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Figure 1: Interpolation results of makeup transfer and removal. We propose a style- and latent-guided generative adversarial
network, which allows the user to adjust makeup shading in an image to obtain a desirable result. Our framework interpolates
from light to heavy makeup based on a style-guided value with a single reference image (first row) and two reference images
(second row). Our framework can also arbitrarily remove makeup by modulating a latent-guided value (third row).

ABSTRACT
There are five features to consider when using generative adver-
sarial networks to apply makeup to photos of the human face.
These features include (1) facial components, (2) interactive color
adjustments, (3) makeup variations, (4) robustness to poses and ex-
pressions, and the (5) use of multiple reference images. To tackle the
key features, we propose a novel style- and latent-guided makeup
generative adversarial network for makeup transfer and removal.
We provide a novel, perceptual makeup loss and a style-invariant
decoder that can transfer makeup styles based on histogram match-
ing to avoid the identity-shift problem. In our experiments, we show
that our SLGAN is better than or comparable to state-of-the-art
methods. Furthermore, we show that our proposal can interpolate
facial makeup images to determine the unique features, compare
existing methods, and help users find desirable makeup configura-
tions.

CCS CONCEPTS
• Computing methodologies → Image representations.
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1 INTRODUCTION
Virtual makeup applications help us to produce makeup interac-
tively using pre-defined filters. In reality, mastering makeup is not
easy because it needs expertise in cosmetic products and techniques.
It remains challenging to produce makeup as the user desire with
the virtual makeup tools.

We consider five features important when virtually making up
our faces in photos. These features are (1) facial components, (2)
interactive color adjustments, (3) makeup variations, (4) robustness
to poses and expressions, and (5) the use of multiple reference im-
ages. Several studies of makeup transfer (MT) and makeup removal
(MR) have been proposed [1, 2, 8, 10]. However, current works do
not satisfy all five mentioned features.

In this paper, we propose a style- and latent-guided GAN (SL-
GAN). As shown in Figures 1 and 4, our framework effectively
performs MT and MR while accounting for the five features men-
tioned above. Our framework employs style- and latent-guided
translation for the tasks. As shown in Figure 1, our framework can
interpolate makeup shading. Thus, users can adjust the generated
results to find desirable makeup combinations with their reference
images. Furthermore, as shown in Figure 4, our method is robust
to poses and expressions.

Moreover, we propose a novel perceptual makeup loss to help
the generator apply more appropriate makeup features to the input
image. The loss function is used to compute a histogram matching
between the generated image and the reference image using the
features extracted by a style encoder. It thus enables our framework
to adequately transfer makeup styles.

The major contributions of this paper are summarized as follows:

(1) We propose a SLGAN framework for an MT and MR. This is
the first style- and latent-guided framework for this task.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551626.3564967&domain=pdf&date_stamp=2022-12-13
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Figure 2: SLGAN consists of four modules: a generator 𝐺 , a style encoder 𝐸𝑆 , and a mapping network 𝐸𝑀 . The generator 𝐺
consists of a shared encoder 𝐺𝐸 , a style-guided decoder 𝐺𝑆 , and a style-invariant decoder 𝐺𝐼 .

(2) Our proposed style-invariant decoder assists the generator
to translate images that preserve the identity of the source.

(3) We propose a novel perceptual makeup loss that enables the
generator to perform a high-quality translation.

(4) Quantitative and qualitative experimental results show that
SLGAN is better than or comparable to state-of-the-art meth-
ods.

2 RELATEDWORKS

2.1 Unpaired Image-to-Image Translation
In an unpaired image-to-image translation, the problem is trans-
lating an input image into its corresponding output image. Star-
GANv2 [4] provided both latent- and reference-guided synthesis.
However, StarGANv2 causes an identity-shift problem, which is
the generated image loses the contents of the source image because
they embed global style features of the reference image. For ex-
ample, when a person with long hair is given as a reference, an
output image with long hair is always generated. Thus, these meth-
ods are not suitable for MT and MR problems. To overcome this
problem, our method embeds references in style codes considering
local features.

2.2 Makeup Studies
MT is to perform style transfer considering the semantics of a source
and reference image. BeautyGAN [10] simultaneously trained MT
and MR using a single generator and discriminator. Additionally,
BeautyGAN proposed a makeup loss, which matched the color
histogram between the generated and reference images of facial
components (e.g., lips, eye shadows, and whole face). To effectively
utilize the loss for our framework, we propose a perceptual makeup
loss that optimizes the network to embed a reference image in a
style code based on makeup styles.

