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Data and algorithms are essential and complementary parts of a large-scale decision-making process. However, their injudicious
use can lead to unforeseen consequences, as has been observed by researchers and activists alike in the recent past. In this paper,
we revisit the application of predictive models by the Chicago Department of Public Health to schedule restaurant inspections and
prioritize the detection of critical food code violations. We perform the first analysis of the model’s fairness to the population served
by the restaurants in terms of average time to find a critical violation. We find that the model treats inspections unequally based
on the sanitarian who conducted the inspection and that, in turn, there are geographic disparities in the benefits of the model. We
examine four alternate methods of model training and two alternative ways of scheduling using the model and find that the latter
generate more desirable results. The challenges from this application point to important directions for future work around fairness
with collective entities rather than individuals, the use of critical violations as a proxy, and the disconnect between fair classification
and fairness in the dynamic scheduling system.

CCS Concepts: •Applied computing→ Decision analysis;Computing in government; •Computingmethodologies→ Planning

and scheduling.

Additional Key Words and Phrases: food inspections, fairness, scheduling

ACM Reference Format:
Shubham Singh, Bhuvni Shah, Chris Kanich, and Ian A. Kash. 2022. Fair Decision-Making for Food Inspections. 1, 1 (March 2022),
28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The Chicago Department of Public Health (CDPH) issues food safety guidelines and conducts inspections of more than
16,000 food establishments. Through these inspections, CDPH sanitarians educate owners and workers about food
safety practices, inspect the premises and practices for safe food handling, and promote a healthy environment for food
preparation. The City of Chicago records each of the food inspections on its public data portal.1

As there are a limited number of sanitarians, a natural goal is to use data to prioritize performing the inspections that
best protect the public health. Inspections which identify critical violations of the food code allow conditions posing
the highest risk of causing a food-borne illness to be addressed. Thus, data scientists working for the city and their
collaborators trained a machine learning (ML) model to predict the likelihood of an inspection resulting in a critical
violation [32]. The trained ML model, which we refer to as the Schenk Jr. et al. model, was used to prioritize food
inspections in a simulated study. An evaluation of the model showed that using it to schedule inspections achieves a
7-day improvement in the mean time to detect a critical violation compared to the actual inspection schedule followed
by sanitarians [32].

In this paper, we first reexamine the model from a fairness perspective and assess how the improvement gained
by employing the model is shared by different parts of the city. A key driver of geographic variation is that not all
1Chicago Data Portal: https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5
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sanitarians report critical violations at the same rate, with some citing such violations in less than three percent of
inspections while others find them in more than forty percent. We show that the idiosyncratic behavior of sanitarians
coupled with each sanitarian working in a limited portion of the city results in a disparity among how soon critical
violations are found in different city regions under the Schenk Jr. et al. model. In particular, the model prioritizes the
restaurants inspected by sanitarians who report a high rate of critical violations. As a result, residents of regions of
the city where sanitarians cite critical violations at a higher-than-average rate tend to see inspections in their region
prioritized at the expense of the other regions.

We also explore approaches to using this data to prioritize food inspections in a fairer way. Our interventions span
two broad classes of techniques: (a) those where we train a new model to predict critical violations in a fairer way and
(b) post-processing approaches where we use the Schenk Jr. et al. model as-is but modify the way the model is used to
achieve a fairer resource allocation despite the unfair predictions. We examine four different approaches to training fair
models, and find that they mitigate but do not eliminate the geographic unfairness that results when the models are
used to schedule inspections. We consider two post-processing approaches which adjust the way sanitarian identities
are used when scheduling inspections: one censors the sanitarian feature when predicting while the other uses the
model to reschedule each sanitarian’s inspections rather than globally rescheduling all inspections. Our results show
that these post-processing approaches are more effective than retraining in achieving fair outcomes.

After analyzing the fairness properties of the various approaches, we examine the trade off between efficiency
(success in prioritizing inspections with critical violations) and fairness each enables. We find that the post-processing
approaches enable an attractive trade-off between efficiency and fairness while the fair models are essentially Pareto
dominated: each has an alternative that provides approximately the same efficiency while being fairer.

We conclude by discussing three key issues our results raise for future work. The inspection of restaurants is different
from much of the fairness literature in that each entity has many stakeholders, so models based on simple binary
protected attributes are not a good fit for some protected groups of interest. The use of critical violations as a proxy
for public health raises important questions about what fairness means in this setting, particularly in light of the
heterogeneity across sanitarians. Finally, we discuss the disconnect between training a model for classification and our
goal of achieving fairness in a dynamic scheduling system.

1.1 Related Work

Food inspections remain an essential food safety practice to prevent food-borne illnesses. However, the variation in
practices and guidelines across jurisdictions results in a lack of consistency in local and national food safety levels and
the link between inspections and food safety is actively studied. One of the first studies done in Seattle-King County
found that restaurants with lower food inspection scores2 were likely to have more outbreaks than restaurants with
higher scores [20]. Another study done in Miami–Dade County found no correlation between restaurant inspection
scores and the outbreak of food-borne illnesses [9]. Jones et al. found inconsistencies between criteria for high risk
establishments and establishments that resulted in outbreakes through a study in the state of Tennessee and called
for a deeper examination into the restaurant inspection system [22]. Today, there are still calls for systemic change
in local food safety inspection systems across the country due to the poor predictive power of the current inspection
framework [2]. Technologists have also been exploring how to improve the food inspection process. In attempt to
find more predictive features, nontraditional data sources have been explored. Google search activity in an ML-based

2Sanitarians assigned each inspection a score out of 100, and a lower score indicated more critical violations.
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approach to identify higher risk establishments has shown some promise [31], but the addition of Yelp data did not
improve the prediction of inspection scores [1].

More broadly our work sits at the intersection of two trends in the use of artificial intelligence techniques. One
is the use of predictive analytics and other tools to bring algorithmic decision-making to government operations.
We witness a rise of machine learning algorithms being used for the delivery of public services, digitization of court
records, and management of government programs [8, 14]. The other is the increased openness of government data. A
recent study points out the need for more transparency to counter the public distrust of AI and promote its use for the
common good [25]. Such initiatives help authorities improve their operations and also provides transparency to their
decision-making process. Tournaments on platforms like Kaggle have been used encourage public involvement in civic
model creation [16] with the goal of creating better public services [29].

We provide a case study of using open data to analyze the fairness of predictive analytics and provides interventions
to improve it. Previous case studies of other domains include predictive policing [15] and child maltreatment [7].

