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ABSTRACT

Scene graph generation takes an image and derives a graph repre-

sentation of key objects in the image and their relations. This core

computer vision task is often used in autonomous driving, where

traditional software and machine learning (ML) components are

used in tandem. However, in such a safety-critical context, valid

scene graphs can be further restricted by consistency constraints

captured by domain or safety experts. Existing ML approaches for

scene graph generation focus exclusively on relation-level accuracy

but provide little to no guarantee that consistency constraints are

satisfied in the generated scene graphs. In this paper, we aim to

complement existing ML-based approaches by a post-processing

step using constraint optimization over probabilistic scene graphs

that can (1) guarantee that no consistency constraints are violated

and (2) improve the overall accuracy of scene graph generation by

fixing constraint violations. We evaluate the effectiveness of our

approach using well-known, and novel metrics in the context of

two popular ML datasets augmented with consistency constraints

and two ML-based scene graph generation approaches as baselines.

CCS CONCEPTS

• Mathematics of computing → Computing most probable ex-
planation; • Computing methodologies → Neural networks;

Knowledge representation and reasoning.
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scene graph generation, constraint optimization, consistency con-

straints, machine learning, probabilistic logic programming
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1 INTRODUCTION

Context. In computer vision, scene graph generation (SGG) [13]

takes a camera image as input and derives a scene graph with nodes

representing relevant objects (with their attributes) and edges cap-

turing key relations between objects. A safety-critical usage sce-

nario for scene graphs is autonomous driving [89] where machine

learning (ML) components are often used in combination with tra-

ditional software components (e.g., traffic simulators like Carla

[26]). There are several robotics applications of SGG by combining

automated software engineering and ML [48].

However, safety standards (such as [29, 30]) require justified

evidence that safety requirements are satisfied. Many of such re-

quirements can be formulated by domain experts as consistency

constraints over scene graphs (e.g., using first-order logic or the

Object Constraint Language [34]), and used in tools like Scenic for

test scenario generation [31]. Similar consistency constraints have

been actively used in model-driven engineering at design-time in

complex modeling tools (e.g., Capella, Artop, SysML) and validation

tools [41, 65] for checking design rules for digitalization.

Problem statement. In this paper, we define the problem of con-
sistent scene graph generation where the derived scene graphs also

need to satisfy a set of consistency constraints available as a pri-

ori domain knowledge. Our paper investigates to what an extent

consistency can be ensured for SGG.

In an autonomous driving context, such constraints may include

physical or geometrical constraints (e.g., an autonomous vehicle

needs to be on the road), or domain-specific restrictions (e.g., turn-

ing counter-clockwise in a roundabout, traffic signs should be con-

sistent). From a safety perspective, the precise boundaries of safe

behavior need to be precisely defined [4], e.g., (1) ML components in

https://doi.org/10.1145/3551349.3560433
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an autonomous vehicle should guarantee safe behavior when they

operate in a consistent environment (e.g. by starting from a con-

sistent training set), and (2) they should gracefully degrade when

some constraints are violated by human drivers in the environment

(e.g. by handling extreme cases later).

Most existing ML approaches for SGG (1) ignore the handling
of consistency constraints with the following rationale: assuming

that the real scene respects the constraints, if a scene graph can be

accurately derived from an image, then all constraints will automat-

ically be satisfied. (2) A few approaches [28, 72, 85] have attempted

to incorporate constraints into loss functions to penalize cases during
training where constraints are not satisfied. Alternatively, (3) con-
straints can be incorporated by extra layers in an ML architecture

[40, 80], which turn hard constraints into soft constraints (by intro-

ducing differentiable functions) to solve an optimization problem

that minimizes the number of constraint violations.

Existing research in SGG only provides a best effort solution to

ensure constraint satisfaction where any constraint can be violated

with a low (but non-zero) probability, which does not provide any

strong consistency guarantees for unseen data points. Moreover,

incorporating a new constraint may require manually redesigning

the ML architecture and restarting the training from scratch.

Furthermore, existing metrics used by the ML community to

assess the performance of SGG operate on the element level (e.g.,
triple based recall). They calculate the total number of correctly

identified objects and relations across all scenes. However, there

are no metrics to measure the consistency or accuracy of entire scene
graphs. Thus, even if a SGG approach achieves very high recall, the

derived scene graphs may still have a low score for consistency.

Objectives. The main objective of the current paper is to comple-

ment existing ML-based SGG techniques by post-processing their

probabilistic output by constraint optimization techniques to derive

scene graphs with guaranteed consistency. On a general level, we

aim to demonstrate how formal reasoning techniques (widely used

in automated software engineering) can bring benefits to the ML

challenge of scene graph generation to ensure consistency.

Contributions. Given a domain specification (with a metamodel

and a set of consistency constraints), this paper presents a novel

technique to improve the performance of scene graph generation

by enforcing domain-specific constraints on the output of a vision-

based ML component. As a conceptual novelty, our approach takes

the most probable scene graph which satisfy all the constraints while
obtaining the probabilities from existingML-based SGG approaches.

• We provide novel metrics for evaluating the consistency and

semantic (graph-level) accuracy of existing SGG techniques.

• We describe the consistent scene graph generation challenge

as a constraint optimization problem to ensure the satisfac-

tion of domain-specific first-order logic constraints.

• We adapt various deep learning techniques that separate the

SGG problem into object recognition, attribute extraction,

and relation detection to obtain a probabilistic scene graph.

• Given a probabilistic scene graph as input obtained from any

ML model for SGG, we propose a post-processing method to

derive consistent scene graphs as most probable explanation

by probabilistic logic programming.

• We evaluate our approach on two benchmarks (CLEVR [43]

and Blocksworld [7]) frequently used for evaluating the effec-

tiveness of various vision-based ML techniques, and provide

an initial study on a real-world dataset [46].

Added value. A main benefit of our approach is that it can signif-

icantly improve the performance of various existing ML-based SGG

techniques that provide probabilities for individual objects and re-

lations in a post-processing step. Moreover, we provide theoretical

guarantees and empirical evidence for full (100%) consistency.

2 BACKGROUND

2.1 Vision based scene graph generation

Scene graph generation (SGG) is a classical task in computer vision.

Given an image, SGG aims to extract key objects on the image, the

attributes of the objects, and relations between objects as a graph.

Scene graphs. The structure of a scene graph can be defined by

modeling techniques, e.g. a metamodel or a type graph. To simplify

the presentation, let R denote a finite set of binary relation symbols

(types) between objects, and A be a finite set of attribute symbols

(types) while object types are handled as special attributes. let

𝑉 : A → V𝑎 map an attribute type 𝑎 ∈ A to its finite possible values

V𝑎 . In this paper, we focus only on discrete-valued attributes.

A scene graph 𝑆𝐺 = (N, E, attr) can be represented as labeled

and attributed graph [44] where (1) N is the set of objects (or nodes),

(2) E : N×R×N is the set of relations (or edges) labeled from R. As a
notational shortcut,

−→
𝑠𝑡 𝑟 captures a relation of type 𝑟 from node 𝑠 to

𝑡 , i.e., we write
−→
𝑠𝑡 𝑟 ∈ 𝑆𝐺 iff ⟨𝑠, 𝑟, 𝑡⟩ ∈ E. The notation 𝑟 will denote

the complement of 𝑟 , i.e.,
−→
𝑠𝑡 𝑟 ∈ 𝑆𝐺 iff

−→
𝑠𝑡 𝑟 ∉ 𝑆𝐺 . Furthermore, (3)

attr : (N × A) → V𝑎 is a mapping where
−→𝑛𝑣𝑎 means object 𝑛 has

value 𝑣 of attribute type 𝑎, i.e., we write −→𝑛𝑣𝑎 ∈ 𝑆𝐺 iff attr (𝑛, 𝑎) = 𝑣 .

