
Human-Avatar Interaction in Metaverse: Framework for Full-body Interaction

Lam, Kit Yung; Yang, Liang; Alhilal, Ahmad; Lee, Lik Hang; Tyson, Gareth; Hui, Pan

MMAsia '22: Proceedings of the 4th ACM International Conference on Multimedia in 
Asia, / Association for Computing Machinery. New York, NY : Association for 
Computing Machinery, 2022, p. 1-7, article number 10

Accepted Version

10.1145/3551626.3564936

Association for Computing Machinery

© ACM 2022. This is the author's version of the work. It is posted here for your 
personal use. Not for redistribution. The definitive Version of Record was published 
in MMAsia '22: Proceedings of the 4th ACM International Conference on Multimedia 
in Asia, http://dx.doi.org/10.1145/3551626.3564936

MMAsia '22: ACM Multimedia Asia, Tokyo, Japan, 13 - 16 December 2022



Human-Avatar Interaction in Metaverse: Framework for
Full-body Interaction

Kit Yung Lam
kylambd@connect.ust.hk

The Hong Kong University of Science

and Technology

Hong Kong, HKSAR

Liang Yang
lyangbl@connect.ust.hk

The Hong Kong University of Science

and Technology

Hong Kong, HKSAR

Ahmad Alhilal
aalhilal@ust.hk

The Hong Kong University of Science

and Technology

Hong Kong, HKSAR

Lik-Hang Lee
likhang.lee@kaist.ac.kr

KAIST

Daejeon, Republic of Korea

Gareth Tyson
gtyson@ust.hk

The Hong Kong University of Science

and Technology (Guangzhou)

Guangzhou, China

Pan Hui∗

panhui@ust.hk

The Hong Kong University of Science

and Technology (Guangzhou)

Guangzhou, China

ABSTRACT

The metaverse is a network of shared virtual environments where

people can interact synchronously through their avatars. To enable

this, it is necessary to accurately capture and recreate (physical) hu-

man motion. This is used to render avatars correctly, reflecting the

motion of their corresponding users. In large-scale environments

this must be done in real-time. This paper proposes a human-avatar

framework with full-body motion capture. Its goal is to deliver

high-accuracy capture with low computational and network over-

heads. It relies on a lightweight Octree data structure to record

and transmit motion to other users. We conduct a user study with

22 participants and perform a preliminary evaluation of its scala-

bility. Our user study shows that Octree with Inverse Kinematic

achieves the best trade-off, achieving low delay and high accuracy.

Our proposed solution delivers the lowest delay, with an average

of 67ms in an environment of 8 concurrent users. It attains a 55.7%

improvement over the prior techniques.

CCS CONCEPTS

• Human-centered computing → Mixed / augmented reality;

Web-based interaction.

KEYWORDS

Metaverse, Human-Avatar Interaction, Full-bodyMotion Streaming,

Octree Data Structure, Octree-Based Algorithm.

1 INTRODUCTION

The metaverse refers to a 3D cyberspace consisting of shared virtual

environments where people can interact synchronously through

their avatars [20]. For example, metaverse users can use their

avatars to engage in community meetings, concerts, parties, art

showings, sports events, sightseeing, and travel [11]. To enable

this, users must be able to exchange real-time motion information

with imperceptible latency. Through this, avatars should always

correspond to the motion of the user they represent.

In some virtual world systems (such as Decentraland and Roblox),

touchscreens, mouse, and keyboards are used to control the pose

and motion of the user’s avatar. This, however, restricts the avatar’s

actions to basic activities, e.g., standing, walking, and jumping.

Recent emerging VR platforms (i.e., Mozilla Hub1, Spatial2 and

Meta Workrooms3 ) offer ways to automatically capture human
motion and recreate it in the virtual world. However, this primarily

covers head and hand movements. For example, although Mozilla

Hub and Meta Horizon allow users to recreate upper body parts

via a WebXR-enabled headset and hand controllers, other body

parts (i.e., elbows and legs) are missing. Further, although Spatial

displays the entire body, the body interactions are still limited, e.g.,

the waist and legs are not supported. It is essential to consider the

natural input techniques [6] of user-avatar interaction, and how

user movements can naturally convert user intention into actions

in virtual 3D environments [24]. Thus, we argue a truly immersive

experience requires full body tracking and avatar reconstruction

that goes beyond this prior work.