2 BACKGROUND

The starting point for our work is a project done by Schenk Jr. et al. for the City of Chicago [32]. They sought a predictive
model to prioritize the scheduling of routine food inspections conducted by sanitarians from the Chicago Department
of Public Health (CDPH). Rather than relying solely on manual scheduling of food inspections by CDPH, in 2015 the
Chicago Department of Innovation and Technology and data scientists from the Civic Consulting Alliance created a
machine learning model to aid in this scheduling process.

The model specifically looks at the scheduling of routine food inspections which are conducted once or twice a year
at each establishment independent of any consumer complaints. The dataset used to train and test the model consists
of information from 18,000 inspections over 4 years with the training set from September 2011 to April 2014 and the
testing set from September 2014 to October 2014. The dataset is derived from several datasets from the Chicago Open
source portal3 including those about crime rates, sanitation, weather, and food inspections. The dataset also includes
information about the sanitarians who conducted the inspections. In order to protect the individual identity and the
privacy of the sanitarians, they are grouped into six sanitarian clusters based on their critical violation rate, which is
the percentage of inspections they conduct that result in critical violations. The clusters, which are used as features in
the model, were named after the lines of Chicago rail transit system: Purple, Blue, Orange, Green, Yellow, and Brown.
From this dataset, they train a logistic regression model using features including the sanitarian cluster conducting
the inspection, past establishment violation records, and surrounding environment data (crime rates, cleanliness,
temperature) to predict the likelihood of the inspection resulting in a critical violation.

The trained model is then used to prioritize food inspections. In particular, it outputs a risk score for each inspection
where a higher score signifies a higher risk of finding a critical violation. These risk scores are used to prioritize
inspections: the highest risk score should be inspected first and the remainder inspected in decreasing order of the risk
scores. The input features to the model and its coefficients are detailed in Table 2.

Evaluating the model requires making an assumption on how it would be used. Schenk Jr. et al. [32] reassigned the
dates of the inspections in the test set based on their predicted risk score, while preserving the number of inspections
performed each day and the identity of the sanitarian performing each inspection. (See Appendix A.5 for an illustrated
example.) As their main goal was to ensure that the inspections which resulted in critical violations were inspected

3https://data.cityofchicago.org/
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as rapidly as possible, they evaluated each schedule (the original and the one created by the model) by the average
time required to detect critical violations. This was calculated by taking the mean of the number of days between date
the inspection was scheduled and the first day of the test set window (i.e. September 1, 2014) for those inspections
that resulted in a critical violation. They found that, on average, the schedule based on their model detected critical
violations 7-days faster than the original schedule when applied to the two-month test set. The dataset and code used
in this analysis are available in the project’s repository.4

Kannan, Shapiro, and Bilgic [23] provided an independent analysis of the model results and identified several issues
with the model and its analysis. As we are primarily interested in the fairness of the Schenk Jr. et al. approach, many of
their findings such as questioning whether some model assumptions hold in practice or arguing that a richer feature set
should have been used are not immediately relevant for us (although we revisit some of them in §7). However, one of
their findings turns out to be particularly relevant for our analysis.

In particular, they argued that using the sanitarian clusters as a predictive feature unfairly changes the prediction
risk for the establishment. Since the clusters were created by grouping sanitarians with similar violation rates, it was
likely that establishments set to be inspected by sanitarian clusters with a high propensity to find violations were much
more likely to have a high risk score for a potential violation, regardless of the other attributes. They view this outcome
as being unfair to the restaurant. Although we share this concern, our primary focus is on fairness to customers residing
close to the establishment. Nevertheless, we show that this differentiated behavior of sanitarians and its use by the
model has important consequences for our fairness concerns as well.

3 FAIRNESS OF THE SCHENK JR. ET AL. MODEL

In §2, we described the logistic regression model used by Schenk Jr. et al.[32] to schedule inspections for the City of
Chicago such that critical violations are found early. In this section, we focus on the fairness of the way the model
distributes these public health benefits among the residents of Chicago. To quantify fairness, we borrow from the
existing definitions of the fairness literature and adapt them to the problem of food inspections. The first definition we
focus on is Demographic Parity (DP) or Statistical Parity, defined as a classifier having equal positive predicted rates for
advantaged (𝐴 = 1) and disadvantaged (𝐴 = 0) groups [6]. Given a prediction 𝑌 , demographic parity is satisfied if

𝑃 (𝑌 = 1|𝐴 = 0) = 𝑃 (𝑌 = 1|𝐴 = 1) . (1)

We are interested in achieving similar amounts of time taken to complete food inspections across groups of interest.
Since we consider multiple groups, 𝐴 is categorical with values {𝑎0, . . . , 𝑎𝑛−1}, where 𝑛 is the total number of groups.
Let 𝑇 represent the random variable for the time to complete a random food inspection. Our interpretation of DP is

E[𝑇 |𝐴 = 𝑎𝑖 ] = E[𝑇 |𝐴 = 𝑎𝑖+1] s.t. 0 ≤ 𝑖 < 𝑛 . (2)

Equation (2) intuitively states that if, on average, the time to conduct the inspections belonging to different groups is
equal, then the schedule is fair.

Another widely applicable definition of fairness is Equal Opportunity (EOpp), which is defined as the classifier
having equal true positive rates for advantaged and disadvantaged groups [18]. Formally,

𝑃 (𝑌 = 1|𝑌 = 1, 𝐴 = 0) = 𝑃 (𝑌 = 1|𝑌 = 1, 𝐴 = 1) . (3)

4https://github.com/Chicago/food-inspections-evaluation
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Our interpretation of equal opportunity requires having similar times to detect critical violations in food inspections
across all groups. This can be written as

E[𝑇 |𝐴 = 𝑎𝑖 , 𝑌 = 1] = E[𝑇 |𝐴 = 𝑎𝑖+1, 𝑌 = 1] s.t. 0 ≤ 𝑖 < 𝑛 . (4)

Equation (4) states a schedule is fair if the inspections where a critical violation was found (𝑌 = 1), on average, took
equal amounts of time to be detected across the groups. These interpretations of DP and EOpp are consistent with work
on extending these concepts beyond simple classification settings [4].

Throughout the rest of the paper, we consider an early detection of a critical violation to be an advantage to the
people living in the restaurant’s neighborhood, as it prevents them from any potential food-borne illness stemming
from unsafe conditions. Thus, our primary interest is in applying these definitions to groups consisting of restaurants
located in a particular region of the city. While we consider both the notions of fairness in Equations (2) and (4), since
the overall goal of the system is to improve the detection of critical violations we put more emphasis on the second.