Scene graph generation. Existing SGG approaches fall into three

main categories (see also Section 7). Here, we provide a high-level

overview ofmulti-step generation, which is more data- and memory-

efficient [88]. Multi-step SGG consists of three components, namely,

object detection, attribute detection, and relationship extraction

[62, 88], which are all neural networks trained individually.

During training, the object detector is trained first with the train-

ing images while using object masks (i.e. a binary matrix where 1

means that a particular pixel is part of the object) as ground truth.

Then the attribute detector and relationship extractor are trained

from the images using attributes and relationships as ground truth,

respectively, while the object detector provides the predicted object

masks for the input images. This can provide better approximations

for a scene when the ground truth is no longer available.

During operation (i.e. actual scene graph generation), the pre-

diction is similar to training: (1) The object detector predicts the

object masks. (2) The masks are fed to the attribute and relation

extractor to predict the output scene graph. (3) Since the predicted

attributes and relations are probability distributions over the possi-

ble values, a probabilistic scene graph is first obtained as the output.

(4) The final scene graph 𝐺𝑚𝑙 is chosen by maximum likelihood

decision, i.e., by selecting the most probable value individually for

each attribute and relation prediction.
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Figure 1: Sample scene with scene graph from Blocksworld

Running example. Blocksworld [7] is used as a running exam-

ple in the paper, which is a popular ML dataset with basic object

shapes (such as cube, sphere and cylinder). Each object has the same

attributes A = {Shape,Color,Material, Size}. Each attribute type

has a finite set of possible values, e.g., V"Size" = {"small", "large"}.
Objects can be placed on top of another object to form a tower,

and there are multiple of such towers in an image. Altogether, the

objects placed on towers form the four basic relationships in this

domain R = {Left,Right,Above,Below}. Naturally, certain rela-

tions may correlate with other relations. For example, two objects

stacked on each other should both be left/right from a third object.

Moreover, an attribute value may also constrain the relations of

an object, e.g., no objects can be stacked on top of a sphere. Fig-

ure 1 shows a sample image from Blocksworld together with its

scene graph. Note that Blocksworld is derived from the CLEVR

dataset [43], which will serve as a further case study in Section 5.

2.2 Hard constraints

In addition to core attributes and relations, a scene graph specifi-

cation can also include a set of domain-specific hard constraints

Φ that all valid objects, attributes and relations must satisfy in

each and every scene graph derived from an image. In automo-

tive design practice, similar constraints are captured by domain

experts and checked by validation tools [41, 65]. Metamodel and

constraints (captured in various specification languages) has been

used in research on testing autonomous vehicles [1, 2, 8].

Constraints formulation. In this paper, we assume that all such

hard constraints can be represented as first-order logic (FOL) for-

mulae, which can normally be derived from high-level constraint

languages (like OCL or VIATRA-Query) [10, 67]. Domain-specific

atomic predicates in these formulae are derived in accordance with

the relations and attributes of the metamodel, e.g., the mapping

of symbols from scene graph to FOL is defined as:
−→
𝑠𝑡 𝑟 → r(𝑠, 𝑡),

−→𝑛𝑣𝑎 → a(𝑛, 𝑣), attr(𝑛, 𝑎) → a(𝑛). Complex FOL formulae are then

assembled using the regular Boolean operations (∧,∨,¬, ⇐⇒ )

where quantifiers (∃,∀) are ranging over objects. For example,

Color(𝑜1, "red") ∧ Right(𝑜1, 𝑜2) specifies there exists an object 𝑜1

which has a red color and is right to some other object 𝑜2. We

classify domain-specific constraints in the Blocksworld (Figure 1)

into geometric (physical) constraints and logical constraints.

Geometrical and physical constraints. Physical and geometrical

constraints capture rules that need to be satisfied in order to obey

the laws of physics. While in our work, we primarily focus on

Metric Type Formula Metrics

Recall-based

𝑠𝑖𝑧𝑒 (T𝑝𝑟𝑒𝑑∩T𝑔𝑡 )
𝑠𝑖𝑧𝑒 (T𝑔𝑡 )

SGGen [52],

SGGen+ [86]

Scene Accuracy

∑𝑁
𝑖=0

1(S𝑝𝑟𝑒𝑑 [𝑖 ]�S𝑔𝑡 [𝑖 ])
𝑁

SA

Consistency

∑𝑁
𝑖=0

1(∀𝜙∈Φ: S𝑝𝑟𝑒𝑑 [𝑖 ] |=𝜙 )
𝑁

Con

above

right

left

left
below

right

SGGen: 6/6, SGGen+: 18/18

 SA:1, Con: 1

above

right

right

left

left

below

left

SGGen: 2/6, SGGen+: 16/18

SA:0, Con: 0

Ground Truth Predicted Scene 1

Figure 2: Metrics: ground truth vs. predicted scene graph

physical constraints for relations, attribute constraints can be in-

corporated similarly. A sample geometrical constraint captures that

if an object 𝑜1 is left (right) from another object 𝑜2, then 𝑜2 must

be right (left) from 𝑜1, which can be expressed in FOL as ∀𝑜1, 𝑜2 :

Left(𝑜1, 𝑜2) ⇐⇒ Right(𝑜2, 𝑜1). As a sample physical constraint,

one can formulate that a sphere cannot hold anything on top of

it, formally ∀𝑜1 : Shape(𝑜1, 𝑆𝑝ℎ𝑒𝑟𝑒) ⇒ ¬∃𝑜2 : Above(𝑜2, 𝑜1).
Altogether, we identified a total of 10 constraints for Blocksworld.

Logic constraint. Additional logic constraints may further restrict

the set of consistent scene graphs (once physical constraints are

already satisfied). In a real scenario, such logic constraints are

formulated by experts from traffic rules and safety regulations. To

illustrate the effects of such external regulations, we identified and

included four constraints for our Blocksworld running example. In

addition to the fulfillment of physical constraints, these constraints

also need to be satisfied by valid towers of objects. The set of logic

constraints used in our Blocksworld running example is provided

in Table 1. For example, a logic constraint expresses that an object

cannot hold a larger object on top of it.

3 METRICS FOR SCENE GRAPH GENERATION

The performance of SGG is usually assessed using various metrics

that evaluate how many relations are correctly identified by SGG.

Moreover, we also propose novel metrics that measure performance

on the entire scene level (see Figure 2 for an overview of all metrics).

Recall-based metrics. These metrics are frequently used in eval-

uating SGG tasks on real-world (or photorealistic) scene images

where exhaustive annotations for all objects that appear in such

images are hard to obtain [52]. Such metrics (Row 1 in Figure 2)

measure how many ground truth triples appear in the predicted

scene, as the ratio of triples appearing both in the prediction T𝑔𝑡
and the ground truth T𝑔𝑡 with respect to the number of triples in

the ground truth T𝑔𝑡 . As such, this metric can ignore irrelevant (or

too small) objects in the background of an image. Various metrics

in this category differ on how the triples are collected and matched.