With the above in-mind, we propose a framework for real-time

avatar motion capture. We assume a distributed environment, in

which multiple users are interacting within the metaverse (con-

nected via a wide area network). Due to this, we focus on designing

techniques to reduce the network footprint, such that avatar motion

updates can be distributed to all participating users with low delay.

1https://hubs.mozilla.com
2https://spatial.io
3https://www.meta.com/work/workrooms/



To achieve this, we rely on the Octree Data Structure to model user

motion. This lightweight tree data structure, in which each inter-

nal node has exactly eight children, allows us to capture an array

of motions with limited overhead. We then employ an adaptive

transmission strategy that dynamically selects the fidelity of avatar

motion information to share with other clients. We evaluate our

solution via a user study consisting of 22 participants. We show that

our Octree solution with Inverse Kinematic achieves the best trade-

off. Our evaluation demonstrates both technical feasibility and user

acceptability. We confirm that, compared to the baselines, we can

capture human motion with higher accuracy, while maintaining

low human-avatar motion delay. Our proposed solution delivers

the lowest delay, with an average of 67ms in an environment of

8 concurrent users. It attains a 55.7% improvement over the prior

techniques. Furthermore, the proposed avatars’ representations

and motions achieve positive user perception in terms of delay,

accuracy, and synchronization.

This paper contributes a human-avatar interaction technique

that supports seamless interaction between multiple users in the

metaverse. The paper is organized as follows. Section 2 briefly

summarizes the existing working literature related to our work.

Section 3 introduces our Human-Avatar Interaction Framework.

In Section 4, we evaluate the proposed framework in different

scenarios. Section 5 is our conclusion notes.

2 BACKGROUND

An immersive experience of physical activities involves not only a

scene representation and the capturing of gestures, but also accurate

visual feedback of the user’s body stance and motions. We start by

providing an overview of recent work.

2.1 Human-Avatar Interaction

Avatars serve as the user’s representation in the metaverse [10, 25].

There is a substantial body of research in this field. Users’ percep-

tions, including feelings of realism [23], presence [21], trust [8],

body ownership [14], and group happiness [31], may be influenced

by the appearance of their avatars. These perceptions are influenced

by a wide range of variables, including the avatar’s face [33], its

micro-expressions [30], the degree to which the avatar’s body is

realized [21], and the avatar’s representation [7] or position [28]. As

a result, avatars have a large impact on the virtual experience [25].

There are a few noteworthy studies that pertain to full-body

avatar interaction [9] and point out a realistic full-body avatar in-

creases the sense of embodiment [23] and a much higher level of

immersion [16, 19]. Tracking user body gestures enhances meta-

verse presence [17]. With the evolution of the metaverse, we see a

significant number of events requiring real-time direct full-body

interactions. These events present a number of unexplored research

opportunities, including how to quickly and precisely detect actions,

as well as how to compress and transmit such data.

2.2 Full-body Motion Detection

Human motion detection, such as human body modeling and track-

ing, is a widely researched topic [4, 22, 32]. Motion sensors are the

primary means of acquiring the raw data. These sensors include

3D cameras, IMUs, CW radars, IR radars, and ultrasonic arrays. In

Figure 1: The Interaction framework, capturing the physical

motions using MoCap system (left), and passing the joints’

positional data to the rendering engine (right).

studies [13, 36, 39] similar to our study, the tracking and analy-

sis of the human body’s skeleton is done using wearable inertial-

measurement-unit (IMU) sensors. Note, we choose IMUs because

they offer high granularity of user movement data, supported by

3-axis acceleration, 3-axis angular velocity, as well as 3-axis mag-

netometer signals [35]. We believe this makes IMU sensors well

suited for our needs.

