
Selectively Combining Multiple Coverage
Goals in Search-Based Unit Test Generation

Zhichao Zhou
School of Information Science and

Technology,
ShanghaiTech University

Shanghai, China
zhouzhch@shanghaitech.edu.cn

Yuming Zhou
State Key Laboratory for Novel

Software Technology,
Nanjing University
Nanjing, China

zhouyuming@nju.edu.cn

Chunrong Fang
State Key Laboratory for Novel

Software Technology,
Nanjing University
Nanjing, China

fangchunrong@nju.edu.cn

Zhenyu Chen
State Key Laboratory for Novel

Software Technology,
Nanjing University
Nanjing, China

zychen@nju.edu.cn

Yutian Tang∗
ShanghaiTech University

Shanghai, China
csytang@ieee.org

ABSTRACT
Unit testing is a critical part of software development process, en-
suring the correctness of basic programming units in a program
(e.g., a method). Search-based software testing (SBST) is an auto-
mated approach to generating test cases. SBST generates test cases
with genetic algorithms by specifying the coverage criterion (e.g.,
branch coverage). However, a good test suite must have different
properties, which cannot be captured by using an individual cov-
erage criterion. Therefore, the state-of-the-art approach combines
multiple criteria to generate test cases. As combining multiple cov-
erage criteria brings multiple objectives for optimization, it hurts
the test suites’ coverage for certain criteria compared with using the
single criterion. To cope with this problem, we propose a novel ap-
proach named smart selection. Based on the coverage correlations
among criteria and the coverage goals’ subsumption relationships,
smart selection selects a subset of coverage goals to reduce the num-
ber of optimization objectives and avoid missing any properties
of all criteria. We conduct experiments to evaluate smart selection
on 400 Java classes with three state-of-the-art genetic algorithms.
On average, smart selection outperforms combining all goals on
65.1% of the classes having significant differences between the two
approaches.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Software testing and debugging.

∗Yutian Tang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556902

KEYWORDS
SBST, software testing, test generation
ACM Reference Format:
Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian
Tang. 2022. Selectively Combining Multiple Coverage Goals in Search-Based
Unit Test Generation. In 37th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556902

1 INTRODUCTION
Unit testing is a common way to ensure software quality. Manu-
ally preparing unit tests can be a tedious and error-prone process.
Hence, developers and researchers put much effort into automati-
cally generating test cases for programming units over these years.

Search-based software testing (SBST) is considered a promising
approach to generating test cases. It generates test cases with ge-
netic algorithms (e.g. Whole Suite Generation (WS) [15], MOSA
[38], DynaMOSA [39]) by specifying the coverage criterion (e.g.,
branch coverage). The execution of a genetic algorithm relies on
fitness functions, which quantify the degree to which a solution (i.e.,
one or more test cases) achieves its goals (i.e., satisfying a certain
coverage criterion). For each coverage criterion, there is a group of
fitness functions. Each fitness function describes whether or how
far a test case covers a goal (e.g., a branch).
The Problem and Motivation. However, as claimed in [41], a
good test suite must have different properties, which cannot easily
be captured by any individual coverage criterion alone. Therefore,
to generate a good test suite, multiple coverage criteria should
be considered in SBST. Hence, the state-of-the-art approach [41]
combines multiple coverage criteria to guide genetic algorithms. It
involves eight coverage criteria (see Sec. 2.1). We call this method
the original combination in this paper. However, combining mul-
tiple criteria brings more objectives for optimization, potentially
affecting the effectiveness of the genetic algorithms [7, 28, 38]. For
example, it can increase the probability of being trapped in local
optima. As a result, the generated test suite’s coverage decreases
for certain criteria compared with using a single criterion. Fig. 1
shows (see Sec. 4.2) the average coverage gaps between the original

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3551349.3556902
https://doi.org/10.1145/3551349.3556902
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3556902&domain=pdf&date_stamp=2023-01-05


ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian Tang

0.0 0.2 0.4 0.6 0.8 1.0

BC

WM

LC

TMC

NTMC

DBC

EC

OC

0.51

0.47

0.5

0.82

0.68

0.5

1

0.41

0.41

0.44

0.47

0.77

0.63

0.41

0.74

0.36
original combination
constituent criterion

Figure 1: Partial Data of Coverage Gaps

combination and each constituent criterion when applying WS into
85 big Java classes (i.e., with at least 200 branches). The average
gap of eight criteria is 8.2%. Branch coverage (BC) decreases 10%
and exception coverage (EC) decreases 26%. Note that since we
cannot know the total exceptions in a class [41], we normalize the
exception coverage values of two approaches (22.08 vs. 29.74) by
dividing by the larger one.
Targets. To cope with this problem, a qualified approach should
fulfil the following targets: (1) T1: GA Effectiveness. It should
select a subset from multiple coverage criteria’ coverage goals. This
subset improves the effectiveness of guiding genetic algorithms
(GAs); and (2) T2: Property Consistence. This subset should avoid
missing any properties captured by these coverage criteria.
Our Solution. To fulfil these targets, we propose a novel approach
named smart selection (see Sec. 3). In this paper, we also consider
the above eight coverage criteria. Instead of directly combining
them, in smart selection, we firstly group them into four groups
based on coverage correlations (see Sec. 3.2). Next, we select one
representative criterion that is more effective to guide the genetic
algorithms from each group (T1) (see Sec. 3.3). These selected cover-
age criteria (𝑆𝐶)’ coverage goals are marked as 𝐺𝑜𝑎𝑙 (𝑆𝐶). To keep
the property consistency (T2), for each criterion (𝑐) of unselected
criteria (𝑈𝑆𝐶), we select a subset𝐺𝑜𝑎𝑙 (𝑐)𝑠𝑢𝑏 from its coverage goals
based on the goals’ subsumption relationships (see Sec. 3.4). Finally,
we combine 𝐺𝑜𝑎𝑙 (𝑆𝐶) and ∪

𝑐∈𝑈𝑆𝐶
𝐺𝑜𝑎𝑙 (𝑐)𝑠𝑢𝑏 to guide the test case

generation process.
Contribution. In summary, the contribution of this paper includes:
• To the best of our knowledge, this is the first paper that uses
coverage correlations to address the coverage decrease caused by
combining multiple criteria in SBST.
•We implement smart selection atop EvoSuite. It is integrated into
three search algorithms (i.e., WS, MOSA, and DynaMOSA).
• We conduct experiments on 400 Java classes to compare smart
selection and the original combination. On average of three al-
gorithms (WS/MOSA/DynaMOSA), smart selection outperforms
the original combination on 77 (121/78/32) classes, accounting for
65.1% (85.8%/65%/44.4%) of the classes having significant differ-
ences between the two approaches. The counterpart data of the 85
big classes is 34 (50/35/16), accounting for 86.1% (98%/87.5%/72.7%).

Furthermore, we conduct experiments to compare smart selection
with/without the subsumption strategy on 173 classes.
Online Artifact. The online artifact of this paper can be found at:
https://doi.org/10.5281/zenodo.6467640.

2 BACKGROUND

Class Under Test

Criterion 
(Section 2.1)

Initializer

EvoSuite

Input OutputInitial Test 
Cases

Fitness 
Functions

GA (Section 2.2)

Current Test 
Cases

Calculate 
Fitness 
Scores

Selection Crossover

Mutation

Stop?
Final Test 

Cases
YesNo

Figure 2: Overview of Unit Tests Generation in EvoSuite

SBST and EvoSuite SBST generates test cases with a genetic al-
gorithm (see Sec. 2.2) by specifying the coverage criterion (see Sec.
2.1). EvoSuite [14] is the state-of-art SBST tool for Java. In this
section, we leverage EvoSuite as an example to illustrate the key
idea of SBST. Fig. 2 shows the overview of EvoSuite. The red star
in this figure is mentioned later in Sec. 3.1.
Input. Evosuite takes two major inputs: (1) the class under test
(CUT) and (2) a coverage criterion (Sec. 2.1).
Test Generation. The test generation process can be divided into
two parts: (1) The initializer extracts all the related information
needed by the genetic algorithm (e.g., method signatures, including
name, parameter type) from the CUT. Based on the information and
the criterion, the initializer generates initial test cases and fitness
functions. In general, each GA requires one or more specific fitness
functions. A fitness function measures how close a test case covers a
coverage goal (e.g., a branch); (2) After a specific genetic algorithm
is invoked, it selects test cases based on the scores returned by
fitness functions. Next, the GA creates new test cases with the
crossover and mutation operations [15]. The GA repeats to select,
mutate, and crossover test cases until all fitness functions reach the
optima or the given budgets are consumed out.
Output. After running the genetic algorithm, EvoSuite outputs the
final test cases.