We largely follow the methodology used by the City of Chicago as described in §2 and fully detailed in [32]. However,
to improve the robustness of the results we perform a cross-validated evaluation, rather than the evaluation on the last
60-days performed by Schenk Jr. et al.. The dataset contains 19 non-overlapping periods spanning 60 days from the
first inspection date till the last. Out of these 19 evaluations periods, we exclude three evaluation periods that did not
contain inspections for all 60 days. We report the mean and standard error across the remaining 16 evaluation periods
of two metrics: the time to detect a critical violation and the time to conduct inspections.

3.1 Fairness along geographic lines

North Far North Far Southeast South Central Far Southwest Southwest West Northwest
City Regions
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Fig. 1. The figure illustrates the difference between the mean time to detect a critical violation in a particular region and the overall
mean time for that schedule (EOpp) using the narrower, solid-colored bars. The wider, light colored bars represent the difference in
time to conduct inspections regardless of whether a violation was found(DP). The labels represent the major regions of Chicago. Error
bars indicate the standard error of EOpp from 16-fold cross validation. (The error bars for DP are similar and omitted for legibility.)

For our fairness analysis, we examine the effects of the model on different regions of the city, which are colloquially
known as "sides". We explore how the residents of the different regions are affected by using the model to schedule the
food inspections. Using the ZIP codes of the inspected restaurants in the dataset, we match their location to the nine
sides5 of the city.

5For a map, see https://en.wikipedia.org/wiki/Chicago#/media/File:Chicago_community_areas_map.svg. Accessed 06/12/2021
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Figure 1 shows a disaggregated view of the difference between the average time taken to detect critical violations in
a specific region and the overall average for that schedule (which corresponds to the extent to which EOpp is violated
in that region, eq. (4)) using solid colors. It also shows the difference between the average time taken to conduct
inspections (regardless of whether a critical violation is found) in a region and the overall average for that schedule.
This corresponds to DP (eq. (2)) and is shown using light colors. The two schedules we consider here are: (a) “Default
Schedule" (blue bars), which is the schedule of inspections that the sanitarians originally followed as they conducted
inspections and (b) “Schenk Jr. Schedule" (orange bars), which is the schedule obtained using the Schenk Jr. et al. model
risk scores and reordering the inspections based on the scores such that inspections with a high risk score (i.e. high
predicted likelihood of being a critical violation) are conducted earlier. The bars indicating negative values signify that
the detection times are quicker than the schedule mean (the group is better off than average) and the positive values
show that the detection times are slower than the schedule mean (the group is worse off than average).

Considering the Default schedule, we observe all of the regions have detection times close to the schedule mean,
consistent with a random schedule being perfectly fair. On the other hand, four out of nine sides have quicker detection
times than the average under the Schenk Jr. schedule. For the remaining five that are worse off, two sides receive a far
greater delay (at least 10 days) in detecting critical violations. The trends for the inspection times are similar and suggest
that a large part of the gain in critical violation detection for the advantaged regions under the Schenk Jr. schedule
comes from inspections in those regions being moved earlier as a whole rather than specifically the inspections most
likely to find critical violations. The breakdown of the detection times by region underscores the disparate outcome
the Schenk Jr. schedule would have on food inspections in different regions of the city. If used, an individual’s place
of residence can determine if they have an expedited or delayed routine inspection of food establishments in their
neighborhood, which in turn impacts their likelihood of being subjected to a food-borne illness.

While our primary focus is on this unfairness along geographic lines, we have also explored approaches to assess the
fairness of the schedule along racial and economic lines. As our analysis finds only small effects for these groupings,
which are more complex to link to a restaurant than geography, we defer the analysis to Appendix A.6 and A.7.

3.2 Exploring the cause of unfairness

An examination of the coefficients of the Schenk Jr. et al. model (available in Appendix A.1) shows that the sanitarian
conducting the food inspection is a key feature. As the dataset clusters multiple sanitarians together to protect their
identity, we examine sanitarian behavior at the cluster level. We first inspect the critical violation rate for each of the
sanitarian clusters. The critical violation rate is computed as the ratio of the number of inspections that resulted in a
critical violation and the total number of inspections conducted by the sanitarians belonging to that cluster. The critical
violation rates for the sanitarians in each of the clusters vary widely, as shown in Table 1. The Purple sanitarian cluster
has the highest rate of citing the restaurants with a critical violation with 41%. On the other hand, the Brown sanitarian
cluster has the lowest critical violation rate of 2.5%. Through personal communication with the authors of [32], we
learned that the sanitarians are grouped into six clusters purely based on their critical violation rate. This variation in
critical violation rate across sanitarians has at least two possible causes: different strictness among sanitarians and
different characteristics of the restaurants inspected. In Appendix A.3, we analyze restaurants which were inspected
by two or more distinct sanitarian clusters and confirm that this difference is driven by the sanitarians rather than
properties of the population of restaurants a sanitarian cluster inspects.

To further explore the effects of sanitarian critical violation rate on the unfair outcome for Chicago residents, we plot
the location of the inspections conducted by different sanitarians on a map of Chicago using the latitudes and longitudes
Manuscript submitted to ACM
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Fig. 2. Map of Chicago with purple dots representing the food
inspections done by Purple cluster sanitarians, and brown dots rep-
resenting those done by Brown cluster sanitarians. Purple cluster
sanitarians and Brown cluster sanitarians have the highest and the
lowest critical violation rate respectively.

from the dataset. Figure 2 shows the inspections done
by the Purple cluster sanitarians and those done by the
Brown cluster sanitarians. We are particularly interested
in these two clusters because they represent the sanitari-
ans with the highest and the lowest critical violation rates.
We observe that the inspections conducted by Purple clus-
ter sanitarians are concentrated in the North and Central
parts of the city. In contrast, Brown cluster inspections
are scattered around in the Northwest and Southwest
parts of the city. Therefore, the residents living in the
North and Central parts of the city are more advantaged
by having a smaller time to detect a critical violation de-
tection than the residents living in the other parts of the
city. See Appendix A.2 for maps for all sanitarian clusters.

Finally, we plot the difference in detection and inspec-
tions times from the schedule means broken down by
sanitarian clusters (rather than by regions as was done
in Figure 1) under the default and Schenk Jr. schedules
in Figure 3. Despite varying violation rates, we observe
that under the Default schedule all clusters of sanitarians
both detect critical violations (solid blue bars) and con-
duct inspections (light blue bars) at around the same time
on average. This shows inspections for different clusters
were scheduled at roughly equal times, regardless of their
results. On the other hand, under the Schenk Jr. schedule

(light orange bars) the inspections are sorted in the order of the critical violation rates (Table 1). The inspections by the
Purple sanitarian cluster are scheduled first, and those by the Brown sanitarian cluster are scheduled last. The average
times to detect the critical violations follow a similar trend (dark orange bars). This provides further evidence that the
model effectively schedules inspections done by the sanitarians in the order of their violation rate.

