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Fig. 1. FDNeRF, a NeRF-based method for 3D face reconstruction with only few-shot dynamic input frames (e.g., 3 frames), enable novel view synthesis,
expression editing, and video-driven reenactment tasks. Input images are from the VoxCeleb dataset [Nagrani et al. 2017].

We propose a Few-shot Dynamic Neural Radiance Field (FDNeRF), the first
NeRF-based method capable of reconstruction and expression editing of
3D faces based on a small number of dynamic images. Unlike existing dy-
namic NeRFs that require dense images as input and can only be modeled
for a single identity, our method enables face reconstruction across differ-
ent persons with few-shot inputs. Compared to state-of-the-art few-shot
NeRFs designed for modeling static scenes, the proposed FDNeRF accepts
view-inconsistent dynamic inputs and supports arbitrary facial expression
editing, i.e., producing faces with novel expressions beyond the input ones.
To handle the inconsistencies between dynamic inputs, we introduce a well-
designed conditional feature warping (CFW) module to perform expression
conditioned warping in 2D feature space, which is also identity adaptive and
3D constrained. As a result, features of different expressions are transformed
into the target ones. We then construct a radiance field based on these
view-consistent features and use volumetric rendering to synthesize novel
views of the modeled faces. Extensive experiments with quantitative and
qualitative evaluation demonstrate that our method outperforms existing
dynamic and few-shot NeRFs on both 3D face reconstruction and expression
editing tasks. Code is available at https://github.com/FDNeRF/FDNeRF.

Additional Key Words and Phrases: 3D face reconstruction, expression edit-
ing, NeRF, few-shot and dynamic modeling

1 INTRODUCTION

Reconstructing and editing a human face from a small number of
frames in a monocular video is a highly challenging problem in
the field of computer vision and computer graphics [Hong et al.
2022; Sun et al. 2022a,b]. Unlike reconstructing a rigid object, a
faithful reconstruction of a dynamic human face is difficult because
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of complex geometry and appearance variations brought by rich
expressions. Moreover, it is even more challenging to capture consis-
tent multi-view frames from a monocular camera for reconstruction,
which usually relies on dense synchronized cameras [Gotardo et al.
2018; Tewari et al. 2019; Yang et al. 2020; Zhang et al. 2022].

To simplify the face reconstruction, Blanz and Vetter [1999] pro-
poses to represent the human face with a parametric 3D Morphable
Model (3DMM), which decomposes the face attributes into low-
dimensional vectors. These vectors can be used to reconstruct 3D
textured face mesh using corresponding blend shapes. Based on this
model, some methods [Deng et al. 2019; Gecer et al. 2019; Ploumpis
et al. 2020] are able to reconstruct 3D facial meshes from single or
few-shot images, which facilitates free-view synthesis and expres-
sion editing. However, due to the inaccurate mesh model and the
limited representation ability of the low-dimensional parameters,
these methods struggle to capture fine-scale details of the human
face in input images, such as beards and hairs.

Recently, Neural Radiance Field (NeRF) [Mildenhall et al. 2020],
which implicitly models the geometries and appearances of static 3D
scenes as multilayer perceptrons (MLPs), has attracted widespread
attention due to its impressive free-view results in photo-realistic
rendering. To extend it to dynamic scenes, some dynamic NeRFs [Ma
et al. 2022; Park et al. 2021a; Pumarola et al. 2021] introduce a de-
formation field to handle the inconsistency among different frames.
They can be applied to reconstruct a face in a monocular video with
different expressions but require hundreds or thousands of input
frames for training, which somehow limits practical usage. On the
other hand, some few-shot NeRFs [Gao et al. 2020; Hong et al. 2022;
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Raj et al. 2021] explore how to produce a generalized model that
can be used to reconstruct a 3D face with only single or multi-view
images. However, they require view-consistent input and cannot
handle dynamic frames from a monocular video.

To address the challenges of modeling 3D faces with NeRFs based
on few-shot dynamic frames, one possible solution is to combine
the best of dynamic NeRFs and few-shot NeRFs by integrating the
deformation field into an existing few-shot NeRF such as PixeINeRF
[Yu et al. 2021]. However, training this 3D deformation field for
human faces usually relies on a large number of images with differ-
ent expressions. Moreover, the deformation fields varying across
different persons, even for the same expression, impose additional
challenges. Therefore, it is a severe ill-posed problem to learn a 3D
deformation field conditioned on expressions and adapted to differ-
ent identities, with only a small number of dynamic frames as input.
To solve this problem, unlike previous dynamic NeRFs performing
the 3D deformation, we propose a 2D deformation strategy in the
deep feature space with 3D constraints, which is easier to be learned
with few-shot frames.