2.3 Octree-based Algorithm Adaption

An octree is a tree data structure in which each internal node has

exactly eight children. When dealing with multi-user and real-time

interactions in the metaverse, it is necessary to transmit data in

real-time between end users. As such, geometry compression (i.e.,

the process of coding 3D geometric data in a way that requires

less space) is more crucial than ever before. The compression of

temporal sequences of geometric data (which is what animated

geometry compression entails [37]) has received less attention than

static geometry reduction. The Octree-based algorithm is one way

of performing animated geometry compression. It is suitable for

real time applications, offering high compression ratios with rea-

sonable quality. It works by generating a small set of motion vectors

for each frame in the sequence by analyzing the motion between

consecutive frames. Previous Octree-based studies covers spatial

decomposition [18], 3D Animation Compression [38], time series

3D geo-spatial data organization [27], time-varying surfaces com-

pression [12], 3D immersive video codec [29], and non-rigid moving

objects [3]. However, these works focus on geometry compression

of 3D animation using the Octree data structure. There is an ab-

sence of work considering its application to real-time body motion

and human-avatar interaction. This is where we place the focus of

our work.

3 HUMAN-AVATAR INTERACTION
FRAMEWORK

This section describes the design of our human-avatar interaction

framework. In particular, we translate the humanmotion into avatar

motion in the metaverse, and reduce the data size of full-body

motion streaming using Octree for better scalability.



3.1 Framework Implementation

We first design the 3D model of the users’ avatars with full-body

skeleton rigged to facilitate their motion in the metaverse. We set

up Axis Studio,4 a motion capture (MoCap) software, on the user’s
local computer. This software tracks the user’s physical motion of

via its wireless inertial sensors, the 3rd generation of Perception

Neuron.5

After retrieving the skeleton tracking data from the MoCap

software, our Unity3D application on the local computer trans-

lates them into avatar motions. In particular, the joint points are

mapped into the motion of the avatar’s 3D model. Afterwards, the

avatar joint positions are converted into the Octree data struc-

ture using the Octomap i̧tehornung13auro 3D mapping framework

(subsection 3.3). This data is then broadcast to other users’ client

applications. The remote clients update the avatar’s body pose and

motion according to Octree Node ID and demodulation of avatar’s

transform.

In particular, our framework first classifies the body gestures

into two types: Non-iconic Gesture and Iconic Gesture [26], in or-

der to help the metaverse application determine which scheme of

body-joint data transmission should be employed (subsection 3.2).

Here, an iconic Gesture means body gestures that convey any se-

mantic meaning. Non-iconic gestures are the remaining motions.

Our framework takes the mask of an avatar pose as the input image

for the full-body gesture recognition program [34] to compute the

result. The results enable two main features of our framework as

follows:

(1) Interaction procedure: The full body gesture recognition

results are the trigger points to start, move, and end cer-

tain social interactions between two or more users in the

metaverse.

(2) Optimization of data granularity of multiple avatars in the

network transmission: Some social interaction requires pre-

cise body gesture synchronization in the network. The frame-

work can adjust the data streaming scheme based on the

gesture recognition results and the distance between two

users who are interacting with each other.

We further divide iconic gestures into single-user and multi-user

categories. Single-user iconic gestures refer to gestures such as

smiling, nodding, etc. Multi-user iconic gestures refer to body ges-

tures that involve two or more users, such as high fives, hugging,

shaking hands, etc., which require two or more users to complete

a specific social interaction procedure. We apply our framework

to the three types of gestures as in Figure 1 (Non-iconic gesture,

single user iconic gesture, multi-user iconic gesture); but we take

the multi-user iconic gestures as the kernel of this paper, as the

focused gesture type serves to support social interactions between

human users in diverse virtual spaces. It is important to note that

multi-user iconic gestures in real-time are crucial to metaverse

users and their seamless interaction. Metaverse users expect re-

sponsiveness from other users and this is highly relevant to user

experiences. For instance, if any of the users in a social engagement

performs iconic gestures, other users should have the ability to

acknowledge such gestures so they can respond quickly. Delayed

4https://neuronmocap.com/pages/axis-studio
5https://neuronmocap.com/pages/perception-neuron-3

responses, due to improper gestural kernel being selected, would

hinder the interaction between avatars and hence deteriorate the

user experience.

3.2 Human-Avatar Interaction Data

Our framework can be deployed to any metaverse development

platform using the Humanoid Avatars system for the avatars 3D

model, such as Unity6 and Unreal Engine.7 The common devel-

opment platforms own Humanoid Avatars module containing no

fewer than 15 parts for a connected skeleton. Such modules pave

a way that loosely conforms to an actual human skeleton. Our

framework leverages the aforementioned modules and constantly

captures the user’s motion data supported by MoCap software. As a

result, the motion representation, also known as the data format of

a virtual avatar, drives the joint transformation of the user’s avatar.