LADN [5] proposed local discriminators, which learned the
makeup features of each facial component. PSGAN [8] performs an
MT using an attention mechanism based on semantic information
of facial landmarks and masks with a style-guided architecture.
However, this method fails to generate images when this additional
semantic information is not obtained. In contrast, we propose a
framework that does not depend on such information.

3 SLGAN

3.1 Formulation
Our goal is to extract makeup styles from the reference images and

transfer them to the source images. We have 𝐼𝑋𝑠 to represent source

samples, 𝐼𝑌𝑟 to represent reference samples, and 𝑧 to represent latent
codes. We utilize one-hot vectors 𝑐 to represent makeup conditions.

3.2 Network Architecture
Overall As shown in Figure 2, we propose a style- and latent-
guided framework for MT and MR. First, the style codes 𝑠𝑒 , 𝑠𝑚 are
generated by a style encoder 𝑆𝐸 and a non-linear mapping network

𝑀𝑁 from the reference image 𝐼𝑌𝑟 ∈ 𝑌 and the latent code 𝑧 ∈ 𝑍 ,
respectively. Then, given an embedded style code 𝑠 and a source

image 𝐼𝑋𝑠 , our goal is to learn a generator 𝐺 : 𝐼𝑋𝑠 , 𝑠 → 𝐼𝑋𝑟 .

Style encoder. Given a reference image 𝐼𝑌𝑟 and a one-hot vector
𝑐 , the style encoder 𝑆𝐸 learns to embed the reference image into

a style code 𝑠𝑒 , denoted as 𝑆𝐸𝑐 : 𝐼𝑌𝑟 , 𝑐 → 𝑠𝑒 ∈ 𝑊 . 𝑆𝐸 extracts
the feature using an encoder and then applies the MLP layers per
domain based on the control of the one-hot vector 𝑐 . Therefore,
because the style encoder uses each MLP layer for MT and MR, it
can embed reference images in style codes with domain-specific
representations.

Mapping network. Given a latent code 𝑧 in the input latent
space 𝑍 and a random one-hot vector 𝑐 , our non-linear mapping
network 𝑀𝑁 learns to embed a latent code in the style code 𝑠𝑚 ,
denoted as𝑀𝑁𝑐 : 𝑧, 𝑐 → 𝑠𝑚 ∈𝑊 . Our mapping network also yields
a domain-specific style code 𝑠𝑚 .

Adaptive normalization layer. We use AdaIN [6] with the
style-guided decoder to perform MT and MR based on the style

codes 𝑠𝑒 and 𝑠𝑚 of 𝐼𝑌𝑟 and 𝑧, respectively. The style codes 𝑠𝑒 and
𝑠𝑚 control 𝛽 and 𝛾 in the AdaIN operation after each convolution

layer of the generator 𝐺 . The features of each source image 𝐼𝑋𝑠 are
individually normalized and the scaling and shifting operations are
performed using scalar components based on the style codes 𝑠 .

Generator. Given a source image 𝐼𝑋𝑠 and a style code 𝑠 , our
generator generates an image 𝐼𝑋𝑟 , that preserves both the makeup

style of the reference image 𝐼𝑌𝑟 , and the identity of the source

𝐼𝑋𝑠 . As shown in Figure 2, our generator 𝐺 consists of an encoder
𝐸𝑛𝑐 , a style-guided decoder 𝐺𝑠 , and a style-invariant decoder 𝐺𝑖 .
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To simplify the notation, we denote a style-guided generator as

𝐺𝑠𝑔 (𝐼
𝑋
𝑠 , 𝑠) = 𝐺𝑠 (𝐸𝑛𝑐 (𝐼

𝑋
𝑠 ), 𝑠) and a style-invariant generator as

𝐺𝑖𝑔 (𝐼
𝑋
𝑠 ) = 𝐺𝑖 (𝐸𝑛𝑐 (𝐼

𝑋
𝑠 )). Each decoder has the same structure ex-

cept for the normalization layer. An encoder 𝐸𝑛𝑐 embeds a source

image 𝐼𝑋𝑠 in a content code. An encoder and a style-invariant de-
coder have an instance normalization so that they can make the
features conform to a normal distribution.

