
Learning-based Inverse Rendering of Complex Indoor Scenes
with Differentiable Monte Carlo Raytracing

Jingsen Zhu
zhujingsen@zju.edu.cn

State Key Lab of CAD&CG,
Zhejiang University

China

Fujun Luan
fluan@adobe.com
Adobe Research

USA

Yuchi Huo∗
huo.yuchi.sc@gmail.com
State Key Lab of CAD&CG,

Zhejiang University
Zhejiang Lab

China

Zihao Lin
zihaolin@zju.edu.cn

State Key Lab of CAD&CG,
Zhejiang University

China

Zhihua Zhong
zhongzhihua@zju.edu.cn
State Key Lab of CAD&CG,

Zhejiang University
China

Dianbing Xi
db.xi@zju.edu.cn

State Key Lab of CAD&CG,
Zhejiang University

China

Jiaxiang Zheng
xuanfeng@qunhemail.com

KooLab, Manycore
China

Rui Tang
ati@qunhemail.com
KooLab, Manycore

China

Hujun Bao
bao@cad.zju.edu.cn

State Key Lab of CAD&CG,
Zhejiang University

China

Rui Wang∗
rwang@cad.zju.edu.cn

State Key Lab of CAD&CG,
Zhejiang University

China

Holistic inverse rendering Multiple complex object insertion Material editing
Input Material Depth Normal Albedo

Figure 1: We present a learning-based approach for inverse rendering of complex indoor scenes with differentiable Monte

Carlo raytracing. Our method takes a single indoor scene RGB image as input and automatically infers its underlying surface

reflectance (represented by microfacet GGX), geometry, and spatially-varying illumination (first column). Consequently, this

enables us to perform photorealistic editing of the scene, such as inserting multiple complex virtual objects (second column,

note that the inserted models are highly glossy) and editing surface materials faithfully with global illumination (last two

columns, note that the wall is modified to a mirror that correctly presents specular reflections of the kitchen, and the glossy

cooktop is modified to Lambertian appearance).

ABSTRACT

Indoor scenes typically exhibit complex, spatially-varying appear-
ance from global illumination, making inverse rendering a challeng-
ing ill-posed problem. This work presents an end-to-end, learning-
based inverse rendering framework incorporating differentiable
Monte Carlo raytracing with importance sampling. The framework
takes a single image as input to jointly recover the underlying
geometry, spatially-varying lighting, and photorealistic materials.
Specifically, we introduce a physically-based differentiable render-
ing layer with screen-space ray tracing, resulting in more realistic
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specular reflections that match the input photo. In addition, we
create a large-scale, photorealistic indoor scene dataset with sig-
nificantly richer details like complex furniture and dedicated deco-
rations. Further, we design a novel out-of-view lighting network
with uncertainty-aware refinement leveraging hypernetwork-based
neural radiance fields to predict lighting outside the view of the
input photo. Through extensive evaluations on common bench-
mark datasets, we demonstrate superior inverse rendering quality
of our method compared to state-of-the-art baselines, enabling var-
ious applications such as complex object insertion and material
editing with high fidelity. Code and data will be made available at
https://jingsenzhu.github.io/invrend.

CCS CONCEPTS

• Computing methodologies→ Rendering; Ray tracing.
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1 INTRODUCTION

Inverse rendering of complex indoor scenes has been a long-standing
challenge in computer graphics and vision. Given a single real-
world image, global illumination effects such as shadows, specular
highlights, and glossy interreflections are baked into the observed
pixel values, imposing a particularly difficult task of simultane-
ously recovering the underlying scene geometry, spatially-varying
surface reflectance, and arbitrary unknown illumination. Tradi-
tional optimization-based approaches rely on dedicatedly designed
regularization and hand-crafted priors to tackle this problem. Un-
fortunately, such methods often fail in real-world scenarios due
to overly simplified assumptions, leading to noticeable artifacts in
both the decomposition and re-rendered results.