SGGen recall [52] is a widely adopted metrics based on counting

the number of ground truth ⟨subject, predicate, object⟩ triples (i.e.
relations) recognized in SGG. A predicted triple matches the ground
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C1:An object cannot hold another object larger than it

∀𝑥, 𝑦 : Size(𝑦, "Small") ∧ Above(𝑥, 𝑦) ⇒ Size(𝑥, "Small")
C2: A large cube has to hold something on top of it

∀𝑥 : Size(𝑥, "Large") ∧ Shape(𝑥, "Cube") ⇒ ∃𝑦 :

Above(𝑦, 𝑥 )
C3: Two neighouring stacks bottom of the stacks cannot have the

same color

∀𝑥, 𝑦 : Bottom(𝑥 ) ∧Bottom(𝑦) ∧next(𝑥, 𝑦) ⇒ Color(𝑥 ) ≠
Color(𝑦) where Bottom(𝑥 ) := ¬∃𝑦 : Below(𝑦, 𝑥 )
leftNext(𝑥, 𝑦) := Left(𝑥, 𝑦) ∧ ¬(∃𝑧 : Left(𝑥, 𝑧 ) ∧ Left(𝑧, 𝑦) )
next(𝑥, 𝑦) := leftNext(x, y) ∨ leftNext(𝑦, 𝑥 )
C4: Each yellow object there has to have something on the right

∀𝑥 : Color(𝑥, "Yellow") ⇒ ∃𝑦 : Right(𝑦, 𝑥,)
(a) Blocksworld constraints

C1: Between any pairs of objects with the same color, there must be an object with a different color

placed in between horizontally

∀𝑥, 𝑦 : Color(𝑥 ) = Color(𝑦) ⇒ ∃𝑧 : (Color(𝑧 ) ≠ Color(𝑥 ) ) ∧ inBetween(𝑧, 𝑥, 𝑦) , where:
inBetween(𝑧, 𝑥, 𝑦) := (Left(𝑥, 𝑦) ∧Left(𝑥, 𝑧 ) ∧Left(𝑧, 𝑦) ) ∨Left(𝑦, 𝑦) ∧Left(𝑦, 𝑧 ) ∧Left(𝑧, 𝑥 ) )
C2: A metal object cannot be behind a rubber object

∀𝑥 : Material(𝑥 ) = "Metal" ⇒ (∀𝑦 : (Material(𝑦) = "Rubber") ⇒ Behind(𝑦, 𝑥 ) )
C3: For each large cube, there must be a small cylinder behind it

∀𝑥 : (Shape(𝑥 ) = "Cube" ∧ Size(𝑥 ) = "Large") ⇒ ∃𝑦 : Size(𝑦) = "Small"∧ Shape(𝑦) =

"Cylinder" ∧ Behind(𝑦, 𝑥 )
C4: If there are a cyan metal and a red sphere object, then there cannot another object behind them.

∃𝑥, 𝑦 : Color(𝑥 ) = "Cyan" ∧ Material( ( )𝑥 ) = "Metal" ∧ Color(𝑦) = "Red" ∧ Shape(𝑦) =

"Sphere" ⇒ ¬∃𝑧 : 𝑧! = 𝑥, 𝑧! = 𝑦 ∧ (Behind(𝑧, 𝑥 ) ∨ Behind(𝑧, 𝑦) )
(b) CLEVR constraints

Table 1: Domain-specific logic constraints of Blocksworld and CLEVR

truth if it detects the correct predicate (relation) and correctly recog-

nizes the two objects. For an object to be correctly recognized, SGG

needs to provide the correct attributes of the object and localize the

object in the image. IoU (Intersection over Union) is used to mea-

sure the localization of objects, which calculates the fraction of the

overlap between the ground truth object mask and predicted object

mask over the union of the two. The predicted object matches the

ground truth if the IoU value is over a certain threshold.

Note that SGGen significantly penalizes object mismatch, e.g.

if an object is incorrectly identified, all of its adjacent triples are

considered to be incorrect. To alleviate this effect, SGGen+ [86]

separates the relation triples with object detection. With this sep-

aration, relation triples only check the localization of objects and

object types and attributes are considered additional relation triples.

Scene accuracy. Triple-based metrics help evaluate the overall

performance of SGG. However, these metrics do not always reflect

the SGG performance on a single scene level. When using SGG in

a safety-critical scenario, it is much more important to predict if

the output of SGG can be fully trusted for a particular scene, i.e.

whether all relations in a given scene are correctly identified. For

that purpose, we propose novel scene-level metrics for SGG.
Scene Accuracy (SA) measures the proportion of predicted

scenes that completely match a ground truth scene. Let 𝑆pred and

𝑆𝑔𝑡 be the set of predicted and ground truth scene graphs, respec-

tively. Then SA is the fraction of the number of predicted scenes

isomorphic to the ground truth (using �) over the total number

of scenes 𝑁 (Row 2 in Figure 2) where 1 is the indicator func-

tion (which evaluates to 1 for graphs where a particular condition

holds). We assume that a node matcher (e.g. the object mask) pairs

the nodes of the two scenes such that graph isomorphism can be

checked by validating the appropriate relations between the nodes.

Furthermore, in principle, the predicted scenes should satisfy

all hard constraints. We propose to measure the level of Consis-

tency (Con), i.e. the number of scenes that fully satisfy all hard

constraints (regardless of whether the scene matches the ground

truth or not). Let S𝑝𝑟𝑒𝑑 [𝑖] |= 𝜑 denote that the predicted scene

satisfies a constraint 𝜑 , then the Con metric (shown in Row 3 of

Figure 2) counts the ratio of such scenes.

Example 1. Figure 2 shows an example evaluation of metrics for

a predicted scene graph (right) against the ground truth (left). We

assume that (1) all ground-truth objects are localized correctly in

the predicted scene graph using object masks, and (2) the material

and size of all objects are correct and only focus on shape and color.

ML-based Computer Vision Components
Object Masks

Probabilistic Scene 

Graph

0.9
0.80.1 0.7

0.6

Problem Domain

Metamodel

Object
Detector

Relation
Extractor

Attribute
Extractor

Constraint
Optimization

Problem
External SolverHard Constraints

Concrete Scene 

Graph

Dataset

Figure 3: Overview of the approach

We can calculate different metric scores by comparing the ground

truth with predicted scene. First, since the red object has a wrong

shape in the predicted graph, all relations are considered wrong in

SGGen. Thus, the predicted scene graph has 2/6 relations correctly.

In SGGen+, we only consider object masks in the relation paring

and add attribute tuples in the measurement. We have 6 relation

triples and 12 attribute tuples in the ground truth scene graph.

Compared to the ground truth, the predicted scene graph has 1

incorrect relation and 1 incorrect attribute, so it has an SGGen+

score of 16/18. Finally, the scene accuracy is 0, and the scene also

violates the hard constraints (along the highlighted edges).

4 APPROACH

4.1 Preliminaries: MPE and MAXSAT

In probabilistic logic programming, given a set of probabilis-

tic facts (i.e., a truth assignment valued random variable) 𝐹

and evidences/constraints 𝐸, the most probable explanation [61]

𝑀𝑃𝐸 (𝐹, 𝐸) = arg max𝑓 𝑃 (𝐹 = 𝑓 | 𝐹 |= 𝐸) finds the most likely real-

ization 𝑓 of 𝐹 that satisfies 𝐸, where 𝑃 ( · | · ) denotes conditional
probability.

Example 2. In the context of our running example, we let

𝑃 (𝐹 |= Right(𝑜1, 𝑜2)) = 0.3, 𝑃 (𝐹 |= Left(𝑜1, 𝑜2)) = 0.8, and

𝐸 = {∀𝑋,𝑌 : Right(𝑋,𝑌 ) ⇒ Left(𝑌,𝑋 ) ∧ ¬Right(𝑌,𝑋 )}.
In this case, the MPE is 𝑓 = {Left(𝑜1, 𝑜2),Right(𝑜2, 𝑜1)}.

Maximum satisifiability (MAXSAT) is an optimization problem

aiming to find the maximum subset of clauses which can be sat-

isfied in a Boolean formula in a conjunctive normal form (CNF).

When some clauses have weights, it is a weighted partial MAXSAT.

Formally, given a set of clauses𝐶𝑖 with weights𝑤𝑖 and a set of hard
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constraints Φ, the weighted partial MAXSAT is formulated as:

¬𝜙 : −∞ for each 𝜙 ∈ Φ

𝐶𝑖 : 𝑤𝑖 for 𝑖 ∈ [0, 𝑛]

max

𝑥

∑︁
𝑖

𝑤𝑖 · 1(𝑥 |= 𝐶𝑖 ) subject to 𝑥 |= 𝜙 for each 𝜙 ∈ Φ
(1)

A solution to this problem satisfies all clauses with −∞ weights

while maximizing the weights of remaining clauses. In the rest of

the paper, MAXSAT refers to the weighted partial variant.

To handle FOL constraints Φ, one can eliminate the quantifiers

by instantiating (unfolding) the constraints with the (finite-domain)

attribute and relation variables to obtain their CNF [75].