Discriminator. To make the generator 𝐺 generate realistic im-
ages, we use the discriminator 𝐷 . Our discriminator 𝐷 has the same
structure as the style encoder 𝑆𝐸.

3.3 Style-invariant Decoder
There is an identity-shift problem in which the generator cannot
preserve the identity of the source image when the global style
of the reference image is embedded in the style code. Thus, the
discrepancy of identities between reference and source images can
cause problems in which the generated image cannot maintain the
content of the source. To overcome this problem, our proposed
style-invariant decoder generates images from the shared feature
without the style code, which is extracted by a shared encoder.
That is, this network has no AdaIN layers. On the other hand, our
style-invariant decoder helps the generator not only perform stable
learning like the guide decoder but also helps avoid an identity-shift
problem.

3.4 Perceptual Makeup Loss
To further encourage the network to transfer makeup per face
component, we propose a new histogram-matching strategy and
propose perceptual makeup loss. Our key idea is for the style en-
coder to have a structure for extracting makeup and non-makeup
styles. The perceptual makeup loss computes the histogram match-
ing using features of each convolution layer of a style encoder
between the generated image and the reference image. This encour-
ages the style encoder to learn better parameters throughmulti-task
learning. The loss entails the integration of three local histogram
losses acting on the lips, eyes, and facial regions, defined as

L𝑚𝑎𝑘𝑒𝑢𝑝 = 𝜆𝑙𝑖𝑝𝑠L𝑙𝑖𝑝𝑠 + 𝜆𝑒𝑦𝑒𝑠L𝑒𝑦𝑒𝑠 + 𝜆𝑓 𝑎𝑐𝑒L𝑓 𝑎𝑐𝑒 , (1)

L𝑖𝑡𝑒𝑚 =
𝐾∑

𝑙=1

| |𝜙𝑙 (𝐼
𝑋
𝑟 ) − 𝐻𝑀 (𝜙𝑙 (𝐼

𝑋
𝑟 ◦ 𝑆1𝑖𝑡𝑒𝑚), 𝜙𝑙 (𝐼

𝑌
𝑟 ◦ 𝑆2𝑖𝑡𝑒𝑚)) | |2, (2)

𝑆1𝑖𝑡𝑒𝑚 = 𝐹𝑃 (𝐼𝑋𝑟 ), 𝑆2𝑖𝑡𝑒𝑚 = 𝐹𝑃 (𝐼𝑌𝑟 ), (3)

where 𝜙𝑙 denotes a 𝑙-th layer feature map, 𝐾 denotes the sum of the
number of convolution layers, ◦ denotes element-wise multiplica-
tion, 𝑖𝑡𝑒𝑚 denotes the set of {𝑙𝑖𝑝𝑠, 𝑒𝑦𝑒𝑠, 𝑓 𝑎𝑐𝑒}, 𝐹𝑃 denotes the face
parsing algorithm, 𝐻𝑀 denotes the histogram matching operation,
and 𝑆 denotes the semantic mask of face components.

3.5 Other Objectives
Additionally, regarding the perceptual makeup loss described in
Section 3.4, we use the following objectives, which are similar to
related works [4, 12–14].

Adversarial Loss. To make the generated images more realistic,
we adopt an adversarial loss, defined as

L𝑎𝑑𝑣 = min
𝐺𝑠

max
𝐷𝑐

E𝐼𝑋𝑠 ,𝑐

[
log𝐷𝑐 (𝐼

𝑋
𝑠 )

]
+

E𝐼𝑋𝑠 ,𝑐,𝑠 [log (1 − 𝐷𝑐 (𝐺𝑠𝑔 (𝐼
𝑋
𝑠 , 𝑠)))], (4)

where the target style code 𝑠 is generated by a style encoder 𝑠𝑒 =
𝑆𝐸𝑐 (𝐼

𝑌
𝑟 ) and a non-linear mapping network ˆ𝑠𝑚 = 𝑀𝑁𝑐 (𝑧/). 𝑐 and

𝑐 represent the source domain and target domain, respectively. 𝐷𝑐
represents the corresponding domain of 𝑐 and 𝐺𝑠𝑔 represents the