In this paper, we propose a Few-shot Dynamic NeRF (FDNeRF),
the first framework to reconstruct and edit 3D faces based on a
small number of dynamic frames extracted from a monocular video.
Our FDNeRF employs a novel Conditional Feature Warping (CFW)
module with 3D constraints to handle the inconsistencies between
dynamic frames by warping source expressions to the target one
in the 2D feature space. Then, a reconstruction module is adopted
to predict the color and density of spatial points in the radiance
field based on the warped feature spaces. Finally, the volumetric
rendering is used to render the results with the desired expression.
Compared to the 3D deformation field adopted in many dynamic
NeRFs [Park et al. 2021a,b; Pumarola et al. 2021; Tretschk et al.
2021], our CFW module implemented in the 2D feature space of-
fers two-fold advantages. First, a 2D warping with a lower degree
of freedom makes it more friendly to few-shot inputs than a 3D
deformation. Second, different from the previous 3D deformation
field defined on spatial positions, our 2D warping field defined on
whole-image features enables it to better distinguish individuals
and thus produce adaptive warping fields for different identities.
Moreover, unlike conventional image warping, our feature warping
of different frames is constrained by the 3D radiance field, mak-
ing the 2D warping view consistent. Benefiting from the capability
of the CFW module, FDNeRF can not only reconstruct 3D faces
from a small number of dynamic frames but also enable editing
of facial expressions and rendering of novel views. Extensive ex-
periments demonstrate our superiority over existing methods both
qualitatively and quantitatively.

In summary, the main contributions of this work are:

e We propose FDNEeRF, the first neural radiance field to recon-
struct 3D faces from few-shot dynamic frames.

e We introduce the novel CFW module to perform expression
conditioned warping in 2D feature space, which is also iden-
tity adaptive and 3D constrained.

e Our FDNEeRF supports free edits of facial expressions, and
enables video-driven 3D reenactment.
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2 RELATED WORK

Compared with earlier methods that represent 3D faces as paramet-
ric textured mesh models [Deng et al. 2019], implicit representation
methods have recently received increasing attention for their impres-
sive rendering quality on free-view synthesis [Lombardi et al. 2019;
Or-El et al. 2022]. Notably, NeRF [Mildenhall et al. 2020] employs
MLP to learn the radiance field of a 3D scene and uses volumetric
rendering to visualize the scene. Subsequently, a number of follow-
ing works are proposed to extend NeRF to different scenarios, which
include dynamic NeRFs aimed at alleviating the static input con-
straint of NeRF, and few-shot works aimed at alleviating the dense
input constraint of NeRF. Since our FDNeRF focuses on modeling
3D faces from few-shot dynamic inputs, it is closely related to recent
work on dynamic NeRFs and few-shot NeRFs. To clearly distinguish
FDNEeRF from these methods, we discuss them below.

2.1 Dynamic NeRFs

The vanilla NeRF assumes that the modeled scene is static and can-
not reconstruct dynamic scenes from a set of frames. To solve this
problem, methods like NeRFlow [Du et al. 2021], NSFF [Li et al.
2021], and DynNeRF[Gao et al. 2021] focus on time-varying scenes
and learn 3D scene flow between two neighboring frames. Video-
NeRF [Xian et al. 2021] learns a spatiotemporal irradiance field
conditioned on time for dynamic scenes. However, these methods
are inappropriate for reconstructing dynamic faces from arbitrary
unordered inputs since they rely on time-dependent information
for reconstruction. Hybrid-NeRF [Wang et al. 2021] introduces an
additional discrete 3D-structure-aware grid of animation codes to en-
code dynamical properties of scenes. However, it requires multi-view
videos as input and cannot be applied to monocular video-based
reconstruction. AD-NeRF [Guo et al. 2021] and NeRFace [Gafni et al.
2021] form dynamic radiance fields by directly conditioning NeRF
with tracked audio features or facial expressions to handle varia-
tions between different frames. Although they can achieve dynamic
face modeling, they require many more frames (nearly 5k frames)
than vanilla NeRF to incorporate audio or expression conditions.
By contrast, D-NeRF [Pumarola et al. 2021], NR-NeRF [Tretschk
et al. 2021] and Nerfies [Park et al. 2021a] propose a deformation
field conditioned on spatial points and frame-related latent codes.
The introduction of a 3D deformation field reduces the training
difficulty of the model to a certain extent. Still, they require hun-
dreds of frames as input to fitting a dynamic scene. Furthermore,
HyperNeRF [Park et al. 2021b] adds an ambient slicing network
to enhance the performance of Nerfies in the cases of topological
changes. Although Nerfies and HyperNeRF can successfully inter-
polate expressions between frames, they cannot be edited to desired
expressions out of the input domain. Besides, the requirement of
dense input frames for these methods still greatly limits the training
speed and practical usage. Unlike previous dynamic NeRFs, our
FDNEeRF allows dynamic 3D face reconstruction with only few-shot
frames.