2.1 Coverage Criteria
In this research, we discuss eight criteria as follows. The reason to
choose these coverage criteria is that they are EvoSuite’s default
criteria and are widely used in many previous studies [8, 18, 41].
Branch Coverage (BC) BC checks the number of branches of
conditional statements covered by a test suite.
Direct BranchCoverage (DBC) The only difference between DBC
and BC is that a test case must directly invoke a public method to
cover its branches. DBC treats others just as BC [41].
Line Coverage (LC) LC checks the number of lines covered by a
test suite.
Weak Mutation (WM) WM checks how many mutants are de-
tected by a test suite [25, 40]. A mutant is a variant of the CUT
generated by a mutation operator. For example, RC is an operator
that replaces a constant value with different values [16].

https://doi.org/10.5281/zenodo.6467640


Selectively Combining Multiple Coverage Goals in Search-Based Unit Test Generation ASE ’22, October 10–14, 2022, Rochester, MI, USA

BC

TMC NTMC

DBC

LC

OC

WM

EC
Group Criteria 
By Coverage 
Correlation

(Section 3.2)

TMC NTMC

BC DBC

LC WM

OC

EC

(Section 3.3)

Select 
Criterion By 

Effectiveness
BCTMC

WMLC

Un-selected Criteria

DBCNTMC

ECOC

Select Goals By 
Subsumption

(Section 3.4)

Representative Criteria

 Coverage Goals Fitness Functions

Eight Criteria Smart Selection
Pass Fitness Functions 

to GAs 

Input Output

1

2
3

Figure 3: Overview of Smart Selection

Top-Level Method Coverage (TMC) TMC checks the number
of methods covered by a test suite with a requirement: A public
method is covered only when it is directly invoked by test cases.
No-Exception Top-Level Method Coverage (NTMC) NTMC is
TMC with an extra requirement: A method is not covered if it exits
with any exceptions.
Exception Coverage (EC) EC checks the number of exceptions
triggered by a test suite.
Output Coverage (OC) OC measures the diversity of the return
values of a method. For example, a boolean return variable’s value
can be true or false. OC’s coverage is 100% only if the test suite
captures these two return values.

For each criterion, EvoSuite extracts a group of coverage goals
from the CUT and assigns a fitness function to each coverage goal.
For example, EvoSuite extracts all branches for BC, e.g., the true
branch of a predicate 𝑥 == 10. A simplified fitness function of this
branch can be the branch distance [33], |𝑥 − 10|, showing how far
a test case covers it. More details of these criteria and their fitness
functions can be found here [41].

2.2 Genetic Algorithms
In this research, we discuss three GAs (i.e., WS, MOSA, DynaMOSA)
as follows. All of them are integrated into EvoSuite and performwell
in many SBST competitions [9, 37, 50]. These algorithms share the
same inputs and outputs but differ in how to use fitness functions.
WS. WS [15] directly evolves test suites to fit all coverage goals.
Consequently, WS can exploit the collateral coverage [5] and not
waste time on infeasible goals (e.g., dead code). The collateral cov-
erage means that a test case generated for one goal can implicitly
also cover any number of other coverage goals. Hence, WS’s fitness
function is the sum of all goals’ fitness functions.
MOSA. WS sums fitness scores of all coverage goals as a scalar
value. This scalar value is less monotonic and continuous than
a single goal’s fitness score, increasing the probability of being
trapped in local optima. To overcome this limit, Panichella et al.
[38] formulates SBST as a many-objective optimization problem
and propose MOSA, a variant of NSGA-II [44]. In general, MOSA
maintains a fitness vector for each test case. An item of the fitness
vector is a fitness function value for the test case. Based on Pareto
dominance [12], MOSA sorts and selects test cases by the fitness
vectors.

DynaMOSA. Based on MOSA, DynaMOSA [39] adopts control de-
pendency graph to reduce the coverage goals evolved in search. A
goal is selected to be in the evolving process only when the branch
goals it depends on are covered. Hence, the sizes of DynaMOSA’s fit-
ness vectors are often smaller than MOSA’s ones. Empirical studies
show that DynaMOSA outperforms WS and MOSA [8, 39].

2.3 Combining Coverage Criteria
With a single criterion (e.g., BC) alone, SBST can generate test cases
that reach higher code coverage but fail to meet users’ expecta-
tions [41]. Hence, Rojas et al. [41] proposed to combine multiple
criteria to guide SBST to generate a test suite. We leverage replac-
ing BC by combining the eight criteria as an example to show the
changes in GAs. Before the combination, the fitness function of
WS is 𝑓𝐵𝐶 =

∑
𝑏∈𝐵

𝑓𝑏 , where B is the set of all branches. The fitness

vector of MOSA/DynaMOSA is [𝑓𝑏1 , ..., 𝑓𝑏𝑛 ] . After the combination,
the fitness function of WS is 𝑓𝐵𝐶 + ... + 𝑓𝑂𝐶 . The fitness vector
of MOSA/DynaMOSA is [𝑓𝑏1 , ..., 𝑓𝑏𝑛 , ..., 𝑓𝑜1 , ..., 𝑓𝑜𝑚 ], where 𝑜𝑖 is a
output coverage goal.

3 SMART SELECTION
The Problem and Motivation: The main side-effect of combining
multiple criteria is that the generated test suite’s coverage decreases
for certain criteria. It is due to the increase in optimization objec-
tives. Firstly, It brings a larger search space, reducing the search
weight of each objective. Secondly, it also brings a harder search
space since some criteria’ fitness functions are not monotonic and
continuous, such as LC and WM (see Sec. 3.3). Hence, we propose
smart selection. It aims to relieve the coverage decrease by pro-
viding a smaller and easier search space for GAs.

3.1 Overview
Fig. 3 shows the process: ❶ group criteria by coverage correlation
(Sec. 3.2), ❷ select representative criteria by effectiveness to guide
SBST ( Sec. 3.3), and ❸ select representative coverage goals from
unselected criteria by subsumption relationships (Sec. 3.4). The red
star in Fig. 2 shows the position of smart selection in EvoSuite.

The inputs are the eight criteria (see Sec. 2.1). The output is a
subset of fitness functions, i.e., the corresponding fitness functions
of our selected coverage goals. This subset is used to guide GAs.



ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian Tang

3.2 Group Criteria by Coverage Correlation
The first step is clustering these eight criteria. The standard of
whether two criteria can be in one group or not is: whether these
two criteria have a coverage correlation. Based on this standard,
we can divide these criteria into several groups. For two criteria
with coverage correlation, if a test suite achieves a high coverage
under one of the criteria, then this test suite may also achieve a
high coverage under the other criterion. Hence, we can select one
of these two criteria to guide SBST. Thus, grouping sets the scope
for choosing representative criteria.

We determine that two criteria have a coverage correlation by
the following rules:
•Rule 1: If a previous study shows that two criteria have a coverage
correlation, we adopt the conclusion:
① BC and WM: Gligoric et al. [20] find that “branch coverage
performs as well as or better than all other criteria studied, in
terms of ability to predict mutation scores”. Their work shows that
the average Kendall’s 𝜏𝑏 value [27] of coverage between branch
coverage and mutation testing is 0.757. Hence, we assume that BC
and WM have a coverage correlation.
② DBC and WM: Since BC and WM have a coverage correlation,
we assume that DBC and WM have a coverage correlation too.
③ LC and WM: Gligoric et al. [20] find that statement coverage
[20, 41] can be used to predict mutation scores too. Line coverage is
an alternative for statement coverage in Java since Java’s bytecode
instructions may not directly map to source code statements [41].
Hence, we assume that LC and WM have a coverage correlation.
•Rule 2: Two criteria, A and B, have a coverage correlation if they
satisfy two conditions: (1) A and B have the same coverage goals;
(2) A test covers a goal of A only if it covers the counterpart goal
of B and it satisfies A’s additional requirements:
④ DBC and BC: DBC is BC with an additional requirement (see
Sec. 2.1).
⑤NTMCandTMC:NTMC is TMCwith an additional requirement
(see Sec. 2.1).
•Rule 3: Two criteria, A and B, have a coverage correlation if, for
an arbitrary test suite, the relationship between these two criteria’
coverage (i.e., 𝐶𝐴 and 𝐶𝐵 ) can be formulated as:

𝐶𝐵 = Θ𝐶𝐴, (1)

where Θ is a nonnegative random variable and 𝐸Θ ≈ 1:
⑥ BC and LC: Intuitively, when a branch is covered, then all lines
in that branch are covered. But this is not always true. When a line
exits abnormally (e.g., it throws an exception.), the subsequent lines
are not covered either. First, we discuss the coverage correlation
of branch and line coverage in the absence of abnormal exiting.
Let 𝐵 be the set of branches of the CUT, 𝐿 be the set of lines, and
𝑇 be a test suite. For any 𝑏 ∈ 𝐵, let 𝐿𝑏 be the set of lines only in
the branch 𝑏 (i.e., we don’t count the lines in its nested branches).
Consequently, 𝐿 =

⋃
𝑏∈𝐵 𝐿𝑏 . Let 𝐵

′
be the set of covered branches.