To summarize, our analysis suggests that the variation in the violation rates across sanitarian clusters and their
significance as features in the Schenk Jr. et al. model is one of the major causes of geographic unfairness in the resulting
schedule. In the remainder of the paper, we investigate mitigations for both the direct unfairness across sanitarian
clusters and the resulting indirect unfairness across regions.

4 FAIRNESS THROUGHMODEL RETRAINING

In this section, we examine techniques aimed at achieving a fair allocation of food inspection times across sanitarian
clusters and city regions by retraining the model in ways designed to result in fairer predictions of critical violations.
We then proceed as in §3. We use the risk scores from the retrained models to reorder the inspections and measure how
fair each approach is by computing the difference from the schedule mean in days. Our evaluation results preserve the
originally assigned sanitarians clusters and the number of inspections done per day. For brevity, we show only the
results for the time to detect a critical violation (EOpp, eq. (2)). Results for DP in Appendix A.4 show similar trends.

Manuscript submitted to ACM
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Sanitarian
Cluster

Critical Violation
Rate

Purple 40.83%
Blue 25.53%
Orange 13.76%
Green 9.68%
Yellow 5.94%
Brown 2.5%

Table 1. Table showing the inspector clusters
and their critical violation rate for the inspec-
tions conducting during the model evaluation
period.

Purple Blue Orange Green Yellow Brown
Sanitarian Clusters
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Fig. 3. The light-colored bars illustrate the time to conduct an inspection (DP)
and the solid-colored bars illustrate the time to detect a critical violation (EOpp)
relative to the schedule mean. Lower values are better for the cluster. Error bars
indicate the standard error for EOpp. Those for DP are omitted for legibility.

4.1 Remove Sanitarians from the Model

For our first approach, we intervene at the pre-processing stage. We train a logistic regression model, the same class of
model used by Schenk Jr. et al., but do not give the model access to the sanitarian features. We use the scores from the
model to reorder the inspections and call the resulting inspection schedule the “No-Sanitarian" schedule.

Figure 4 shows the time to detect a critical violation for the No-sanitarian schedule in purple. Although the variation
under the No-sanitarian schedule reduces in magnitude compared to the Schenk Jr. schedule, the detection times still
differ across the sanitarian clusters (fig. 4a). Inspections done by Purple cluster sanitarians get a higher priority and
their mean times are faster than all other sanitarian clusters. Conversely, Brown cluster sanitarians take the most time
to detect critical violations. We also see varied detection times across regions (fig. 4b). In summary, we observe an
improvement over the Schenk Jr. schedule for sanitarian clusters but not a definitive improvement for regions.

Our findings support those from the prior literature [3, 24, 28, 37] that removing a protected feature, in this case the
sanitarian cluster, does not remove bias from the model. We observe that the No-sanitarian schedule follows some of
the trends from the Schenk Jr. schedule even though it has no access to the protected attributes. We believe that the
correlation of the remaining dataset features with the sanitarian clusters allows the model to continue to discriminate.

4.2 Fair Regression with Polyvalent Protected Attributes

Now, we implement the approach proposed by Zafar et al. that adds fairness constraints to the logistic regression
optimization [35]. Their fairness constraints support polyvalent (non-binary) protected features, like the sanitarian
clusters in our case. The model enforces a constraint which limits the allowed covariance between the distance to the
boundary of the classifier and the protected attributes on the logistic regression loss optimization. Intuitively, this
should cause it to avoid the exploitation of correlations we saw with the No-sanitarian schedule. The allowed covariance
is a parameter determining the trade-off between fairness and accuracy. We selected the covariance threshold (𝑐 = 0.001)
as the one that produced the fairest outcomes after testing values in ({0.0, 10−6, 0.001, 0.01, 0.1}). The resulting scores
from the trained model are used to rearrange the inspections and obtain the “Zafar Schedule".
Manuscript submitted to ACM
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Fig. 4. A disaggregated view of the time to detect a critical violation under four schedules obtained using different model retraining
techniques. The bars show the difference in detection times from the schedule mean across sanitarian clusters (fig. 4a, top) and
geographic groups (fig. 4b, bottom) with error bars showing the standard error. (Best viewed in color.)

Figure 4 shows the results for the Zafar schedule in pink. The detection times vary less in comparison to the
No-sanitarian schedule. In particular, the early detection times for Purple cluster sanitarians and later detection times
for the Orange cluster are substantially reduced. We see the greatest improvement for the Brown cluster as their
detection times are now essentially identical to the overall schedule mean. For geographic groups, the regions that were
disadvantaged in the Schenk Jr. and No-sanitarian schedules, namely Far Southwest, Southwest, West, Northwest, see
considerable improvements. Also, the detection times for the most advantaged regions (North and Far North) are now
slightly worse than the schedule mean. This is consistent with our intuition that the ability of the Zafar et al. model to
limit the covariance between the decision boundary and the protected attribute should allow it to eliminate the residual
effects of the sanitarian features from the dataset and reach a better outcome than the No-sanitarian schedule.

4.3 Fair Regression with Binary Protected Attributes

Next, we explore the logistic regressionmodel proposed by Rezaei et al.. It robustly optimizes log loss under an adversarial
distribution constrained to lie near the distribution from the data and uses constraints to enforce fairness objectives [30].

Manuscript submitted to ACM
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Their work focuses on three common fairness objectives: Demographic Parity (DP) [6], Equal Opportunity (EOpp) [18],
and Equality of Odds [18]. Since we examine EOpp in this section, we use their model for that objective. Since, the
Rezaei et al. model requires the protected attributes to be binary, we convert the sanitarian clusters from categorical to
binary values by splitting them along their violation rates. We assign the majority protected attribute (𝐴 = 1) to the
inspections conducted by Purple, Blue, and Orange cluster sanitarians which a have higher violation rate compared to
the rest (Table 1). Similarly, we assign the remaining inspections done by Green, Yellow and Brown cluster sanitarians
to the minority protected attribute (𝐴 = 0). The model allows a regularization parameter 𝐶 , and we select its value
(𝐶 = 0.5) that results in the fairest outcome from ({0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}).

We report the results obtained from the Rezaei et al. model under the fairness constraint of EOpp and term them
“Rezaei EOpp Schedule" in Figure 4 in olive. We observe that the detection times become less fair compared to the Zafar
schedule for the sanitarian clusters although the fairness for city regions is closer. We believe one of the reasons the
Rezaei et al. model does not perform as well as the Zafar model for food inspections is rooted in the loss of information
when converting the sanitarian cluster values from categorical to binary sensitive values. For example, nothing prevents
the model from delaying Orange cluster inspections to prioritize those of the Purple cluster as the two clusters have
been combined. This emphasizes the importance of developing fair ML models which accept polyvalent protected
attributes rather than limiting analysis to the binary case. Another is that the use of robust optimization means that not
only is the model’s ability to enforce fairness limited by the need to force it on other nearby models, but that for EOpp
in particular there are additional technical complications due to the conditioning on true positives in the definition.