2.2 Few-shot NeRFs

Simultaneously, there is another line of work that focuses on the 3D
reconstruction of static scenes from a small number of input images.
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Fig. 2. Overview of our FDNeRF. Given few-shot dynamic images, face tracking is implemented to estimate relevant expression parameters §;, camera poses
P, and intrinsic matrix K in the preprocessing stage. In the CFW module, we employ feature encoding network f; to extract a deep feature volume F; for each

image I;, and semantic mapping network f,, to generate a motion descriptor w; based on source and target expression parameters. The descriptor is then

used to guide the conditional warping network f,, to produce warped feature volumes F;. During reconstruction, we project the query point x to each image
plane and extract aligned feature vectors ;. These vectors, along with the position and direction of the point, are fed into NeRF network to infer color and
density. Finally, volumetric rendering is performed to synthesize novel view images. Input images are from the VoxCeleb dataset [Nagrani et al. 2017].

For example, Portrait-NeRF [Gao et al. 2020] pretrains a canonical
facial NeRF over a set of multi-view face datasets, and reconstructs
a 3D face by finetuning the pretrained model on a specific facial
image. HeadNeRF [Hong et al. 2022] and MofaNeRF [Zhuang et al.
2021] propose parametric NeRF models conditioned on the 3DMM
parameters extracted from input images. Although they enable ex-
pression editing by adjusting the associated 3DMM parameters,
they cannot recover some facial details in the original frames due
to the limited representation of low-dimensional parameters. On
the other hand, some few-shot methods condition NeRF on image
or feature inputs to learn a scene prior for a sparse set of inputs,
like PixelNeRF [Yu et al. 2021], PVA [Raj et al. 2021], and MVSNeRF
[Chen et al. 2021]. Here, PixelNeRF and PVA construct radiance
fields by using the implicit spatial information in the features of
sparse inputs. MVSNeRF employs earlier multi-view stereo methods
to produce a geometry-aware feature volume, and deduces radiance
fields of target scenes based on the sampled features from this vol-
ume. Although these methods allow reconstructing photorealistic
3D scenes from a few static view-consistent images, they cannot
handle the dynamic cases. By contrast, our FDNeRF combines the
best of both dynamic NeRFs and few-shot NeRFs and thus enables
model 3D faces from few-shot dynamic frames.

3 METHOD

Our method enables 3D face reconstruction and expression editing
based on few-shot dynamic frames (e.g., 3 frames). To this end,
we propose FDNeRF, a NeRF-based dynamic face reconstruction
framework, to handle inconsistencies among different frames.

3.1 Overview

Unlike the previous NeRF-based methods designed for dynamic
scenes with dense frames, which require complex optimization for
a single scene, our method tries to infer the arbitrary dynamic 3D
faces using several inputs only. To accomplish this, the input frames
with different facial expressions are first aligned in their 2D feature
spaces via a conditional feature warping (CFW) module to elimi-
nate the inconsistency of expressions (Sec. 3.2). Instead of deducing
neural radiance fields based solely on positional and directional in-
formation of spatial query points like NeRF, we construct radiance
fields directly from the aligned features of all input views, which
allows us to infer the color and density of query points across identi-
ties from the radiance field (Sec. 3.3). The derived density and color
along the camera rays are subsequently employed for volumetric
rendering to render the final frame under novel views (Sec. 3.4). The
optimization procedure is lastly introduced (Sec. 3.5).

3.2 3D Constrained Conditional Warping

Given few-shot dynamic frames captured from a monocular video
of a talking human head, it is hard to reconstruct the 3D face by
directly using previous few-shot NeRFs designed for static scenes
due to the inconsistency of facial expression among different frames.
To solve this issue, one potential strategy is to optimize a deforma-
tion field to achieve 3D warping between observation and canonical
spaces like existing dynamic NeRFs [Park et al. 2021a,b]. Nonethe-
less, the high freedom of 3D deformation requires abundant inputs
of a specific person for training, which limits the construction of
deformation fields across identities with few-shot inputs. Another
naive strategy is to warp the facial expression of each frame into
the same one at the image level by using existing 2D expression
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warping methods [Meshry et al. 2021; Ren et al. 2021]. However,
without 3D constraints, the per-frame warped images lack view
consistency, which would critically tamper with the following 3D
reconstruction.

To avoid the inconsistency of facial details among warped frames,
we design a 2D feature warping module conditioned on expression
and at the same time constrained by the 3D geometry. As shown in
Fig. 2, the conditioned feature warping (CFW) module consists of
three sub-networks: a ResNet-like feature encoding network fe, a
semantic mapping network fr,, and a conditional warping network
fw- More specifically, the encoding network f, is employed to get a
deep feature volume F; for each input frame I;, which encodes the
identity and expression information in ;.

Fi = fe (Ii), 1)

where F; is composed of feature maps extracted from the first four
layers of f.