Let 𝐿
′
be the set of covered lines. The coverage values measured by

branch and line coverage are:

𝐶𝐵𝑟𝑎𝑛𝑐ℎ =
|𝐵′ |
|𝐵 | ,𝐶𝐿𝑖𝑛𝑒 =

|𝐿′ |
|𝐿 | =

∑
𝑏∈𝐵′

|𝐿𝑏 |∑
𝑏∈𝐵

|𝐿𝑏 |
. (2)

Hence, the relationship of 𝐶𝐵𝑟𝑎𝑛𝑐ℎ and 𝐶𝐿𝑖𝑛𝑒 is:

𝐶𝐿𝑖𝑛𝑒

𝐶𝐵𝑟𝑎𝑛𝑐ℎ

=

∑
𝑏∈𝐵′

|𝐿𝑏 |∑
𝑏∈𝐵

|𝐿𝑏 |
÷ |𝐵′ |

|𝐵 | =

∑
𝑏∈𝐵′

|𝐿𝑏 |

|𝐵′ |
÷

∑
𝑏∈𝐵

|𝐿𝑏 |

|𝐵 | . (3)

Suppose we treat branches with different numbers of lines equally
in generating 𝑇 . Then we have:∑

𝑏∈𝐵′
|𝐿𝑏 |

|𝐵′ |
≈

∑
𝑏∈𝐵

|𝐿𝑏 |

|𝐵 | , (4)

i.e.,
𝐶𝐿𝑖𝑛𝑒

𝐶𝐵𝑟𝑎𝑛𝑐ℎ

≈ 1. (5)

As a result, branch coverage and line coverage have a coverage
correlation in the absence of abnormal exiting. With abnormal exit-
ing, the coverage measured by line coverage decreases. Assuming
that any line can exit abnormally, we can formulate the coverage
relationship as:

𝐶𝐿𝑖𝑛𝑒 = Θ𝐶𝐵𝑟𝑎𝑛𝑐ℎ, (6)

where Θ is a random variable. In this research, instead of analyzing
Θ precisely, we only need to check whether 𝐸Θ ≈ 1. Previous work
[41] shows that, on average, when 78% of branches are covered,
test suites can only find 1.75 exceptions. Hence, we assume that
𝐸Θ ≈ 1, i.e., BC and LC have a coverage correlation.
⑦ DBC and LC: We assume that DBC and LC have a coverage
correlation since BC and LC have a coverage correlation.
Output.We cluster the eight criteria into four groups: (1) BC, DBC,
LC, and WM; (2) TMC and NTMC; (3) EC; and (4) OC.

3.3 Select Representative Criterion by
Effectiveness to guide SBST

In this step, among the criteria in each group, we select a criterion
to represent the others. The criteria within a group differ in the
ability to guide SBST. If we only select one criterion with the best ef-
fectiveness to guide SBST, SBST will be more efficient in generating
unit tests. To select the best criterion to guide SBST in each group,
we need to compare the criteria’ effectiveness in guiding SBST. A
criterion’s effectiveness in guiding SBST largely depends on the
continuity of monotonicity of its fitness functions [30, 31]. Hence,
we need to analyze and compare the criteria’ fitness functions.
Group1: BC, DBC, LC and WM.We use branch coverage as the
baseline and divide them into three pairs for discussion. The reason
to use branch coverage as the baseline is that branch coverage has
been widely used to guide unit test generation [15, 38, 39] due to
the monotonic continuity of its fitness functions. For a branch goal
𝑏 and a test case 𝑡 , its fitness function is [15]:

𝑓𝑏𝑐 (𝑏, 𝑡) =


0 if the branch

has been covered,
𝜈 (𝑑 (𝑏, 𝑡)) if the predicate has been

executed at least twice,
1 otherwise,

(7)

where 𝜈 (𝑥) is a normalizing function in [0, 1] (e.g., 𝜈 (𝑥) = 𝑥/(𝑥+1)).
𝑑 (𝑏, 𝑡) is a function to provide a branch distance to describe how
far a test case covers this goal [33]. To avoid an oscillate situation



Selectively Combining Multiple Coverage Goals in Search-Based Unit Test Generation ASE ’22, October 10–14, 2022, Rochester, MI, USA

of a predicate [15], 𝑓𝑏𝑐 (𝑏, 𝑡) uses 𝜈 (𝑑 (𝑏, 𝑡)) only when a predicate
is executed at least twice.

WS uses the sum of all fitness functions as one fitness function
(Sec. 2.2). Hence, for WS, branch coverage’s fitness function is:

𝑑1 (𝑏,𝑇 ) = min {𝑓𝑏𝑐 (𝑏, 𝑡) |𝑡 ∈ 𝑇 }, (8)

𝑓𝐵𝐶 (𝑇 ) =
∑︁
𝑏∈𝐵

𝑑1 (𝑏,𝑇 ), (9)

where 𝐵 denotes all branches of the CUT.
•BC vs. LC. Based on line coverage’s definition (see Sec. 2.1), a line
𝑙 ’s fitness function can be:

𝑓𝑙𝑐 (𝑙, 𝑡) =


0 if the line has been
covered,

1 otherwise.
(10)

For WS, line coverage’s fitness function is:

𝑓𝐿𝐶 (𝑇 ) = 𝜈 ( |𝐿 | − |𝐶𝐿 |), (11)

where 𝐿 is the set of all lines and 𝐶𝐿 is the set of covered lines.
These two fitness functions are not continuous and monotonic

since they only tell whether the lines are covered. To overcome this
limit, EvoSuite uses branch coverage’s fitness functions to augment
line coverage’s fitness functions [41]. A line 𝑙 ’s fitness function is:

𝑓𝑙𝑐 (𝑙, 𝐵, 𝑡) =


0 if the line has been
covered,

1 +min {𝑓𝑏𝑐 (𝑏, 𝑡) |𝑏 ∈ 𝐵} otherwise,
(12)

where 𝐵 is the set of branches that 𝑙 depends on [39]. For WS, line
coverage’s fitness function is:

𝑓𝐿𝐶 (𝑇 ) = 𝜈 ( |𝐿 | − |𝐶𝐿 |) + 𝑓𝐵𝐶 (𝑇 ) . (13)

We call Equation 10 and 11 def-based (definition-based) fitness
functions and call Equation 12 and 13 augmented fitness functions.

