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Singularity computation is a fundamental problem in Computer Graphics

and Computer Aided Geometric Design, since it is closely related to topol-

ogy determination, intersection, mesh generation, rendering, simulation,

and modeling of curves and surfaces. In this article, we present an effi-

cient and robust algorithm for computing all the singularities (including

their orders) of rational parametric surfaces using the technique of mov-

ing planes. The main approach is first to construct a representation matrix

whose columns correspond to moving planes following the parametric sur-

face. Then, by substituting the parametric equation of the rational surface

into this representation matrix, one can extract the singularity information

from the corresponding matrix and return all the singular loci including

self-intersection curves, cusp curves, and isolated singular points of the ra-

tional surface, together with the order of each singular locus. We present

some examples to compare our algorithm with state-of-the-art methods

from different perspectives including robustness, efficiency, order compu-

tation, and numerical stability, and the experimental results show that our

method outperforms existing methods in all these aspects. Furthermore,

applications of our algorithm in surface rendering, mesh generation and

surface/surface intersections are provided to demonstrate that correctly

computing the self-intersection curves of a surface is essential to generate

high quality results for these applications.
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Fig. 1. Singular points on rational surfaces: (a) Enneper surface with two

self-intersection curves; (b) Riemann surface with a self-intersection curve;

(c) Cusp sphere with two cusp curves at both sides and a self-intersection

curve in the middle; (d) A cone with an isolated singular point.

1 INTRODUCTION

Singular points, or singularities, are those points where the tan-

gent lines or planes are not uniquely defined on curves or surfaces.

Figure 1 illustrates self-intersection curves, cusp curves, and iso-

lated singular points of several rational parametric surfaces. Since

singular points are special features of curves and surfaces, their

detection is fundamental to many crucial applications in Com-

puter Graphics and geometric modeling, including mesh gener-

ation [de Araújo et al. 2015; Li and Barbič 2018; Plantinga and

Vegter 2004; Zhou et al. 2016], surface rendering [Barringer et al.

2012; Harbinson et al. 2019; Loop and Blinn 2006], surface intersec-

tion [Krishnan and Manocha 1997; Lin et al. 2014; Pekerman et al.

2008], topology determination [Gueziec et al. 2001; Wang 1981],

simulation [Baraff et al. 2003; Wong et al. 2018] and CNC machin-

ing [Hoschek et al. 1993; Xu et al. 2015].

Detecting singularities of rational curves or surfaces includes

computing the pre-images of singular points in the parametric

space and determining the orders of singular points. There has

been extensive research on computing and classifying singular

points of rational curves [Chen et al. 2008; Jia and Goldman 2009,

2012; Li and Cripps 1997; Manocha and Canny 1992; Pérez-Díaz

2007; Peterson 1917; Sakai 1999; Sakkalis and Farouki 1990; Shi

and Chen 2010; Shi et al. 2013; Wang et al. 2009]. Nevertheless,

fast and robust computation of singularities of rational surfaces
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has remained a challenging problem in the geometric modeling

community [Busé et al. 2016; Chen et al. 2005].

Existing work on computing the singularities of rational sur-

faces is mainly based on symbolic approaches, including algebraic

decomposition [Elber et al. 2009; Pekerman et al. 2008], resultant

construction [Busé et al. 2008], Gröbner bases [Huang and Wang

2011], μ-bases [Jia et al. 2009] and characteristic sets [Pérez-Díaz

et al. 2015]. These methods have different restrictions, such as los-

ing cusp curves or isolated singular points, giving extraneous fac-

tors, or suffering from inefficiency. More importantly, symbolic

methods tend to fail in numerical computations.

In this article, we introduce an efficient and robust symbolic ap-

proach for computing the singularities of rational surfaces. Our

method computes not only self-intersection points but also cusps

and isolated singular points, and not only the pre-images of sin-

gular points in the parametric space, but also the exact orders of

the singular points. The result neither misses any singular point

nor produces any extraneous factor. Furthermore, our algorithm

is impervious to base points and it works well for any type of ra-

tional parametrization. Finally, our approach is numerically stable

in floating point computations.

The main ingredient in our approach is the use of moving planes

that follow a given surface parametrization. The technique of mov-

ing lines and moving planes has been successfully applied in im-

plicitization [Chen et al. 2005; Sederberg and Chen 1995; Sederberg

et al. 1997; Shen and Goldman 2017] and singularity computation

of rational curves and some special types of surfaces [Chen et al.

2008; Jia et al. 2009; Jia and Goldman 2009, 2012; Shi and Chen 2010;

Shi et al. 2013; Wang et al. 2009]. Our method is based on an impor-

tant result from Busé [2014], where implicit matrix representations

of rational parametric surfaces are constructed by computing a set

of moving planes following a given parametric surface. From the

rank deficiency of the implicit matrix representations, we present

an elegant algorithm to extract the singularities of general rational

parametric surfaces.

In summary, the main contributions of the current work include:

• An efficient and robust algorithm for computing the singu-

larities of rational surfaces. Compared with existing symbolic

approaches, our algorithm is numerically stable and is imper-

vious to base points, that is, it works for any type of rational

parameterizations.

• The proposed algorithm computes not only self-intersection

curves, but also cusp curves and isolated singular points that

are often missed by existing methods. The orders of the sin-

gularities are also computed.

• Applications of the algorithm in surface rendering, mesh

generation, and surface/surface intersections are provided to

demonstrate the importance of singularity computations.

2 RELATED WORK

We next briefly review related work on singularity computation

for rational curves and surfaces.

2.1 Computing Singular Points of Rational Curves

There is a rich literature for computing singular points of ratio-

nal curves. Sakkalis and Farouki [1990] describe a method to de-

termine whether an algebraic curve is singular, and if so, how

to isolate the singular points including multiplicities, and how

to count the number of distinct tangents at each singular point.

Sakai [1999] presents an algorithm for computing the inflection

points and singularities of planar rational cubic curve segments.

Pérez-Díaz [2007] provides a method for computing the singulari-

ties of rational planar curves and analyzing the properties of non-

ordinary curves.

The technique of moving lines and moving planes has also

been employed for fast computation of singularities for rational

curves. Chen et al. [2008] show that μ-bases are deeply tied to

the singular points of rational planar curves and provide an effi-

cient symbolic algorithm to compute the entire singularity trees

of rational planar curves. Jia and Goldman [2009; 2012] and Busé

and D’Andrea [2012] further explore the algebraic relationship be-

tween singularities and μ-bases for rational planar curves. Shi et al.

[2013] provide symbolic algorithms for computing singularities of

rational space curves. Some other work focuses only on detecting

cusps and inflection points in curves [Gueziec et al. 2001; Manocha

and Canny 1992].

2.2 Singularity Computation for Surfaces

Existing work on computing singular points of rational surfaces is

relatively rare. Elimination methods, such as resultants and Gröb-

ner bases, have been used in finding the singularities of rational

surfaces.

For example, Busé et al. [2008] extract the parameters of singular

points through the Bézout matrix constructed from a parametric

surface. This approach is generally efficient, but is invalid when

there are base points on the parametric surface. Furthermore,

the method cannot compute cusps and the results sometimes

contain extraneous factors or unnecessary multiples of singular

factors.

Huang and Wang [2011] present two approaches to compute the

self-intersection curves of rational surfaces, one based on regular

systems and the other based on Gröbner bases. Due to the symbolic

computation involving Gröbner bases or regular systems, their ap-

proach becomes inefficient as the degree of the rational surface in-

creases. Furthermore, it can deal only with self-intersection curves

but not cusps, and a proper parametrization of the rational surface

is required.

Pérez-Díaz et al. [2015] computes all the singular points of ratio-

nal parametric surfaces in projective space, together with their or-

ders. Moreover, in their setting, the parametrization does not need

to be proper and the surface can contain base points. However, due

to the computation of regular systems, their approach also suffers

from the problem of computational inefficiency.

The technique of moving planes is a useful tool to analyze and

compute the singularities of rational surfaces. For example, Jia

et al. [2009] provide an efficient algorithm to calculate the singular

curves together with their orders of rational ruled surfaces by

μ-bases. Wang and Chen [2012] compute the singularities of a

Steiner surface by employing moving planes following the Steiner

surface. Botbol et al. [2014] further explore the relationship

of singular points and syzygies of rational surfaces by using

commutative algebra. Despite all this work, there still lacks an
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efficient, robust, numerically stable and universal algorithm for

computing singularities for general rational surfaces.