On the other hand, recent advances in inverse rendering [Li et al.
2020; Srinivasan et al. 2020; Wang et al. 2021b] leveraging deep
learning methods have demonstrated impressive results on such
scene inference tasks, where the underlying physical priors are
supposed to be learnt automatically through an offline, supervised
training process, typically on a large-scale, synthetic or labeled
real training dataset of complex indoor scenes. Note that, it is ex-
tremely difficult, if not impossible, to generate ground truth labels
of spatially-varying illumination and materials of an arbitrary real-
world scene, and hence one crucial keypoint to the success of such
methods is the fidelity and photorealism of the synthetic train-
ing data. Another essential factor strongly influencing the infer-
ence accuracy is the network structure design. Intuitively speaking,
since inverse rendering is inverting the physical light transport,
a physically-based differentiable rendering layer regularizing the
parameter space can act as a meaningful prior, improving the ro-
bustness and generalization capability of the neural network re-
garding material and lighting decomposition, and thus also the
geometry estimation in return. Consequently, the performance of
these learning-based inverse rendering methods heavily depends
on: 1) the quality of the training datasets, and 2) the design of the
neural network architecture.

To address the aforementioned challenges, we propose a novel
Monte Carlo differentiable rendering layer with importance sam-
pling to faithfully simulate the physical light transport of an indoor
scene. Experiments show that this is especially helpful in restoring
the specular reflections of a given scene, and our method produces
much more realistic re-rendered results comparing previous base-
lines. Unlike previous work that directly uses the local feature at a
ray-surface intersection point, our approach importance samples
the local incident radiance field of it via screen space ray tracing
(SSRT) and uncertainty-aware, hypernetwork-based out-of-view
lighting estimation. To facilitate training, we introduce a large-scale
(∼4000) complex indoor scene dataset, InteriorVerse. As far as we

know, our dataset contains the highest quality with rich details com-
pared to existing indoor scene datasets (e.g., OpenRooms [Li et al.
2021] or SUNCG [Song et al. 2017]), including complex furniture
and dedicated decorations procedurally designed by professional
digital artists, rendered with physically-based GGX model [Walter
et al. 2007] using a modern GPU-based path tracing engine.

Concretely, our contributions include:
• A learning-based monocular inverse rendering framework of
complex indoor scenes that recovers albedo, surface normal,
depth, metallic, and roughness from a single indoor scene
image.

• A novel Monte Carlo differentiable rendering layer with
importance sampling, which correctly estimates the local
incident radiance field using screen space ray tracing.

• An uncertainty-aware out-of-view light network leveraging
hypernetwork-based neural radiance fields for robust out-
of-view lighting estimation.

• A high-quality, large-scale complex indoor scene dataset,
InteriorVerse, that contains rich details with high fidelity.

2 RELATEDWORK

Inverse Rendering of Indoor Scenes. Inverse rendering attempts to
reconstruct geometry and spatially-varying material and lighting
information from monocular (which is our case) or multiple RGB
images. Most previous methods only recognize one or part of the
above attributes. Geometry reconstructions, including depth esti-
mation and surface normal reconstruction, has been widely studied
[Eigen and Fergus 2015; Liu et al. 2019]. Most material reconstruc-
tion methods are only able to either estimate diffuse albedo [Barron
and Malik 2013; Karsch et al. 2014; Li and Snavely 2018] or clas-
sify material categories [Bell et al. 2015]. For lighting estimation,
recent deep learning methods have made progress in estimating
global [Gardner et al. 2019, 2017] and even spatially-varying [Garon
et al. 2019; Li et al. 2020; Song and Funkhouser 2019] lighting con-
ditions. Recent works attempt to predict multiple intrinsics jointly
by a holistic inverse rendering framework. Li et al. [2020] proposed
a method to reconstruct disentangled geometry, spatially-varying
reflectance and lighting from a single RGB indoor scene image.

Lighting Estimation and Relighting. Light estimation is one of
the sub-tasks of inverse rendering. Most previous works ignore
spatially-varying effects and predict a single environment map
for the whole scene [Gardner et al. 2017; Munkberg et al. 2022;
Sengupta et al. 2019]. Indoor scenes suffer from spatial variations,
thus recent work explores spatially-varying lighting estimation for
indoor scenes. The representation of spatially-varying illumination
includes environment maps, per-pixel spherical lobes [Li et al. 2020]
(spherical Harmonics/Gaussians), or 3D voxel grids [Wang et al.
2021b]. Relighting is also a widely-studied relevant task. Griffiths
et al. [2022] leverages screen-space method to detect occlusion and
cast shadows to relight an outdoor image. Li et al. [2022] proposed
a novel pipeline to modify the light conditions within an indoor
scene.