Firstly, we compare branch coverage’s fitness functions with line
coverage’s def-based fitness functions. Line coverage’s def-based
fitness functions are not continuous and monotonic since they only
tell whether the lines are covered. Hence, branch coverage is better
than line coverage in the effectiveness to guide SBST when we use
line coverage’s def-based fitness functions. After the augmentation,
line coverage’s def-based fitness functions disturb the continuity
and monotonicity of branch coverage’s fitness functions, undermin-
ing branch coverage’s effectiveness to guide SBST. As a result, BC
is better than LC in the effectiveness to guide SBST.
•BC vs. WM. Based on weak mutation’s definition (see Sec. 2.1), a
mutant’s fitness function is:

𝑓𝑤𝑚 (𝜇, 𝑡) =


1 if mutant 𝜇

was not reached,
𝜈 (𝑖𝑑 (𝜇, 𝑡)) if mutant 𝜇

was reached,

(14)

where 𝑖𝑑 (𝜇, 𝑡) is the infection distance function. It describes how
distantly a test case triggers a mutant’s different state from the
source code. Different mutation operators have different infection
distance functions [16]. A mutant’s fitness function is always 1
unless a test case reaches it (i.e., the mutated line is covered). Hence,
like line coverage, EvoSuite uses the same way to augment weak

mutation’s fitness functions [16, 39]. As the conclusion of compar-
ing BC and LC, BC is better than WM in the effectiveness to guide
SBST.
•BC vs. DBC. Direct branch coverage is branch coverage with
an extra requirement: A test case must directly invoke a public
method to cover its branches. Based on branch coverage’s fitness
function, we can get direct branch coverage’s one: For a branch
in a public method, when the method is not invoked directly, the
fitness function always returns 1. Otherwise, the fitness function is
the same as branch coverage’s one. It is easy for SBST to generate
a test case that invokes a public method directly. Hence, we regard
that BC is nearly equal to DBC in guiding SBST.
Order of Group1. Above all, we get a rough order of this group:
(1)BC and DBC; (2) LC and WM. Since we only need one represen-
tative, the rough order satisfies our need.
The Representative Criterion of Group1. We choose DBC to
represent this group instead of BC. The reason is: When a test case
covers a goal of DBC, the test case covers the counterpart of BC. As
a result, DBC can fully represent BC. The opposite may not hold.
Group2: TMC and NTMC. Like the relationship between branch
coverage and direct branch coverage, no-exce. top-level method
coverage is top-level method coverage with an extra requirement:
A method must be invoked without triggering exceptions.
The Representative Criterion of Group2. We choose NTMC
to represent this group. The reason is the same as why we choose
DBC to represent group 1: NTMC can fully represent TMC. The
opposite does not hold.
Group3: EC and Group 4: OC. Since group 3 only contains EC,
we choose EC to represent group 3. Similarly, we choose OC to
represent group 4.
Output. The representative criteria are DBC, NTMC, EC, and OC.

3.4 Select Representative Coverage Goals by
Subsumption Relationships

After selecting the representative criteria in the previous step, there
are four unselected criteria: LC, WM, BC, and TMC. To keep prop-
erty consistency for each unselected criterion, we select a subset
from its coverage goals. This subset can represent all properties
required by this criterion, ensuring GA archives [39] those tests
that fulfill the properties beyond the representative criteria. We
have another requirement for these subsets: they should be as small
as possible. These unselected criteria’ fitness functions are less con-
tinuous and monotonic than the ones of the representative criteria
(see Sec. 3.3). Hence, to minimize the negative effects on guiding
SBST, these subsets should be as small as possible.

Two coverage goals, 𝐺1 and 𝐺2, having the subsumption rela-
tionship denotes that if a test suite covers one coverage goal, it
must cover another goal. Specifically, 𝐺1 subsuming 𝐺2 represents
that if a test suite covers 𝐺1, it must cover 𝐺2. According to this
definition, for a criterion, if the coverage goals not subsumed by
others are covered, all coverage goals are covered. Hence, These
coverage goals form the desired subset.
LC. For the lines in a basic block, the last line subsumes others.
Hence, these last lines of all basic blocks form the desired subset.
Since Sec. 3.2 shows that BC/DBC and LC have a strong coverage
correlation and DBC is the representative criterion, we do a tradeoff



ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian Tang

to shrink this subset: We add an integer parameter lineThreshold. If
a basic block’s lines are less than lineThreshold, we skip it. In this
research, we set lineThreshold as 8 (Sec. 5.1 discusses it).
WM. The process to extract the subset from weak mutation’s all
mutants can be divided into three parts: ① We select the key op-
erators from EvoSuite’s all implemented mutation operators; ②

From the key operators we filter out the equal-to-line operators;
③ For the remaining operators, we select the subsuming mutants
by following the previous work [19].
① Select Key Operators. Offutt et al. [36] find that five key op-
erators achieve 99.5% mutation score. They are UOI, AOR, ROR,
ABS, and LCR. EvoSuite does not implement LCR (an operator that
replaces the logical connectors) and ABS (an operator that inserts
absolute values) [16]. Hence, we select three operators: UOI, AOR,
and ROR (see Table 1).

Table 1: Evosuite’s Partial Mutation Operators

Operator Usage
UOI Insert unary operator
AOR Replace an arithmetic operator
ROR Replace a comparison operator

② Filter out Equal-To-Line Operators. For each mutation opera-
tor, EvoSuite designs an infection distance function to describe how
far a mutant’s different state from the source code is triggered [16].
Some infection distance functions always return 0. For example,
UOI only adds 1 to, subtracts 1 to, or negates a numerical value,
so the infection distance is always 0. Hence, if a test case covers
the line mutated by UOI, the mutant is killed. We call this kind of
operator an equal-to-line operator. Among three key operators,
only UOI is the equal-to-line operator [16]. Since line coverage has
been dealt with, we filter out it.
③ Select SubsumingMutants. The remains are AOR and ROR.We
choose one of the existing approaches [19, 22, 24, 26, 35] to select
subsuming mutants for them. These approaches can be divided
into three categories: (1) Manual analysis: Just et al. [26] build
the subsumption relationships for ROR and LCR by analyzing all
possible outputs of their mutants. This approach can not be applied
to non-logical operators [22]; (2) Dynamic analysis: By running an
exhaustive set of tests, Guimarães et al. [22] build the subsumption
relationships. This approach needs many tests, which we can not
provide; (3) Static analysis: Gheyi and Souza et al. [19, 46] encode
a theory of subsumption relations in the Z3 theorem prover to
identify the subsumption relationships. We adopt this approach
because (i) This approach can be applied to both AOR and ROR; (ii)
Using the Z3 prover to identify the subsumption relationships is a
once-for-all job. We can hardcode their results into EvoSuite.
BC and TMC. For a coverage goal of branch coverage, there is
a subsuming goal from direct branch coverage (see Sec. 3.2). As
a result, the subset for branch coverage is empty since we select
direct branch coverage as the representative (see Sec. 3.3). Similarly,
the subset for top-level method coverage is empty too.
Output. For four unselected criteria, we select four subsets of their
coverage goals. Two of them are empty. Finally, smart selection joins
these subsets with the representative criteria to get their fitness
functions for guiding GAs.

4 EVALUATION
4.1 Experiment Setting
The evaluation focuses on the performance of smart selection. Our
evaluation aims to answer the following research questions:
•RQ1: How does smart selection perform with WS?
•RQ2: How does smart selection perform with MOSA?
•RQ3: How does smart selection perform with DynaMOSA?
•RQ4: How does the subsumption strategy affect the performance
of smart selection?
Environment. All experiments are conducted on two machines
with Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz and 128 GB RAM.
Subjects. We randomly select Java classes from 2 sources: the
benchmark of DynaMOSA [39] and Hadoop [1]. Following the pre-
vious work [38], the only restriction of randomly selecting classes
is that the class must contain at least 50 branches, aiming to filter
out the trivial classes. As a result, we select 400 classes: 158 from
the benchmark of DynaMOSA and 242 from Hadoop.
Baseline for RQ1-3. We have two baselines: (1) the original com-
bination, used to be compared with smart selection on each Java
class; (2) a single constituent criterion, used to show the data of cov-
erage decrease caused by the above two combination approaches.
A single constituent criterion means that we only use each crite-
rion of these eight criteria (see Sec. 2.1) to guide GAs. There is one
exception: when the constituent criterion is exception or output
coverage, we combine this criterion and branch coverage to guide
GAs. The reason is that only exception or output coverage is weak
in the effectiveness of guiding the GAs [18, 41]. Branch coverage
can guide the GAs to reach more source lines of the CUT, increasing
the possibility of triggering exceptions or covering output goals.
Configuration for RQ1-3. EvoSuite provides many parameters
(e.g., crossover probability, population size [15]) to run the algo-
rithms. In this paper, we adopt EvoSuite’s default parameters to
run smart selection and other baselines.

Smart selection introduces a new parameter lineThreshold (see
Sec. 3.4). It controls smart selection to skip basic blocks with less
than lineThreshold lines. We set lineThreshold as 8. The discussion
on this value is in Sec. 5.1. For each Java class, we run EvoSuite with
ten approaches: (1) smart selection, (2) the original combination,
and (3) each constituent criterion of all eight criteria. We run each
approach for 30 rounds per Java class, and each run’s search budget
is 2 minutes.

4.2 RQ1: How does smart selection perform
with WS?

Motivation. In this RQ, we evaluate smart selection (SS) with
WS. First, we compare the performance of SS and the original
combination (OC). Next, we use the coverage of each constituent
criterion (CC) to show the coverage decrease caused by SS and OC.
Furthermore, we show these approaches’ differences in the resulted
suite sizes (i.e., the number of tests in a test suite).
Methodology. EvoSuite records the coverage for generated unit
tests. For each class, we obtain 10 coverage data sets: One data set
records the coverage of the eight criteria when using SS; One data
set records the coverage of the eight criteria when using OC; The
rest data sets record the coverage when using each CC.



