thus produces poor results when used with stylized avatars [Shi et al. 2019]. (f)
Manual results were created by expert-trained users. Our results approximate the quality obtainable throughmanual creation.
©Sebastiaan ter Burg, NIGP, YayA Lee and S Pakhrin.

our observations that the overall method is robust to the precise
selection of loss, but that the additional terms help in some cases.

5 LIMITATIONS
We observe two main limitations to our method. First, our method
occasionally produces wrong predictions on assets covering a small
area, because their contribution to the loss is small and gets ig-
nored. The eye color in Fig. 9 (a) is an example of this difficulty.
Redesigning the loss function might resolve this problem. Second,
lighting is not fully normalized in the stylization stage, leading
to incorrect skin tone estimates when there are strong shadows,
shown in Fig. 9 (b). This problem could potentially be addressed by
incorporating intrinsic decomposition into the pipeline. In addition
to the limitations of our method, we experience a loss of ethnicity in
the final results, which is mainly introduced by the graphics engine,

as also evidenced by the manually-created results. This issue could
be addressed by improving the diversity of the avatar system.

6 CONCLUSION
In summary, we present a self-supervised stylized avatar auto-
creationmethodwith cascaded domain crossing. Ourmethod demon-
strates that the gap between the real images domain and the target
avatar domain can be progressively bridged with a three-stage
pipeline: portrait stylization, self-supervised avatar parameteriza-
tion, and avatar vector conversion. Each stage is carefully designed
and cannot be simply removed. Experimental results show that our
approach produces high quality attractive 3D avatars with personal
identities preserved. In the future, we will extend the proposed
pipeline to other domains, such as cubism and caricature avatars.
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Input (a) No stylization (b) AgileGAN (c) Ours

Figure 8:We ablate by removing the stylization stage, as well
as replacing our stylization with a state-of-the-art method.
In each case the final renderings from the graphics engine
are shown. (a) Fitting directly on a user image results in an
avatar that lacks attractiveness. (b) Replacing our stylization
with AgileGAN [2021] suffers from missing personal infor-
mation such as glasses and artifacts where smiles are mis-
interpreted as heavy lips or mustache. (c) Our stylization
retains personal features like glasses, and generate visually
appealing results in spite of expressions. ©Chang-Ching Su
and Luca Boldrini.

(a) Limitation - Small areas (b) Limitation - Shadows

Figure 9: Limitations: (a) failure on a parameter (eye color)
affecting a small number of pixels. (b) incorrect skin tone
prediction caused by shadows. ©Daniel Åberg and Peter
Bright.
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A PORTRAIT STYLIZATION DETAILS
Segmentation Models: The avatar segmentation model is trained

using 20k randomly sampled avatar vectors with neural pose, ex-
pression and illumination. For real image segmentation, we used
an open-source pre-trained BiSeNet module4 [Yu et al. 2018].

Distribution Prior W: To sample W+ distribution prior, we in-
verse CelebA dataset [Liu et al. 2015] into W+ space using a pre-
trained e4e encoder [Tov et al. 2021].

4https://github.com/zllrunning/face-parsing.PyTorch

Normalized Style Exemplar SetY: For training stylized generator
G𝜙𝑡

, we synthetically rendered a diverse set of 150 avatar imageries
with normalized facial expressions.

B AVATAR PARAMETERIZATION DETAILS
B.1 Imitator
To train our module in a self-supervised way, we plug-in a differ-
entiable neural renderer (i.e. imitator) in our learning framework.
As we mentioned in the main paper, the imitator can take a re-
laxed avatar vector as input, although the imitator itself is trained
with strict avatar vector. No matter the input is a relaxed or strict
avatar vector, it can produce a valid rendering. In this way, we can
supervise the training in image space without any ground-truth
for the parameters. Due to the differentiability of the imitator, the
parameterization stage can be trained with gradient descent. To
achieve high fidelity rendering quality, we leverage the StyleGAN2
generator [Karras et al. 2019] as our backbone, which is capable of
generating high quality renderings matching the graphics engine.
The imitator consists of an encoder E𝑖 implemented using MLP and
a generator G𝑖 adopted from StyleGAN2. The encoder translates
an input avatar vector to a latent code 𝑤+. The generator then
produces a high-quality image given the latent code.