Neural Scene Representations. Neural representations are a rapidly
growing area of research. Recent advances include voxels [Sun
et al. 2021; Yu et al. 2021a], hashgrids [Müller et al. 2022], point

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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clouds [Aliev et al. 2020], and neural implicit functions [Milden-
hall et al. 2020; Wang et al. 2021a; Yariv et al. 2021, 2020]. Neural
radiance fields (NeRFs) [Mildenhall et al. 2020] represents scenes
as neural implicit functions, encoding a scene as a continuous volu-
metric radiance field of color and density. With volume rendering,
a NeRF can synthesize novel view images with promising results.
Our proposed method uses a NeRF as the representation of the
out-of-view area of the scene (Sec. 4.3).

Differentiable Rendering. A number of recent inverse rendering
works utilize differentiable rendering to recover complex light trans-
port effects. Some recent works have proposed general-purpose
physically-based differentiable renderers [Li et al. 2018a; Nimier-
David et al. 2019]. Zhang et al. [2020] and Zeltner et al. [2021] dis-
cussed a rigurous theory of differentiable light transport andMonte-
Carlo combinations. These physically-based methods achieve high-
quality global illumination effects at the cost of substantial per-
formance overhead. Some differentiable rendering techniques are
customized for specific purpose such as texture [Nimier-David et al.
2021], split-sum lighting and mesh extraction [Munkberg et al.
2022]. Our method designs a Monte-Carlo based in-network differ-
entiable rendering layer to recover the appearance of indoor scenes
(Sec. 4.4).

Indoor Scene Datasets. Supervised learning requires a large data-
base of indoor scene images and their corresponding ground truth
geometry, material, and lighting for network training. Datasets in-
clude 3D shape models [Chang et al. 2015], real-world scans [Chang
et al. 2017; Dai et al. 2017], and scene datasets [Li et al. 2018b, 2021;
Savva et al. 2017; Song et al. 2017], which can be classified as either
real or synthetic data. Real datasets provide real-world images and
geometry, while synthetic datasets provide arbitrary scene annota-
tions for inverse rendering, some of which, such as materials and
illumination, are difficult to acquire from real world. To the best of
our knowledge, InteriorNet [Li et al. 2018b] and OpenRooms [Li
et al. 2021] are so far the highest-quality public indoor datasets
with spatially-varying photorealistic material and illumination an-
notations. Unfortunately, InteriorNet provides only LDR results,
while OpenRooms provides only lighting information on the scene
surface (instead of at any 3D location), and lacks the complexity of
material and furniture variations. We present a new indoor scene
HDR dataset to tackle their shortcomings.

3 INTERIORVERSE: A LARGE-SCALE,

PHOTOREALISTIC INDOOR SCENE

DATASET

A high-quality dataset is crucial for learning-based inverse render-
ing. It’s extremely difficult to acquire spatially-varying material
and lighting ground truth in real world complex indoor scenes.
Therefore, we render a synthetic dataset to supervise training. The
SUNCG dataset [Song et al. 2017] is a manually-created large-scale
dataset for indoor scenes, but they use non-physical Phong BRDF
and render with OpenGL, which severely limits its photorealism.
PBRS [Zhang et al. 2017] and CG-PBR [Sengupta et al. 2019] datasets
are rendered with physically-based renderers, but both still use
Phong BRDF and do not provide spatially-varying lighting ground
truth for an arbitrary 3D location. InteriorNet [Li et al. 2018b] is a

large-scale photorealistic indoor scene dataset providing multiple
camera views and panoramas, but the images they provide are LDR,
limiting the dynamic range of illumination. OpenRooms [Li et al.
2021] is by far the only HDR dataset with spatially-varying lighting
rendered using physically-based microfacet BRDF. However, as
shown in Fig. 2, it presents overly simplified furniture models and
layouts, insufficient material and lighting variations, leading to less
faithful appearance comparing to real world data consequently.