Semantic conditions to guide the warping of feature volume F;
are extracted by the semantic mapping network f;,;. Specifically,
we first leverage off-the-shelf face tracking method [Thies et al.
2016] to estimate the expression parameters §, face pose P, and
intrinsic matrix K for each input frames. Subsequently, fp, transfers
the original parameters into latent codes fi, (8;) and fi, (8¢4r) for
extracting more discriminative representations to achieve a fine-
grained guidance in the warping network. Here, the target semantic
indicates the desired expression in reconstructed face model. For
each unaligned frame, we concatenate its latent code f;, (§;) with
the target expression code f, (8¢qr) to form the high-dimensional
motion descriptor w; to guide the warping network:

©i = fm (1) © fm (8tar) - @

We implement the conditional warping network f,, with an
encoder-decoder like architecture. To more adequately guide the
warping network, we inject the motion descriptor w; into all convo-
lutional layers of f,, by the adaptive instance normalization (AdaIN)
operator. More specifically, a light-weight mapping network will
transfer the motion descriptor w; into affine parameters y®? and
P respectively. The intermediate feature z of each convolutional
layer is modulated as follows:

AdalN(z; w;) = y** (2_—”(2)) + B, (3)
o(2)

where p(-) and o(-) calculate the average and variance statistics
regarding z. Based on the feature volume F; and the descriptor
wj, the warping network f,, will estimate a deformation flow field,
which indicates the coordinate offsets between the input feature
volume F; and the desired target feature volume F;. Ultimately we
obtain the aligned feature volumes through bilinear interpolation
sampling:

Fi = Sample (F;, fw (Fi, 1)) , 4
where f,, (Fi, w;) indicates the deformation flow field estimated
by the warping network, Sample (a, b) represents the interpolated
sampling operation on a according to the flow field b.

It is noteworthy that although the warping fields are established in
individual frames, they are actually constrained by the 3D geometry
represented in the jointly trained neural radiance field, which would
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effectively enhance the consistency of warping across different
views. We will introduce more details about the radiance fields in
the following section.

3.3 Radiance Field Reconstruction

To reconstruct the 3D face with desired expression from the target
feature volumes F, we adopt a framework similar to [Yu et al. 2021]
as our reconstruction module to deduce the color and density of
each spacial point, and then use volumetric rendering to produce
the final geometry and appearance.

Specifically, we first cast camera rays through each pixel of the
target view and sample N points along each ray for volumetric
rendering [Mildenhall et al. 2020]. Then, we project each sampled
point p on the rays to each frame coordinate using known intrinsic
matrix K and corresponding pose P;, and extract the associated
aligned feature vectors v; from the target feature volumes F; via
bilinear interpolation.

vi =H(Fi,K-Pi_1 i) )

where I represents the extraction procedure, and K - Pl._1 - X in-
dicates the coordinate on the i-th frame plane. Note that, X is the
homogeneous coordinate of the point p.

The feature vectors, as well as the position x and direction d of
the query point p, are fed into the reconstruction module to estimate
the color ¢ and density o values:

(¢,0) = fo (y(d),G(y(x),v1,...,vm)), (6)

where y(+) is the positional encoding introduced by [Mildenhall et al.
2020] that maps the input into a higher dimensional Fourier space,
and G(-) is the averaging function formed by a neural network to
gather all available information. M indicates the number of input
frames, which is not fixed and can be set flexibly by the user. Note
that, to eliminate the geometric discrepancy between views, we do
not feed the direction component y(d) at the beginning of the NeRF
network like [Yu et al. 2021] to affect the density-related parameters.
Instead, we input it into the last several layers to adjust color-related
parameters only.

3.4 Volumetric Rendering

Since our reconstruction module acts as a radiance field, we employ
volumetric rendering to visualize the geometry and appearance of
the implicit 3D face in a desired view. Like previous NeRF works,
the expected color C of each pixel in the rendered image can be
calculated by accumulating the estimated color ¢ and density o of
all sampled points along the camera ray r:

. iy
&) = /t T(t) - o (x(1)) - ¢ (x().d) db, ™)

where r(t) = o + td indicates the point positions of the ray from
camera center 0. i and ¢y are near and far bounds of the ray, respec-

tively. T(t) = exp (— ftt o (r(s)) ds) is the accumulated transmit-
tance along the ray. Here, a hierarchical sampling strategy similar

to [Mildenhall et al. 2020] is adopted for efficient rendering in prac-
tice. Specifically, there are two NeRF network for coarse and fine
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Fig. 3. Visual comparison of reconstructed 3D faces produced by baseline methods and ours. Input images are from the VoxCeleb dataset [Nagrani et al. 2017].

reconstructions. The densities estimated by the coarse one are used
for important sampling of query points in the fine one.