4.4 Group Proportional Fair Regression

Finally, we adopt Krishnaswamy et al.’s Proportional Fairness classifier [26]. Rather than protect specified attributes,
they provide guarantees for arbitrary, unknown groups. This is achieved by training a randomized classifier which
guarantees that, for each possible group, the expected utility is in proportion to that of the group’s optimal classifier.
The randomized classifier consists of multiple models that are weighted during the training. To get a single risk score
to use when scheduling, we calculate the probability the inspection is predicted as critical (i.e. the sum of weights of
classifiers that predict an inspection as critical). We call the schedule obtained from this method the “Krishnaswamy
Schedule", shown in Figure 4 in cyan. The results for the Krishnaswamy schedule are similar to the Zafar schedule and
a substantial improvement over the Schenk Jr. Schedule. However, the variation in detection times (for both sanitarian
clusters and city sides) is still not close to the near-perfect fairness achieved by the Default schedule.

To conclude, the approaches we discuss mitigate the sanitarian effect to an extent. However, we believe none of them
offer a complete solution as even the fairest (Zafar and Krishnaswamy) still have substantial variation across regions.

5 FAIRNESS THROUGHMODEL USAGE

In this section, we examine two post-processing approaches to reduce model disparity. First, we explore suppressing the
sanitarian features during model evaluation. Second, we study the effect of using the model output to schedule the
inspections within the sanitarian clusters. As a reminder, we preserve the sanitarian cluster assigned to the inspections
in the test set when rescheduling them. We present results for EOpp; similar results for DP are in Appendix A.4

5.1 Schenk Jr. Schedule with Sanitarians assigned later

A natural way to use the trained model in practice is by predicting the likelihood of an inspection being a critical
violation in the absence of a specific sanitarian and doing those inspections first. We do this by keeping the Schenk Jr.
Manuscript submitted to ACM
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Fig. 5. The times to detect violation under the schedules obtained by post-processing techniques. The bars show the difference
from the schedule mean grouped by sanitarian clusters (fig. 5a, top) and sides of Chicago (fig. 5b, bottom) with error bars giving the
standard error. (Best viewed in color.)

et al. model as-is and setting the sanitarian features to be zero during the evaluation periods. We obtain a new schedule
by sorting the inspections by the predicted scores and term it the “Sanitarian-blind schedule". This approach is distinct
from the No-sanitarian schedule suggested in §4.1. That schedule results from eliminating all information about the
sanitarian clusters during training and rescheduling phases. The Sanitarian-blind schedule does not modify the Schenk Jr.
et al. model but receives no signal related to the sanitarian cluster assignment during rescheduling.

In Figure 5, the detection times for Sanitarian-blind schedule are represented in green. Broadly, the Sanitarian-blind
schedule distributes the detection times among sanitarian clusters similarly to the Krishnaswamy schedule. The Purple
sanitarian cluster remains the most advantaged group and the Brown the most disadvantaged. The behavior can be
attributed to the fact that while we have blinded the sanitarian features, some of the remaining features correlate with
them, as discussed in §4.1. The detection times across regions in Figure 5b reflect an analogous behavior.
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5.2 Schenk Jr. Schedule with In-cluster reordering

Another way we could use the model is to first assign each sanitarian a list of restaurant inspections to perform, then
use the model to prioritize within each sanitarian’s list. The scenario is essentially a “localized" version of the Schenk Jr.
et al. objective [32]. We retain the trained model and its predicted scores using all the features for the evaluation
periods. Under all the previous approaches, the inspections can be rearranged based on the predicted score without any
constraints. For this approach, we consider all the inspections done by each sanitarian cluster separately, sort only those
inspections, replace them in the Default schedule, and repeat for each sanitarian cluster. In other words, the resulting
schedule keeps the number of inspections each sanitarian cluster conducts each day the same as in the Default schedule.
See Appendix A.5 for an illustrated example. We refer to this schedule as the “In-cluster Sort Schedule". Unlike the
Sanitarian-blind schedule as described in §5.1, the In-cluster Sort schedule does not lose any information during the
rescheduling stage and leverages the information gathered from the extra features available.

Figure 5 illustrates the performance of the In-Cluster Sort schedule in red color. The results show the In-Cluster Sort
produces a more equal outcome and the notable differences in the detection times for the Purple and Brown cluster
sanitarians from the Krishnaswamy and Sanitarian-blind schedules have become negligible. Correspondingly, fig. 4b
depicts that the gap in detection times across North and Northwest sides has been bridged as well. These results are
achieved despite the limitations of our data only allowing us to implement this intervention at the level of sanitarian
clusters rather than at the intended level of individual sanitarians.

6 EFFICIENCY AND FEASIBILITY

In this section we move beyond fairness alone to consider other important aspects of selecting an approach. First
we examine the trade-off between fairness and efficiency of our approaches. Then we consider how the schedules
obtained via different approaches could be used given operational constraints. This raises important questions about
the feasibility of the schedules, the choice of right performance metric to evaluate such schedules, and the possibility
that some of the efficiency advantages of some methods may be illusory.

6.1 Fairness and Efficiency Trade-off

We begin by defining our measures of efficiency and fairness. Starting from our definition of Equal Opportunity, we
take as our notion of efficiency as the mean time to detect a critical violation:

𝜇 = E[𝑇 |𝑌 = 1] . (5)

For fairness, we compute the same metric for each protected group (i.e. sanitarian cluster or region):

𝜇𝑖 = E[𝑇 |𝐴 = 𝑎𝑖 , 𝑌 = 1] . (6)

We then sum the absolute distance of each of the 𝑛 groups from the overall mean and use this as our fairness metric:

𝑑 =

𝑛−1∑︁
𝑖=0

|𝜇𝑖 − 𝜇 | . (7)

This approach is similar in spirit to quantifying the extent to which equal opportunity is violated in a classification
setting by comparing the difference in the relevant probabilities between groups.6

6We do not report results for DP because they are not meaningful. Since all schedules preserve the number of inspections conducted each day they by
definition have the same efficiency in terms of mean time to conduct the inspections.
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Fig. 6. A scatter plot showing the trade-off between the time to detect a violation (EOpp, y-axis) and the fairness which is computed
as the average of absolute distance from the mean across all group (x-axis), as defined in Equation (7). A lower mean detection time
and a lower distance from mean are desirable. Error bars give the standard error from 16 cross-validated runs.