Training: In order to fully utilize the image generation capability
of StyleGAN2, we propose to train the imitator in two steps: 1)
we first train a StyleGAN2 from scratch with random rendering
samples generated by our graphics engine to obtain a high-quality
image generator, without any label or conditions; then 2) we train
the encoder and the generator together with images and correspond-
ing labels, result in a conditional generator. Given an avatar vector
𝑣 , a target image I𝑔𝑡 and the generated image I𝑔𝑒𝑛 = G𝑖 (E𝑖 (𝑣)), we
use the following loss function combination to perform the second
step training:

L𝑖𝑚𝑖𝑡𝑎𝑡𝑜𝑟 = 𝜆1∥I𝑔𝑒𝑛 − I𝑔𝑡 ∥1 + 𝜆2L𝑙𝑝𝑖𝑝𝑠 + 𝜆3L𝑖𝑑 (6)

where the first term is an L1 loss, which encourages less blurring
than L2. In addition, L𝑙𝑝𝑖𝑝𝑠 is the LPIPS loss adopted from [Zhang
et al. 2018],

L𝑙𝑝𝑖𝑝𝑠 = ∥F (𝐼1) − F (𝐼2)∥2 (7)
whereF denotes the perceptual feature extractor.L𝑖𝑑 is the identity
loss which measures the cosine similarity between two faces built
upon a pretrained ArcFace [Deng et al. 2019a] face recognition
network R,

L𝑖𝑑 = 1 − 𝑐𝑜𝑠 (R(𝐼1),R(𝐼2)) (8)
We set 𝜆1 = 1.0, 𝜆2 = 0.8, 𝜆3 = 1.0, empirically.

Interpolation property: Fig. 10 provides an example of the interpo-
lation property of the imitator which enables relaxed optimization
over the discrete parameters.

Implementation: To train the imitator, we randomly generate
100,000 images and corresponding parameters. Note that although
random sampling leads to strange avatars, our imitator can generate
images matching the graphics engine well by seeing plenty of

https://arxiv.org/abs/2110.08398
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Figure 10: Interpolation of avatar vectors. The neural ren-
dering imitator which temporarily replaces the traditional
graphics engine is differentiable, allowing the relaxation of
the strict constraint on discrete types. Linear interpolation
between two avatar vectors results in the gradual disappear-
ance of the beard and the gradual growth of the hair.

samples in the parameter space. Please refer to our supplementary
video for a side-by-side comparison.

We train StyleGAN2 using the official source code5 with images
of size 256 × 256 × 3, thus the latent code 𝑤+ has a shape of
14 × 512. We build the encoder E𝑖 with 14 individual small MLPs,
each is responsible for mapping from the input vector to one latent
style. Given the pretrained generator, we train the encoder and
simultaneously finetune the generator with Adam [Kingma and Ba
2015]. We set the initial learning as 0.01 and decay it by 0.5 each two
epochs. In our experiments, it takes around 20 epochs to converge.

B.2 Mapper
We use CelebA-HQ [Lee et al. 2020] and FFHQ [Karras et al. 2019]
as our training data. To collect a high quality dataset for training,
we use the Azure Face API 6 to analyze the facial attributes and
keep only facial images that meet our requirements:

1) within a limited pose range (𝑦𝑎𝑤 < 8◦, 𝑝𝑖𝑡𝑐ℎ < 8◦, 𝑟𝑜𝑙𝑙 < 5◦)
2) without headwears
3) without extreme expressions
4) without any occlusions

Finally, we collect 21,522 images in total for mapper training.
The input is an 18 × 512 latent code taken from the Stylization

module. Each one of the 18 layers latent code is passed to an indi-
vidual MLP. The output features are then concatenated together.
After that, we apply two MLP heads to generate continuous and
discrete parameters separately.

We apply a scaling before the softmax function for discrete pa-
rameters:

S(𝑥) = 𝑒𝛽𝑥𝑘

Σ𝑁
𝑖=1𝑒

𝛽𝑥𝑖
, 𝑘 = 1, ...𝑁 (9)

where 𝛽 > 1 is a coefficient that performs non-maximum suppres-
sion over some types that contribute less than the dominant ones,
and 𝑁 is the number of discrete types. During training, we gradu-
ally increase the coefficient 𝛽 to perform an easy-to-hard training
by decreasing the smoothness. Empirically, we increase 𝛽 by 1 for
each epoch. We train the mapper for 20 epochs.
5https://github.com/NVlabs/stylegan2-ada-pytorch
6https://azure.microsoft.com/en-us/services/cognitive-services/face
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