Hip, spine, two legs, thigh and foot, two hands, shoulder and palm,

neck, and head were among the 15 key parts of a connected skele-

ton. The remaining skeleton parts, such as the fingers and upper

arms, can be calculated by the human-body Inverse Kinematics (IK)

solver. Afterwards, our framework broadcasts the data to the Unity

apps of the other users via the WebRTC P2P protocol. The data

includes the position and rotation of the avatar’s body joints and

gesture type. As such, our framework defines two types of motion

representations and streaming, as follows.

(1) Direct joint (D-Joints) streaming: The MoCap software cal-

culates joint transformation data, while the local metaverse

application translates and applies the data to the avatar 3D

model’s joint positions and rotations. Then, it broadcasts the

translated avatar’s joint positions and rotations directly to

the remote client applications through WebRTC without any

compression. The remote client applications directly apply

the received joint transformation data to the correspond-

ing avatar. It is suitable for interactions that require precise

motion capture to recreate the avatars. Multi-user social in-

teraction scenarios such as dancing and artistic performance

should adopt this scheme.

(2) Octree structure streaming: The local Unity applies the Oc-

tree algorithm and broadcast the Octree structure data to the

other clients. The positions of the avatar’s body joints are

converted into Octree IDs, as illustrated in subsection 3.3.

This streaming is suitable for MoCap systems that unavoid-

ably have tracking errors such as that using RGB-Camera

computer vision. The avatar joints transformation is filtered

and stabilized in the local user application, and then broad-

cast to other clients having avatars in proximity in the meta-

verse.

In our framework, we apply an adaptive scheme for data stream-

ing to support the aforementioned body gesture types in different

metaverse events and scenarios. The adaptive scheme (algorithm 1)

determines each avatar individually before broadcasting the data to

remote user applications, since the network performance between

each remote client is different in the P2P broadcast mode. Remote

users should have the metaverse application that can synchronize

the avatars’ 3D models using our framework. The scheme considers

6https://unity.com
7https://www.unrealengine.com/



the network bandwidth and concurrent users in the virtual venue,

pre-configured application scenarios (e.g., time-sensitive), gesture

type, and distance between the local user and remote users. In

particular, the latency between the local and remote user refers

to the round trip time (𝑟𝑡𝑡𝐴𝑟 ) of data transmission. 𝑟𝑡̄𝑡 refers to
the average round-trip time of the avatar’s motion data between

the local user and all other remote users, whereas 𝜃𝑟𝑡𝑡 refers to
latency threshold that is imperceptible to human users (less than

100ms [1]). 𝜃𝑟𝑡𝑡 determines the data streaming format (D-joints or

Octree). When 𝑟𝑡̄𝑡 < 𝜃𝑟𝑡𝑡 and the user’s gesture belong to iconic
multi-user social gestures (e.g., handshake), the user’s local ap-

plication sends D-joints data to all remote users. Otherwise, the

algorithm considers the distance and 𝑟𝑡𝑡𝐴𝑟 of each remote user

individually. 𝜃𝑑𝑖𝑠𝑡 refers to the distance threshold between the local

user’s avatar and the target user’s avatar, which also determines

the streaming format.

Algorithm 1. Adaptive scheme

Input: 𝐴𝑟𝑜𝑜𝑚 ⊲ List of remote avatars data in same room

Input: 𝐴𝑙𝑜𝑐𝑎𝑙 ⊲ Local avatar data w/ joints transformation(tf)

Input: 𝐴𝑜𝑐𝑡𝑟𝑒𝑒 ⊲ Local avatar octree joints data
Input: 𝐺𝑖𝑐𝑜𝑛𝑖𝑐 ⊲ List of multi-user iconic social gesture

1 𝜃𝑑𝑖𝑠𝑡 ←Distance threshold ,
¯𝑟𝑡𝑡 ←Mean round-trip time between users,

𝜃𝑟𝑡𝑡 ←latency imperceptible to human (<100ms [1])