In this work, we create a new high-quality indoor scene dataset
called InteriorVerse, which has the following advantages in data
quality over existing alternatives: (1) the scene layouts of our dataset
have richer details, including complex furniture and decorations.
(2) Our dataset is rendered with GGX BRDF model [Walter et al.
2007], which has stronger material modeling capability than any
BRDFmodels that existing indoor scene datasets use. (3) Our dataset
provides not only pixel-wise surface environment maps, but also
contains environment maps located anywhere in the 3D scene
space. Fig. 2 compares some example scenes in our dataset and
OpenRooms, showing our dataset’s higher scene quality.

4 NETWORK DESIGN

Our inverse rendering framework takes a single image of indoor
scene as input and jointly predicts the spatially-varying material,
geometry and lighting of the scene, and can further re-render the
appearance of the input image. Fig. 3 overviews the architecture of
our framework, which consists of three parts: material-geometry
network (§4.1), lighting network (§4.2 and §4.3), and a differentiable
Monte-Carlo rendering layer (§4.4). Thematerial-geometry network
is an end-to-end convolutional network which directly predict the
reconstruction results. The lighting network LightNet is comprised
of three sub-parts: A Resnet34 encoder to produce local feature
map from the input image (like pixelNeRF [Yu et al. 2021b]), a
screen-space ray tracer to trace the source of the light, and a final
MLP decoder to predict the lighting radiance result. The rendering
layer takes G-Buffers and lighting as input, and uses Monte Carlo
raytracing to reproduce realistic rendering results.

OpenRooms [Li et al. 2021] InteriorVerse (ours)

Figure 2: Example dataset images fromOpenRooms [Li et al.

2021] (left) and our InteriorVerse dataset (right). Note

that our dataset contains more diversified geometry, ma-

terial (especially glossy and specular BRDFs) and complex

lighting conditions comparing OpenRooms. Zoom in for de-

tails.
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Figure 3: Overview of the pipeline. On the left, we show the workflow throughout our inverse rendering framework: (i) The

spatially-varying material and geometry maps are predicted by MGNet (ii) According to the predicted material, geometry and

view direction associated with each pixel point p, a BRDF importance sampling is performed to generate per-pixel incident

directions d𝑖 (iii) We use screen-space raytracing to trace the source point s of the query light. The corresponding local feature

vector is extracted from feature map 𝐹 via projection of point s. (iv) The feature is passed to LightNet along with light direction

and auxiliary G-Buffer information to predict the incident radiance 𝐿𝑖 (v) Monte-Carlo integration (Eq. 7) is used to calculate

the final re-rendered result. On the right, we show our out-of-view light estimation. We use a hypernetwork to predict the

weights of the NeRF MLP and volume render the background lighting.

4.1 Material and Geometry Network

The input to our material and geometry prediction networkMGNet
is a single high dynamic range image, which can be directly ob-
tained from our synthetic dataset. For real-world photos, we pre-
process them with an inverse gamma correction. We use a single
DenseNet121 [Huang et al. 2017] encoder to extract deep features
of the material and shape parameters of the scene with different
depth, as well as four separate decoders to obtain the final predicted
albedo (𝐴), material (𝑀), normal (𝑁 ), and depth (𝐷), where𝑀 con-
sists of two parts: roughness 𝑅 and metallic 𝑀𝑡 . While decoding
neural features of different depths, upsampling and skip links are
used to preserve multi-level details. Please refer to supplementary
material for the detailed architecture of MGNet.

4.2 Lighting Network

Wenowdescribe our approach to predict any incident light intensity
𝐿𝑖 (p, d) at point p with direction d from a single image. We fix our
coordinate system as the view space of the input image and specify
position p and light direction d in this coordinate system.

