
COMMUNICATIONS OF THE ACM December 2000/Vol. 43, No. 12 95

With the unbelievable
rise in personal com-
puting and wide

acceptance of inexpensive, user-
friendly operating systems and
productivity tools, programming
may have lost its place as a major
activity in the modern world of
computing.

Gone are the days when learn-
ing a programming language
would open up a well-paid and
challenging career. Now careers in
information technology (IT), are
not necessarily built out of pro-
gramming skills only. As a matter
of fact, working knowledge of a
programming language is not con-
sidered adequate and must be sup-
plemented by familiarity with
different working environments.
Experts in noncomputing fields
are becoming computer profes-
sionals of great potential, with
expertise in productivity and pro-
fession-specific tools, because of
their in-depth knowledge of the
application area—“knowledge that
was never easy to share with a
team of programmers and analysts
during a system development exer-
cise in the past,” they admit with
a sigh of relief.

However, teaching program-
ming and specific languages is not
obsolete and may never be. Pro-
gramming has been viewed as
both an art and a science among
professionals and academics, and
it retains significant importance in
any teaching or training program
in the field of computing. More-
over, teaching programming con-
cepts and style has gained
increased importance, and pro-
gramming languages have been
relegated to the level of support
tools in this kind of teaching.

Most CS teaching programs
now include an introductory
course on basic computer con-
cepts, covering hardware and soft-
ware, followed by teaching
programming concepts built from
algorithms and problem-solving
techniques. Among the older gen-
eration of computer scientists, I
still recall my introduction to
computers and programming 30
years ago, with an IBM-arranged
Fortran IV course at an engineer-
ing university in Pakistan. With
little emphasis on basic computer
concepts in general, all material
related to the IBM 1130 being
installed at that university.

It took academics and profes-
sionals alike many years before it
was realized that a first course in
programming should not be influ-
enced by a specific programming
language. This served the comput-
ing world well, because a gap in
understanding would invariably
result between the groups emerg-
ing out in the business and scien-
tific areas, trained and taught in
Cobol and Fortran, respectively.
Scientists would not know about
records and files or the immensely
rich Cobol repertoire of loop
structuring mechanisms, at least
until the early 1970s, and Cobol
programmers had little idea of
separately compiled program
modules and data sharing by para-
meter passing.

Computer manufacturers, with
stakes high in this new emerging
computer world, not only acceler-
ated development of innovative
hardware pieces, they also con-
tributed and attempted to make
problem-solving easier. IBM even
perceived in the early 1960s
(though not correctly) the emer-
gence of a single unified world of
computing in place of the visibly
distinct business and scientific

On the Perils of Programming
Masud Ahmad Malik

Viewed as an art and a science among professionals and
academics, programming retains its significance in any teaching
or training program in the field of computing.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355112.355130&domain=pdf&date_stamp=2000-12-01

streams of applications. This
prompted IBM to plan and
implement two major design
efforts in early 1960s—a single
machine and a single program-
ming language for all applications.
While the machine effort—the
IBM 360 family—was a great suc-
cess, the language design effort
leading to PL/1 was a failure,
partly due to its much-criticized
complexity [2].

Now that computer science has
emerged as a separate discipline in
itself, a first course in program-
ming usually aims at teaching
basic programming concepts, data
and control structure, and good
programming style—a style that
has grown out of unending discus-
sions and arguments spread over
numerous articles in literature,
emphasizing goto-less program-
ming, structured modular design,
data abstraction, well-defined con-
trol structures, and the like.

The earlier languages, like For-
tran and Cobol, made teaching of
programming somewhat ill-disci-
plined, though not evident at that
time, due to primitive control
structures and lack of adequate
debugging support from compilers
running on machines with limited
core memory. For example, no jus-
tifications could be offered to an
inquisitive novice regarding why
array subscripts must follow a strict
syntax in Fortran, since 4*I was
valid as subscript but I*4 was not.
Moreover, processing of alphanu-
meric information—the strings in

the current terminology—was a
headache to teach or comprehend
using the infamous format state-
ments since a varying number of
characters could be packed into
variables. And of course, parame-
ters in Fortran subprograms
offered unlimited scope for blun-
ders, since parameter checking was
minimal. Thus parameter type
mismatches could wreak havoc
within a program, with no indica-
tions of illegal actions, except
through an incorrect result notice-
able only by a sharp-eyed pro-
grammer. Although Cobol offered
less difficulty in comprehension to
novices, language complexity and
inefficient compilers made its
teaching no easier.