3 MATRIX REPRESENTATION OF RATIONAL

SURFACES

We first provide some preliminaries on rational surfaces and

moving planes, and then introduce the concept of matrix

representations.

3.1 Rational Surfaces

A rational parametric surface inR3 can be represented by a map

ϕ : R2 � R3

(s, t ) −→
(
f0 (s, t )

f3 (s, t )
,
f1 (s, t )

f3 (s, t )
,
f2 (s, t )

f3 (s, t )

)
,

(1)

where fi , i = 0, . . . , 3 are polynomials that are linearly indepen-

dent and satisfy gcd( f0, f1, f2, f3) = 1. The parametric Equation (1)

can be a tensor-product surface of bi-degree (d1,d2) in s, t , i.e., the

polynomials fi , i = 0, . . . , 3 have maximum degree d1 in s and d2

in t ; or a rational triangular surface of degree d , i.e., the polyno-

mials fi , i = 0, . . . , 3 have maximum total degree d in (s, t ). To

allow for points at infinity, throughout this article we shall adopt

the homogeneous parametrization Φ of ϕ in 3D projective space:

Φ : R2 � PR3

(s, t ) −→ ( f0 (s, t ), f1 (s, t ), f2 (s, t ), f3 (s, t )).
(2)

For example, a rational parametrization ϕ of a sphere is

ϕ (s, t ) =

(
2(1 − s2)t

(1 + s2) (1 + t2)
,

(1 − s2) (1 − t2)

(1 + s2) (1 + t2)
,

2s

(1 + s2)

)
. (3)

The homogeneous parametrization Φ of this sphere is

Φ(s, t ) = (2(1−s2)t , (1−s2) (1−t2), 2s (1+t2), (1+s2) (1+t2)). (4)

Under the homogeneous parametrization, a point (x0,y0, z0) ∈
R

3 is written as (x0,y0, z0, 1) ∈ PR3, while a point at infinity has

the form (x0,y0, z0, 0) ∈ PR3. To account for parameter values at

infinity, the parameters s, t in Equation (2) should also be homoge-

nized as s : u and t : v in real projective space. However, for brevity

of description, we still use the affine form in Equation (2) in the fol-

lowing discussion. In this case, we allow s = ∞ (corresponding to

1 : 0) or t = ∞.

A (complex) parameter pair (s0, t0) is called a base point of

the rational parametrization Φ if Φ(s0, t0) = (0, 0, 0, 0). For ex-

ample, (1, i ), (−1, i ),(1,−i ), (−1,−i ) are four base points of the

parametrization of the sphere (4).

3.2 Moving Planes

A moving plane is a family of planes with parameters s, t :

L(s, t ;X ) := l0 (s, t )x + l1 (s, t )y + l2 (s, t )z + l3 (s, t )w = 0,

where li (s, t ), i = 0, . . . , 3 are bivariate polynomials, called blend-

ing functions. Sometimes for brevity, we also denote the moving

plane L by its vector form

L(s, t ) := (l0 (s, t ), l1 (s, t ), l2 (s, t ), l3 (s, t )).

Fig. 2. (a) The moving plane L1 (t ; X ) := (1 − t 2)x − 2ty = 0 for t =

0, 0.1, 0.3, 0.5, 0.7, 0.95 that follows a parametric sphere. (b) The intersec-

tion of two moving planes L1 (t ; X ) = 0 for t = 0, 0.1, 0.3, 0.5, 0.7, 0.95

and L2 (s ; X ) = (s2 + 1)z − 2sw = 0 for s = −0.8, −0.3, 0, 0.3, 0.8.

A moving plane L(s, t ;X ) = 0, or L(s, t ), is said to follow the ratio-

nal parametrization (2) if

L(s, t ) · Φ(s, t ) =
3∑

i=0

li (s, t ) fi (s, t ) ≡ 0. (5)

Geometrically, this equation means that for every pair of param-

eter values (s, t ), the plane L(s, t ;X ) = 0 always passes through the

corresponding point Φ(s, t ) on the surface.

For example, L1 (t ;X ) := (1 − t2)x − 2ty = 0 and L2 (s;X ) :=

(s2 + 1)z − 2sw = 0 are two moving planes that follow the parame-

terization (4), as shown in Figure 2. The intersection of L1 (t ;X ) = 0

and L2 (s;X ) = 0 is a moving line l (s, t ) that passes through the

point Φ(s, t ) on the sphere at every (s, t ), as shown in Figure 2(b).

3.3 Matrix Representations

A matrix representation, which provides information on the im-

plicit equation of a parametric surface, can be constructed from a

series of moving planes. For example, there are 12 linearly inde-

pendent moving planes of bi-degree (1, 3) in (s, t ) that follow the

parametric sphere (4):

L1 : = (−s + st2)x + 2sty,

L2 : = (t2 − 1)x + 2ty,

L3 : = st2x − t3z + st3 (−y +w ),

L4 : = −t2x + t3 (y +w ) − zst3,

L5 : = (st + st3)x − 2t2z + 2st2w,

...

Arrange the coefficients of these moving planes in the monomial

basis [1, s, t , st , t2, st2, t3, st3] in a matrix:

M(X ) :=

���������������
�

0 −x 0 0 0 · · ·
−x 0 0 0 0 · · ·
0 2y 0 0 0 · · ·

2y 0 0 0 x · · ·
0 x 0 −x −2z · · ·
x 0 x 0 2w · · ·
0 0 −z y +w 0 · · ·
0 0 −y +w −z x · · ·

���������������
�8×12

. (6)
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Each column of this matrix comes from a moving plane. The

GCD of all the 8×8 minors of the matrixM(X ) is (x2+y2+z2−w2)2,

which is the implicit equation of the parametric sphere raised to

the power of 2. The matrixM(X ) is called a matrix representation

of the parametric sphere.

Such a matrix representation exists for general rational sur-

faces [Busé 2014]. For rational surfaces of bi-degree (d1,d2), the

matrix representation can be constructed from all the linearly in-

dependent moving planes

L(s, t ;X ) = l0 (s, t )x + l1 (s, t )y + l2 (s, t )z + l3 (s, t )w = 0

with bi-degree (ν1,ν2) := (2d1 − 1,d2 − 1) or (d1 − 1, 2d2 − 1)
in (s, t ) that satisfy (5). This results a linear system where all the

coefficients in (s, t ) of li (s, t ), i = 0, 1, 2, 3 are unknowns. Solving

this linear system gives all the bi-degree (ν1,ν2) moving planes.

Rewrite all these linearly independent moving planes in the

monomial basis in (s, t ) as

[L1, . . . ,Lk ] = [1, s, . . . , sν1 , t , st , . . . , sν1tν2 ] ·M(X ),

where

M(X ) :=

������
�

Λ1,1 Λ1,2 · · · Λ1,k

Λ2,1 Λ2,2 · · · Λ2,k
...

...
...

Λq,1 Λq,2 · · · Λq,k

������
�q×k

, (7)

where q = (ν1 + 1) (ν2 + 1) = 2d1d2. ThenM(X ) is a matrix repre-

sentation of the rational surface Φ(s, t ).
Note that if the rational surface is of triangular form of total de-

gree d , then the matrix representation can be constructed similarly

from moving planes of total degree ν := 2(d − 1). In the following

discussion, we describe our results and algorithms only for tensor-

product surfaces since all the statements hold as well for triangular

surfaces. See Busé [2014] and Botbol et al. [2014] for details.

Lemma 3.1 ([Busé 2014]). In the matrix M(X ), it is always true

that q ≤ k . Moreover, if a point Q = (x0,y0, z0,w0) ∈ PR3 is a point

on the rational surface Φ(s, t ), then rank(M(Q)) ≤ q − 1.

For example, the point Q = (0, 0, 1, 1) lies on the rational sphere

and rank(M(Q)) < 8 for the matrix representation (6).