Example 3. Φ = 𝐸 from Example 2 unfolds into Φ′ =
{¬Right(𝑜1, 𝑜2) ∨ Left(𝑜2, 𝑜1), ¬Right(𝑜1, 𝑜2) ∨ ¬Right(𝑜2, 𝑜1),
¬Right(𝑜2, 𝑜2) ∨ Left(𝑜1, 𝑜2), ¬Right(𝑜2, 𝑜2) ∨ ¬Right(𝑜1, 𝑜2)}.

4.2 Overview

Amain conceptual contribution of our paper is to provide consistent

scene graph generation by augmenting the output of traditional

ML-based SGG approaches (which do not handle hard constraints)

with reasoning as a MAXSAT problem.

Problem formulation. Given an image and a set of constraints Φ,
we formulate consistent scene graph generation as an optimization

problem to find a ML model M that maximizes the probability of

the predicted scene graph 𝑆𝐺 being isomorphic with the ground

truth 𝑆𝐺𝑔𝑡 while ensuring that all hard constraints 𝜙 ∈ Φ hold:

maxM 𝑃 (𝑆𝐺 � 𝑆𝐺𝑔𝑡 | M) subject to 𝑆𝐺 |= Φ. (2)

Unfortunately, the objective function in Equation 2 cannot be

optimized directly, since the distribution of the ground truth 𝑆𝐺𝑠𝑔

is not known in advance. Instead, given a training set of size 𝑁 , the

probability in the objective function can be approximated with the

use of scene accuracy as

maxM
∑𝑁

𝑖=1
1(𝑆𝐺 [𝑖 ]�𝑆𝐺𝑔𝑡 [𝑖 ] )

𝑁
subject to ∀𝑖 : 𝑆𝐺 [𝑖] |= Φ. (3)

The solution to this optimization problem corresponds to amodel

M which outputs themost likely scene subject to the hard constraints.
For that purpose, we complement existing SGG techniques with

probabilistic logic reasoning to ensure that consistent scene graphs

are derived. Our approach handles domain-specific constraints

captured in FOLwhile treating all constraints as hard constraints. As

such, a conceptual benefit of our approach (compared to purely ML-

based SGG approaches) is that our scene graphs will have absolutely

no constraint violations. This provides a very strong guarantee for

safety-critical applications such as autonomous vehicles.

Architecture. Figure 3 shows an overview of our approach. The in-

put for a problem domain includes datasets (i.e. images with ground

truth annotations) for training and testing of vision-based ML com-

ponents, a metamodel (or type graph) to describe the structure of

scene graphs and a set of hard constraints that needs to be satisfied

by all consistent scene graphs of the domain. After successful train-

ing, our framework derives a consistent scene graph capturing the

key objects and relations visible on an image.

Given the individual probabilities of relations, the essence of

our approach is to generate the most likely graph subject to hard

constraints. To achieve this goal, we formulate this generation as a

weighted partial MAXSAT from the probabilities. Finally, we use an

external solver to solve this MAXSAT using constraint optimization

in order to create a (concrete) scene graph, which is guaranteed to

satisfy all hard constraints.

While this paper focuses exclusively on multi-step scene graph

generators, our approach can be integrated with other ML-based

scene graph generation techniques that provide probabilities for

relations (triples), which is the case for most SGG models [13].

4.3 Extracting scene graphs

Multi-step scene graph generation involves three components: ob-
ject detector, attribute extractor and relationship extractor.

Object detector.Given an image, the object detector aims to derive

a set of objects in the image together with location defined as

bounding boxes [63] or object masks [37]. In this paper, we rely

on [88], which uses Mask-RCNN [37] to derive object masks from

the images. This component only detects the existence of an object,

while object attributes are extracted separately.

Attribute extractor.Given the original image and the object masks

from the object detector, the attribute extractor identifies attributes,

such as the size, shape, and color of an object. In this paper, we

rely on [88] which uses a convolutional neural network (CNN) to

extract the latent features of each object by combining the original

image and the object mask. The object feature is provided to a

feed-forward neural network (FNN) to perform classification on

discrete attributes and regression on continuous attributes.

Relation extractor. Given the original image and the object masks

from the object detector as input, the relation extractor derives

relations between a pair of objects as output. First, we extract latent

object features with CNN, similar to the attribute extractor. Then

the object features for a pair of objects are concatenated as a single

feature vector to an FNN. The FNN performs classification and

gives an output probability for each relation type, representing if

the pair of objects have that relation type.

Formalization. Given a problem domain with attribute types A,

attribute domains𝑉 and relation types R, we assume that computer

vision components provide a probabilistic graph G = (N, 𝑃𝑅, 𝑃𝐴)
as output where N is the set of nodes, while 𝑃𝑅 and 𝑃𝐴 assign

probabilities to attributes and relations. Note that R contains each

relation symbol 𝑟 ∈ R and its complement type 𝑟 where
−−−→𝑛1𝑛2

𝑟

means that no edge
−−−→𝑛1𝑛2

𝑟
of type 𝑟 leads from nodes 𝑛1 to 𝑛2.

• 𝑃𝑅 : (N × R × N) → [0, 1] gives the probability that an edge

−−−→𝑛1𝑛2

𝑟 ∈ E of type 𝑟 ∈ R is leading from node 𝑛1 to node 𝑛2

where 𝑃𝑅 (−−−→𝑛1𝑛2

𝑟 ) + 𝑃𝑅 (−−−→𝑛1𝑛2

𝑟 ) = 1.

• 𝑃𝐴 : (N × A × Va) → [0, 1] gives the probability that the

value of an attribute 𝑎 ∈ A at a node 𝑛 ∈ N is 𝑣 ∈ Va such

that

∑
𝑣∈𝑉𝑎 𝑃𝐴 (𝑛, 𝑎, 𝑣) = 1.

Informally, we ensure that the probabilities of all possible values

for an attribute of an object sum up to 1, and the probabilities of an

edge and its complement edge also add up to 1.

In multi-stage generation, object detection derives N, attribute

extraction gives 𝑃𝐴 and relation extraction yields 𝐸 and 𝑃𝑅 .
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Figure 4: (a) a probabilistic graph G, (b) the maximum likeli-

hood graph 𝐺𝑚𝑙 , (c) graph 𝐺 produced by our approach

Example 4. The left part of Figure 4 shows an extract of a proba-

bilistic scene graph with two objects from Blocksworld. For simplic-

ity, we only depict probabilities for relations 𝑃𝑅 (next to the relation

type), but omit 𝑟 . Furthermore, we assume that 𝑃𝐴 = 1 for all at-

tributes that appear in the diagram. For example, 𝑃𝑅 (−−−→𝑜1𝑜2

above) =
0.4, 𝑃𝑅 (−−−→𝑜2𝑜1

below) = 0.7, 𝑃𝐴 (
−−−−−→
𝑜1"red"color) = 1.

4.4 Constraint optimization problem

ML components used for scene graph extraction are trained to

maximize the probability of generating scenes that are close to the

ground truth while disregarding the constraints. Given such an

ML component that outputs a probabilistic graph G, we approxi-
mate 𝑃 (𝑆𝐺 | G) = 𝑃 (𝑆𝐺 � 𝑆𝐺𝑔𝑡 | M) in (2) with a Naive Bayes

assumption (i.e., each value in 𝑃𝐴 and 𝑃𝑅 is independent) as

log 𝑃 (𝑆𝐺 | G) =
∑︁

−−−→
𝑛1𝑛2

𝑟 ∈𝑆𝐺
log 𝑃𝑅 (−−−→𝑛1𝑛2

𝑟 ) +
∑︁

−→
𝑛𝑣𝑎∈𝑆𝐺

log 𝑃𝐴 (−→𝑛𝑣𝑎). (4)

Finding the most likely scene graph 𝑆𝐺 subject to hard con-

straints Φ constitutes a MPE inference task 𝑆𝐺 = MPE(𝑃 ( · | G),Φ).
Compared to traditional MPE, where the probabilistic model 𝑃 is

fixed and the constraints Φ serve as a query for which evidence

shall be provided, we use a prescribed Φ and extract 𝑃 from each

input image using vision-based ML components.