3.5 Optimization

We jointly optimize the network weights of our CFW module and
reconstruction module based on the photometric reconstruction
loss:

o 3 e o
reR(P)

where R(P) indicates the set of camera rays in pose P and C(r)
represents the pixel color in the target image. During optimization,
we randomly select M frames from one of the training videos as
input frames and one frame from the rest frames as the target. Then,
the expression parameters of input and target frames are used to
guide the feature warping process in the CFW module. Note that,
to adapt our model to the modeling of flexible input frames, we
randomly set M in the range of 1 to 12 at each optimization iteration.
Besides, in order to make the optimization converge effectively, we
initialize the feature encoding network in our CFW module with the
weights of ImageNet pre-trained ResNet34. Apart from that, other
networks in our framework are trained from scratch.

4 EXPERIMENTS

In this section, we first give the implementation details, baselines,
and metrics of our work (Sec. 4.1 and Sec. 4.2), and then we com-
pare our method with state-of-the-art NeRF-based methods for 3D
face reconstruction and expression editing (Sec. 4.3 and Sec. 4.4).
Furthermore, we extend our method to implement video-driven
3D reenactment task (Sec. 4.5). For more experiments and ablation
studies please refer to the supplementary material.

4.1 Implementation Details

We leverage Pytorch framework [Paszke et al. 2019] to implement
FDNeRF and use Adam [Kingma and Ba 2014] optimizer with default
hyperparameters and a learning rate of 0.0001 to update network
parameters. Our training data involves 213 talking videos which
are selected from the VoxCeleb dataset [Nagrani et al. 2017]. To
process these videos, we adopt the monocular face tracking method
[Thies et al. 2016] to estimate the expression semantic, face pose,
and intrinsic matrix for each frame. Here, the estimated face pose is
used as the camera pose of the image in our implementation.

4.2 Setup

Baseline methods. For 3D face reconstruction and free-view syn-
thesis, we compare with the vanilla NeRF [Mildenhall et al. 2020],
two dynamic NeRFs (NeRFace [Gafni et al. 2021] and HyperNeRF
[Park et al. 2021b]), and two few-shot NeRFs (MoFaNeRF [Zhuang
et al. 2021] and PixelNeRF [Yu et al. 2021]). Here, NeRFace and Hy-
perNeRF are two methods for modeling dynamic scenes with dense
inputs, while MoFaNeRF and PixelNeRF are designed for few-shot
modeling of static scenes. We do not compare to PVA [Raj et al. 2021]
(a few-shot NeRF for face modeling) as their code is unavailable.
Instead, we compare with PixelNeRF, which has a similar framework
and performance to PVA.

Evaluation metrics. For the quantitative comparisons, we employ
peak-signal-to-noise ratio (PSNR), structural similarity index mea-
sure (SSIM) [Wang et al. 2004], and learned perceptual image patch
similarity (LPIPS) [Zhang et al. 2018] to evaluate the visual qual-
ity of rendered frames. We do not involve the quantitative scores
of MoFaNeRF, considering the rendered 3D faces of MoFaNeRF
significantly differ from the video frames.
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Table 1. Quantitative evaluation.

Methods NeRF NeRF3g NeRFace NeRFace3p HyperNeRF HyperNeRF3g PixelNeRF FDNeRF
PSNR 7 17.368  21.963 13.212 19.454 10.422 13.521 24.149 24.847
SSIM T 0.537 0.704 0.281 0.585 0.252 0.432 0.792 0.821
LPIPS | 0.320 0.167 0.566 0.307 0.687 0.501 0.190 0.142

Neutral

Smile

Eye-
closed

Mouth-
opened

Lip-
funneler

NeRFace;y MoFaNeRF Ours

Fig. 4. Comparison on expression editing. Input images are from the VoxCeleb dataset [Nagrani et al. 2017].

4.3 Reconstruction and Novel View Synthesis

We first evaluate our FDNeRF and baseline methods on the task of
3D face reconstruction and novel view synthesis based on few-shot
dynamic frames. Specifically, only three dynamic frames extracted
from a monocular talking video are used for 3D face modeling. Then,
three novel views (frontal, left and right sides) with facial expression
same as the first input frame are synthesized (if suitable). Moreover,
since NeRF, NeRFace, and HyperNeRF require dense input views
for 3D modeling, we add additional 27 frames uniformly extracted
from the video to improve their performance and denote them as
NeRF3(, NeRFacesp, and HyperNeRFsq, respectively.