4 SINGULARITIES

Singular points on parametric surfaces are those multiple traced

points that have more than one corresponding parameter pairs

counted with multiplicity. For a point Q = (x0,y0, z0,w0) ∈ PR3,

let NQ be the number of parameter pairs (s, t ) (counting with mul-

tiplicity) such that Φ(s, t ) = κ · Q for some non-zero constant κ.

If NQ = 1, then the point Q is called a simple point; otherwise, if

NQ > 1, then Q is a singular point. Furthermore, if NQ is finite, we

define NQ as the order of the point Q; otherwise, if NQ = ∞, we

define the order of Q as∞. Figure 3 illustrates three different types

of isolated singular points whose orders are∞.

For a rational parametric surface, the singularities consist

of a finite number of one-dimensional branches (such as self-

intersection curves and/or cusp curves) and a finite number of iso-

lated singular points. For each isolated singular point, there are an

infinite number of corresponding parameter pairs, while for each

generic singular point on a one-dimensional singular branch, there

Fig. 3. Isolated singular points whose orders are ∞. (a) The vertex of a

cone; (b) An isolated singular point on a parametric surface; (c) An isolated

singular point on a self-intersection curve.

are a finite number (which is exactly the order) of corresponding

parameter pairs. The number of non-generic singular points is fi-

nite. For a more detailed discussion about singularities of surfaces,

the reader is referred to Hartshorne [1977].

4.1 Singular Points in Matrix Representation

Lemma 4.1 ([Busé 2014]). Suppose that the given rational surface

(2) has a matrix representationM(X ) of sizeq×k,q ≤ k . Let Q ∈ PR3

be a point on the surface. Then Q is a singular point if and only if

rank(M(Q)) < q − 1.

Example 4.2. Consider a bi-degree (2, 2) rational surface with a

parametrization Φ given by

f0 = (2t2 − 6t + 4)s2 + 4(t − 1)s + 1,

f1 = −2(t2 − 3t + 1)s2 + (4t − 2)s,

f2 = (t2 − 4t + 3)s2 − 2(t − 1)2s,

f3 = 1.

(8)

Consider all the bi-degree (ν1,ν2) = (2d1−1,d2−1) = (3, 1) mov-

ing planes following the parameterization Φ. By solving the system

of linear Equations (5), we get a matrix representationM(X ) of Φ:

���������������
�

0 0 −2x − 2y + 2w · · ·
0 0 −x − y − 1

3w · · ·
0 0 2

3w · · ·
0 0 x + y −w · · ·

−2x − 2y + 2w 3x + 3y − 3w 0 · · ·
−x − y − 1

3w 2y + 2x 0 · · ·
2
3w x + y −w 0 · · ·

x + y −w 0 0 · · ·

���������������
�8×10

.

By Lemma 4.1, the point Q0 = (5,−4,−3, 1) is a simple point on

the surface since rank(M(Q0)) = 7. The points Q1 = (1, 4, 0, 1) and

Q2 = (1, 28−20
√

2, 0, 1) are singular points since rank(M(Q1)) = 6

and rank(M(Q2)) = 5. �

The matrix representation not only tells whether or not a point

is singular, but also tells the order of the point, if the point is

not an isolated singular point. The following result can be derived

from Busé [2014].

Proposition 4.3. If a point Q ∈ PR3 is not an isolated singular

point on the surface, then the order of Q is q − rank(M(Q)).

Example 4.2 (Continued). The point Q1 has order 8 − 6 = 2, and

the point Q2 has order 8 − 5 = 3.

ACM Transactions on Graphics, Vol. 42, No. 1, Article 12. Publication date: September 2022.



Singularity Computation for Rational Parametric Surfaces Using Moving Planes • 12:5

4.2 Computing Singular Factors

Next, we show how to compute all the singular points on a rational

surface from the matrix representationM(X ). Denote by

N(s, t ) = M( f0 (s, t ), f1 (s, t ), f2 (s, t ), f3 (s, t )). (9)

Lemma 4.1 implies the following results.

Proposition 4.4. A point Φ(s0, t0) is a singular point on the para-

metric surface Φ(s, t ) if and only if (s0, t0) is a common root of all

the (q − 1) × (q − 1) minors of the matrix N(s, t ).

There are p =
(

q
q−1

) (
k

q−1

)
minors of order q − 1 in N(s, t ). We

denote these minors by Ni (s, t ), i = 1, . . . ,p, and letH (s, t ) be their

greatest common divisor. From Proposition 4.4, we immediately

have:

Proposition 4.5. If (s0, t0) is a root of H (s, t ) = 0, then Φ(s0, t0)
is a singular point of the parametric surface Φ(s, t ).

Remark 1. There may exist a finite number of parameter pairs

(si , ti )l
i=1 that are common (complex) roots of Ni (s, t ), i = 1, . . . ,p,

but are not roots of H (s, t ). However, these parameter pairs do

not correspond to any new singular points in 3D space other

than the singularities defined by H (s, t ) = 0, that is, the set

S = {ϕ (s, t ) |H (s, t ) = 0} contains all the singularities of the para-

metric surface. (See the supplemental file1 for a detailed proof.)

Thus. ignoring (si , ti )l
i=1 does not influence the computation of

singularities.

Therefore, we can factor H (s, t ) into the product of irreducible

factors H (s, t ) =
∏N

i=1 hi (s, t )li , and from each factor hi (s, t ) we

can compute the corresponding singularities. We call hi (s, t ), i =
1, . . . ,N the singular factors of the rational surface Φ(s, t ).

Example 4.2 (Continued). Substitute X = ( f0, f1, f2, f3) into the

matrixM(X ) to obtain the matrix N(s, t ). The GCD of all the 7× 7

minors of N(s, t ) is H (s; t ) = h2
1h2h3h4, where:

h1 = s,

h2 = t − 1,

h3 = s
2 + 4s − 4,

h4 = 4s3t2 − 5s3t − 3s3 + 8s2t3 − 28s2t2 + 28s2t

+ 20s2 − 4t3s + 20st2 − 21st − 23s + 6 − 2t .

Then hi = 0, i = 1, . . . , 4 are all the singular factors of the rational

surface. Figure 4 presents a local illustration of the self-intersection

curves and the isolated singular points corresponding to these sin-

gular factors.

Example 4.6. The singular factors for the rational surfaces

shown in Figure 1 are as follows:

• (Enneper). The rational parametric equation is:

Φ(s, t ) =

(
s − s3

3
+ st2, t − t3

3
+ s2t , s2 − t2, 1

)
.

The singular factors corresponding to the self-intersection

curves are: h1 = 3s2 − t2 + 3 (black curve) and h2 = s2 −
3t2 − 3 (yellow curve).

1https://github.com/casgeo/MovingPlane.

• (Riemann). The rational parametric equation is:

Φ(s, t ) = (st , t2 − s2, 30s, 1).

The singular factor corresponding to the self-intersection

curve is: h = s .
• (Cusp sphere). The rational parametric equation is:

Φ(s, t ) = ((2(1 − s2)) (1 − t2)s, 2(1 − s2)2t , 8s2t , 1).

The singular factors corresponding to the two cusp curves are:

h1 = t + 1 (yellow curve) and h2 = t − 1 (red curve). The

singular factor corresponding to the self-intersection curve

in the middle is h3 = t (black curve).

• (Cone). The rational parametric equation is:

Φ(s, t ) = ((1 − s2)t , 2st , (2t2 − 1) (1 + s2), 1 + s2).

The singular factor corresponding to the isolated singular

point is h = s .

4.3 Computing Orders of Singular Factors

Definition 4.7. The order of a singular factor h(s, t ) is defined as

the order of the corresponding singular curve, i.e., the order of a

general point Q = Φ(s, t ) on h(s, t ) = 0.

There can be two situations for a singular factor h: if the order

of h is finite, then h(s, t ) = 0 corresponds to a one-dimensional

singular branch on the parametric surface; otherwise, if the order

of h is ∞, then the whole curve h(s, t ) = 0 is mapped to a single

isolated singular point on the surface, for example, the vertex of a

cone.

Singular Factors of Infinite Orders. We first show how to deter-

mine whether the order of a singular factor is infinite, i.e., whether

the factor corresponds to an isolated singular point.