Selectively Combining Multiple Coverage Goals in Search-Based Unit Test Generation ASE ’22, October 10–14, 2022, Rochester, MI, USA

(a) All Classes (b) Small Classes (c) Big Classes

Figure 4: Significant case summary of smart selection and the original combination with WS

For each Java class, we follow previous research work [41] to use
Mann-Whitney U Test to measure the statistical difference between
SS and OC. Then, we use the Vargha-Delaney 𝐴𝑎𝑏 [49] to evaluate
whether a particular approach 𝑎 outperforms another approach 𝑏
(𝐴𝑎𝑏 > 0.5 and the significant value 𝑝 is smaller than 0.05).
Result.

Table 2: Average coverage results for each approach with WS

(a) All Classes
approach SS OC CC
BC 55% 53% 57%
WM 59% 57% 59%
LC 60% 58% 60%
TMC 84% 83% 84%

approach SS OC CC
NTMC 71% 70% 71%
DBC 55% 53% 56%
EC 15.92 14.52 16.52
OC 44% 43% 45%

(b) Small Classes
approach SS OC CC
BC 58% 57% 59%
WM 62% 61% 62%
LC 62% 61% 62%
TMC 85% 85% 85%

approach SS OC CC
NTMC 73% 72% 72%
DBC 57% 56% 58%
EC 13.29 12.48 12.95
OC 46% 45% 46%

(c) Big Classes
approach SS OC CC
BC 45% 41% 51%
WM 48% 44% 47%
LC 50% 47% 50%
TMC 79% 77% 82%

approach SS OC CC
NTMC 67% 63% 68%
DBC 45% 41% 50%
EC 25.69 22.08 29.74
OC 39% 36% 41%

Table 3: Average test suite size of each approach with WS

approach SS OC CC (Average)
size (All Classes) 51.35 47.77 31.59
size (Small Classes) 37.27 36.39 19.43
size (Big Classes) 103.53 89.95 76.64

▶All Classes.
Significant Cases. Fig. 4 (a) shows the comparison results of SS and
OC on all 400 Java classes. SS outperforms OC on 121 (30.3%) classes
(a.k.a., SS-outperforming classes) on average for each coverage.
OC outperforms SS on 20 (4.9%) classes (a.k.a., OC-outperforming
classes). These two approaches have no significant difference on
259 (64.8%) classes (a.k.a., No-significant classes) on average.
Average Coverage. Table 2 (a) shows the average coverage of all
classes with three approaches. For exception coverage, the table

shows the average number of the triggered exceptions since we can
not know the total number of exceptions in a class [41]. The green
number represents the highest coverage at a given criterion. SS out-
performs OC for eight criteria’ coverage. Among three approaches,
SS reaches the highest coverage for four criteria. CC reaches the
highest coverage for all criteria.
Average Suite Size. The first row of Table 3 shows the test suites’
average sizes of all classes. Compared to CC (average suite size of
all constituent criteria), the size of OC increases by 51.2% ((47.77 −
31.59)/31.59). Compared to OC, the size of SS increases by 7.4%
((51.35 − 47.77)/47.77).
▶Small Classes.(< 200 branches)
Significant Cases. Fig. 4 (b) shows the comparison results of SS
and OC on 315 small Java classes. For each criterion, on average,
SS-outperforming classes are 71 (22.5%). OC-outperforming classes
are 19 (5.9%). No-significant classes are 226 (71.6%).
Average Coverage. Table 2 (b) shows the average coverage of
small classes. SS outperforms OC for seven criteria’ coverage. SS
reaches the highest coverage for five criteria.
Average Suite Size. The second row of Table 3 shows the average
suite sizes of small classes. Compared to CC, the size of OC increases
by 87.3%. Compared to OC, the size of SS increases by 2.4%.
▶Big Classes. (≥ 200 branches)
Significant Cases. Fig. 4 (c) shows the comparison results of
SS and OC on 85 big Java classes. For each criterion, on aver-
age, SS-outperforming classes are 50 (59.1%). The number of OC-
outperforming classes is 1 (1.3%). No-significant classes are 34
(39.6%).
Average Coverage. Table 2 (c) shows the average coverage of big
classes. SS outperforms OC for eight criteria’ coverage. SS reaches
the highest coverage for two criteria.
Average Suite Size. The third row of Table 3 shows the average
suite sizes of big classes. Compared to CC, the size of OC increases
by 17.4%. Compared to OC, the size of SS increases by 15.1%.
Analysis. SS outperforms OC statistically, especially on the big
classes. There is one exception: On the small classes, the number
(73) of OC-outperforming classes in weak mutation is more than the
counterpart number (60) (see Fig. 4 (b)). On average, each of those
73 classes has 82 branches and 321 mutants, while each of those 60
classes has 115 branches and 381 mutants. It also supports that SS



ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian Tang

(a) All Classes (b) Small Classes (c) Big Classes

Figure 5: Significant case summary of smart selection and the original combination with MOSA

outperforms OC on the big classes. Furthermore, in most cases, the
average coverage of CC is higher than the one of OC. SS narrows
the coverage gap between them. For example, the biggest gap is
10%, happening in the big classes’ branch coverage. SS narrows
the gap by 4% (see Table 2 (c)). These facts confirm that combin-
ing criteria offers more objectives for optimization, affecting the
efficacy of GAs. The bigger classes bring more objectives, leading
to a higher impact. The suite size increase brought by OC/SS to
CC is significant, confirming the experimental results of the work
proposing OC [41]. The main reason is that the GA (not only WS
but also MOSA/DynaMOSA) needs more tests for more goals. With
the coverage increase, the suite size of SS is also greater than OC.
Compared with the extent of the suite increase brought by OC to
CC, we regard that it is reasonable.

Answer to RQ1:With WS, SS outperforms OC statistically, es-
pecially on the big classes (i.e., the classes with no less than 200
branches).

4.3 RQ2: How does smart selection perform
with MOSA?

Motivation. In this RQ, we evaluate smart selection with MOSA.
Methodology. The methodology is the same as RQ1’s.
Result. ▶All Classes.
Significant Cases. Fig. 5 (a) shows the comparison results of SS
and OC on all 400 Java classes. For each criterion, on average, SS-
outperforming classes are 78 (19.5%). OC-outperforming classes are
42 (10.4%). No-significant classes are 280 (70.1%).
Average Coverage. Table 4 (a) shows the average coverage of all
classes. SS outperforms OC for five criteria’ coverage. Among three
approaches, SS reaches five criteria’ highest coverage.
Average Suite Size. The first row of Table 5 shows the average
suite sizes of all classes. Compared to CC, the size of OC increases
by 73.1%. Compared to OC, the size of SS increases by 4.7%.
▶Small Classes.
Significant Cases. Fig. 5 (b) shows the comparison results of SS
and OC on 315 small Java classes. For each criterion, on average,
SS-outperforming classes are 43 (13.8%). OC-outperforming classes
are 37 (11.7%). No-significant classes are 235 (74.5%).

Table 4: Average coverage results for each approach with
MOSA

(a) All Classes
approach SS OC CC
BC 57% 56% 58%
WM 60% 60% 60%
LC 61% 60% 61%
TMC 84% 83% 82%

approach SS OC CC
NTMC 71% 71% 69%
DBC 57% 55% 57%
EC 16.95 16.15 16.41
OC 44% 44% 45%

(b) Small Classes
approach SS OC CC
BC 59% 58% 60%
WM 62% 62% 62%
LC 63% 63% 63%
TMC 85% 85% 84%

approach SS OC CC
NTMC 73% 72% 71%
DBC 58% 58% 59%
EC 13.28 13.07 12.73
OC 45% 45% 46%

(c) Big Classes
approach SS OC CC
BC 49% 46% 51%
WM 52% 49% 51%
LC 54% 52% 53%
TMC 79% 78% 77%

approach SS OC CC
NTMC 66% 64% 64%
DBC 50% 46% 51%
EC 30.54 27.53 30.03
OC 40% 38% 42%

Table 5: Average test suite size of each approach with MOSA

approach SS OC CC (Average)
size (All Classes) 57.03 54.46 31.47
size (Small Classes) 38.27 38.83 19.85
size (Big Classes) 126.56 112.38 74.53

Average Coverage. Table 4 (b) shows the average coverage of
small classes. SS outperforms OC for three criteria’ coverage. SS
reaches three criteria’ highest coverage.
Average Suite Size. The second row of Table 5 shows the average
suite sizes of small classes. Compared to CC, the size of OC increases
by 95.6%. OC is nearly equal to SS.
▶Big Classes.
Significant Cases. Fig. 5 (c) shows the comparison results of SS
and OC on 85 big Java classes. For each criterion, on average, SS-
outperforming classes are 35 (40.9%). OC-outperforming classes are
5 (5.6%). No-significant classes are 46 (53.5%).
Average Coverage. Table 4 (c) shows the average coverage of big
classes. SS outperforms OC for eight criteria’ coverage. SS reaches
five criteria’ highest coverage.