style-guided generator. A discriminator distinguishes whether the

generated image 𝐼𝑋𝑟 is a real or not.
Style diversity loss. We introduce a regularization term to

spread over the generated space [12, 13], which is defined as

L𝑠𝑑 = E𝐼𝑋𝑠 ,𝑐,𝑧1,𝑧2

[
| |𝐺𝑠𝑔 (𝐼

𝑋
𝑠 , 𝑠1)) −𝐺𝑠𝑔 (𝐼

𝑋
𝑠 , 𝑠2) | |1

]
, (5)

where 𝑠1 and 𝑠2 are generated by a style encoder 𝑆𝐸𝑐 or a mapping
network 𝑀𝑁𝑐 from random latent codes 𝑧1 and 𝑧2, and a target
condition vector 𝑐 , denoted as 𝑠𝑒 = 𝑆𝐸𝑐 (𝑧) and ˆ𝑠𝑚 = 𝑀𝑁𝑐 (𝑧),
respectively. This encourages the generator to explore the latent
code and increases the chance of generating various samples. The
discriminator learns better parameters, because it properly classifies
samples that are rarely generated. As a result, by using this objective,
our framework properly learns fine makeup styles.

Style reconstruction loss. To constrain the style codes to cor-
rectly represent the style of makeup or non-makeup, we use the
style reconstruction loss [7, 15], defined as

L𝑠𝑟 = E𝐼𝑋𝑠 ,𝑐,𝑧

[
| |𝑠 − 𝑆𝐸𝑐 (𝐺𝑠𝑔 (𝐼

𝑋
𝑠 , 𝑠)) | |1

]
. (6)

This objective is similar to a latent reconstruction loss [3, 4].
Cycle consistency loss. By optimizing Eq.(4,5,6), the generator

can generate diverse and realistic images. However, the generator
should not only preserve the features of the source image, but it
should also fool the discriminator. As a result, there is a problem in
which only these objectives do not guarantee that the generated
image preserves the content of the source image. To solve this
problem, we use the cycle consistency loss [9, 14], defined as

L𝑐𝑦𝑐 = E𝐼𝑋𝑠 ,𝑐,𝑐,𝑠

[
| |𝐼𝑋𝑠 −𝐺𝑠𝑔 (𝐺𝑠𝑔 (𝐼

𝑋
𝑠 , 𝑠), 𝑠) | |1

]
, (7)

where 𝑠 represents the style code of a target domain 𝑐 and 𝑠 repre-
sents an original domain 𝑐 of 𝐼𝑋𝑠 , denoted as 𝑠 = 𝑆𝐸𝑐 (𝐼

𝑋
𝑠 ). Minimiz-

ing this objective enables the generator to perform a MR and MR
while preserving the contents of the source image.

Style-invariant guide loss. Despite the use of cycle consis-
tency loss, the generated image changes the shape of facial com-
ponents, depending on makeup and non-makeup styles, owing the
identity-shift problem. To achieve this problem, we propose a style-
invariant guide loss to encourage the generated image to naturally
apply the style of the reference image and maintain the content of
the source image. Is is defined as

L𝑔𝑢𝑖𝑑𝑒 = E𝐼𝑋𝑠

[
𝜆𝛾 | |𝐼

𝑋
𝑠 −𝐺𝑖𝑔 (𝐼

𝑋
𝑠 ) | |2

]
+

E𝐼𝑋𝑠 ,𝑐,𝑠

[
𝜆𝛽 | |𝐺𝑖𝑔 (𝐼

𝑋
𝑠 ) −𝐺𝑠𝑔 (𝐼

𝑋
𝑠 , 𝑠) | |2

]
, (8)

where each 𝜆 are hyper-parameters,𝐺𝑖𝑔 represents the style-invariant
generator, 𝐺𝑠𝑔 represents the style-guided generator, and 𝑠 repre-
sents the style code of the target domain 𝑐 . We do not give the style
code 𝑠 to the style-invariant generator 𝐺𝑖𝑔 .