Let h(s, t ) be a singular factor. Suppose that degs (h) > 0 and let

h0 (t ) be the leading coefficient of h with respect to the variable

s . Then there exist polynomials αi (s, t ), ri (s, t ) with degs (ri ) <
degs (h), such that:

h0 (t )γ fi (s, t ) = h(s, t )αi (s, t ) + ri (s, t ), i = 0, 1, 2, 3, (10)

where γ is a nonnegative integer and ri are not all zero (Chap-

ter 2, Section 3 in Cox et al. [1998]). Then we have the following

result.

Proposition 4.8. h(s, t ) = 0 is the preimage of an isolated singu-

lar point Q0 = (x0,y0, z0,w0) if and only if

r0 (s, t ) : r1 (s, t ) : r2 (s, t ) : r3 (s, t ) = x0 : y0 : z0 : w0 (11)

for every (s, t ), where x0,y0, z0,w0 are not all zero.

Proof. For the proof, please refer to Appendix A. �

Remark 2. If degs (h) = 0, we can similarly take t as the prime

variable and then Equation (10) becomes:

fi (s, t ) = h(t )αi (s, t ) + ri (s, t ), i = 0, 1, 2, 3,

where degt (ri ) < degt (h). The statement of Proposition 4.8 still

holds.
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Fig. 4. Singular points corresponding to singular factors in Example 4.2:

(a) Local illustration of the self-intersection curves corresponding to h3 =

0 (black curve) and h4 = 0 (red curve); (b) Local illustration of the self-

intersection curves corresponding to h2 = 0 (yellow curve), h4 = 0 (red

curve) and the isolated singular point corresponding to h1 = 0.

Example 4.2 (Continued). We continue to check each singular

factor in Example 4.2. For h1 = s , (r0 : r1 : r2 : r3) = (1 : 0 : 0 : 1).
Hence, h1 = s = 0 is the preimage of an isolated singu-

lar point Q0 = (1, 0, 0, 1). For h2 = t − 1, we choose

t as the prime variable and compute the four residues

(r0 : r1 : r2 : r3) = (1 : 2s (s − 1) : 0 : 1), hence h2 = t − 1 = 0

gives the preimage of a one-dimensional singular curve of a finite

order. Similarly, both h3 = 0 and h4 = 0 are the pre-images of

one-dimensional singular curves of finite order.

Singular Factors of Finite Orders. Next we cope with singular fac-

tors of finite orders based on LU decomposition of polynomial ma-

trices. The reader is referred to Appendix B for details.

Theorem 4.9. Let h(s, t ) be a singular factor of finite order with

degt (h) ≥ 1 and let N(s, t ) be the matrix of size p × k in (9). For

a generic s = s0, perform LU decomposition on the univariate poly-

nomial matrix N(s0, t ) such that N(s0, t ) = PL(t )U (t ), where P is a

permutation matrix, L(t ) is a unitary lower triangular matrix andU
is an upper triangular matrix (please refer to (14) in Appendix B for

details). Let

Ui (t ) := gcd(ui,i ,ui,i+1, . . . ,ui,k ), i = 1, . . . ,p. (12)

Then

(1) Up (t ) = 0.

(2) Let α be the total number of i ∈ {1, . . . ,p − 1} such that

h(s0, t ) |Ui (t ), then the order of h(s, t ) is α + 1.

Proof. The proof is given in Appendix C. �

Example 4.2 (Continued). We now continue to compute the or-

ders of the singular factorsh2,h3,h4. Select a random rational num-

ber s0 =
2
3 , and compute the LU decomposition of N(s0, t ) and

{Ui (t )}7i=1. Then we get U7 (t ) = (t − 1) (6t3 + 14t2 − 34t − 9),
U6 (t ) = t and Ui (t ) = 1, i = 1, . . . , 5. Since h2 = t − 1 di-

vides only U7, h2 is an order-two singular factor. Similarly, since

h4 (s0, t ) =
8
9 t

3 + 56
27 t

2 − 136
27 t −

4
3 divides only U7, h4 is also an

order-two singular factor.

Similarly for h3 = s2 + 4s − 4, we can choose a random value

t = t0 and compute the LU decomposition of N(s, t0). One can

easily check that h3 is of order two.

5 ALGORITHM

Our algorithm for computing singularities of rational surfaces con-

tains two parts: (1) computation of singular factors; and (2) deter-

mination of the order of each singular factor.

5.1 Fast Computation of Singular Factors

The outline for computing the singularities of a rational paramet-

ric surface is first to compute a matrix representationM(X ), which

can be done by solving a linear system of Equations (5). After that,

we compute the matrix N(s, t ) in (9), and then compute the de-

terminant factor H (s, t ) of order p − 1, i.e., the GCD of all the

(p − 1) × (p − 1) minors of the matrix N(s, t ). Finally, we factor

H (s, t ) into irreducible singular factors.

Note that when the size of the polynomial matrix N(s, t ) is

big, computing all the (p − 1) × (p − 1) minors can be time con-

suming. Here we adopt the KKS algorithm proposed in Kaltofen

et al. [1987] to finish the task. We randomly generate matrices

U1,U2 ∈ R(p−1)×p and V1,V2 ∈ Rk×(p−1) and compute д1 (s, t ) =
det(U1N(s, t )V1) and д2 (s, t ) = det(U2N(s, t )V2). Then H (s, t ) =
gcd(д1 (s, t ),д2 (s, t )) with probability one.

Algorithm 1 outlines the main approach for computing all the

singular factors.

5.2 Order Computation of Singular Factors

We compute the order of each singular factor based on Proposi-

tion 4.8 and Theorem 4.9. The details are described in Algorithm 2.

Note that in Step 3 of Algorithm 2, an LU decomposition of a uni-

variate polynomial matrix N(s, t0), or N(s0, t ) is needed. Since this

matrix is independent of each factorh, the LU decomposition needs

to be computed only once for different singular factors.

6 EXAMPLES AND DISCUSSION

In this section, we present various examples to compare our

algorithm with existing methods from different perspectives

including robustness, efficiency, order computation and numer-

ical stability. The state-of-the-art methods we compare with

include the resultant method [Busé et al. 2008], the Gröbner

basis method [Huang and Wang 2011] and the characteristic set

method [Pérez-Díaz 2007], which we abbreviate as BEG, HW, and

PD algorithms. The overall performance of different methods are

summarized in Table 1.

The BEG algorithm is invalid in the presence of certain base

points. The BEG and HW algorithms do not compute cusp curves

or isolated singular points, and sometimes either provide extra-

neous singular factors or miss true singular factors; moreover,

they cannot compute orders of singular points, and the output

equations are on parameters (s,u) but not (s, t ) (see detailed

explanation on this point in Example 6.1). The BEG, HW, and PD

algorithms do not apply to numerical computations. In contrast,

our algorithm does not have these defects and is comparatively

numerically stable.

We illustrate the performance of these methods and our algo-

rithm using simple surfaces, surfaces with isolated singular points

of infinite orders, surfaces with base points in the parametrization,

the classic Utah teapot patches, and so on. Note that in all the
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ALGORITHM 1: Compute singular factors of a rational surface

Input : A rational parametric surface of bi-degree (d1, d2):
Φ(s, t ) = (f0 (s, t ), f1 (s, t ), f2 (s, t ), f3 (s, t )).

Output : Singular factors J = {hi (s, t ) }li=1 of Φ(s, t ).
Steps :

(1) Set ν = (d1 − 1, 2d2 − 1) if d1 ≥ d2; otherwise ν = (2d1 − 1, d2 − 1);
(2) Compute the matrix representationM(X ) in (7), which has p = 2d1d2

rows;

(3) Substitute X = Φ(s, t ) intoM(X ) to get the matrix N(s, t );
(4) Compute H (s, t ), the GCD of all (p − 1) × (p − 1) minors of N(s, t )

using the KKS algorithm;

(5) Factor H (s, t ) =
∏l

i=1 hi (s, t )li ;

(6) Output hi , i = 1, . . . , l .

examples, if not specially mentioned, the parametrizations of the

surfaces are proper, i.e., the surface is not multiply painted.