Along with [58], we solve the MPE task by deriving a weighted

partial MAXSAT problem. We introduce three types of weighted

clauses (with 𝑥−→𝑛𝑣𝑎 / 𝑥−−−→𝑛1𝑛2

𝑟 as attribute / edge variables) according

to the the hard constraints Φ and the probabilistic graph G:

¬𝜑 : −∞ for each 𝜑 ∈ Φ,

𝑥−→
𝑛𝑣𝑎

: log 𝑃𝑅 (−→𝑛𝑣𝑎) for each −→𝑛𝑣𝑎 ∈ G,
𝑥−−−→
𝑛1𝑛2

𝑟 : log 𝑃𝐸 (−−−→𝑛1𝑛2

𝑟 ) for each −−−→𝑛1𝑛2

𝑟 ∈ G.
(5)

We eliminate the quantifiers in the constraints with unfold-

ing (see Example 3). Moreover, we extend Φ with constraints over

attribute and relation variables such that: (a) exactly one of 𝑥−−−→
𝑛1𝑛2

𝑟

and 𝑥−−−→
𝑛1𝑛2

𝑟 is true for each relation 𝑟 and pair of objects 𝑛1, 𝑛2, and

(b) exactly one of 𝑥−→
𝑛𝑣1

𝑎 , . . . , 𝑥−−→𝑛𝑣𝑘𝑎 holds for each attribute 𝑎 with

domain V𝑎 = {𝑣1, . . . , 𝑣𝑘 } and object 𝑛.

We use log probability as the weights for the attribute and re-

lations, so that the sum of the weights corresponds to likelihood

𝑃 (𝑆𝐺 | G) of the concrete graph 𝑆𝐺 from (4).

Finally, we express the MAXSAT problem derived from a proba-

bilistic graph representing a scene as a linear constraint optimiza-

tion problem [5, 33], and we use the external Gurobi solver [36] to

obtain a concrete scene graph as solution.

Example 5. Given a probabilistic scene graph in Figure 4(a), and

a set of constraints {∀𝑋,𝑌 : Above(𝑋,𝑌 ) ⇐⇒ Below(𝑌,𝑋 )}, an
extract of the corresponding weighted partial MAXSAT problem is:

(¬𝑥−−→
𝑜1𝑜2

below ∨ ¬𝑥−−→
𝑜1𝑜2

above ) ∧ (𝑥−−→
𝑜1𝑜2

below ∨ 𝑥−−→
𝑜1𝑜2

above ) : −∞
𝑥−−→
𝑜1𝑜2

above : 0.4, 𝑥−−→
𝑜2𝑜1

below : 0.7, 𝑥−−−−−→
𝑜1"red"color

: 1

Example 6. Figure 4 (b) and (c) shows solutions obtained using

maximum likelihood and our approach. The former (b) produces a

graph by individually choosing the most likely edge or attribute,

in our case,
−−−→𝑜1𝑜2

Left
and

−−−→𝑜2𝑜1

Below
. However, this graph violates

the geometric constraints that left/right and above/below should

be opposite edges, as well as the domain-specific constraint C3

in 1. Using our approach (c), the derived graph has no constraint

violations and it will be also closer to the ground truth.

Our approach provides two theoretical guarantees formalized

in Theorem 1: (1) a solution scene graph will always satisfy all

constraints, and (2) the scene accuracy with respect to the ground

truth is at least as good as what is provided by the ML model.

Theorem 1. Let there be an ML algorithm for SGG that takes an
image as input and derives a probabilistic scene graph G, and let𝐺𝑚𝑙

be the maximum likelihood graph derived fromG. Furthermore, given
a set of constraints Φ, if the optimization problem described above
has a concrete scene graph 𝐺 as a solution, then 𝐺 will satisfy:

(1) ∀𝜑 ∈ Φ : 𝐺 |= 𝜑 (i.e. 𝐺 is consistent);
(2) SA(𝐺,𝐺𝑔𝑡 ) ≥ SA(𝐺𝑚𝑙 ,𝐺𝑔𝑡 ), where 𝐺𝑔𝑡 is the ground truth,

i.e., our approach is hippocratic [69] as it does not change valid
scene graphs.

We provide the proof in the supplementary material.

5 EVALUATION

We conduct experiments to address four research questions:

• RQ1: What is the impact of using a constraint-biased data

set for training?

• RQ2: How effective is our constraint optimization approach

in deriving consistent scene graphs?

• RQ3: How does the generation of consistent scene graphs

affect other metrics with different training set size?

• RQ4: How does the runtime of optimization scale with in-

creasing number of objects and constraints?

5.1 Setup

Target domains. We evaluate our approach in the context of

two synthetic datasets frequently used to evaluate computer vision

models for SGG to address the above research questions.

CLEVR [43] is a visual reasoning dataset with simple geometric

shapes placed on a plane, and questions about the scene. Each scene

contains 3-10 objects with different shape, material, color, and size

attributes. The benchmark has been designed to evaluate the effec-

tiveness of ML models on visual question answering tasks, and it

has also been used in image modification [50] and image generation

[50, 66]. We also evaluate our approach on the Blocksworld dataset

(BLOCK) introduced as the running example in Section 2.

The publicly available generator of each datasets derives random

scenes, renders their image, and creates a scene graph with precise
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object attributes, coordinates and relations as ground truth. The

default configuration of the generators is used to derive new scenes

for the evaluation: the resolution of each image is 480×320, and
each scene contains 3-10 objects. Furthermore, we extended the

tool chain to produce the instance segmentation [22], and specified

4 extra constraints to be enforced in addition to the geometric and

physical constraints already present in each dataset (see Table 1).

Compared ML approaches. We evaluate the effectiveness of our

approach compared to two different baseline ML approaches often

used in the context of SGG. The two baselines rely on different

information to derive a scene graph from an image. They represent

the common view that (a) if each real scene (thus each image) used

for training respects the hard constraints, and (b) if scene graphs

can be accurately derived for each image, then (c) the constraints

will also be satisfied when evaluated on the derived scene graphs.

RM: The relational multi-stage SGG approach discussed in Sec-

tion 4.3 is used as a first baseline (without constraint optimization).

This case represents a realistic setup for using SGG in autonomous

driving when relations are annotated in the training set.

PM: The second baseline is a physical SGG approach where

the exact coordinates of each object are available for training as

extra information in the form of attributes. Thus, the training only

consists of object detection and attribute extraction, while relations

are automatically derived by evaluating physical and geometrical

constraints over the coordinates. This approach has been used by

[88] for CLEVR. Such precise coordinates are rarely available in

training sets for autonomous driving scenarios (e.g. [71]), but this

is still a realistic setting in other SGG scenarios [78].

Our constraint optimization based approach (OP) is then inte-

grated with both the RM and PMML components resulting in two

further approaches to compare, namely, RM+OP and PM+OP.

Compared metrics. We aim to compare the effectiveness of the

various approaches using the metrics introduced in Section 2, which

includes recall-based (global) metrics, such as SGGen and SGGen+,

and novel scene-based metrics SA and Con. During evaluation, a

predicted object is considered to match the ground truth object if

their intersection of union (IoU) value exceeds 0.5.

The recall-based SGG metrics originate from information re-

trieval tasks where recall@K is evaluated, i.e. the recall is measured

on the top-K most probable relation triples. However, this paper

aims to directly measure the difference between the generated

scene graph and the ground truth, thus we do not explicitly rank

the triples but consider all triples retrieved by the model.

5.2 RQ1: Constraint-biased training set

Rationale. While logic constraints in SGG are restrictions that

should be obeyed, inconsistent scenes may appear in the training

data (e.g. unlawful behavior by the human drivers) in real world

scenarios. We call a dataset constraint biased if all data samples

satisfy the logic constraints of the domain. In this RQ, we aim to

measure the effect of inconsistent scenes in the dataset for training.