The need for better and versatile
languages lead to the emergence of
many new programming languages
in the 1960s. Two of these lan-
guages deserve a mention here;
Algol [5] was the result of a joint
U.S.-Europe design effort; PL/1
was IBM’s dream child [4]. Each of
these was conceived as the single
universal programming language
suitable for scientific as well as
business applications. Both lan-
guages were complex and huge by
design and failed to gain wide
acceptance despite a PL/1 promo-
tion by the giant IBM and the
great innovativeness and versatility
of Algol.

Also, debugging and program
development was a painstaking
task in the 1960s and 1970s, since
users were kept at a distance from

the machines and the only way to
communicate with computers was
via punched cards through a
counter/window in the computer
center. Cards were used to feed
programs and data to machine,
and correcting a statement meant
replacing a card by a new punched
card and resubmitting the whole
properly arranged deck of hun-
dreds of cards at a time for a rerun
on the machine.

The complexity of PL/1 and
Algol, and the subsequent failure
to gain wide acceptance, lead to
the belief that the goal of a single
universal language was impracti-
cal, and simplicity in language
design was essential for a language
to become popular among users.
This prompted the famous Euro-
pean language designer Niklaus
Wirth [6] to announce Pascal lan-
guage in 1971 as an ideal language
to teach programming, and well-
suited for general-purpose applica-
tions, with claims to simplicity,
well-structured data and control
structures, and efficient and strict-
checking compiler implementa-
tion. Pascal amazed the computer
industry by gaining worldwide
acceptance in academic institu-
tions as well as outside, and effec-
tively replaced Fortran in
academic programs all over the
world in the 1970s.

The advent of PCs and wide
noninstitutional use of computers
has lead to an unforeseen level of
software development activity
since the early 1980s. All this has
tremendously helped computing
at large. With unfaltering support
from technological breakthroughs
in hardware development during
the last three decades, and the
availability of faster processors
and high-volume storage media,
the world of programming and
programming languages has

96 December 2000/Vol. 43, No. 12 COMMUNICATIONS OF THE ACM

Although Cobol offered less difficulty in
comprehension to novices, language
complexity and inefficient compilers
made its teaching no easier.

changed dramatically.
Now, highly versatile languages

like C, C++, Visual Basic, and Java
offer unlimited flexibility and a
tempting freedom from semantic
rules to produce efficient programs
that can easily get messy due to
lack of compile-time checks for
improper program behavior.
Visual programming environments
have made programming a fun
and enjoyable creative activity full
of pleasure if you have time and
an innovative drive to “computer-
ize,” in most cases without any
traces of the number-crunching
and file-handling processes of the
early years of programming.

Many pioneers deserve credit
for contributing to the evolution
of the present-day GUI-based pro-
gram development environments.
Not to ignore are language design-
ers like Backus [1], who made
high-level programming a viable
alternative by outperforming early
assemblers in the late 1950s;
Wirth [6] and Hoare [3], who
promoted simplicity in program-
ming languages; software vendors
like Borland, who produced inex-
pensive and highly efficient com-
pilers; and the vision of
user-friendliness prompted by
Apple and Microsoft.

References
1. Backus, J.W. The IBM 701 speedcoding sys-

tem. J. ACM 1 (1954).
2. Dijkstra, E.W. The humble programmer.

Commun. ACM 15, 10 (Oct. 1972).
3. Hoare, C.A.R. The emperor’s old clothes.

Commun. ACM 24, 2 (Feb. 1981)
4. IBM. The New Programming Language. IBM

U.K. Laboratory, 1964.
5. Naur, P. Report on the algorithmic language

ALGOL 60. Commun. ACM 3, 5 (May 1960).
6. Wirth, N. The programming language Pascal.

Acta Infomatica 1, 1 (1971).

Masud Ahmad Malik (masudmalik@
hotmail.com) is a professor of computer
science at Quaid-i-Azam University, Pakistan.

© 2000 ACM 0002-0782/00/1200 $5.00

c

COMMUNICATIONS OF THE ACM December 2000/Vol. 43, No. 12 97

Coming Next Month In

COMMUNICATIONS
of the ACM

ELECTRONIC DEMOCRACY
Learn how information and
communication technologies are
transforming the democratic
process on a global scale.

Also

An Editorial Debate on
Internet Voting for
Public Officials

And

• Observing Internet Behavior
• Web Channels and Marketing
• A Personal Digital Store