Given an input image I of a scene, we first extract a feature map
F = 𝐸 (I), where 𝐸 is an encoder with ResNet34 [He et al. 2016]
architecture. For any location x in the scene, we can retrieve the
corresponding image feature by projecting x onto the image coor-
dinates 𝜋 (x) using camera intrinsics and extract the local feature
vector F[𝜋 (x)]. Instead of directly using the local feature at incident
point p, we trace the ray from p with direction −d to point s in the
scene, which can be treated as a virtual point light of 𝐿𝑖 (p, d). We
extract the local feature vector F[𝜋 (s)]. The local feature is then
passed into the final MLP decoder 𝑓 , along with view direction d
and some local G-Buffers (diffuse albedo 𝐾𝑑 , specular albedo 𝐾𝑠 ,
normal 𝑁 and roughness 𝑅) at 𝜋 (s) G[𝜋 (s)], as

s = trace(p,−d), (1)
𝐿𝑖 (p, d) = 𝑓 (𝛾 (d), F[𝜋 (s)],G[𝜋 (s)]), (2)

where𝛾 (·) is positional encoding function which is common used in
NeRF [Mildenhall et al. 2020] to capture the high-frequency details
within the data. The trace operation is implemented by screen

space ray tracing (SSRT). We show our pipeline schematically in
Fig. 3.

Our screen space ray tracer works on the depth map of the
scene. It takes depth map D, starting point p, and the tracing direc-
tion d as inputs. The screen space ray tracer performs ray marching
through pixels from the start point. At each step, the current depth
of the ray is updated and compared with the surface depth of the
pixel. If the ray depth is larger, it indicates that the ray has passed
through the pixel surface, i.e. an intersection has occurred. Other-
wise, it continues ray marching to an adjacent pixel until hitting
the edge of the image.

4.3 Uncertainty-Aware Out-of-View Lighting

Network

A limitation of screen space ray tracing is that the traced ray does
not necessarily intersect within the field of view of the image.
Therefore, an additional network (named “out-of-view lighting net-
work”) is designed to handle lights from the out-of-view area of the
scene. The design of our out-of-view lighting network is inspired
by Neural Radiance Fields (NeRF) [Mildenhall et al. 2020], which
uses an MLP to represent the scene and uses volume rendering to
predict the radiance of a ray. In the original version, the weights
of the MLP are trained scene-specifically. Instead, we leverage hy-
pernetwork [Ha et al. 2016] to reconstruct out-of-view lighting
by predicting the scene-specific weights of the NeRF MLP, and
then query the radiance by the same volume rendering and alpha
compositing techniques.

The out-of-view lighting network architecture is shown in Fig. 3
(right-hand side). Given the input image I, we first extract a global
feature Fg = 𝐺 (I), where 𝐺 is an encoder with ResNet34 architec-
ture (separate from the encoder in Section 4.2). Then, Fg is taken
by hypernetwork 𝐻 and the MLP’s weights Φ are returned. To
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query an incident light intensity 𝐿𝑖 (p, d), we sample 𝑁 3D points
{x𝑖 = p − 𝑡𝑖d} on ray (p,−d). With positional encoding 𝛾 and
NeRF MLP 𝑓 , density 𝜎 and RGB color c are returned. The complete
process can be formulated as:

Φ = 𝐻 (𝐺 (I)), (3)

{𝜎𝑖 , c𝑖 = 𝑓 (𝛾 (x𝑖 );Φ)}𝑁𝑖=1 . (4)

Then light intensity 𝐿 can be composited by

�̂� =

𝑁∑︁
𝑖=1

𝑇𝑖 (1 − exp(−𝜎𝑖𝛿𝑖 ))c𝑖 ,where 𝑇𝑖 = exp ©«−
𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗
ª®¬ , (5)

where 𝛿𝑖 = 𝑡𝑖+1−𝑡𝑖 is the distance between adjacent samples. Due to
performance consideration, our NeRF MLP is a small-scale network
and does not take ray direction d as the MLP input like the original
paper [Mildenhall et al. 2020] does.