Selectively Combining Multiple Coverage Goals in Search-Based Unit Test Generation ASE ’22, October 10–14, 2022, Rochester, MI, USA

(a) All Classes (b) Small Classes (c) Big Classes

Figure 6: Significant case summary of smart selection and the original combination with DynaMOSA

Average Suite Size. The third row of Table 5 shows the average
suite sizes of big classes. Compared to CC, the size of OC increases
by 50.7%. Compared to OC, the size of SS increases by 12.6%.
Analysis. SS outperforms OC on the big classes like WS. But the
advantage of SS is unnoticeable on the small classes. The coverage
gap between CC and OC is not significant as the gap in WS. SS
nearly bridges this gap. The biggest gap is 5%, happening in branch
coverage of the big classes. SS narrows this gap by 3%. The suite size
gap between SS and OC is smaller than on WS, which is consistent
with the fact that SS and OC have a smaller coverage gap on MOSA.
These facts show the advantage of multi-objective approaches (e.g.,
MOSA) over single-objective approaches (e.g., WS) [7, 28, 38]. How-
ever, the advantage of SS on the big classes indicates that too many
objectives also affect the multi-objective algorithms.

Answer to RQ2:With MOSA, SS outperforms OC statistically on
the big classes. Smart selection has only a slight advantage on the
small classes.

4.4 RQ3: How does smart selection perform
with DynaMOSA?

Motivation. In this RQ, we evaluate smart selection with Dy-
naMOSA.
Methodology. The methodology is the same as RQ1’s.
Result. ▶All Classes.
Significant Cases. Fig. 6 (a) shows the comparison results of SS
and OC on all 400 Java classes. For each criterion, on average, SS-
outperforming classes are 32 (8.1%). OC-outperforming classes are
40 (10.1%). No-significant classes are 328 (81.8%).
Average Coverage. Table 6 (a) shows the average coverage of all
classes with three approaches. SS outperforms OC for one crite-
rion’s coverage, i.e., exception coverage. Among three approaches,
SS reaches the highest coverage for three criteria.
Average Suite Size. The first row of Table 7 shows the average
suite sizes of all classes. Compared to CC, the size of OC increases
by 54.7%. OC is nearly equal to SS.
▶Small Classes.
Significant Cases. Fig. 6 (b) shows the comparison results of SS
and OC on 315 small Java classes. For each criterion, on average,

Table 6: Average coverage results for each approach with
DynaMOSA

(a) All Classes
approach SS OC CC
BC 58% 58% 58%
WM 60% 61% 62%
LC 61% 62% 62%
TMC 83% 83% 81%

approach SS OC CC
NTMC 71% 71% 70%
DBC 57% 57% 58%
EC 17.15 17.14 16.64
OC 45% 45% 45%

(b) Small Classes
approach SS OC CC
BC 60% 59% 60%
WM 63% 63% 64%
LC 63% 64% 64%
TMC 84% 85% 82%

approach SS OC CC
NTMC 72% 73% 72%
DBC 59% 59% 59%
EC 13.42 13.42 12.81
OC 46% 46% 46%

(c) Big Classes
approach SS OC CC
BC 51% 51% 53%
WM 53% 52% 54%
LC 54% 54% 55%
TMC 79% 79% 78%

approach SS OC CC
NTMC 66% 66% 65%
DBC 51% 50% 53%
EC 30.98 30.93 30.81
OC 41% 41% 42%

Table 7: Average test suite size of each approach with Dy-
naMOSA

approach SS OC CC (Average)
size (All Classes) 61.13 60.59 39.2
size (Small Classes) 38.9 39.59 23.71
size (Big Classes) 143.51 138.44 96.58

SS-outperforming classes are 17 (5.2%). OC-outperforming classes
are 34 (10.8%). No-significant classes are 265 (84%).
Average Coverage. Table 6 (b) shows the average coverage of small
classes. SS outperforms OC for one criterion’s coverage (branch
coverage). SS reaches two criteria’ highest coverage.
Average Suite Size. The second row of Table 7 shows the average
suite sizes of small classes. Compared to CC, the size of OC increases
by 66.9%. OC is nearly equal to SS.
▶Big Classes.
Significant Cases. Fig. 6 (c) shows the comparison results of SS
and OC on 85 big Java classes. For each criterion, on average, SS-
outperforming classes are 16 (18.7%). OC-outperforming classes are
6 (7.5%). No-significant classes are 63 (73.8%).



ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian Tang

(a) WS (b) MOSA (c) DynaMOSA

Figure 7: Significant case summary of smart selection and smart selection with subsumption strategy

Average Coverage. Table 6 (c) shows the average coverage of big
classes. SS outperforms OC for three criteria’ coverage. SS reaches
three criteria’ highest coverage.
Average Suite Size. The third row of Table 7 shows the average
suite sizes of big classes. Compared to CC, the size of OC increases
by 43.3%. Compared to OC, the size of SS increases by 3.7%.
Analysis. SS still outperforms OC on the big classes, but not as
obvious as WS and MOSA. In addition, SS is almost the same or
slightly worse than OC on the small classes. Furthermore, the cov-
erage gaps among the three approaches are not significant. The gap
in the suite size between SS and OC is slight as in the coverage. The
reason is that DynaMOSA selects the uncovered goals into the iter-
ation process only when its branch dependencies are covered (see
Sec. 2.2). Hence, the number of optimization objectives is reduced.
Therefore, an increase in the goals has a much smaller impact on
DynaMOSA’s coverage performance than on WS and MOSA.

Answer to RQ3:With DynaMOSA, smart selection slightly out-
performs the original combination on the big classes. But, the
original combination slightly outperforms smart selection on the
small classes.

4.5 RQ4: How does the subsumption strategy
affect the performance of smart selection?

Motivation. We select the representative goals from line coverage
and weak mutation by the subsumption relationships (see Sec 3.4).
We need to test how it affects the performance of smart selection.
Subjects. From 400 classes, we select those classes that satisfy
this condition: The subsumption strategy can find at least one line
coverage goal and one mutant. As a result, 173 classes are selected.
Configuration. We take smart selection without the subsumption
strategy (SSWS) as a new approach. Then we keep other configura-
tion settings the same as RQ1-3’s.
Methodology. To compare SS and SSWS, we follow RQ1’s method-
ology.
Result. ▶WS.
Significant Cases. Fig. 7 (a) shows the comparison results of SS and
SSWS on 173 classes with WS. For each criterion, on average, SS-
outperforming classes are 25 (14.5%). SSWS-outperforming classes
are 47 (27.2%). No-significant classes are 101 (58.3%).