Setup. To generate an unconstrained training set (-Cons) for this
experiment, we use the original generators. Then for a constraint-

biased training set (+Cons), we rerun the generation and keep only

data samples satisfying all logic constraints (including the extra

constraints 1-4 in Table 1) while keeping the same distribution of

images. In the end, we obtain a total of four training sets for the

two domains; each containing 4000 scenes.

During an initial investigation with the constraint-biased data

set (+Cons), we observed that certain implication constraints (of

the form premise =⇒ consequence) are trivially satisfied when a

complex premise evaluates to false. For example, C2 in BLOCK,

which requires that a large cube must have something on top of it,

is trivially satisfied if the scene contains no large cubes. To better

understand the role of logic constraints in the domains, we selected

two constraints with a complex premise from each domain (C2, C4

in BLOCK and C3, C4 in CLEVR). Then, we also generated test

sets for each constraint such that all samples in the domain satisfied

the premises of that constraint while still ensuring consistency.
We explore the influence of different training set on the two

baseline ML approaches RM and PM. We train each component

to near convergence: 5 epochs for object detector, 50 for attribute

extractor and 24 for relation extractor. We also include a complete

configuration for training in the supplementary materials. We train

for each configuration multiple times and keep the best model. We

keep the object detector the same for both approaches to allow

better focus on the quality of relation and attribute extraction.

Analysis of results. Table 2 show different metrics (in percent-

age) for the two ML approaches trained with unconstrained and

constraint-biased datasets. The different metrics in columns are

grouped by the test sets. For example, Cons is a constraint-biased

dataset and Cons(C2) is a constraint-biased dataset in which all

data points satisfy the premise of constraint C2. The rows show

the performance of RM and PM using the different training sets.

Overall, PM model performs better than RM. The improvement

mainly comes from incorporating physical coordinates in training.

However, we acknowledge that physical coordinates cannot capture

all relations and they are not commonly available in real-world

datasets. Thus, we focus on the comparison of the different setups

forRM and PM rather than directly comparing the two approaches.

We carry out statistical analysis to compare the performance

in each setup. We group the generated scenes into 200-sample

subgroups and calculate the metrics value for each subgroup. Then

we calculate the Cohen-d effective size [18] of (+Cons) and (-Cons)

and highlight the ones (in bold) with larger than 0.8 Cohen-d value.

In general, the model trained with constrained-biased data per-

forms better in the BLOCK dataset, dominating 9/12 cases for

RM, while there is no statistically significant difference for PM.

However, the model trained with an unbiased training set performs

better in CLEVR (for 9/12 cases in RM 10/12 cases in PM).

We suspect that the difference comes from the various complexity

of the two domains. The tower structure in BLOCK is harder to

learn for RM compared to CLEVR, which results in lower overall

accuracy. On the other hand, the model trained with an unbiased

dataset achieves near-perfect performance on CLEVR (over 95% in

SA) when the benefit of a constraint-biased training set is minimal.

RQ1: Our results are mixed. A constraint-biased training set may
improve the performance of aMLmodel when the base performance
of the ML model trained on the unbiased training set of the task is
low. However, such a constraint-biased training set may decrease
performance if the base performance of the model is already high.
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Approach

BLOCK Test Set

Cons Cons (C2) Cons (C4)

SGGen SGGen+ SA Con SGGen SGGen+ SA Con SGGen SGGen+ SA Con

RM+CONS 99.19 99.67 89.80 92.50 99.01 99.58 85.40 92.85 99.20 99.69 89.50 95.85

RM-CONS 98.86 99.36 85.10 92.45 98.45 99.11 78.65 94.85 98.93 99.36 83.65 96.90

PM+CONS 99.63 99.97 98.75 99.95 99.63 99.98 98.65 100 99.43 99.97 98.40 100

PM-CONS 99.63 99.95 98.85 100 99.63 99.98 98.80 100 99.39 99.95 98.35 100

Approach

CLEVR Test Set

Cons Cons (C3) Cons (C4)

SGGen SGGen+ SA Con SGGen SGGen+ SA Con SGGen SGGen+ SA Con

RM+CONS 99.55 99.94 98.05 99.60 98.80 99.79 93.9 99.10 99.70 99.96 98.75 99.80

RM-CONS 99.92 99.98 99.50 99.75 99.61 99.93 98.30 99.30 99.97 99.99 99.7 99.95

PM+CONS 99.20 99.96 98.05 99.90 97.68 99.81 93.85 98.50 99.12 99.94 98.05 99.55

PM-CONS 99.60 99.98 99.10 99.90 98.56 99.90 96.10 98.25 99.71 99.99 99.35 99.90

Table 2: Comparison of two ML approaches on different test sets for BLOCK and CLEVR (values in % with two decimal places)

5.3 RQ2: Effectiveness for consistency

Rationale. In this RQ, we explore the impact of constraint opti-

mization for restoring consistency. Thus, we will measure the ratio

of relations and attributes misidentified by the base ML technique,

and check how many of them can be fixed with logic reasoning. We

investigate training sets of different size to assess how consistency

decreases with less amount of data (e.g. in few shot learning [81]).

Setup. We train the ML models using the best performing train-

ing set for each domain (see the previous RQ). For training the

models, the same initial weights are used, while we gradually in-

crease the size of the training set (from 1000 images as 1/4 to 4000

images as 4/4). To avoid potential overfitting on smaller dataset

size, we use 10% from the dataset as validation set and take the

model performing best on the validation set for evaluation. Then

we apply our approach on the probabilistic graph derived by the

various ML models to fix the misidentified relations and attributes.

We evaluate the consistency Con of the generated scenes for the

baseline RM and PM and their fixed counterparts RM+OP and

PM+OP using images of the Cons test set.

Analysis of results. The last columns in Table 3 show the Con

values for each domain and approach (Table 3a for BLOCK and

Table 3b for CLEVR). In the tables, we present the original metric

and the metric obtained after logic reasoning OP (format: original

metric → metric after logic reasoning).

While both RM and PM approaches achieve high consistency,

full 100% consistency is achieved only in rare cases. As such, scenes

derived by the ML models still dominantly have some constraint vi-

olations. We also observe that the level of consistency is particularly

problematic for smaller training sets (83.15% in BLOCK RM and

65.40% in CLEVR). Moreover, there is no consistency guarantee

for ML models in case of unseen data points.

On the other hand, the scenes produced with our approach OP

achieved full consistency in all cases, regardless to the dataset size

or base ML approach. Even when the base consistency is poor

(65.40% in CLEVR PM with 1/4 dataset size), the scenes become

fully consistent after the post-processing by OP. This empirical

evidence reinforces the theoretical guarantee of Theorem 1; the

scenes generated by OPwill be consistent for unknown data points.

For our two case studies, solving the MAXSAT problem in OP

has only minimal overhead in addition to the ML components.

We could process more than 30 scenes per second on an average

personal computer with a 3.80GHz CPU and 32GB RAM.

RQ2: Despite a high-level of consistency, only very few scene
graphs derived by baseline ML models RM and PM are fully con-
sistent; likewise, they provide no consistency guarantees. Our ap-
proach OP derives fully consistent scene graphs using different
ML models as basis with improvements up to 35% , and strong
consistency guarantees even for unseen data points.

5.4 RQ3: Effectiveness for performance metrics

Rationale. To assess the relevance of our approach from ML

perspective, we explore (1) how fixing inconsistencies may affect

other performance metrics, (2) how performance is influenced by

the size of the training set. Such data efficiency is important in a

real world setting as we may not a priori know how much data

is required for training to achieve target performance. Thus, we

measure performance along training sets of increasing size.

Setup. We use the same setup as in RQ2 to measure the recall-

based metrics (SGGen, SGGen+), and the scene-based metric SA.