The out-of-view lighting network is capable of predicting light-
ing anywhere in the scene. We now describe how we use it to refine
the light predictions within field-of-view. Screen space ray tracing
has a limitation that it may report some false positive of intersec-
tions. For real intersections, the difference between surface depth
and ray depth is small, while the depth difference will increase
when the intersection is a false positive. We model it as the “uncer-
tainty” of SSRT, which is activated by hyperbolic tangent function:
𝑢 = tanh(10Δ𝑑) where Δ𝑑 ∈ [0,∞) is the depth difference. The
refined light prediction is then formulated as

�̂�refined = (1 − 𝑢) × �̂�SSRT + 𝑢 × �̂�out−of−view, (6)

where �̂�SSRT is the light prediction by our SSRT-based lighting
network and �̂�out−of−view is the light prediction by our out-of-view
lighting network. When uncertainty value 𝑢 is large, screen space
ray tracing becomes untrusted and the final prediction is dominated
by out-of-view lighting prediction. We ablate between using only
out-of-view network predictions and using full model predictions
combined with Eq. 6 in our supplementary material.

4.4 Rendering Layer

Ground Truth [Li et al. 2020] Ours (no MC) Ours

Figure 4: Qualitative comparison on re-rendered image.

“Ours (no MC)” means that we re-render the image using

our lighting prediction results but Li et al. [2020]’s rendering

layer (instead of our MC rendering layer). Note that Li et al.

[2020]’s render layer causes significant artifacts on glossy

surfaces.

Unlike Li et al. [2020] which discretes the incident hemisphere to
approximate the integration, we leverage differentiableMonte Carlo

raytracing to produce photorealistic re-rendering results. Given
sample count 𝑁 , we use BRDF importance sampling to sample 𝑁
ray directions {𝑑𝑖 } = {𝜙𝑖 , \𝑖 } according to view direction, surface
normal and material parameters (roughness and metallic) at pixel
point p. We then perform screen-space raytracing according to 𝑑𝑖 to
trace the source point and predict the radiance of the corresponding
direction {𝐿𝑖 } from LightNet. The rendering layer computes the
unbiased re-rendered image by

𝐼 =
1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑟 (𝑣, 𝑑𝑖 ; �̃�, �̃� , �̃�, �̃�𝑡 )𝐿𝑖 cos\𝑖
𝑝 (𝑣, 𝑑𝑖 ; �̃� , �̃�, �̃�𝑡 )

, (7)

where 𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ) is the BRDF evaluation value and 𝑝 (𝜔𝑖 , 𝜔𝑜 ) is the
probability distribution function (PDF) value of BRDF importance
sampling, and 𝑣 is the view direction. Our importance sampling
rendering layer can produce much more realistic re-rendered im-
ages compared to [Li et al. 2020], especially in specular reflections
and highlights. As shown in Fig. 4, our rendering layer is capable
of recovering specular reflections on the glossy floor, while the ren-
dering layer used by [Li et al. 2020] produces significant artifacts.
The artifacts of [Li et al. 2020]’s discretization rendering algorithm
are caused by the deterministic discrete direction sampling at each
pixel, which is likely to miss important directions in the specular
BRDF term. The missing of important reflection directions results
in interleaved patterns in the re-rendered result. In contrast, our im-
portance sampling strategy can faithfully recover high-frequency
reflections on glossy surfaces.

5 TRAINING

We train our network models with the supervision of ground truth
{𝐼 , 𝐴, 𝑁 , 𝐷, 𝑅,𝑀, 𝐿} from our synthetic InteriorVerse dataset, where
𝐴, 𝑁, 𝐷, 𝑅,𝑀 denote albedo, normal, depth, roughness, and metallic,
respectively, and 𝐿 denotes spatially-varying lighting ground truth.

For geometry and material reconstruction, we use direct super-
vision to calculate the error between ground truth and network
prediction. For lighting estimation, inspired by prior work [Li et al.
2020; Wang et al. 2021b], to encourage photorealistic scene appear-
ance reconstruction, we additionally use a differentiable in-network
rendering layer to re-render the image according to the predicted
material, geometry, and lighting, and try to recover the original
input image through an image loss. Note that, unlike prior work,
our render layer incorporates physically-based Monte Carlo sam-
pling via screen space ray tracing, which explicitly regularizes the
physical parameter space with GGX importance sampling. As we
will demonstrate later, this makes our method significantly more
robust to handle specular reflections in the interior scene.