6.1 Examples

We compare the robustness and computational efficiency of differ-

ent approaches for Examples 6.1–6.6 in Table 2, where the column

‘#W ’ refers to the number of incorrect singular factors in the re-

sult; for example, +3 means there are 3 extraneous singular fac-

tors which do not correspond to any singularities, and −1 means

the result misses one true singular factor.

Example 6.1 (Simple Example). The first example is taken

from Jia et al. [2009]. Consider a rational ruled surface

Φ(s, t ) = Φ0 (s ) + tΦ1 (s )

of bi-degree (2, 1) in (s, t ) with

Φ0 (s ) = (s + 3, 1, s2 − 3s + 1, s )

and

Φ1 (s ) = (1, s2 + 1, 2s, s + 3).

Let ν = (d1 − 1, 2d2 − 1) = (1, 1). By Algorithm 1, we compute a

4 × 4 representation matrixM(X ) = (M1,M2,M3,M4):

MT
1 =

����
�

−10x + 25y + 5z
−5x + 40y

58x − 58y − 131z
−152x − 40z + 138w

����
�

, MT
2 =

����
�

−209x + 695y − 68z
68x − 199y

−16x − 398y − 40z + 138wz
−58x + 199

����
�

,

MT
3 =

����
�

53x − 98y − 61z
−77x − 5y + 138w
10x − 10y + 25z
−50x + 5z

����
�

, MT
4 =

����
�

52x − 199y + 43z + 138w
−43x + 68y

−136x + 136y + 5z
−10x − 68z

����
�

.

Substituting the parametrization Φ(s, t ) into the matrix M(X ) we

get the matrix N(s, t ). Computing the gcd of the 3 × 3 minors of

N(s, t ) we obtain

h1 = 111s2t2 + 139s2t + 483st2 + 59s2 − 353st + 631t2

− 413s − 1561t + 879.

Checking the order of h1 by Algorithm 2, we find that h1 = 0 is the

preimage of an order 2 self-intersection curve. The PD algorithm

returns the same result. See Figure 5(a) for an illustration.

By the BEG or HW algorithm, the computed singular factor is

given by the parameter pair (s,u) satisfying Φ(s, t ) = Φ(u,v ) for

s � u:

h(s,u) = −s2u2 − s2u − su2 − 3s2 + 15su − 19u2 − s + 27u − 5.

ALGORITHM 2: Compute the order of a singular factor h (s, t ).

Input : The matrix representation N(s, t ) and a singular factor h (s, t ).
Output : The order r of h (s, t ).
Steps :

(1) If degs (h) > 0, let h0 (t ) be the leading coefficient of h in the

variable s ; compute the residue ri (s, t ) such that

h
γ
0 (t )fi (s, t ) = h (s, t )αi (s, t ) + ri (s, t ) for i = 0, 1, 2, 3, and

degs (ri ) < degs (h);

Else if degs (h) = 0, compute the residue ri (s, t ) such that fi (s, t ) =

h (t )αi (s, t ) + ri (s, t ) for i = 0, 1, 2, 3 and degt (ri ) < degt (h);

(2) If r0 : r1 : r2 : r3 = x0 : y0 : z0 : w0 for a point

Q0 = (x0, y0, z0, w0) ∈ PR3, then r = ∞, and h = 0 gives the pre-

images of the isolated singular point Q0; otherwise go to step (3)–(5);

(3) If degs (h) > 0, choose a generic number t = t0 and compute the LU

decomposition of N(s, t0);

Else if degs (h) = 0, choose a generic number s = s0 and compute the

LU decomposition of N(s0, t );

(4) If degs (h) > 0, compute Ui (s ) in (12) for i = 1, . . . , p . Let α be the

number of i ∈ {1, . . . , p − 1} such that h (s, t0) |Ui (s );

Else if degs (h) = 0, compute Ui (t ) in (12) for i = 1, . . . , p . Let α be

the number of i ∈ {1, . . . , p − 1} such that h (s0, t ) |Ui (t );

(5) The order of h (s, t ) is α + 1.

Although this result corresponds to the same self-intersection

curve C in 3D space as our result, it is not straightforward to gen-

erate points on C from h(s,u) = 0 since (s,u) is not a natural

parameter pair corresponding to a 3D point. Further techniques

to compute the parameter pair (s, t ) from (s,u) are needed. (This

issue is addressed in the last column in Table 1.) Moreover, their

algorithms do not tell the exact order of the self-intersection curve.

These defects of the BEG and HW algorithms are presented in all

the follow-up examples, and we shall not repeat them.

Example 6.2 (Cusp Example without Base Point). Consider a ra-

tional ruled surface of bi-degree (3, 1)

Φ(s, t ) = (s2 + t , t (s2 + 1) + s2 + 1,−s3 + 2s2t + s2 + 1, t (s3 + 3) + 1).

Let (ν1,ν2) = (d1 − 1, 2d2 − 1) = (2, 1). The computed matrix rep-

resentationM(X ) is of size 6× 6, so is the matrix N(s, t ). Our algo-

rithm produces two singular factors: h1 = s , which gives a double

cusp curve on the surface, and

h2 = s
6t4 − 8

5
s6t3 − 2

5
s5t4 − 34

5
s6t2 +

1

5
s4t4 +

88

5
s6t

− 12

5
s5t2 +

26

5
s3t4 − 51

5
s6 +

48

5
s5t + 10s4t2

− 64

5
s3t3 +

18

5
s2t4 − 10s5 − 112

5
s4t +

8

5
s3t2

− 64

5
s2t3 +

89

5
s4 +

16

5
s2t2 +

1

5
t4 +

14

5
s3

+
144

5
s2t +

16

5
t3 − 98

5
s2 − 14

5
t2 − 48

5
t +

33

5
,

which gives a double self-intersection curve. See Figure 5(b) for an

illustration.

However, the HW algorithm gives only the result

h(s,u) = s3u2 − s2u2 − s3 + 2s2u + s2 + u2 − 3 = 0, which
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Table 1. Comparison of Different Methods in Terms of (1) Validity in the Presence of Base Points, (2) Cusps and Isolated

Singular Points are Computed Correctly, (3) Extraneous Factors or Missing Factors are Produced, (4) Correct Orders of

Singularities are given, (5) the Type of Equations in Defining the Singularities and (6) Whether or Not the Method

Applicable to Numerical Computations

Validity in

base points

Cusps or

isolated singularities

Extra factors or

missing factors
Orders Equations Numerical stablility

BEG N N Y N h (s, u ) N

HW Y N Y N h (s, u ) N

PD Y Y N Y h (s, t ) N

Ours Y Y N Y h (s, t ) Y

Fig. 5. (a) A double self-intersection curve(black) in Example 6.1; (b) A cusp

curve and a self-intersection curve (the two thick black curves are two

trimmed parts of one self-intersection curve) in Example 6.2.

essentially corresponds to h2 (s, t ) = 0. Their result does not con-

tain the cusp curve corresponding to h1 = 0. The BEG algorithm

generates two singular factors corresponding to our singular

factors. The PD algorithm produces the same singular factors as

ours, but this method takes much longer computational time.

Example 6.3 (Example with Base Points). Consider a bi-cubic

surface

Φ(s, t ) = (−s3 (t2 − 1), (s + 2)st ,−t3 (s2 − 4), s3),

which has a base point at (s, t ) = (0, 0). The computed representa-

tion matrixM(X ) is of size 18 × 26, so is the matrix N(s, t ). By our

algorithm, we can find three singular factors: h1 = s , h2 = t , and

h3 = s+2.h1 = 0 and h2 = 0 correspond to isolated singular points

Q1 = (1, 0, 0, 1) and Q2 = (0, 0, 1, 0), and h3 = 0 corresponds to a

self-intersection curve. Figure 6(a) illustrates the surface with the

self-intersection curve and the singular point Q1. Note that the

other singular point Q2 is at infinity.

The BEG algorithm becomes invalid since the determinant of the

resultant matrix vanishes. The HW algorithm gives only the sin-

gular factor corresponding to h3 but misses the other two factors.