Analysis of results. The first three columns of each case study in

Table 3 show themeasuredmetric values of the different approaches

using increasing training set size.

In general, performance improves across all metrics as dataset

size increases, which is unsurprising as larger training sets tend to

improve ML performance. In particular, SA is near 0 when trained

on 1/4 of CLEVR data. We found the root cause of this observa-

tion: the ML model significantly overfit when producing the color

attribute of objects. Thus, all metrics that require strict identity for

objects (such as SGGen and SA) decrease significantly.

Due to property 2 of Theorem 1, SA with OP is as good as SA

without OP. While we only have formal guarantees for SA, we

observe that our approach improves the performance for all other

metrics. Our approach increased the performance of the underlying

ML model in 73% of cases and achieved the same performance in all

other cases. The increase is particularly impressive for RM, with

up to 3% in SGGen, 2% in SGGen+ and over 20% in SA.

With sufficient amount of data, the base performance for RM is

generally much lower than PM, which also uses precise physical
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Size

BLOCK Test Set

SGGen SGGen+ SA Con

4/4

RM 98.41→99.65 99.19→99.97 82.50→98.85 90.90→100

PM 99.42→99.42 99.96→99.96 98.20→98.20 100→100

3/4

RM 97.27→99.50 98.59→99.94 78.30→98.60 87.15→100

PM 99.13→99.13 99.94→99.94 97.60→97.60 99.95→100

2/4

RM 97.17→99.48 99.94→99.97 75.95→98.20 86.50→100

PM 99.27→99.27 99.94→99.94 97.75→97.75 100→100

1/4

RM 95.95→99.17 97.83→99.85 74.30→95.90 83.15→100

PM 98.11→98.11 99.84→99.84 94.80→94.90 99.80→100

(a) Results for BLOCK

CLEVR Test Set

SGGen SGGen+ SA Con

99.91→99.97 99.98→99.99 99.30→99.90 99.90→100

99.49→99.58 99.97→99.98 99.00→99.20 99.85→100

99.78→99.81 99.98→99.98 99.00→99.45 99.80→100

99.43→99.45 99.97→99.97 98.75→98.85 99.75→100

99.81→99.92 99.96→99.99 98.45→99.45 99.70→100

98.98→99.08 99.95→99.95 97.80→98.00 99.75→100

99.37→99.60 99.90→99.97 97.05→98.80 99.45→100

14.55→15.96 93.36→93.45 03.10→04.25 65.40→100

(b) Results for CLEVR

Table 3: Comparison of the different approaches with increasing dataset size (values in % with two decimals)

coordinates. However, fixing violations of domain-specific and phys-

ical constraints on top of a relational ML model RM+OP achieves

better results than PM in all cases. This is a very important find-

ing, since relations can be easily annotated by manual processing

of images, precise object coordinates are typically unavailable in

SGG scenarios [71]. In addition, our approach can also improve

the performance even when the base metric value is already near

perfect in CLEVR (99.30% → 99.90%), which is normally difficult

to achieve with pure ML-based methods.

Despite a marginal gain, the effect of fixing inconsistencies for

PM is less significant. We suspect this situation is because when

transforming the coordinates from PM to a probabilistic scene

graph, the relations are deterministically obtained from the coordi-

nates. Thus, OP can only help deriving attribute values using the

logical constraints, but the physical constraints (which restrict base

relations) cannot provide more information in this case.

Moreover, Base SA values are in general much lower than SGGen

and SGGen+, which indicates that our novel SA metric is more

strict. For example, in BLOCK, the SGGen value is 95.95% for RM

trained with 1/4 of the data while the SA value is only 74.30%.

As mentioned in Section 3, SA measures the proportion of scenes

isomorphic to the ground truth. The large difference on the value

of the tuple and scene-based metrics means the errors are generally

spread across scenes. At the same time, OP significantly improves

SA in most cases and achieves near perfect (99.9%) in CLEVR RM

with the full training set. This improvement means more scenes gen-

erated by OP contains are isomorphic to the ground truth, which

is particularly beneficial for safety-critical applications such as au-

tonomous driving, as a reliable (isomorphic) scene graph implies

that any query for the scene will provide a justifiably correct answer.

Since ground truth scenes are mostly consistent, fixing inconsisten-

cies of a derived scene graph can improve all other metrics.

RQ3: Our OP approach increases the overall performance of un-
derlying ML models in each case, especially, for small datasets. A
relational ML baseline with constraint optimization RM+OP out-
performed PM+OP, which is particularly promising when only
relations (but no precise object coordinates) are available for SGG
training. Scene accuracy SA is stricter metric than traditional
recall-based SGG metrics, and OP significantly improves SA.
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Figure 5: Time analysis for (a) CLEVR and (b) BLOCK

5.5 RQ4: Runtime analysis

Rationale. In this section, we perform runtime analysis for the

optimization problem OP. Specifically, we aim to analyze the trend

of runtime with the number of objects in the ground truth scenes.

Setup. We increase the number of objects from 3 to 19 for both

BLOCK and CLEVR where the maximum is close to the average

number of objects in a real-world dataset [46]. For each data point,

we randomly generate an image with the specific number of objects

and run it through the relational model RM. Then, we send the

resulting probabilistic graph toOP and measure the time needed for

each step of OP (create the problem, solve the problem and interpret

the solution into scene graph). We also count the total number of

unfolded constraints involved in the optimization problem. We

measure for each data point ten times and take the average.

Analysis of results. Figure 5 shows the runtime analysis for both

(a) CLEVR and (b) BLOCK. The bars show the time taken by OP

and the lines show the total number of constraints created by OP.

The flat line fragment in the chart indicates that the RM used for

this analysis is imperfect, i.e. it may miss an object in the scene

However, it does not influence the analysis of the overall trend.

The number of constraints in a scene and the optimization run-

time grow polynomially with the increasing number of objects.

Interestingly, the time for OP evolves almost linearly with respect

to the number of constraints. This trend may indicate that most

constraints are easy to be solved and the probabilities provided by

the vision-based component gives a good hint in finding the result.

At the same time, while time needed to create the optimization

problem is monotonically increasing, the time needed to solve the

problem actually fluctuates. Again, this fluctuation may be attrib-

uted to the prediction quality from the visual-based component.
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RQ4: Our approach scales to average scene size of real world
dataset. The time needed to solve the problem is also influenced by
the quality of output from the vision-based component.

5.6 Threats to validity

Internal validity. The ML models usually have random initial

weights and the training is normally non-deterministic. We use

best practice and the same number of training examples in training

the base ML components as in [88]. We manually selected seeds to

initialize the model to avoid different local maximum with different

initialization and keep training deterministic. At the same time, we

compared our approach with the baselines on different training

sets of different size to minimize the influence of non-deterministic

in training. We use 1/3 of all data for testing which is a typical

setup in machine learning [23]. We use two popular independent

benchmarks and get consistent results.

External validity. We selected simple and complex FOL con-

straints for both case studies which represent physical limitations in

the real world as well as domain-specific restrictions (such as traffic

rules). While the case studies are motivated by safety-critical self-

driving applications, our measurements do not provide evidence

about the direct applicability of our approach in such scenarios.

Obviously, for SGG problems in other domains (with different con-

straint sets), our technique may result in different amount of actual

improvements. Furthermore, in real applications, the performance

of our approach relies on the precise formulation of the constraints

by domain experts and the complexity of the constraints themselves.

Nevertheless, our approach already works with an incomplete set

of constraints, see Section 6. While similar constraints are often

present in industrial validation tools [41, 65], the expressiveness of

constraint languages may be a further limitation.

Construct validity.Wemeasured standard performancemetrics

widely used in SGG scenarios, and we proposed a novel metric

(scene accuracy), which is more strict than existing ones.

6 APPLICATION TO REAL WORLD DATASET

Finally, we demonstrate how to adopt our approach to Visual

Genome (VG) [46], a real-world SGG dataset with complex ob-

ject and relation types. For this initial study, we chose one physical

constraint for relations and one logical constraint on object types.