2 Function updateRemoteAvators(𝐴𝑟𝑜𝑜𝑚):
3 if ¯𝑟𝑡𝑡 ≤𝜃𝑟𝑡𝑡 AND 𝐴𝑙𝑜𝑐𝑎𝑙 .𝑔𝑒𝑠𝑡𝑢𝑟𝑒=𝐺𝑖𝑐𝑜𝑛𝑖𝑐 then

4 foreach 𝐴𝑟 ∈ 𝐴𝑟𝑜𝑜𝑚 do

5 send 𝐴𝑙𝑜𝑐𝑎𝑙 𝑡 𝑓 to 𝐴𝑟 ;

6 else

7 foreach 𝐴𝑟 ∈ 𝐴𝑟𝑜𝑜𝑚 do

8 if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐴𝑙𝑜𝑐𝑎𝑙 , 𝐴𝑟 )≤𝜃𝑑𝑖𝑠𝑡 AND 𝑟𝑡𝑡𝐴𝑟 ≤𝜃𝑟𝑡𝑡
then

9 send 𝐴𝑙𝑜𝑐𝑎𝑙 𝑡 𝑓 to 𝐴𝑟 ;

10 else

11 if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐴𝑙𝑜𝑐𝑎𝑙 , 𝐴𝑟 ) ≤ 𝜃𝑑𝑖𝑠𝑡 then
12 send 𝐴𝑙𝑜𝑐𝑎𝑙 𝐼𝐾 to 𝐴𝑟 ;

13 else

14 if 𝑟𝑡𝑡𝐴𝑟 ≤𝜃𝑟𝑡𝑡 then
15 send 𝐴𝑜𝑐𝑡𝑟𝑒𝑒𝑡 𝑓 to 𝐴𝑟 ;

16 else

17 send 𝐴𝑜𝑐𝑡𝑟𝑒𝑒 𝐼𝐾 to 𝐴𝑟 ;

18 End Function

3.3 Octree Data Structure

Full body motion tracking requires capturing the position and ro-

tation of two legs, two arms, head and torso at least 33 pose land-

marks BlazePose [5]. The MoCap system captures no fewer than

51 body joints rotation and positions from head to foot toes and

fingers. In 3D game engines, such as Unity 3D and Unreal Engine,

the humanoid avatar configuration can control the transformation

of 59 key body joints, i.e., direct joints transformation. Using In-

verse Kinematics (IK), our framework can achieve human-avatar

full-body motion without involving full-body sensing and further

Figure 2: Finger gestures and corresponding stretch val-

ues, from an open hand (value=0, leftmost) to a fist gesture

(value=1, rightmost).

reduce the transmission data size. It requires sensing only nine

joints (two wrists, two forearms, two upper legs, two feet, and a

head), It requires to broadcast only nine joints: two wrists, two

forearms, two upper legs, two feet, and the head. It also needs one

normalized value for each hand that shows how all five fingers

are positioned, from fingers spread out (0) to fist (1), as shown in

Figure 2. If one finger value is over 50% larger than the average

value of all other fingers, this finger will be disregarded from the

average. While this calculation causes the loss of some iconic hand

gestures such as the V-sign and thumbs-up, it saves bandwidth for

the sake of scalability (see Table 1). The resulting data can be trans-

mitted to the other users with avatars in proximity distance over

𝜃𝑑𝑖𝑠𝑡 to the local user’s avatar. Our framework utilizes a Full-body

IK (FBIK) solver to calculate the transformation of the remaining

avatar’s body parts. In particular, it uses the Forward And Backward

Reaching Inverse Kinematics (FABRIK) solver [2] for that instead

of streaming the transformation and rotation of all the skeleton

joints. Instead of employing naive streaming of users’ positions

and rotations, our framework represents the transformation data of

nine joints by mapping them into Octree structure ID. This further

reduces the data size before broadcasting.

We use the Octree to partition the avatar’s enclosing three-

dimensional space by recursively subdividing it into eight octants.

This accelerates locating the body joints. In our framework, we use

the Octree 3D representation instead of Direct joints for (i) smooth-

ing the motion of the joins as Octree follows the center point of the

body. This reduces the jitter and jumping of body joint positions

that might occur due to network latency; (ii) easier identification

of abnormal limb positions due to sensor tracking error; and (iii)

compressing the avatar’s motion data to support virtual events with

large number of users.