In Figure 6, we plot the efficiency on the y-axis and fairness on the x-axis. Lower values are better for both. The
Default schedule is the most fair but the least efficient. In contrast, the Schenk Jr. schedule is the most efficient but
the least fair to the sanitarian clusters. The Zafar and Rezaei algorithms have parameters which have the effect of
trading off between efficiency and fairness, so for these we plot a range of parameter values (𝑐 = {0.001, 0.01, 0.1} and
𝐶 = {0.5, 0.2, 0.1, 0.05, 0.01, 0.005} respectively) and illustrate the trade-off curve they enable with dashed lines. We use
a dashed blue line to illustrate the Pareto frontier, the set of schedules that are not dominated in terms of both efficiency
and fairness by (a convex combination of) other schedules. The two model usage approaches lie on or near the Pareto
frontier for both sanitarian clusters and regions, indicating they represent trade-offs between efficiency and fairness
that may be interesting in practice. Neither is clearly better than the other.

Some of the model retraining approaches are near the Pareto frontier for sanitarian clusters, but all are far from it for
regions, making their desirability questionable even taking trade-offs between fairness and efficiency into account. The
Zafar schedule varies its efficiency for a relatively small change in fairness. As fairness decreases, the Zafar schedule
overlaps with the No-sanitarian cluster. This is expected as with higher allowed covariance between decision function
and protected attributes the model effectively gets more ability to use the residual sanitarian features. The Krishnaswamy
and Rezaei schedules appear largely dominated, with the exception of Rezaei toward the efficient but unfair part of the
Pareto frontier for sanitarian clusters.
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6.2 Operational Constraints

From §2, we know that the risk scores for Schenk Jr. et al. model are weighted by the sanitarian cluster. Since the
inspections are sorted based on the risk score, the Schenk Jr. schedule assumes that all the inspections are fungible.

Consider a scenario when all the inspections done by Purple cluster sanitarians are scheduled first. Would it mean
that the other cluster sanitarians conduct no inspections during that time and wait for the Purple cluster sanitarians to
finish? Do the Purple cluster sanitarians remain idle after conducting their inspections early on? Alternatively, if some
of the inspections were reassigned to a different sanitarian cluster, do we assume that the result would change or not?
These questions point to some of the operational constraints encountered in practice and are not accounted for my
the methodology introduced by Schenk Jr. et al.. A real approach to turning models into schedules needs to be able
to account for factors such as limited capacity for a sanitarian to conduct inspections in a day both in terms of the
time needed to conduct the inspections themselves and the time needed to travel from inspection to inspection (which
depends on where they are located). Efficiency gains which do not respect these constraints may be illusory.

Such considerations are another advantage of the post-processing techniques in §5. The Sanitarian-blind schedule
works by placing the inspections in an order without needing an assigned sanitarian, allowing later assignment
of sanitarians in that respect operational constraints. Likewise, the In-cluster Sort schedule ensures the number of
inspections conducted by each cluster each day is reasonable, although it does not account for travel times.7

7 DISCUSSION

We have revisited the application of predictive models by the Chicago Department of Public Health to schedule
restaurant inspections and performed the first analysis from the perspective of fairness to the population served by
the restaurants. We found that the model treats inspections unequally based on the cluster of the sanitarian who
conducted the inspection and that there are, as a result, geographic disparities in the benefits of the model. We examined
approaches to using the original model in a fairer way and ways to train the model to achieve fairness and found more
success with the former class of approaches.

While our analysis and conclusions are limited to a single data set from the city of Chicago and the particular algorith-
mic approaches tested, we believe this setting is representative of an important class of problems. Our communications
with experts in food safety suggest that the resource allocation problems and wide differences in violation rates faced by
Chicago are common in many jurisdictions. Beyond food safety, cities conduct a number of other types of inspections
including of structural inspections of buildings, fire safety, business licensing, and enforcement of environmental and
accessibility regulations. Thus, we conclude by discussing three broad challenges our results point to for future work.

In contrast to much of the literature that focuses on the fair treatment of individuals, things being inspected are
typically businesses or other entities in which many individuals have a stake. In this work we have taken the simple
approach of identifying restaurants with the people who live nearby, but this is certainly a rough approximation at best.
There is a need for better methods to understand who is affected by inspection decisions and how they are affected. A
related problem is understanding and quantifying the effects of inspection scheduling across groups based on race or
economic status. The approach we explored (see appendix A.6 and A.7) found limited fairness effects for these groupings
but it is unclear whether this is because the algorithms were in fact fair or the approach does a poor job of quantifying
the effects so that fairness can be measured. Beyond simply measuring fairness, developing fair classifications algorithms

7Ideally we would rearrange inspections at the level of individual sanitarians, but given the limits of the available data we treat all inspections performed
by a given cluster as fungible for this purpose.
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that can handle the sorts of continuous-valued protected attributes that arise when the data captures the demographic
breakdown of a neighborhood or other group of stakeholders is a largely unexplored challenge.

While the goal of the inspections is to protect public health, protection is challenging to measure directly. Thus we
have followed Chicago’s approach of using detecting critical violations of the food code as early as possible as a proxy.
The use of such proxies is common, and has caused notable issues in other domains (for example the use of arrests as a
proxy for crime [15]). The risk of feedback loops has been pointed out in both this and other domains [7, 23]. However,
one aspect we wish to stress is that sanitarians have discretion in how they resolve issues they observe, ranging from
punishment in the form of critical violations to education and helping restaurant owners correct issues in the course
of the inspection. So a low violation rate is not necessarily indicative of a sanitarian simply missing issues. Based on
our communications with food safety experts, the disparities in violation rates we observe are not unique to Chicago.
Prior work has also found that factors such as the outcome of a previous inspection and the position of an inspection
in an inspector’s daily schedule may significantly impact the detection of violations in an inspection [19]. This raises
difficult questions about what it means to be fair in such a setting and how to achieve it. Our approach of reordering
within each sanitarian cluster ducks this issue to some extent, assuming what a critical violation “means” to a given
sanitarian is consistent across time (although even this may not eliminate all issues; see Finding 2 of [23]). However,
how can this provide fairness guarantees to individuals? Are all critical violations really equally bad? Given that range
of violation rates, it seems likely that some restaurants with no critical violation inspected by Brown cluster sanitarians
actually deserve more scrutiny than many restaurants with a critical violation inspected by Purple cluster sanitarians,
meaning some part of the increased performance of the original model may be illusory.8 What is a better proxy to
use for sanitarians who find critical violations only rarely? Should we be not just reordering inspections but actively
shaping which sanitarian performs them in the interest of fairness?