As shown in Fig. 3 and Table 1, compared to these baselines,
our FDNeRF achieves more realistic 3D face reconstruction with
view-consistent facial expressions. Specifically, NeRF with three
dynamic frames as input fails to produce clear 3D faces. With more
inputs, NeRF3( enables inference of rough facial contours but cannot
capture the misaligned facial details since NeRF is proposed for
modeling static scenes. Compared to the vanilla NeRF, NeRFace and
HyperNeRF are more sensitive to the number of input frames due to
their complex designs for dynamic modeling. They cannot estimate
reasonable 3D facial structures with only three dynamic frames since
they require abundant inputs to generalize the facial expression
space or the 3D deformation field. Even if we try to increase the
input frames as in NeRFace3p and HyperNeRF3(, such collapse
still happens. PixelNeRF produces more plausible 3D faces than the
previous methods. Nonetheless, as it is designed to reconstruct static
scenes, PixelNeRF fails to distinguish the expression misalignment

between frames, resulting in blurred textures and inaccurate facial
expressions. For MoFaNeRF, we observe that it strongly overfits
the property of training data in terms of occlusion, lighting, and
facial shapes, which could not generalize to the video data well.
By contrast, with the well-designed CFW module, our FDNeRF
eliminates inconsistencies among input frames and reconstructs 3D
faces with the desired expression and realistic facial details.

4.4 Expression Editing

Thanks to the well-designed CFW module, our FDNeRF enables
editing 3D faces to novel expressions beyond those in input frames.
Since most NeRF-based methods cannot accomplish the expression
editing task, we only compare with NeRFace and MoFaNeRF in
this section. Both approaches are conditioned on explicit 3DMM
expression semantics and theoretically support expression editing of
3D faces. Considering that NeRFace fails to reconstruct a basic facial
contour based on three dynamic frames, we adopt faces generated
by NeRFacesg on the editing task. As shown in Fig. 4, we use five
specific expressions as the target to drive the 3D faces. NeRFace
fails to perform expression editing since it cannot to generalize the
facial expression space and perceive expression changes without
enough input frames. Although MoFaNeRF fails to fit reasonable
3D faces, it allows editing facial expressions to a certain extent.
By contrast, our FDNeRF could faithfully edit the expression and
render realistic results based on both general priors learned from
the training stage and personal information extracted from three
input frames. As a result, our expression edit, like "mouth open" in
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Driven Frames

Fig. 5. Extension on video-driven reenactment. Input images are from the
VoxCeleb dataset [Nagrani et al. 2017].

Fig. 4, is not with the same deformation for all persons but adaptive
to different individuals.

4.5 Extension to Video-driven Reenactment.

Since our FDNeRF supports expression editing, it could be applied
to video-driven 3D reenactment by using the expression parameters
of a video sequence. However, in practice, we find that slight incon-
sistencies between the estimated parameters of adjacent frames may
cause the discontinuity artifacts in the reenactment results (shown
in Fig. 6), although the frame-to-frame tracking method [Thies et al.
2016] can reduce the temporal jitter to some extent. To alleviate this
issue, we modify the semantic mapping network to receive a set of
parameters instead of a per-frame one to output a latent code. With
this modification, we input parameters of a window with continu-
ous frames as the target expression semantic, where the parameter
window is set to the forward and backward L frames centered on
the target frame. L is set to 13 in our video-driven experiments. The
effectiveness of the parameter window is shown in Fig. 6, and Fig. 5
gives more reenactment results driven by a video of the same person
or a different person.

5 CONCLUSION

In this paper, we propose the FDNeRF for 3D face reconstruction
and expression editing based on a small number of dynamic frames
extracted from a talking head video. We design the expression-
conditioned feature warping module to eliminate inconsistencies
between dynamic frames and a radiance field reconstruction mod-
ule to perform accurate 3D reconstruction with aligned features.
Consisting of these well-designed modules, the proposed FDNeRF
demonstrates superior performance on novel view synthesis and
arbitrary expression editing tasks. We further extend the FDNeRF

Conference Name, Conference Date and Year, Conference Location

FDNeRF w/ window

Fig. 6. Effectiveness of parameter window. Input images are from the Vox-
Celeb dataset. [Nagrani et al. 2017].

with a window-based strategy for temporal coherent video-driven
reenactment.

Limitation. Although our FDNeRF can effectively handle the ex-
pression inconsistencies between input frames and reconstruct real-
istic 3D faces, there are still some limitations. For example, incon-
sistencies in the non-face region (e.g., hair and torso), which are
not conditioned on expressions, will cause some blurriness in the
result, as shown in the third example of Fig. 4. It might be alleviated
by introducing separate warping fields for different parts, such as
a body warping field conditioned on skeleton pose [Su et al. 2021].
Besides, the lighting inconsistency among input frames may also
cause reconstruction to fail. To overcome this issue, a reflectance
field [Srinivasan et al. 2021] may be employed to decompose the illu-
mination and achieve relighting. We seek to solve these challenges
in the following works.

Potential Social Impact. Although not the purpose of this work,
our expression editing technology could be misused in some deep-
fake applications like fake talking video generation. The risk can
be effectively relieved by existing forgery detection methods like
[Wang et al. 2020; Zhao et al. 2021].
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FDNeRF: Few-shot Dynamic Neural Radiance Fields for Face
Reconstruction and Expression Editing (Supplementary Material)

1 OVERVIEW

In this supplemental material, we provide more details and addi-
tional experimental results of our method, including:

e Detailed network architectures (Section 2);

e Implementation details about data pre-processing, training,

and inference procedures (Section 3);

e Comparison with 2D reenactment methods (Section 4.1);

e Ablation study on different warping strategies (Section 4.2);

e Ablation study on the number of input frames (Section 4.3);

e Ablation study on semantic mapping network (Section 4.4);

e Ablation study on face tracking errors (Section 4.5).