Our Octree-based algorithm. As illustrated in Figure 3, we set

the root Octree bounding box with origin located at the center of

the avatar body. The boundary of the first level is set so that no body

joint exceeds it. It is determined by the width of the avatar with

arms extended, and its height with arms uplifted, and depth with

raised leg at 90 degree. The origin is set to the middle of the root

Octree and follows the avatar movement. Each cube corresponds

to a tree node in the Octree structure and its eight motion vectors

are stored in the corresponding tree node. Each node is subdivided

into eight smaller cubes when needed. The primary criterion of

the subdivision is based on the actual joint position distance to the

node center, which is larger than the 1/4 length of the node cube at

that level. Using the data retrieved from the Mocap software, the

local user application processes the avatar skeleton pose and then



(a) (b) (c)

Figure 3: (a) The dimensions of root Octree bounding box is

determined by the width with arms extended, height with

uplifted arms, and depth with raised leg 90 degree. (b) The

left wrist position ID is 531 in our Octree three level. (c) The

IK configuration.

searches for the Octree node IDs in which the avatar’s joints are

located.

4 FRAMEWORK EVALUATION

We next present a preliminary evaluation of our motion capture

framework. We evaluate our solution using three metrics. First,

we inspect the latency required to disseminate avatar updates to

remote users. Second, we measure the associated traffic volume.

Third, we rely on a user study to measure the perceived accuracy

of our solution.

4.1 Users-Latency Scalability

We first measure the latency of our framework using motion to pho-

ton (MTP). This reflects the delay between receiving physical sensor

data and updating the avatar’s motion on the remote clients. This

comprises the data collection, parsing, processing, and distribution

of motion updates to other users for avatar rendering.

We vary the number of clients to monitor the impact on MTP

delay. The experiment is carried out on eight computers, each with

an i-7 CPU and 16GB-32GB RAM; 4 computers running with 1000M

LAN, while other 4 computers over WiFi. In an 8-user experiment,

each measurement lasts 2 minutes, creating 1.2K records for each

avatar per run, and 9.6k records for each run. As a baseline for

comparison, we use D-Joints/ F-Joints. We show results from D-

Joints IK, Octree F-Joints, and Octree IK 8.

Figure 4 presents the average latency across all runs for each

of the four techniques. We observe that our solution, Octree IK,

consistently delivers the lowest delay, with an average of 67ms in an

environment of 8 concurrent users. It attains an 55.7% improvement

over D-Joints F-Joints; an 46.6% improvement of D-Joints IK and an

8.1% improvement of Octree F-Joints. Figure 4 also represents the

MTP latency when the number of users increases. We observe that

this substantially increases the delay for both D-Joints F-Joints and

D-Joints IK. The key reason is that it is necessary to disseminate

avatar motion updates to a larger number of users. In contrast,

Octree F-Joints and Octree IK remain relatively insensitive to the

8D-Joints refers Direct-Joints, F-Joints to Full-Joints, and IK to Inverse Kinematic.

Figure 4: System latency between each users with multiple

concurrent users, in different joint data streaming scheme.

Table 1: Data size and latency of threemotion representations

W/o IK W/ IK

D Joints Octree D Joints Octree

Joint Num 50 33 9 9

Data Size (bit) 11,200 5,296 2042 1312

Data Size (30fps) 42.06 KB 19.86 KB 7.657 KB 4.92 KB

Latency (8 users) 0.1511 0.1388 0.0806 0.0677

Latency std 0.2828 0.2045 0.0756 0.0192

increase in the number, as the data compression is higher due to

the Octree data structure.

4.2 Broadcast Data Size

We next inspect the data volume transferred by our solution. This

is required to exchange avatar motion updates between users.

Table 1 compares the per video frame size of the body joints

Octree scheme with direct joints. The data size of the each frame

is significantly smaller. The data size of direct joint streaming is

11,200 bit per frame for all joint positions and rotation (7 float data

* 50 joints). The data size of octree IK scheme is the smallest, which

including 9 octree node ID, 9 joint rotation data in quaternions,

2 hand fingers gripping scale in 8 bit scale. The data size of the

Octree scheme is 5296 bit per frame, which includes the position

and rotation of 33 body joints parts, and 2 hand fingers gripping

scale in 8 bit scale.