Finally, while the models we use are trained to perform classification, we actually use them for ranking and then those
rankings are used for scheduling. There is room to improve over our approach at all stages of this pipeline. Would it be
good to instead learn a counterfactual “sanitarian-independent” violation probability, as is done when predicting clicks
in search advertising [17] and has been explored in the literature on causal models in fairness [24]? Rather than trying
to achieve fair classification or doing the ranking in ways that address unfairness in the classification, are there better
approaches that directly leverage ideas from the literature on fair rankings [33, 36] or the literature on fair classification
in the context of larger systems [11]? We have treated scheduling as a single, static problem, but inspections occur on
an ongoing basis. How should we understand and achieve fairness in the full, dynamic setting? This last question in
particular points to potentially fruitful ways to study this domain in light of the literatures on fairness in reinforcement
learning [21, 34] and overall fairness in comparison to local or immediate fairness [10, 12, 13, 27].
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A APPENDIX

A.1 City of Chicago Model Parameters and Weights

For completeness we provide a list of the features, descriptions of them, and the coefficient values in the model trained
by Schenk Jr. et al. in Table 2. The information in the table is reproduced from [32].

Variable Name (Literal) Variable Description Coefficients
Inspectorblue Indicator variable for Sanitarian Cluster 1 0.950
Inspectorbrown Indicator variable for Sanitarian Cluster 2 -1.306
Inspectorgreen Indicator variable for Sanitarian Cluster 3 -0.244
Inspectororange Indicator variable for Sanitarian Cluster 4 0.202
Inspectorpurple Indicator variable for Sanitarian Cluster 5 1.555
Inspectoryellow Indicator variable for Sanitarian Cluster 6 -0.697
pastCritical Indicates any previous critical violations (last visit) 0.302
pastSerious Indicates any previous serious violations (last visit) 0.427
timeSinceLast Elapsed time since previous inspection 0.097
ageAtInspection Age of business license at the time of inspection -0.164
consumption_on_premises_
incidental_activity

Presence of a license for consumption / incidental activity 0.411

tobacco_retail_over_counter Presence of an additional license for tobacco sales 0.171
temperatureMax The daily high temperature on the day of inspection 0.005
heat_burglary Local intensity of recent burglaries 0.002
heat_sanitation Local intensity of recent sanitation complaints 0.002
heat_garbage Local intensity of recent garbage cart requests -0.004

Table 2. The features and their corresponding coefficient weights as used by the City of Chicago to forecast restaurant inspections
with critical violations.

A.2 Geographical Distribution of Sanitarian Clusters

Figures 7 and 8 show each inspection as a dot and the colors represent the sanitarian cluster that completed the
inspection. Since the sanitarian clusters were created based on violation rate, these figures also give an idea of where
inspections with different rates of violations are concentrated. Sanitarians in the purple sanitarian cluster are very
concentrated in the north east of Chicago which is consistent with the lower mean critical violation detection times in
the Far North Side and North Side shown in 1. Others are more dispersed but still show geographic tendencies. Table 3
gives the number of inspections conducted by each cluster in each region, which quantifies this overall effect.
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Fig. 7. Map of Chicago with dots representing inspections by different sanitarian clusters.
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Fig. 8. The figure illustrates 6 maps showing the geographical distributions of the sanitarian clusters across the city.

Cluster CC Far North Far SE Far SW North Northwest South Southwest West Total
Blue 344 799 161 176 1096 65 340 126 353 3460
Brown 9 265 22 343 51 371 51 485 418 2015
Green 1551 1223 50 112 658 379 125 133 727 4958
Orange 476 429 480 340 242 236 345 1050 494 4092
Purple 412 493 0 1 344 0 20 0 7 1277
Yellow 697 225 3 1 752 205 139 5 990 3017
Total 3489 3434 716 973 3143 1256 1020 1799 2989 18819

Table 3. Break down of geographical location where clusters have performed inspections on the complete dataset used to train and
test the model.
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A.3 Same Establishment Different Sanitarian

As discussed in §3.2, it is a priori unclear whether the differences in the critical violation rates across sanitarian clusters
are due to the individual propensities of sanitarians or characteristics of the restaurants those sanitarians inspect. As
evidence that it is primarily due to the sanitarians, we exploit the fact that each establishment is not always inspected by
the same sanitarian. In fact, a majority of the establishments have been inspected by sanitarians in different clusters over
the 4 year observation period. This provided us with the opportunity look at how different sanitarian clusters assessed
the same establishment. We went through each pair of sanitarian clusters and looked for four different instances: both
clusters finding a violation, only one of the clusters finding a violation, and neither cluster finding a violation. This
provides a number of different comparisons that could be made, and all appear consistent with the sanitarian performing
the inspection as the primary cause of the difference. In Figure 9 we visualize the outcomes of pairs of inspections of
the same restaurant. Specifically, we plot the difference between the fraction of instances where the first inspection
did not find a violation but the second one did and the fraction where the first inspection did but the second did not,
aggregated by sanitarian cluster. The top right square’s strong green represents brown sanitarians not finding violations
when purple sanitarians do in the next inspection substantially more often than brown sanitarians finding violations
and purple sanitarians not finding a violation after. The bottom left corner shows the opposite, purple sanitarians not
finding violations when brown sanitarians do in the next inspection is much less common than purple sanitarians
finding violations and brown sanitarians not finding a violation after. The axes of the plot are ordered by violation rate
of sanitarian clusters and the clear color gradient provides strong evidence that the difference is violation rate is due to
sanitarian tendencies rather then the nature of restaurants inspected. The entries on the diagonal or not exactly zero
because repeat inspections of a restaurant by the same cluster do not always have the same result. Aggregating across
all such paired inspections where at least two clusters conducted an inspection of the restaurant, Table 4 shows that
the overall violation rates on such paired inspections are quite close to the overall rates for each cluster (as shown in
Table 1). This provides additional confidence that the restaurants which were inspected by different clusters are not
somehow substantially different from those inspected by a single cluster.