For the physical constraints, we choose four relation types Be-

hind, Above, Under and In and formulate one simple physical

constraint on the four relation types: no loops with two or three

objects. For the object type, we set a constraint that each scene

must have a person-like object (i.e. "Person", "Man" or "Woman").
We filter theVG test set such that the ground truth scene contains

at least one relation with the above types and one person-like

object, which results in 4597 images. Furthermore, we check the

consistency metric Con on the ground truth scenes and found that

about 99.85% scenes are consistent with the physical constraint.

The few inconsistent examples may be resulting from some noise

in the labeling process. Nevertheless, to make our analysis closer

to real-life scenario, we do not filter out such inconsistent scenes.

We choose a recent SGG model pretrained on the VG dataset

[73] as our vision-based component. To simplify the comparison,

we perform scene graph classification where the ground truth object

Bed(o1) → Woman(o1)

Under(o2, o1) → Above(o2, o1)


Metric Improvement

SGGen 33.04→ 33.15

SGGen+ 63.44→63.48

Con 64.43→100

Figure 6: An example scene [25], fixes, and metrics from VG

bounding box is provided, and the task is to find the object and

relation types. We compare the result by getting the most likely

predicate for each object pair (without considering the constraints)

and the graph generated by our approach. We skip the SA metric

as the ground truth scenes in the dataset are not complete [46].

Figure 6 shows the improvement in the metrics by our approach

for scene graph classification. Our approach still ensures 100%

consistency over all test scenes, and, it gradually improves on other

metrics (as the ground truth scenes are dominantly consistent).

7 RELATEDWORK

7.1 Vision-based scene graph generation

End-to-end generation. The goal of end-to-end scene graph genera-

tion is to train deep neural networks which build scene graphs in

one pass. A comprehensive overview of vision-based end-to-end

scene graph generation approaches can be found in [13]. Convolu-

tional neural networks (CNNs) are often used to learn encodings of

objects and use them to extract attributes and relationships [42, 86].

Such methods have been extended to use Recurrent Neural Net-

works (RNNs) for relationship detection, e.g., Neural Motifs [91] and

IMP [84]. Recently, some methods integrate graph neural networks

(GNNs) due to their advantages for graph structures [15, 92].

End-to-end methods can generate scene graphs from real-world

images withmany relation and object types They are, however, com-

putationally intensive and difficult to train. Moreover, unlike our

approach, they largely do not support domain-specific constraints

and provide no guarantee of consistency in generated scenes.

Some end-to-end scene generation methods incorporate domain-

specific external knowledge during training. For instance, Cui et al.

[19] and Liang et al. [49] improve relationship detection by using

language priors to exploit similarities between words representing

object and relation types. Further approaches [16, 35, 38, 90] include

ConceptNet [68] extract information from an external knowledge

base to improve generalization on rare relation and object types.

Our work is different from these techniques in two ways. (1) We

address constraint satisfaction during post-processing rather than

training and (2) we capture more expressive constraints by formu-

lating such external knowledge as first-order predicates.

Multi-step generation.Multi-step generation breaks the end-to-

end process into discrete steps to make the generation process more

computationally efficient, as well as interpretable. However, such

approaches are less represented in literature. Notably, Yi et al. [88]
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and Reich et al. [62] recognize objects as a first step, then determine

attributes, and finally generate relationships. In contrast, Tian et al.

[74] first conduct end-to-end scene generation to create an intuitive

graph and then refine it using multi-step reasoning.

We follow the same multi-step generation pipeline as authors

of [62, 74], but extend it by incorporating constraint and external

knowledge representation in a novel post-processing step.

7.2 Handling of constraints in deep learning

Explicitly including constraints during training can often improve

the performance and generalization of ML models [28]. Dash et

al. [21] and Borghesi et al. [11] provide comprehensive overviews.

Data augmentation. Augmenting data with additional in-

distribution examples makes ML models more likely to capture

constraints during training. Data augmentation has been suc-

cessfully applied within image classification [59], scene graph

generation [45], and natural language processing [47]. This

method may improve constraint capturing, but provides no

guarantees.

Loss function. Recent work has explored converting constraints

into differentiable logic terms and integrating them into a loss

function as ‘regularization terms’ [28, 72, 85]. This can signif-

icantly improve the consistency of ML model outputs, but we

are unaware of any approaches that guarantees satisfaction of all

constraints.

Architecture. Constraints can also be incorporated directly within
deep learning architectures to ensure constraint satisfaction. Tow-

ell et al. [76] present an approach which determines most suitable

architectures from a set of constraints. Wan et al. [79] add indica-

tors as auxiliary input to reflect logic within the data to improve

reasoning. Wang et al. [80] propose the integration of a MAXSAT

layer to capture (physical) constraints. MultiplexNet [40] augments

deep network output layers with multiplexors of logic constraints.

In general, such approaches rely on relaxing hard constraints into

soft constraints as differentiable continuous functions.

Such architecture-based approaches often consider only single

object instances during training for problems such as image clas-

sification. Our approach can handle complex constraints which

include multiple objects and relationships via post-processing after

scene graph generation. Furthermore, our approach treats hard

constraints strictly without relaxation.

Neurosymbolic logic reasoning. The research area of neurosym-

bolic logic reasoning [70] aims to combine traditional rule-based

logic reasoning with deep learning. Approaches such as [24, 54,

55, 87] learn logic concepts and rules from scratch. In contrast, we

leverage existing domain models and logic constraints to improve

model performance ensure that the constraints are always satisfied.

Probabilistic logic programming [61] and abductive reason-

ing [20] were used in conjunction with neural networks to train

models end-to-end with logical information as supervision and

provide logically consistent output [53, 77, 82]. However, these ap-

proaches do not handle SSG where the number of objects in the

scene is not known in advance. We use most probable evidence

inference not as part of supervision, but as a post-processing step,

which allows the separation of concerns between the model and

logic reasoning and enables considering multi-step SSG tasks.

7.3 ML in Model-Driven Engineering (MDE)

There exist a growing number of works using ML techniques such

as graph kernels [17] and reinforcement learning [27, 83] within

MDE — where graph models and consistency constraints have been

used extensively. Several works apply natural language processing

for requirements engineering [3, 12, 39], e.g., for automated meta-

model generation [6]. Likewise, ML is being used in cyber-physical

systems [56, 60], model transformation [9], software artifacts min-

ing [32, 64], and metamodel classification [51, 57].

In contrast, this paper exploits formalmodeling techniques (meta-

models, graphs, constraints, graph reasoning) for improving the

consistency and overall performance ML components used in SGG.

8 CONCLUSIONS

In this paper, we investigated the challenge of consistent scene

graph generation which aims to derive a scene graph (with key

objects, attributes and relations) from a photorealistic image which

fully satisfies a set of complex constraints (physical, geometrical,

or domain-specific). While SGG is often used in an autonomous

driving context, existing work addresses this challenge without

consideration of consistency constraints. This is a major obstacle

for future certification of SGG techniques in a safety-critical setting

where justifiable evidence is necessitated.

We proposed a complementary technique to existing SGG ap-

proaches based on formal modeling (in particular, constraint opti-

mization and probabilistic logic programming) by post-processing

the probabilistic output of existing ML models used for SGG. Our

approach provides theoretical guarantees that the output scene

graph will satisfy complex, relational first-order logic constraints

of the domain. We also proposed scene accuracy as a novel strict

metric to help evaluate the performance of SGG.

We carried out experimental evaluation on two popular machine

learning benchmarks. By fixing inconsistencies in the probabilistic

graph, our approach showed significantly improvements (up to

35% points) compared to baseline ML techniques along all perfor-

mance metrics. We achieved an overall scene accuracy of 98.85%

and 99.90% for the two case studies on 2000 images as test sets. We

also demonstrated that our approach scales to average scene size of

Visual Genome, a real world dataset, and fixed inconsistent scene

graphs also in that setting. All material for the experiments are

available at [14].
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