4.3 Human Perception

Participants and Apparatus: To investigate the human-perceived

impact, we perform a user study with participants, aged 19 to 36.

We ask each participant about their technology literacy, which

they report as: unfamiliar (5/22), slightly familiar (7/22), moderately

familiar (6/22), and very familiar (4/22). We ask 22 participants (15

males and 7 females) to watch a video of a real person wearing the

IMU suit and its corresponding avatar for the three use cases. We

present three videos, representing key metaverse use cases:

(1) Handshake: This involves two people shaking hands (Fig-

ure 5a), exemplifying low-motion multi-user scenarios.



(2) Presentation: This involves a person giving a presentation

(Figure 5b), exemplifying a single user scenario.

(3) Dance: This involves a person (Justin Beiber) giving a music

concert (Figure 5c), exemplifying a high-motion single user

scenario.

(a) (b)

(c) (d)

Figure 5: Three scenarios supported by the proposed frame-

work. (a) Handshaking; (b) A presenter on a stage; (c) Dancing

©Justin Bieber; (d) Screen captures showing a video of danc-

ing scenarios presented in the online survey.

After watching each video, using an online survey, the partici-

pants rate their experience. We follow a simplified version of the

NASA TLX [15] survey. We asked the participants to rate the per-

ceived delay between the physical motions and the avatar’s motions

on the video (1: noticeable, 2: somewhat noticeable, 3: acceptable

and 4: unnoticeable). They rate the accuracy of the avatar recre-

ation on a scale (1: inaccurate, 2: somewhat accurate, 3: accurate, 4:

very accurate). They rate the synchronization between the physical

body motion and the avatar’s motion on a scale (1: no synchro-

nization, 2: somewhat synchronized, 3: synchronized, and 4: fully

synchronized). The participants also rate how much each solution

is promising for human-avatar interaction in each use case on a

scale (1: definitely not, 2: probably not, 3: not sure, 4: probably yes,

and 5: definitely yes).

We test four solutions to enable human-avatar interaction: Di-

rect Joints with full-body joints support (D-Joints F-Joints), Direct

Joints with Inverse-Kinematic (D-Joints IK), Octree with full-body

joints support (Octree F-Joints), and Octree with Inverse-Kinematic

(Octree IK), as shown in Figure 5d.

Results: Figure 6 presents the results of the user study, with the

95% confidence intervals as error bars. Figure 6a shows that using

D-Joints, F-Joints and D-Joints IK as solutions to recreate human-

avatar interactions, leads to highest perceived delay, accuracy and

synchronization between the real person’s motion and the corre-

sponding avatar’s motion.

Using Octree F-Joints achieves slightly lower delay, the lowest ac-

curacy and synchronization. Unsurprisingly, Octree IK achieves the

best trade-off (i.e., lowest delay, and high accuracy and synchroniza-

tion). Figure 6b illustrates that most participants find using D-Joints

IK a more promising solution, followed by D-Joints F-Joints for the

three use cases, daily etiquette (e.g., handshaking), art performance

(a) Perceived delay, accuracy and synchronization of the solutions.

(b) Perceived promise of each solution for each scenario.

Figure 6: User perception of (a) delay, accuracy and synchro-

nization between the user motion and recreation of avatar’s

motion; and (b) how promising is each solution for each sce-

nario.

(e.g., dancing). Octree with IK is more promising than D-Joints F-

Joints for delivering speech and presentation, while Octree F-Joints

appears to be the least promising in the three metaverse scenarios.

5 CONCLUSION

This paper serves as a groundwork to improve human-avatar in-

teraction for large-scale use. It has proposed a simple technique

to compress and transmit motion capture data. It relies on a light-

weight Octree data structure to record and transmit motion to

other users. By compressing such data, we can improve delivery

efficiency in low-resource network environments. To evaluate its

efficacy, we conducted a user study with 22 participants. Our user

study shows that Octree with Inverse Kinematic achieves the best

trade-off, achieving low delay and high accuracy. Our proposed

solution delivers the lowest delay, with an average of 67ms in an

environment of 8 concurrent users. It attains a 55.7% improvement

over the prior techniques. For future work, we will examine the

need for human-avatar interaction in more diversified scenarios.
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