Sanitarian Cluster Critical Violation Rate
Purple 40.21%
Blue 25.21%
Orange 15.14%
Green 9.15%
Yellow 6.68%
Brown 2.51%

Table 4. Table showing the inspector clusters and their critical violation rate for inspections of restaurants also inspected by another
sanitarian cluster.
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Fig. 9. The figure depicts all of the establishments that had two or more inspections in out data set. Each square represents difference
between the fraction of inspections in which the row sanitarian did not find a violation and the column sanitarian did from the
fraction of inspections in which the row sanitarian found a violation and the column sanitarian did not.
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A.4 Mean Inspection Times For Policies from §4 and §5

In the main text we presented the mean time to detect critical violations in Figure 4 and Figure 5. In Figure 10 and
Figure 11, we present the mean time to conduct the inspections overall. For the Rezaei schedule we now use the DP
version of their algorithm, but otherwise the schedules are unchanged. A visual comparison of the DP and EOpp figures
suggests they are highly correlated and that the improvements or worsening in detection time are driven in large part
by simply conducting inspections for that sanitarian cluster as a whole earlier or later respectively.
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Fig. 10. A disaggregated view of the time to detect a critical violation under four schedules obtained using different model retraining
techniques, focusing on demographic parity. The bars show the difference in detection times from the schedule mean across sanitarian
clusters (fig. 4a, top) and geographic groups (fig. 4b, bottom) with error bars showing the standard error. (Best viewed in color.)
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Fig. 11. The times to detect violation under the schedules obtained by post-processing techniques, focusing on demographic parity.
The bars show the difference from the schedule mean grouped by sanitarian clusters (top) and sides of Chicago (bottom) with error
bars giving the standard error. (Best viewed in color.)
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A.5 Explaining the Reordering Completed by the Schenk Jr. model

Figure 12 provides a visual explanation of both the rescheduling process introduced by Schenk Jr. et al. and the in-cluster
reordering process used as a post processing technique in §5. The first column shows a sample initial schedule of six
inspections with the colors indicating the cluster of sanitarian assigned to the inspection and the number representing
the risk score of the inspection. In the second column, the inspections have been rescheduled in decreasing order of risk
score by a model. Note how the identify of the sanitarian conducting the inspection is preserved even as the inspections
are reordered. The next three column show a reordering of just the inspections conducted by each sanitarian cluster in
isolation. The In-Cluster schedule in the final column is the combination of these separate reorderings.

Fig. 12. The sanitarian based in-cluster reordering is a schedule where each sanitarian cluster still has inspections at the same time,
the establishments are just rearranged.

A.6 Fairness Along Demographic Lines

In addition to exploring model fairness through the lens of sanitarian cluster and geography, we also examine the
fairness of our approaches across demographic groups, specifically race and ethnicity. To do so, we leverage the
restaurant location in our dataset and the US Census Bureau data. The US Census publishes the American Community
Survey (ACS) every year containing the population estimates using the samples collected from previous years [5]. For
our analysis, we use 2014-2018 ACS 5-year estimates for each block group’s race and ethnicity composition. The latitude
and longitude from the dataset are used to find which block group a restaurant belongs to and gather the race and
ethnicity composition for that block group. We get the normalized fractional composition for each block group, and
we weight the difference in detection time from schedule mean by the fractional demographic composition for each
violation compute the weighted average for each demographic group.

For brevity we focus on four main demographic groups: White, Black, Asian, and Hispanic.9 We also assume that the
resident living close to the restaurant all have equal access to its services and experience equal welfare from detecting a
critical violation.

Figure 13 shows the results for the approaches based on model retraining (explained in §4) and Figure 14 for the model
usage-based approaches (explained iin §4). The general trend supports our findings from our analysis for sanitarian
cluster and city regions. The Schenk Jr. schedule prioritizes the inspections in the regions that are heavily populated by

9Other demographic groups such as Native American or population of multiple races are excluded from our analysis because their numbers are low
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Fig. 13. The difference in detection (fig. 13a, left) and inspection (fig. 13b, right) times for model-retraining approaches, explained in
§4.
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Fig. 14. The difference in detection (fig. 14a, left) and inspection (fig. 14b, right) times for model-retraining approaches, explained in
§5.

the White and Black population and delays regions that are primarily Hispanic. The improvements of model retraining
and model usage-based approaches over the Schenk Jr. schedule are less clear and overall the difference in detection
and inspection times are substantially smaller than we saw with sanitarian or geographic groups, making it unclear
how significant any unfairness is.

Overall, we view this analysis as essentially a null result. This is somewhat surprising given the high levels of racial
segregation in Chicago; we had expected that geographic unfairness would translate to racial unfairness as well. One
possibility is that the regions we use are too large or poorly chosen to capture the effects of segregation. Another is that
the approach we took to connect food inspections with demographics is inadequate. We leave a fuller exploration of
the challenge of quantifying such linkages to future work.

A.7 Fairness Along Economic Lines

Another natural dimension to consider fairness across is economic groupings. We examined the fairness of the Default
and Schenk schedules across economic groups using a similar approach to the demographic analysis in A.6, leveraging
the census data to understand how the orderings effected differ income groups. In 15, the Default schedule is shown to
be less beneficial to those with incomes of less than 15K and slightly beneficial or not beneficial to the other income
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groups. On the other hand the Schenk Jr. schedule is also least beneficial to those in the lowest income group and
gradually more beneficial to each following group. Specifically, it is the most beneficial to those with an income over
90K.

Overall, as with our demographic analysis in Appendix A.6 we view this analysis as essentially a null result. Though
it is interesting to see a negative correlation between the Schenk Jr. model’s difference from schedule mean and the
income groups, the magnitude of the standard error leads to inadequate conclusions. An interesting finding to explore
in the future would be the small adverse effect of both the Default and the Schenk Jr. schedule on lower income groups.
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Fig. 15. The times to detect violation under the schedules obtained by the original ordering and the Schenk Jr. model. The bars show
the difference of the detection times from the schedule mean by economic groups based on tax bracket with error bars giving the
standard error. (Best viewed in color.)

Since, the population of customers may differ with the price range of the restaurant, we used the Yelp API to gather
some additional data about the restaurants and we completed the same analysis as in §3. Our analysis is restricted as
only about two thirds of inspections were conducted of establishments with Yelp profiles.

The main attribute we looked at was the Yelp Price Level of the establishment being inspected. Figure 16 shows that
the Schenk Jr. schedule seems to favor restaurants with more expensive offerings ($$$$). When interpreting Figure 16,
it is important to keep in mind that not only are the effect sizes small, but the number of establishments in each price
level group are not consistent, as shown in Table 5, leading to particularly large standard errors in the more expensive
categories.

As with our demographic analysis, exploring the connection between establishment based characteristics like price
level, cuisine, and customer ratings with schedule order are all connections we leave for future work.
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Fig. 16. The times to detect violation under the schedules obtained by the original ordering and the Schenk Jr. model. The bars show
the difference of the detection times from the schedule mean by the price level of the inspected restaurants with error bars giving the
standard error. (Best viewed in color.)

Price Level Dollars Number of Inspections
No price data NA 5973
$ < 10 6896
$$ 10-30 5282
$$$ 30-60 538
$$$$ > 60 92

Table 5. Table showing the break down of inspections by the price level of the establishment.
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