2 NETWORK ARCHITECTURES

Our conditioned feature warping (CFW) module consists of three
sub-networks: a feature encoding network, a semantic mapping net-
work, and a conditional warping network. We omitted the network
details to keep the paper compact. Here, we introduce more details
about the architectures of these networks.

Feature encoding network. The encoding network is designed
with a ResNet34 backbone, as shown in Fig. 1. We extract feature
maps of the first four layers, upsample them to the same resolution
using bilinear interpolation, and concatenate them to form the 512-
dimension feature volume.
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Fig. 1. Structure of the feature encoding network, where the up arrow
indicates the upsampling process.

Semantic mapping network. As shown in Fig. 2(a), the mapping
network of our original FDNeRF is structured with a 3-layer MLP. To
achieve the video-driven reenactment task, we modify the mapping
network to receive a set of parameters (parameter window) instead
of a per-frame one to output the latent code, as shown in Fig. 2(b).
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Fig. 2. Structure of the semantic mapping network. Here L indicates the
dimension of the expression parameter, which is 85 in all our experiments.

Conditional warping network. As shown in Fig. 3, the warping
network is designed with an auto-encoder architecture similar to

[Ren et al. 2021], which takes the feature volume and motion de-
scriptor as input and estimates a flow field indicating the coordinate
offsets between the source and target feature volumes. According to
the output flow field, the warped feature volume can be calculated
by warping the source volume.
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Fig. 3. Structure of the conditional warping network.

Reconstruction network. As shown in Fig. 4, we adopt a NeRF
structure similar to PixelNeRF [Yu et al. 2021], which consists of
5 fully-connected ResNet blocks with a width of 512. To enable
arbitrary input numbers of views, we extract the feature vectors
{v1,..., vy} from each input view and feed them, along with the
encoded position y(x), into the first three blocks, respectively. Then,
we perform an average-pooling operation among all input views
after the third block and obtain an aggregated intermediate vector
for the remaining two blocks. Unlike PixelNeRF [Yu et al. 2021],
which feeds the view direction component y(d) at the beginning of
the network, we input it into the penultimate layer to eliminate the
geometric discrepancy between different views.
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Fig. 4. Structure of the reconstruction network.

3 IMPLEMENTATION DETAILS

Data pre-processing. We randomly select 213 talking videos from
the VoxCeleb dataset [Nagrani et al. 2017], and we find that this
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amount of data is sufficient to fit our model. Then, we follow the
pre-processing method described in [Siarohin et al. 2019] to crop
faces within a 256x256 bounding box. Following AD-NeRF [Guo
et al. 2021], we employ the face tracking method [Thies et al. 2016]
to estimate the expression semantic, corresponding face pose, and
intrinsic matrix for each frame of the cropped video. Here, the face
tracking method can be replaced by other similar methods like
Deep3DFace [Deng et al. 2019], 3DDFA [Guo et al. 2020], and pre-
processing method of MoFaNeRF [Zhuang et al. 2021]. Theoretically,
the more accurate the estimation of the expression parameters and
face poses, the better the performance of our method.

Training procedure. During the training stage, we first randomly
select one frame from one of the training videos as the target view,
then randomly select 1-12 frames from the remaining frames of
the same video as the input views. The corresponding expression
parameters and poses are fed into our framework to reconstruct
the 3D face model and produce the rendered view. The L2 loss
between the pixel colors of rendered and target views is employed
to update the networks’ weights, including the encoding, mapping,
warping, and reconstruction networks. For the positional encoding
used on the position and direction of each query point, we follow
the definition in NeRF [Mildenhall et al. 2020] and set the degrees of
position and direction to 6 and 4, respectively. Note that, there are
no parameters that need to be updated in the positional encoding
during the training procedure.

Inference procedure. To quantitatively evaluate the performance
of our method, we randomly select one frame as the target view from
one of the test videos and randomly select 1-12 frames as the input
views from the remaining video frames. Such a selection strategy
means that the facial information of the modeled object cannot
be guaranteed to be fully covered in the input frames, making the
uncovered viewpoints not well modeled. To model a complete 3D
face in practical applications, we propose that the input frames fully
cover the target face, i.e., the input frames should be captured from
different viewpoints.

4 EXPERIMENTS

In this section, we provide additional experimental results on video-
driven reenactment and ablation studies.