Total Loss. Finally, the loss functions of 𝐺 , 𝑆𝐸, 𝑀𝑁 , and 𝐷 ,
which are optimized in our framework, are defined as

L𝐷 = −L𝑎𝑑𝑣 (9)

L𝐺 = L𝑎𝑑𝑣 − L𝑠𝑑 + L𝑠𝑟 + L𝑐𝑦𝑐 + L𝑚𝑎𝑘𝑒𝑢𝑝 + L𝑔𝑢𝑖𝑑𝑒 .(10)

4 EXPERIMENTS

4.1 Implementation Details
We use the Makeup Transfer (MT) dataset [10] for MT and MR.
The dataset contains 3,834 facial images with a resolution of 256 ×
256, consisting of 1,115 non-makeup images and 2,719 makeup
unpaired images. The test set consists of 100 and 250 non-makeup
and makeup images, respectively.
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Figure 3: Qualitative comparison of makeup transfer of baseline methods and our style-guided SLGAN. Our method can gen-
erate images that are closer to the reference image from the views of lips, eyes, eye shadows, and skin tones.

Figure 4: Qualitative comparison of makeup transfer with
the source and reference images having different poses.

4.2 Makeup Transfer Results
We compared our style-guided SLGAN with baseline models on
an MT task. As baseline methods, we adopted two general image-
to-image translation methods: DIA [11] and CycleGAN [14]. We
adopted five MT methods: BeautyGAN [10], PairedCycleGAN [1],
BeautyGlow [2], LADN [5], and PSGAN [8].

Qualitative Comparison. Figure 3 shows qualitative compar-
isons of SLGAN with the baseline methods. DIA and CycleGAN
failed to transfer makeup for the eyebrows and lip color, respec-
tively. In the lower row, BeautyGlow’s eye shadow was clearly
darker than that of the reference image. LADN generated artifacts
around the hair. In the lower image, PSAGN failed to transfer the
eye color and eye shadow. The other baseline methods failed to
transfer the pupil color of the reference image. We argue that these
capabilities are important because people often use colored contact
lenses to change their eye colors. Compared with the baseline meth-
ods, our style-guided SLGAN generated images that have reference
makeup.

Figure 4 shows the results of different poses of source and ref-
erence images. BeautyGAN and LADN failed to transfer makeup
or generate artifacts. These methods did not provide an explicit
structure for learning MT locations, and they overfitted the MT
dataset, which contained only frontal images. In contrast, SLGAN
succeeded in transferring makeup. Our framework learned the re-
lationships between each face part because the perceptual makeup
loss was computed between the features of our style encoder.

Quantitative Comparison.We conducted a user study using
Amazon Mechanical Turk (AMT) in which 10 people participated.
Given each generated image, a corresponding source, and a refer-
ence image, the Turkers were instructed to choose a natural image
following a reference makeup. From the generated results, we ran-
domly selected 50 images per method. Table 1 shows the results
of the 10-person user study. In this small-scale experiment, our
style-guided SLGAN had a better score, compared with the other
methods.

4.3 Makeup Removal Results
Qualitative Comparison. Figure 5 showsmakeup removal results.
CycleGAN showed a blurred image of poor quality. PairedCycle-
GAN and LADN tended to remove makeup, however, they failed to

Figure 5: Qualitative comparison of makeup removal.

Table 1: AMT evaluation for amakeup transfer and removal.

Method Transfer (%) ↑ Removal (%) ↑
CycleGAN 17.2 5.6
PairedCycleGAN 19.2 13.2
BeautyGAN 22.0 1.8
LADN 18.4 0.4
Style-guided SLGAN 23.2 38.6
Latent-guided SLGAN - 40.4

generate clear lips and eyes. In contrast, we found that our method
produced clear MR images. We observed that the images generated
by our style-guided SLGAN were affected by the skin color of the
given reference image.

Qualitative Comparison.We also conducted a user study us-
ing AMT as same as MT. Table 1 shows both our style- and latent-
guided SLGAN showed better results compared with the baseline
methods. We can see that our style- and latent-guided SLGAN
demonstrated similar quality MR with few differences. We consider
that our style-guided SLGAN performed MR based upon the skin
color of the reference image, and it, therefore, scored lower than
our latent-guided SLGAN.

5 CONCLUSION
We have presented SLGAN, which is a style- and latent-guided
framework for MT and MR. Our perceptual makeup loss enables
our framework to adequately transfer makeup styles. Our style-
invariant decoder further enabled our framework to avoid the
identity-shifting problem. In the experiments, our SLGAN per-
formed better or comparably to state-of-the-art methods, and the
unique ability to interpolate the MT and MR results.
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