Example 6.4 (Utah Teapot). In this example, we compute the sin-

gularities for one of the 32 patches of the classic Utah teapot (a

generic patch that is in no way special compared to the other

patches) which is a bi-degree (3, 3) polynomial surface:

Φ(s, t ) = (−256s3t3 + 1056s3t2 + 624s2t3 − 2574s2t2 − 240st3

− 800s3 + 990st2 + 1792t3 + 1950s2 − 7392t2 − 750s + 5600,

− 256s3t3 − 288s3t2 + 624s2t3 + 1344s3t + 702s2t2 − 240st3

− 3276s2t − 270st2 + 1792t3 + 1260st + 2016t2 − 9408t ,

− 1575s2 + 1575s + 9600, 4000).

Our algorithm gives four singular factors: h1 = s2 − s − 1
2 ,

h2 = t2 − t − 25
8 , h3 = s3 − 39

16s
2 + 15s

16 − 7, and h4 is a bi-degree

(6,6) polynomial.h1,h2,h4 are all order 2 singular factors, andh3 =

0 corresponds to three isolated singular points of infinite order.

Figure 6(b) illustrates the singularities.

The HW algorithm produces three polynomials in s,u corre-

sponding to h2,h3,h4, but misses h1. The BEG algorithm outputs

h1h2h
10
3 H1 (s,u)H2 (u), where H1 (s,u) is an extraneous factor of bi-

degree (10, 6) and H2 (u) is an extraneous factor of degree 6. BEG

misses the factor h4 = 0. Note that none of the singular factors

have real branches within the region [0, 1] × [0, 1], which agrees

with the fact that the Utah teapot patches are self-intersection free

within [0, 1] × [0, 1].

Example 6.5. Consider a bi-degree (4, 2) surface defined by

Φ(s, t ) = (4s3 + st2 + 4s2 − 12st + t2 + s + 1,

4s4 + s2t2 + s2 + 6t , 6t2, 4s2 + t2 + 1).

Let (ν1,ν2) = (d1−1, 2d2−1) = (3, 3). The representation matrix

M(X ) and N(s, t ) are both of size 16× 25. By our algorithm, we are

able to compute three self-intersection curves of order two, whose

pre-images are given byh1 = 4s2+t2+1 = 0,h2 = 4s2+t2−12t+1 =

0 and h3 = 16s4 + 4s2t2 + 8s2 + t2 − 12t + 1 = 0. Note that h1 = 0

corresponds to a singular curve in 3D complex space. Figure 7(a)

depicts the two real self-intersection curves on this surface.

The BEG algorithm gives u4 (4s2 + 1)4 (4s2 +u2 − 12u + 1) (16s4 +

4s2u2 + 8s2 +u2 − 12u + 1)2, which has extraneous factors u4 and

4s2 + 1 but loses the factor h1. The HW algorithm returns only the

singular factor 4s2 + u2 − 12u + 1 = 0, but loses h1 and h3.

Notice that Φ(s, t ) can also be regarded as a triangular surface

of total degree 4. If we apply our algorithm for triangular surfaces,

then we get a matrix representation M̄(X ) of size 28 × 55 which

is much larger than that ofM(X ). Of course, our algorithm finally

produces the same result for both representations.

Remark 3. Any parametric surface Φ(s, t ) can be taken as either

a tensor product surface of bi-degree (d1,d2) or a triangular surface

of total degree d with a finite number of base points, regardless of

the type of the Newton polygon. Thus our algorithm is impervious

to base points based on Proposition 4.4. The matrix representations
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Fig. 6. (a) A self-intersection curve (black) and an isolated singular point

(yellow) in Example 6.3; (b) Three double self-intersection curves (in black,

red and yellow) in Example 6.4.

for the two types of surfaces have 2d1d2 rows and d (2d − 1) rows

respectively. Since d ≥ max(d1,d2), unless d = max(d1,d2), the

tensor-product form has a matrix representation of smaller size

than that of the triangular form.

Example 6.6. Consider an example from Jia et al. [2009] which

has singularities of higher order. Let

Φ(s, t ) = Φ0 (s ) + tΦ1 (s ),

where

Φ0 (s ) = (7s7 + 77s6 − 315s5 + 385s4 − 175s3 + 21s2, 49s7

− 84s6 + 21s5 + 35s3 − 21s2, 56s7 − 147s6 + 126s5 − 35s4, 1)

Φ1 (s ) = (1, 1, 1, 0).

Let (ν1,ν2) = (6, 1). Then the matricesM(X ) andN(s, t ) are both

of size 13×21. Our algorithm outputs three singular factors:h1 = s ,
h2 = s−1,h3 = t , and h4 (s, t ) which is a degree 22 irreducible poly-

nomial in s . By Algorithm 2, both h1 = 0 (with multiplicity 2) and

h2 = 0 give an order three self-intersection curve (actually these

factors correspond to the same self-intersection curve in 3D space),

h3 = 0 gives an isolated singular point Q = (1, 1, 1, 0) at infinity,

and h4 = 0 gives a double self-intersection curve. Figure 7(b) illus-

trates the double and the triple self-intersection curves.

The BEG algorithm returns no result on this example since the

determinant of their resultant vanishes. The HW algorithm misses

the locus h3 = 0, and runs over 70 seconds; moreover, it cannot

tell the different orders of the self-intersection curves. The PD al-

gorithm returns the same result as ours.

6.2 Discussion

In this section, we discuss the pros and cons of the four mentioned

algorithms from different perspectives including robustness, effi-

ciency, order computation, and numerical stability.

Robustness. Considering the robustness of the above-mentioned

algorithms, our algorithm and the PD algorithm always return

correct singular factors. In contrast, the BEG algorithm usually

produces some extraneous factors that do not correspond to

any singularities. Occasionally, the BEG algorithm also misses

certain singular factors. The HW algorithm often misses some

singular factors. Those missed singular factors by the BEG and

the HW algorithms either correspond to cusp curves or isolated

singular points of infinite order. Actually, this phenomena has

been addressed in Huang and Wang [2011], where the authors

clarify that their computation system is built on Φ(s, t ) = Φ(u,v )
for s � u, which is also used in the BEG algorithm. Thus, both

the BEG and the HW algorithms return only singular factors that

correspond to self-intersection curves.

On the other hand, both the HW and the BEG algorithms re-

turn polynomial factors h(s,u) corresponding to self-intersection

curves of a surface. Since (s,u) is not a natural parameter pair for

a singular point, further computations are needed to transfer from

(s,u) to (s, t ) or (u,v ). On comparison, our method and the PD

method both directly return singular factorsh(s, t ); hence, singular

curves in 3D space can be computed directly by mappingh(s, t ) = 0

through Φ.

Besides, in some situations the BEG algorithm becomes invalid

since the determinant of the resultant matrix vanishes, hence does

not return any result. This degeneracy usually occurs when the

parametrization of the surface contains base points. However, our

algorithm is impervious to base points. Therefore, it works well

for any type of rational parametrization, because parametrizations

with any type of Newton polygons can be taken as tensor-product

surfaces with a finite number of base points.

Efficiency. We implemented the four approaches in Maplesoft

2018 on an Inter(R)Core(TM)i7-7700K CPU @ 4.20GHz with RAM

32G. The comparison of the computation time for Examples 6.1-6.6

by the four approaches is shown in Table 2. It can be seen that both

the BEG method and our method are efficient, while the HW and

the PD algorithms report longer computation times.

In our implementation, when the surface has no base points, we

use the Dixon resultant matrix as the representation matrix to ac-

celerate the algorithm, instead of solving the linear system (5). To

more fairly compare the efficiency of the four methods, we gener-

ate 20 random examples for each bi-degree parametric surface that

contains full term monomials in given degree with random ratio-

nal coefficients in [−5, 5]. Note that these examples do not have any

base points. We compute the average computation time for each bi-

degree which is shown in Table 3. In summary, the BEG algorithm

and our method are most efficient and have comparable implemen-

tation time. Note that, in some examples, the computation time of

our algorithm is a little bit slower than that of the BEG algorithm,

largely because we are computing h(s, t ) = 0 while the BEG algo-

rithm is computing д(s,u) = 0, and h usually has a higher degree

than д. As we have addressed previously, h(s, t ) is preferable to

д(s,u). The HW and the PD algorithms are computationally very

expensive for relatively high degree surfaces since computation of

Gröbner bases or regular systems is involved.