4.1 Comparison with 2D reenactment methods

To further illustrate the performance of our FDNeRF in video-driven
reenactment, we compare our method with two 2D reenactment
methods, i.e., LSR [Meshry et al. 2021] and PIRender [Ren et al.
2021]. As shown in Fig. 6, since 2D video-driven methods only
generate target frames from the 2D image domain, they lack con-
straints in 3D space, which makes these methods unable to ensure
the view consistency of the generated results, especially for the
large pose variations. In contrast, our FDNeRF is able to generate
view-consistent 3D faces with desired expressions, which makes our
reenactment results more realistic and visually harmonious than
2D methods.
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Fig. 6. Comparison with 2D reenactment methods. Images are from the
VoxCeleb dataset [Nagrani et al. 2017].

4.2 Ablation study on different warping strategies

As described in Sec.3.2 of the paper, in addition to our feature warp-
ing strategy, there are two potential warping strategies that can be
used to achieve alignment for dynamic input frames. One strategy
is to employ a 3D deformation field conditioned on expression pa-
rameters like previous dynamic NeRFs [Park et al. 2021a,b]. In this
3D-warp strategy, a 3D deformation network is employed to achieve
spatial warping between observation space and canonical space, as
shown in Fig. 5(c). Another strategy is similar to our feature warping
strategy, conducting 2D warping but at the image level, i.e., directly
warping the input frames instead of feature volumes, as shown in
Fig. 5(b).

To validate the effectiveness of our warping strategy used in the
conditioned feature warping (CFW) module, we conduct a compari-
son experiment by replacing the CFW module with the two above
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Fig. 7. Ablation study on warping strategy. Input images are from the
VoxCeleb dataset [Nagrani et al. 2017].

Table 1. Quantitative results of ablation study on different warping strate-
gies.

Methods PSNRT SSIM?T LPIPS |

FDNeRF(3D-warp) 21.505 0.706 0.266
FDNeRF(image-warp)  24.026  0.797 0.200
FDNeRF(original) 24.847  0.821 0.142

strategies, denoted as FDNeRF(3D-warp) and FDNeRF(image-warp),
respectively. We use the same data and optimization strategy as
our original FDNeRF to train and test these two models. They are
also jointly trained with the radiance field and thus under the 3D
geometry constraints. As shown in Fig. 7 and Table 1, the perfor-
mance of FDNeRF(3D-warp) is significantly lower than the other
two 2D warping strategies since the 3D deformation field with a
higher dimension is harder to learn and requires more input frames.
Moreover, without seeing the whole image, the 3D deformation field
defined on individual positions cannot handle identity differences.
Unlike FDNeRF (3D-warp), FDNeRF (image-warp) and the FDNeRF
learning 2D warping field for a whole image can converge effec-
tively. But, FDNeRF(image-warp) warping at the image level still
introduces artifacts like blurriness and inconsistency (see warped
images in Fig. 7) that cause the performance degradation. In contrast,
our 2D feature mapping is more robust to small warping errors and
generates much sharper results.

4.3 Ablation study on the number of input frames

To illustrate the robustness of our method on the number of input
frames, we report the variation curve of quantitative evaluation
results under different input frames in Fig. 8. With the increase
in the number of input frames, the performance of our method
gradually improves, and becomes saturated when it reaches around
nine frames because less information can be provided from addi-
tional views. Moreover, due to the random selection strategy of
the input frames during training and testing, the performance may
not be guaranteed to improve steadily as the views increase after
saturation, as shown in Fig. 8.

4.4  Ablation study on semantic mapping network

To illustrate the effectiveness of our semantic mapping network,
we conduct an experiment by removing the mapping network from
our framework and employing the original expression parameters
to guide the subsequent conditional warping network. As shown
in Fig. 10 and Table 2, FDNeRF with a mapping network achieves
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Table 2. Quantitative results of semantic mapping network.

Methods PSNRT SSIMT LPIPS |

FDNeRF w/o mapping network  24.743  0.811 0.180
FDNeRF w/ mapping network ~ 24.847  0.821 0.142

w/ mapping network

Target Exp. w/o mapping network

Fig. 10. Ablation study on semantic mapping network. Images are from the
VoxCeleb dataset [Nagrani et al. 2017].

better performance than the one without a mapping network in both
qualitative and quantitative results. Actually, the mapping network
maps the original expression parameters into a higher dimensional
latent space, thus allowing more representational capacity in the
condition and leading to better warping results.

4.5 Ablation study on face tracking errors

To evaluate the robustness of our method to errors in face tracking
parameters, we add a% amplitude Gaussian noise to the tracking
parameters and test the performance of our method. We show the
variation curve of quantitative evaluation results under different
degrees of error in Fig. 9, where the value of a increases from 0 to 10.
Although the performance of our method degrades with the increase
of noise, this performance change caused by the error of the tracking
parameters is acceptable within a certain range, especially when
the error is less than 5% amplitude. In other words, the performance
of our method is robust to the face tracking error.
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