5.1 Material-Geometry Network

We train MGNet with the weighted combination of material losses
(albedo loss Lalbedo, roughness-metallic loss Lmaterial) and geome-
try losses (normal loss Lnormal and depth loss Ldepth):

LMGNet = _𝑎Lalbedo + _𝑛Lnormal + _𝑚Lmaterial + _𝑑Ldepth . (8)
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We add perceptual loss [Johnson et al. 2016] in the albedo, normal
and material term, which helps to recognize the semantic bound-
aries in the image. The detailed definitions of separate losses and
weights are presented in the supplemental material.

5.2 Lighting Network

We train LightNet with the weighted combination of direct light
supervision loss Llight and re-rendering loss Lre−render:

LLightNet = Llight + _𝑟Lre−render (9)

where Llight is the HDR supervision loss function proposed by
[Mildenhall et al. 2021], while Lre−render is an 𝐿2 loss between the
re-rendered image and the original image. Please refer to supple-
mentary material for the detailed definition ofLlight andLre−render.

We find that re-rendering loss can significantly improve the
lighting prediction, especially on specular surfaces. This benefit
comes from enforcing the network to learn correct pixel brightness
in 𝐼 , thus producing accurate lighting supervision in the scene
and preventing blurry or spot artifacts in the re-rendered image.
Ablation studies on the usage of re-rendering loss are presented in
the supplementary material.

5.3 Training Scheme

We use a progressive training scheme to train our model in the
order of data dependencies between different components of our
framework. We first train material-geometry module to ensure
correct predictions of albedo, normal, roughness, metallic and depth.
This is because our lighting network depends on these properties
(e.g., SSRT depends on depth, and MLP decoder depends on G-
Buffers). Then we train lighting module with re-rendering loss.

6 EXPERIMENTS

6.1 Experiment Settings

Training data. We train our network on our new photorealistic
indoor scene dataset, introduced in Sec. 3. When evaluating on real
world data, we also fine-tune our model on IIW dataset [Bell et al.
2014] for albedo and NYUv2 [Silberman et al. 2012] for depth and
normal. Please refer to our supplementary material for more details
on training and evaluation data.

Baselines. We compare our method with Li et al. [2020], which
is the state-of-the-art holistic inverse rendering frameworks for
indoor scenes. To ensure a fair comparison, we fine-tune [Li et al.
2020] on our new dataset, which significantly improves its perfor-
mance (Fig. 5). For lighting prediction, we compare with [Li et al.
2020] as well as another state-of-the-art lighting estimation method
Lighthouse [Srinivasan et al. 2020], which requires a stereo image
pair as input instead of a single image.

6.2 Evaluation of Material and Geometry

We evaluate material (albedo, roughness, and metallic) and geom-
etry (normal and depth) prediction on InteriorVerse synthetic
indoor dataset, as well as real-world dataset (NYUv2 dataset [Sil-
berman et al. 2012] for geometry and IIW dataset [Bell et al. 2014]
for albedo).

[Li et al. 2020] Fine-tuned Ours Ground Truth
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Figure 5: Qualitative results of geometry and BRDF estima-

tion on synthetic dataset between Li et al. [2020] and our

method. In second row, we show the improved prediction

of Li et al. [2020] by fine-tuning it on our InteriorVerse

dataset. We omit metallic comparison since Li et al. [2020]

does not support it. See supplementary for more results.

Evaluation on synthetic dataset. We compare ourmethodwith the
baseline methods on our InteriorVerse dataset. As shown in Fig. 5,
ourmethod outperforms [Li et al. 2020], For albedo prediction, while
[Li et al. 2020] tends to over-smooth the result, ourmethod faithfully
preserves the texture details (e.g., the wooden textures of the floor).
For normal prediction, our method is capable of preserving sharp
edges between walls and floors. This attributes to the usage of
perceptual loss, which helps the model recognize semantic borders
in the image. Please refer to the supplementary material for an
ablation study on the usage of perceptual loss.