Order Computation. Both our algorithm and the PD algorithm

can compute the exact order of each singular factor, while the BEG

and the HW algorithms cannot compute the orders of singular

factors within their own framework. This reason is also why the

BEG method cannot get rid of extraneous factors. Note that our

method can get all the correct singular factors at the first stage

(Algorithm 1) by computing, if needed, the determinant factor of

orderp−1. Even if we only compute one minor which may contain

extraneous factors at the first stage, we can still get rid of the
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Table 2. Robustness and Computation Time (in Seconds) of Different Approaches

BEG HW PD Ours

degree Time #W Time #W Time #W Time #W

Eg 6.1 (2,1) 0.047 0 0.250 0 0.328 0 0.015 0

Eg 6.2 (3,1) 0.078 0 4.391 −1 171.531 0 0.047 0

Eg 6.3 (3,3) − − 0.078 −2 1.610 0 0.187 0

Eg 6.4 (3,3) 0.281 +1 0.375 −1 6.828 0 0.438 0

Eg 6.5 (4,2) 0.188 +2 &−1 0.063 −2 4.359 0 0.265 0

Eg 6.6 (7,1) − − 76.828 −1 0.750 0 0.500 0

#W refers to the number of extraneous or missing singular factors, “+n” means n extraneous
singular factors are obtained, “-n” means n singular factors are missed, “0” means correct
singular factors are generated. “−” means no results are returned.

Table 3. Average Computation Time (in Seconds) of 20

Full-term Parametrization Examples for Different Approaches

Degree BEG HW PD Ours

(2,1) 0.062 1.112 0.964 0.016

(3,1) 0.080 110.600 650.324 0.031

(4,1) 0.202 1374.600 >5000.000 0.157

(2,2) 0.132 406.484 569.121 0.109

(3,2) 0.391 >5000.000 >5000.000 0.578

(4,2) 1.562 >5000.000 >5000.000 3.201

Fig. 7. (a) Two double self-intersection curves (in black and yellow) in Ex-

ample 6.5; (b) A double self-intersection curve (in black) and a triple self-

intersection curve (in yellow) in Example 6.6.

extraneous factors at the second stage by computing the order

of each singular factor. Hence, order computation is not only

an advantage of our algorithm but also greatly accelerates our

algorithm.

Improper Parametrization. Previously, we have assumed that the

surface parametrization is proper. However, improper parametriza-

tion is very common in practice. If the surface parametrization is

improper, the BEG algorithm and the HW algorithm become in-

valid, while our algorithm and the PD algorithm still work well.

We illustrate with an example.

Example 6.7. Consider an improperly parameterized surface

Φ(s, t ) = (−s3 (t2 − 1), (s + 2)st ,−t3 (s2 − 4), s3).

Both the BEG and the HW algorithms fail since zeros are returned

during the computation. Our algorithm gives three singular fac-

tors: h1 = s,h2 = s + 2, and h3 = t , where h1 = 0 and h3 = 0

correspond to two isolated singular points Q1 = (0, 0, 1, 0) and

Q2 = (1, 0, 0, 1), and the singular factor h2 = 0 corresponds to an

order four self-intersection curve. The PD algorithm returns the

same results.

Numerical Stability. Our algorithm works also for parametric

surfaces with floating point coefficients. Note that in such situa-

tions, an approximate GCD algorithm and an approximate factor-

ization algorithm of bivariate polynomials with floating point co-

efficients are needed. In this article, we employ the approximate

GCD and factorization algorithms for multivariate polynomials

provided by Kaltofen et al. [2006] and Zeng [2008].

According to a large number of experiments, our algorithm man-

ifests numerical stability. That is, if the input data contains some

numerical error ε , then the output data has an error bounded byKε ,

whereK is a positive constant that depends on the algorithm. How-

ever, we are not able to provide a theoretical proof about the nu-

merical stability of our algorithm since complex polynomial GCD

and factorization are involved. In the following, we give two exam-

ples to illustrate the fact.

Example 6.1 (Continued). We recompute Example 6.1 using float-

ing point arithmetic with double precision. The approximate GCD

of all the 3 × 3 minors of N(s, t ) is

h̄1 (s, t ) = −.3024343413303094s2t 2 − .3787240850893085s2t

− 1.315998079842698st 2 − .1607533886350279s2 + .9617956981044943st

− 1.719243868283114t 2 + 1.125273720445204s + 4.253153214564076t

− 2.394953027291350.

By the approximate GCD factorization algorithm proposed

in Kaltofen et al. [2006], h̄1 (s, t ) can not be factored. Now we com-

pare the difference between h1 (s, t ) and h̄1 (s, t ) over a parametric

domain, say [0, 1] × [0, 1]. Write h1 in Example 6.1 and h̄1 in their
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Bernstein-Bézier forms:

h1 (s, t ) =
2∑

i=0

2∑
j=0

αi jB
2
i (s )B2

j (t ), h̄1 =

2∑
i=0

2∑
j=0

ᾱi jB
2
i (s )B2

j (t )

whose coefficient matrices are

α =
���
�

293
37

197
222 − 17

37
1345
222 − 785

444 − 385
222

175
37 − 725

222 − 25
111

���
�
,

ᾱ =
(

7.918918918918855 0.8873873873873300 −.4594594594594980
6.058558558558497 −1.768018018018070 −1.734234234234264
4.729729729729666 −3.265765765765814 −.2252252252252453

)
.

Since max0≤i, j≤2 |αi j − ᾱi j | ≈ 10−14 ≤ Kε with ε ≈ 10−16 and

K ≈ 100, our algorithm manifests numerical stability.

Example 6.2 (Continued). We perform floating point arithmetic

with double precision on Example 6.2. Computing the approximate

GCD H (s, t ) = 0 of all the minors of N(s, t ) by the approximate

GCD algorithm and factoring H (s, t ) with the approximate factor-

ization algorithm, we obtain two factors h̄1 (s ) = 1.000000000s and

a bidegree (6, 4) factor

h̄2 (s, t ) =

1.000000000000000s6t 4 − 1.600000000000025s6t 3 − .4000000000000504s5t 4

− 6.799999999999999s6t 2 + 5.021279428 × 10−14s5t 3 + .1999999999999915s4t 4

+ 17.60000000000015s6t − 2.400000000000054s5t 2 + 4.763450957 × 10−14s4t 3

+ 5.200000000000102s3t 4 − 10.20000000000015s6 + 9.600000000000110s5t

+ 10.00000000000009s4t 2 − 12.80000000000017s3t 3 + 3.600000000000004s2t 4

− 10.00000000000010s5 − 22.40000000000016s4t + 1.600000000000021s3t 2

− 12.80000000000016s2t 3 − 6.177807677 × 10−14st 4 + 17.80000000000017s4

− 3.491867976 × 10−14s3t + 3.200000000000066s2t 2 + 0.1999999999999979t 4

+ 2.799999999999961s3 + 28.80000000000025s2t + 3.708803871 × 10−14st 2

+ 3.200000000000030t 3 − 19.60000000000009s2 − 2.799999999999994t 2

+ 4.03934769310−14s − 9.600000000000034t + 6.599999999999966.

Clearly, h1 = h̄1. Moreover, write h2 in Example 6.2 in its

Bernstein-Bézier form:

h1 (s, t ) =
6∑

i=0

4∑
j=0

αi j B6
i (s )B4

j (t ),

where

α =

������������
�

33
5

21
5

4
3 − 6

5
33
5

21
5

4
3 − 6

5
397
75

253
75

46
45 − 88

75
141
50

93
50

83
150 − 11

10
38
75

46
75

142
225 − 14

25
− 4

5
2
15

71
45

3
5

������������
�

.

Similarly, write h̄2 as

h̄2 =

6∑
i=0

4∑
j=0

ᾱi j B6
i (s )B4

j (t ),

where ᾱ = [ᾱ1, ᾱ2]6×4 with

ᾱ1 =

��������
�

6.599999999999966 4.199999999999958
6.599999999999973 4.199999999999964
5.2933333333333070 3.373333333333302
2.819999999999966 1.859999999999970
.5066666666666272 .6133333333333059
−.8000000000000414 .1333333333333125

��������
�

,

ᾱ2 =

��������
�

1.333333333333283 −1.200000000000049
1.333333333333291 −1.200000000000039
1.022222222222191 −1.173333333333357
.5533333333333132 −1.100000000000006
.6311111111111070 −.5599999999999858
1.577777777777796 .6000000000000418

��������
�

.