Table 8: Average coverage and size results for smart selection
and smart selection without the subsumption strategy

(a)WS (Suite Size: SS (45.18), SSWS (48.08))
approach SS SSWS
BC 47% 48%
WM 52% 53%
LC 51% 53%
TMC 79% 78%

approach SS SSWS
NTMC 63% 63%
DBC 46% 48%
EC 16.43 17.46
OC 38% 39%

(b)MOSA (Suite Size: SS (52.08), SSWS (51.66))
approach SS SSWS
BC 49% 49%
WM 53% 53%
LC 53% 54%
TMC 79% 78%

approach SS SSWS
NTMC 63% 63%
DBC 49% 49%
EC 18.19 18.32
OC 38% 39%

(c) DynaMOSA (Suite Size: SS (57.1), SSWS (54.79))
approach SS SSWS
BC 50% 50%
WM 54% 54%
LC 53% 54%
TMC 79% 78%

approach SS SSWS
NTMC 63% 63%
DBC 49% 49%
EC 18.26 18.68
OC 39% 39%

Average Coverage. Table 8 (a) shows the average coverage for
WS. SS outperforms SSWS for one criterion’s coverage (top-level
method coverage). SSWS outperforms SS for six criteria.
▶MOSA.
Significant Cases. Fig. 7 (b) shows the comparison results of SS and
SSWS on 173 classes with MOSA. For each criterion, on average, SS-
outperforming classes are 23 (13.3%). SSWS-outperforming classes
are 32 (18.5%). No-significant classes are 118 (68.2%).
Average Coverage. Table 8 (b) shows the average coverage for
MOSA. SS outperforms SSWS for one criterion’s coverage (top-level
method coverage). SSWS outperforms SS for three criteria.
▶DynaMOSA.
Significant Cases. Fig. 7 (c) shows the comparison results of SS
and SSWS on 173 Java classes with DynaMOSA. On average, SS-
outperforming classes are 20 (11.6%). SSWS-outperforming classes
are 25 (14.5%). No-significant classes are 128 (73.9%).
Average Coverage. Table 8 (c) shows the average coverage for
DynaMOSA. SS outperforms SSWS for one criterion’s coverage
(top-level method coverage). SSWS outperforms SS for two criteria.
Analysis. SSWS outperforms slightly SS for most criteria on WS.
It confirms that an increase in the objectives has a much bigger
impact on WS than on MOSA and DynaMOSA. Furthermore, the



Selectively Combining Multiple Coverage Goals in Search-Based Unit Test Generation ASE ’22, October 10–14, 2022, Rochester, MI, USA

results are different on line coverage and weak mutation for which
SS adds subsets. For three algorithms, SSWS is better in line cov-
erage in terms of the outperforming classes and average coverage.
Contrarily, SS is better in weak mutation in terms of the outper-
forming classes. It indicates that the coverage correlation between
(direct) branch coverage and line coverage is stronger than the one
between (direct) branch coverage and weak mutation. As for the
suite size, Table 8 shows that SS and SSWS are similar in all three
algorithms.

Unexpectedly, SS outperforms SSWS on top-level method cov-
erage. We analyze some classes qualitatively. For example, there
is a public method named compare in an inner class of the class
org.apache.hadoop.mapred [2]. The results show that 88 out of 90
test suites generated by SS cover this top-level method goal, while
only 1 out of 90 test suites generated by SSWS covers this goal. We
find that this method contains 8 lines, 2 branches, and 3 output
goals. EvoSuite skips the branches and output goals in the inner
class (lines, methods, and mutants are kept). This class has 350
branches, 48 methods, and 10 output goals. SS selects 14 lines and
216 mutants for this class (0 lines and 10 mutants for this method).
As a result, if a test directly invokes this method, under SS, at most
(1 + 10) out of 638 (2%) goals are closer to being covered; under
SSWS, the number is 1 out of 408 (0.2%). It explains why all algo-
rithms with SSWS tend to ignore this method goal since the gain is
tiny. We find that this scenario is common in those big classes that
contain short and branch-less methods.

Answer to RQ4 :Smart selection without the subsumption strat-
egy outperforms slightly smart selection in most criteria on WS
(except for WM and TMC). Smart selection outperforms slightly
smart selection without the subsumption strategy in WM and
TMC on three algorithms.

5 DISCUSSION
5.1 Parameter Tuning
Smart selection introduces a new parameter: lineThreshold (see Sec.
3.4). In handling line coverage, smart selection skips those basic
blocks (BBs) with lines less than lineThreshold. The larger the value
of this parameter, the more BBs we skip. Without considering the
dead code, (direct) branch coverage fails to capture the following
lines only when a certain line in a basic block exits abnormally.
Previous work [41] shows that, on average, when 78% of branches
are covered, test suites can only find 1.75 exceptions. It indicates
that (direct) branch coverage can capture most properties of line
coverage. Therefore, to minimize the impacts of line coverage goals
on SBST, we prefer a larger lineThreshold. After statistics on the
benchmarks used in DynaMOSA [39], we find that 50% of the BBs
have less than 8 lines. Therefore, we set lineThreshold to 8.

5.2 Threats to Validity
The threat to external validity comes from the experimental subjects.
We choose 158 Java classes from the benchmark of DynaMOSA
[39]. [39] was published in 2018. Many classes have already become
obsolete. Some projects even are no longer maintained [30]. To
reduce this risk, we choose 242 classes at random from Hadoop [1],
thereby increasing the diversity of the dataset. The threat to internal

validity comes from the randomness of the genetic algorithms. To
reduce the risk, we repeat each approach 30 times for every class.

6 RELATEDWORK
In this section, we introduce related studies on (1) SBST and (2)
coverage criteria combination in SBST.
SBST. SBST formulates test cases generation as an optimization
problem. Miller et al. [34] proposed the first SBST technique to
generate test data for functions with inputs of float type. SBST
techniques have been widely used in various objects under test
[3, 10, 13, 14, 17, 23, 32, 47, 52], and types of software testing
[29, 45, 51]. Most researchers focus on (1) search algorithms: Tonella
[48] proposed to iterate to generate one test case for each branch.
Fraser et al. [15] proposed to generate a test suite for all branches.
Panichella et al. [38, 39] introduced many-objective optimization
algorithms. Grano et al. [21] proposed a variant of DynaMOSA [39]
to reduce the computation costs; (2) fitness gradients recovery: Lin
et al. [31] proposed an approach to address the inter-procedural
flag problem. Lin et al. [30] proposed a test seed synthesis approach
to create complex test inputs. Arcuri et al. [4] integrated testability
transformations into API tests. Braione et al. [6] combined symbolic
execution and SBST for programs with complex inputs; (3) read-
ability of generated tests: Daka et al. [11] proposed to assign names
for tests by summarizing covered coverage goals. Roy et al. [42]
introduced deep learning approaches to generate test names; (4)
fitness function design: Xu et al. [53] proposed an adaptive fitness
function for improving SBST. Rojas et al. [41] proposed to combine
multiple criteria to satisfy users’ requirements.
Coverage Criteria Combination in SBST. Rojas et al. [41] pro-
posed to combine multiple criteria to guide SBST. Gregory Gay [18]
experimented with different combinations of coverage criteria. His
experiment compares the effectiveness of multi-criteria suites in
detecting complex, real-world faults. Omur et al. [43] introduced
the Artificial Bee Colony algorithm as a substitute for the genetic
algorithms used inWS [15]. Our work aims to increase the coverage
decrease caused by combing multiple criteria [41] and is orthogonal
to the latter two studies [18, 43].

7 CONCLUSION
We propose smart selection to address the coverage decrease caused
by combining multiple criteria in SBST.We compare smart selection
with the original combination on 400 Java classes. The experiment
results confirm that with WS and MOSA, smart selection outper-
forms the original combination, especially for the Java classes with
no less than 200 branches. But with DynaMOSA, the differences
between smart selection and the original combination are slight.

ACKNOWLEDGMENTS
Z. Zhou and Y. Tang are partially sponsored by Shanghai Pujiang
Program (No. 21PJ1410700). Y. Zhou is partially sponsored by Na-
tional Natural Science Foundation of China (No. 62172205). C. Fang
and Z. Chen are partially sponsored by Science, Technology and
Innovation Commission of Shenzhen Municipality
(CJGJZD20200617103001003)



ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian Tang

REFERENCES
[1] Apache Software Foundation. 2006. Hadoop. https://hadoop.apache.org
[2] Apache Software Foundation. 2006. Hadoop’s compare method. https://tinyurl.

com/mrxvxusy
[3] Andrea Arcuri. 2018. Evomaster: Evolutionary multi-context automated system

test generation. In Proceedings of ICST. 394–397.
[4] Andrea Arcuri and Juan P Galeotti. 2021. Enhancing search-based testing with

testability transformations for existing APIs. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31, 1 (2021), 1–34.

[5] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. 2011. Random
testing: Theoretical results and practical implications. IEEE transactions on
Software Engineering 38, 2 (2011), 258–277.

[6] Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè. 2017.
Combining symbolic execution and search-based testing for programs with
complex heap inputs. In Proceedings of ISSTA. 90–101.

[7] Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian Klein, Frank
Neumann, and Eckart Zitzler. 2007. Do additional objectives make a problem
harder?. In Proceedings of GECCO. 765–772.

[8] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. 2018. An empirical evaluation of evolutionary algorithms for unit test
suite generation. Information and Software Technology 104 (2018), 207–235.