Evaluation on real-world datasets. We evaluate albedo prediction
on IIW dataset [Bell et al. 2014] with sparse pairwise human albedo
annotations.We use the official metric suggested by [Bell et al. 2014],
Weighted Human Disagreement Rate (WHDR), which measures the
error when albedo predictions disagree with human annotations.
We also evaluate geometry prediction on NYUv2 dataset [Silberman
et al. 2012]. As shown in Table 1, we observe a lower error compared
to prior works [Li et al. 2020; Wang et al. 2021b], indicating the
advantage of our photo-realistic training datasets and our network
design. Qualitative results of geometric and material predictions
on real-world data are presented in the supplementary material.

Table 1: Evaluation of normals and depth on NYUv2 dataset

(2nd and 3rd columns), and albedo on IIW dataset (last col-

umn).

Method Normal Angular Error Depth si-MSE WHDR
[Li et al. 2020] 24.12◦ 0.160 15.9

[Wang et al. 2021b] 22.95◦ 0.181 18.2
Ours 21.86◦ 0.155 15.5

6.3 Evaluation of Lighting

Evaluation on virtual object insertion. We evaluate our lighting
estimation method on a crucial augmented reality application: vir-
tual object insertion. With the help of screen space ray tracing and
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Ground Truth [Li et al. 2020] Ours [Li et al. 2020] Ours

Synthetic data Real data

Figure 6: Qualitative comparison of object insertion results on synthetic dataset and real-world images. The ground truth

object insertion results of synthetic scenes are provided. Li et al.’s results use the same highly-specular GGX BRDF as our

results. However, because of their low-frequency lighting prediction, the inserted objects contain no sharp reflections and

therefore resemble Lambertian appearance.

the Monte Carlo rendering layer, we can achieve promising results
in specular reflection effects. Fig. 6 shows results of our method
compared to baselines, consisting of both synthetic data and real
world images. In order to emphasize the ability to recover high-
frequency lighting details, the materials of the inserted objects are
highly specular. For synthetic data, we insert complex objects and
ground truths are provided. Li et al. [2020]’s lighting estimation is
2D spatially-varying, which cannot handle 3D points far from 2D
surfaces. Moreover, their Spherical Gaussian lighting representation
is incapable of capturing high-frequency angular details. There-
fore, the appearance of inserted highly specular objects does not
contain sharp reflections. In contrast, our method produces pho-
torealistic shading and specular highlights on the inserted object.
For real world data, we choose to insert highly specular spheres.
The reflection on the sphere is supposed to be consistent with the
surrounding environments. Li et al. [2020] also fails in this task,
due to its low-frequency lighting predictions, while our method
manages to faithfully recover angular details of the surrounding
environment on the inserted sphere.

Origin Lighthouse [2020] Ours

Figure 7: Qualitative comparison of object insertion results

between Lighthouse [2020] and ourmethod on Lighthouse’s

test set.

We also compare our method with another state-of-the-art light-
ing estimation method Lighthouse [Srinivasan et al. 2020], which
requires a stereo pair of images as input. To show our method’s
cross-domain ability, we evaluate on Lighthouse’s test set from Inte-
riorNet [Li et al. 2018b] without fine-tuning our network. As shown

in Figure 7, our method outperforms Lighthouse, even with a lower
number of input images and a potential domain gap. We can ob-
serve that Lighthouse’s lighting prediction has significantly less
variation in lighting intensity. This may be because Lighthouse is
trained from LDR panoramas, and cannot handle HDR lighting.

We also explore more applications of our lighting estimation
method, including re-rendering and scene material edit. Please refer
to our supplementary material for these additional results.

7 CONCLUSION AND LIMITATIONS

We present a learning-based method for inverse rendering of com-
plex indoor scenes. Our approach handles spatially-varying illu-
mination and faithfully recovers specular reflections thanks to the
differentiable Monte Carlo rendering layer, enabling photorealis-
tic editing such as complex object insertion and material change.
Lastly, we introduce a large-scale indoor dataset, InteriorVerse,
which contains much richer details than existing alternatives.

There are some limitations of our method. Our out-of-view light-
ing network is not capable of predicting high-frequency details
due to its limited network capacity. Monte Carlo sampling would
also lead to noisy re-render results, and raising the required sample
budget can be computationally expensive. Further, emission of light
sources is not supported currently, which we leave as future work.
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