Since max |αi j − ᾱi j | ≈ 10−14 for 0 ≤ i ≤ 6, 0 ≤ j ≤ 4, our

algorithm demonstrates numerical stability again.

Fig. 8. The rendering result without considering the singular curve (a) and

with special treatment of the singular curve (b).

Overall Comparison. In summary, our algorithm has the best per-

formance considering all the above factors. The BEG algorithm is

generally the most efficient algorithm, but BEG may produce many

extraneous factors and BEG cannot tell the orders of the singular

factors. Furthermore, BEG easily becomes invalid. The PD algo-

rithm is the only algorithm that can ensure the same correct results

as our algorithm; however, PD is very inefficient and impractical

compared with other methods. The behavior of the HW algorithm

is between the BEG algorithm and the PD algorithm: PD is effi-

cient for generally low-degree surfaces but the computation costs

increase rapidly as the degree of the parametric surface rises. Fur-

thermore, HW sometimes misses singular factors and cannot tell

the order of the singularities. When it comes to numerical compu-

tation environments, only our algorithm is valid.

7 APPLICATIONS IN RENDERING, MESHING, AND

SURFACE INTERSECTIONS

Singularities are important features of surfaces and have substan-

tial influence on subsequent processing of surfaces such as render-

ing, meshing, and surface/surface intersection.

Ray tracing in surfaces tends to generate aliasing effects in the

neighborhood of singular curves. Figure 8(a) shows that the area

around the singular curve has artifacts. Figure 8(b) shows a better

rendering quality by using our computational results to locate in

advance the singular curve.

Mesh generation of parametric surfaces often comes with big

difficulties in regions around singularities, where a couple of com-

mon pitfalls of finite element modeling arise. Figure 9(a) shows

the meshing result near the self-intersection curves where many

triangles penetrate each other. This interpenetration might cause

problems in later processing. Figure 9(b) shows the remeshing

result of the parametric surface by specifically moving certain

vertices of the triangles near the self-intersection curves onto

the self-intersection curves, and hence the triangles no longer

penetrate each other.

Singularities on surfaces also affect surface intersection. Trac-

ing the intersection curve of two surfaces tends to fail near

the singular points on one surface. An example is illustrated in

Figure 10(a), where one of the two surfaces has a self-intersection

curve. If we compute the intersection curve of the two surfaces

by the tracing method, the intersection method misses two of the

four branches near the singular curve (black) of one surface, as

shown in Figure 10(b). Figure 10(c) improves the result by using
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Fig. 9. (a) A triangular mesh of the Enneper surface without considering the singular curve, where many triangles near the self-intersection curves penetrate

each other. (b) The remeshing result by moving certain vertices of the triangles near the self-intersection curves onto these curves, and hence the triangles

no longer penetrate each other.

Fig. 10. Computing the intersection curve of two rational surfaces by the tracing method. (a) Two rational surfaces, one of which has a self-intersection

curve; (b) The intersection curve (red) of the two surfaces is missing two of the four branches near the singular curve (black) of one surface; (c) the four

branches of the intersection curve are all correctly generated by special treatment for the singular curve (black) on one surface.

special treatment for the singular curve (black) on one surface,

and hence the four branches are all correctly generated.

8 CONCLUSIONS AND FUTURE WORK

In this article, we provide a symbolic algorithm for computing the

singularities of rational surfaces. The algorithm provides the pre-

images of all the singularities together with their orders. The al-

gorithm is efficient, robust, and numerically stable. Applications

of our algorithm in surface rendering, surface meshing, and sur-

face/surface intersections demonstrate that singularity computa-

tion is essential for these applications.

As for future directions, the size of the representation matrix

in the current work can possibly be reduced by replacing some

moving planes with moving quadrics [Buse and Chen 2021; Lai

et al. 2019]. Decreasing the size of the representation matrix can

further improve the efficiency of our algorithm. Another future

direction could be the direct factorization of the matrix N(s, t )
into a form that can not only read off the singular factors but also

their orders. Applications of singularities in other applications

could also be explored.

APPENDICES

A PROOF OF PROPOSITION 4.8

Proof. “⇒”: By assumption, for any (s∗, t∗) on h(s, t ) = 0,

Φ(s∗, t∗) = Q0, i.e.,

f0 (s∗, t∗) : f1 (s∗, t∗) : f2 (s∗, t∗) : f3 (s∗, t∗) = x0 : y0 : z0 : w0.

Substituting s = s∗, t = t∗ into Equation (10) yields

h0 (t∗)γ fi (s∗, t∗) = ri (s∗, t∗) for i = 0, 1, 2, 3.

Thus if h0 (t∗) � 0, then

r0 (s∗, t∗) : r1 (s∗, t∗) : r2 (s∗, t∗) : r3 (s∗, t∗) = x0 : y0 : z0 : w0.

Hence every parameter pair (s∗, t∗) satisfying h(s, t ) = 0 and

h0 (t∗) � 0 is a common solution of

F1 (s, t ) := x0r3 −w0r0,

F2 (s, t ) := y0r3 −w0r1,

F3 (s, t ) := z0r3 −w0r2.

(13)

That means

h(s, t ) |F1 (s, t ),h(s, t ) |F2 (s, t ),h(s, t ) |F3 (s, t ).

But since degs (Fi ) < degs (h), it follows that

F1 (s, t ) ≡ 0, F2 (s, t ) ≡ 0, F3 (s, t ) ≡ 0.

Therefore,

r0 (s, t ) : r1 (s, t ) : r2 (s, t ) : r3 (s, t ) = x0 : y0 : z0 : w0.

“⇐” Let (s∗, t∗) be a point on h = 0. Then h0 (t∗) � 0; otherwise,

Equations (10) and (11) together yield x0 = y0 = z0 = w0 = 0,

which contradicts the assumption. Hence, Equation (10) gives
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f0 (s∗, t∗) : f1 (s∗, t∗) : f2 (s∗, t∗) : f3 (s∗, t∗)

=r0 (s∗, t∗) : r1 (s∗, t∗) : r2 (s∗, t∗) : r3 (s∗, t∗)

=x0 : y0 : z0 : w0 = Q0.

This completes the proof. �

B LU DECOMPOSITION OF A POLYNOMIAL MATRIX

LU decomposition of a p×k (p ≤ k ) matrix M factors M into a p×p
lower triangular matrix L and a p × k upper triangular matrix U
such that M = LU .

For a p × k (p ≤ k ) polynomial matrix M (t ) with entries poly-

nomials in t , a similar LU factorization M (t ) = PL(t )U (t ) exists,

where P is a constant permutation matrix, L is a unitary lower tri-

angular matrix of size p ×p andU is an upper triangular matrix of

size p × k . The entries of L andU are rational functions in t , and L
has ones along its diagonal:

L =

��������
�

1
l21 (t )
d1 (t ) 1

...
. . .

. . .
lp,1 (t )
d1 (t ) · · · lp,p−1 (t )

dp−1 (t ) 1

��������
�

,

and

U =

������
�

u11 (t )
v1 (t ) · · · · · · · · · u1,k (t )

v1 (t )

. . .
...

up,p (t )
vp (t ) · · · up,k (t )

vp (t )

������
�

. (14)

Obviously, rank(M ) = rank(U ) for a generic value of t that is not

a root of any di (t ) = 0, i = 1, . . . ,p − 1 or vi (t ) = 0, i = 1, . . . ,p.

See Murota [1983] for more details.

C PROOF OF THEOREM 4.9

Proof. Since rank(N(s, t )) < p for an arbitrary parameter pair

(s, t ) and rank(N(s0, t )) = rank(U (t )) for any generic value of t ,
we directly get Up (t ) = 0.

Let t = t0 be a solution of h(s0, t ) = 0. Since s = s0 is a generic

value, by Proposition 4.3, the order of the point Φ(s0, t0) is k =
corank(N(s0, t0)) = corank(U (t0)) = α + 1. �
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