[9] José Campos, Annibale Panichella, and Gordon Fraser. 2019. EvoSuiTE at the
SBST 2019 tool competition. In Proceedings of SBST. 29–32.

[10] Jeroen Castelein, Maurício Aniche, Mozhan Soltani, Annibale Panichella, and
Arie van Deursen. 2018. Search-based test data generation for SQL queries. In
Proceedings of ICSE. 1220–1230.

[11] Ermira Daka, José Miguel Rojas, and Gordon Fraser. 2017. Generating unit tests
with descriptive names or: Would you name your children thing1 and thing2?. In
Proceedings of ISSTA. 57–67.

[12] Kalyanmoy Deb. 2014. Multi-objective optimization. 403–449.
[13] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.

Time-travel testing of android apps. In Proceedings of ICSE. 481–492.
[14] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Genera-

tion for Object-Oriented Software. In Proceedings of ESEC/FSE. 416–419.
[15] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE

Transactions on Software Engineering 39, 2 (2013), 276–291.
[16] Gordon Fraser and Andrea Arcuri. 2015. Achieving Scalable Mutation-Based

Generation of Whole Test Suites. Empirical Software Engineering 20, 3 (2015),
783–812.

[17] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically testing
self-driving cars with search-based procedural content generation. In Proceedings
of ISSTA. 318–328.

[18] Gregory Gay. 2017. Generating Effective Test Suites by Combining Coverage
Criteria. In Search Based Software Engineering. 65–82.

[19] Rohit Gheyi, Márcio Ribeiro, Beatriz Souza, Marcio Guimarães, Leo Fernandes,
Marcelo d’Amorim, Vander Alves, Leopoldo Teixeira, and Baldoino Fonseca. 2021.
Identifying method-level mutation subsumption relations using Z3. Information
and Software Technology 132 (2021), 106496.

[20] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin
Alipour, and Darko Marinov. 2015. Guidelines for coverage-based comparisons
of non-adequate test suites. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24, 4 (2015), 1–33.

[21] Giovanni Grano, Christoph Laaber, Annibale Panichella, and Sebastiano
Panichella. 2019. Testing with fewer resources: An adaptive approach to
performance-aware test case generation. IEEE Transactions on Software En-
gineering 47, 11 (2019), 2332–2347.

[22] Marcio Augusto Guimarães, Leo Fernandes, Márcio Ribeiro, Marcelo d’Amorim,
and Rohit Gheyi. 2020. Optimizing mutation testing by discovering dynamic
mutant subsumption relations. In Proceedings of ICST. 198–208.

[23] Fitash Ul Haq, Donghwan Shin, Lionel C Briand, Thomas Stifter, and Jun Wang.
2021. Automatic test suite generation for key-points detection DNNs using
many-objective search (experience paper). In Proceedings of ISSTA. 91–102.

[24] Yue Jia and Mark Harman. 2008. Constructing Subtle Faults Using Higher Order
Mutation Testing. Proceedings of SCAM, 249 – 258.

[25] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development
of Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011),
649–678.

[26] René Just, Gregory M Kapfhammer, and Franz Schweiggert. 2012. Do redun-
dant mutants affect the effectiveness and efficiency of mutation analysis?. In
Proceedings of ICST. 720–725.

[27] Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2
(1938), 81–93.

[28] Joshua D Knowles, Richard A Watson, and David W Corne. 2001. Reducing local
optima in single-objective problems by multi-objectivization. In International
conference on evolutionary multi-criterion optimization. 269–283.

[29] Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search algorithms for
regression test case prioritization. IEEE Transactions on software engineering 33,

4 (2007), 225–237.
[30] Yun Lin, You Sheng Ong, Jun Sun, Gordon Fraser, and Jin Song Dong. 2021.

Graph-Based Seed Object Synthesis for Search-Based Unit Testing. In Proceedings
of ESEC/FSE. 1068–1080.

[31] Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong. 2020.
Recovering fitness gradients for interprocedural Boolean flags in search-based
testing. In Proceedings of ISSTA. 440–451.

[32] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest:
automated black-box testing of RESTful web APIs. In Proceedings of ISSTA. 682–
685.

[33] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
Testing, Verification and Reliability 14, 2 (2004), 105–156.

[34] Webb Miller and David L. Spooner. 1976. Automatic generation of floating-point
test data. IEEE Transactions on Software Engineering 3 (1976), 223–226.

[35] Elfurjani S Mresa and Leonardo Bottaci. 1999. Efficiency of mutation opera-
tors and selective mutation strategies: An empirical study. Software Testing,
Verification and Reliability 9, 4 (1999), 205–232.

[36] A Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H Untch, and Christian
Zapf. 1996. An experimental determination of sufficient mutant operators. ACM
Transactions on Software Engineering and Methodology (TOSEM) 5, 2 (1996), 99–
118.

[37] Annibale Panichella, José Campos, and Gordon Fraser. 2020. EvoSuite at the
SBST 2020 Tool Competition. In Proceedings of ICSEW. 549–552.

[38] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2015. Re-
formulating Branch Coverage as a Many-Objective Optimization Problem. In
Proceedings of ICST. 1–10.

[39] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44
(2018), 122–158.

[40] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does
mutation testing improve testing practices?. In Proceedings of ICSE. IEEE, 910–
921.

[41] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Ar-
curi. 2015. Combining Multiple Coverage Criteria in Search-Based Unit Test Gen-
eration. In Search-Based Software Engineering, Márcio Barros and Yvan Labiche
(Eds.). 93–108.

[42] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella,
Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. 2020. DeepTC-
Enhancer: Improving the readability of automatically generated tests. In Proceed-
ings of ASE. 287–298.

[43] Omur Sahin, Bahriye Akay, and Dervis Karaboga. 2021. Archive-based multi-
criteria Artificial Bee Colony algorithm for whole test suite generation. Engi-
neering Science and Technology 24, 3 (2021), 806–817.

[44] Aravind Seshadri. 2006. A fast elitist multi-objective genetic algorithm: NSGA-II.
MATLAB Central 182 (2006).

[45] Rodolfo Adamshuk Silva, Simone do Rocio Senger de Souza, and Paulo Sér-
gio Lopes de Souza. 2017. A systematic review on search based mutation testing.
Information and Software Technology 81 (2017), 19–35.

[46] Beatriz Souza. 2020. Identifying mutation subsumption relations. In Proceedings
of ASE. 1388–1390.

[47] Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu. 2020.
All Your App Links Are Belong to Us: Understanding the Threats of Instant Apps
Based Attacks. In Proceedings of ESEC/FSE. 914–926.

[48] Paolo Tonella. 2004. Evolutionary Testing of Classes. In Proceedings of ISSTA.
119–128.

[49] András Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[50] Sebastian Vogl, Sebastian Schweikl, Gordon Fraser, Andrea Arcuri, Jose Campos,
and Annibale Panichella. 2021. EVOSUITE at the SBST 2021 Tool Competition.
In Proceedings of SBST. 28–29.

[51] Kristen R Walcott, Mary Lou Soffa, Gregory M Kapfhammer, and Robert S Roos.
2006. Time-Aware Test Suite Prioritization. In Proceedings of ISSTA. 1–12.

[52] Song Wang, Nishtha Shrestha, Abarna Kucheri Subburaman, Junjie Wang, Moshi
Wei, and Nachiappan Nagappan. 2021. Automatic Unit Test Generation for Ma-
chine Learning Libraries: How Far Are We?. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). 1548–1560.

[53] Xiong Xu, Ziming Zhu, and Li Jiao. 2017. An adaptive fitness function based on
branch hardness for search based testing. In Proceedings of GECCO. 1335–1342.

https://hadoop.apache.org
https://tinyurl.com/mrxvxusy
https://tinyurl.com/mrxvxusy

	Abstract
	1 Introduction
	2 Background
	2.1 Coverage Criteria
	2.2 Genetic Algorithms
	2.3 Combining Coverage Criteria

	3 Smart Selection
	3.1 Overview
	3.2 Group Criteria by Coverage Correlation
	3.3 Select Representative Criterion by Effectiveness to guide SBST
	3.4 Select Representative Coverage Goals by Subsumption Relationships

	4 Evaluation
	4.1 Experiment Setting
	4.2 RQ1: How does smart selection perform with WS?
	4.3 RQ2: How does smart selection perform with MOSA?
	4.4 RQ3: How does smart selection perform with DynaMOSA?
	4.5 RQ4: How does the subsumption strategy affect the performance of smart selection?

	5 Discussion
	5.1 Parameter Tuning
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

