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ABSTRACT
Nowadays, the ubiquitous usage of mobile devices and networks

have raised concerns about the loss of control over personal data

and research advance towards the trade-off between privacy and

utility in scenarios that combine exchange communications, big

databases and distributed and collaborative (P2P) Machine Learning

techniques. On the other hand, although Federated Learning (FL)

provides some level of privacy by retaining the data at the local

node, which executes a local training to enrich a global model, this

scenario is still susceptible to privacy breaches as membership in-

ference attacks. To provide a stronger level of privacy, this research

deploys an experimental environment for FL with Differential Pri-

vacy (DP) using benchmark datasets. The obtained results show

that the election of parameters and techniques of DP is central in

the aforementioned trade-off between privacy and utility by means

of a classification example.
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1 INTRODUCTION
Federated Learning (FL) offers a useful paradigm for training a

Machine Learning (ML) model from data distributed across multi-

ple data silos, eliminating the need for raw data sharing as it has

the ambition to protect data privacy through distributed learning

methods that keep the data local. In simple terms, with FL, it is

not the data that moves to a model, but it is a model that moves to

data, which means that training is happening from user interaction

with end devices. Federated Learning’s key motivation is to provide

privacy protection as well as there has recently been some research

into combining the formal privacy notion of Differential Privacy

(DP) with FL.

Instead of researching on the traditional FL model, we consider

working on a peer-to-peer approach to FL or decentralized FL frame-

work, where any node can play the role ofmodel provider andmodel

aggregator at different times. That is being applied depending on

various aspects related to the communication infrastructure and

the distribution of the data. For example, considering a traditional

FL model where the aggregator is unavailable for some period. In

a peer-to-peer approach, the aggregator role can be played by a

different node. Also, it can be decided from time to time that the

aggregator node is the one with more connections in the network,

or whatever other criteria that allows the learning process to be

improved. So, every node in the network has the capability of being

a model provider and an aggregator node, and it plays different

roles in different rounds of the learning process according to the

state of the infrastructure. However, under this scenario, where the

communication infrastructure cannot be considered reliable and

secure, additional privacy measures are required. In a decentralized

FL system, while the data is kept local and not exchanged with

peers, the model parameters could be observed by malicious or

curious agents and be used to infer knowledge about the datasets or

the aggregated model. To tackle this problem, a DP mechanism [5]

can be introduced into the distributed learning environment, so

that inference attacks are harder. However, as DP adds controlled

noise to the information exchanged by the nodes, it might affect the

learning rate and accuracy of the algorithm. This trade-off has been
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considered in some works for classical (centralized, single-server)

FL systems [2, 11]. In this paper, we study experimentally the inter-

play between DP and the learning performance in a distributed FL

system.

The remaining of this paper is organized as follows. In Section 2,

a review of the literature related to our work is presented. Section 3

starts with introducing a background on DP and distributed FL

methods, then the framework of the proposed system is described.

The implementation details and experimental setup are illustrated in

Section 4. The obtained numerical results are presented in Section 5.

Section 6 discusses the attained observations, and provides several

insights.

2 RELATEDWORK
In the scientific literature, a number of studies have discussed on

distributed ML, FL, and privacy preserving machine learning. Read-

ing diverse existing literature’s application, benefits, and drawbacks

is one of the most significant elements of study, we discovered that

FL is a relatively new topic with limited published literature and

articles, but much research has already been conducted in the areas

of privacy-preserving learning and distributed machine learning

algorithms or the Traditional Centralized Federated Learning which

the role of the server goes to one role until convergence.

In [10], the authors compared two different variants of clipping

for FedAvg: clip the client model vs. clip the client model difference

(CE-FedAvg), considering not all the clients participate in each

round of communication. Here some conducted experiments for

FedAvg, CE-FedAvg and DP-FedAvg with different models namely

MLP, AlexNet, Resnet, MobilNetV2, on two different benchmark

Dataset EMNIST and Cifar-10 for Classification, and local data

distribution which falls into two ways; 1) IID Data setting where

the samples are uniformly distributed to each client 2) Non-IID Data

setting, where the clients have unbalanced samples. The results

showed that the performance depends on the structures of the

neural network being used and the heterogeneity data distribution

among clients is one of the main causes of the different behavior

between the clipped and unclipped.

The authors in [6] proposed algorithms based on differentially

private SGD (DP–SGD) that add Gaussian noises to each computed

gradient and then clip the noised gradient (NC), which is different

to the conventional method in the sequence of clipping gradient

and adding noise (CA). The experimental settings to verify the per-

formance consider different factors, as the training of two popular

deep learning models, (CNN and LSTM) on three different datasets,

namely MNIST, CIFAR10, SVH, respectively, and adoption of two

gradient descent optimization methods (SGD and Adam) for evalu-

ation, with the inclusion of Gaussian noise and clipping. This work

also proposes a new privacy protection metric called "Total Parame-

ters Value Difference" to measure the privacy protection capability

and examine how the impact of adding noise in the training process

will affect the model itself. The results showed and validated the

effectiveness of their proposed method (AC), which improves re-

markably the accuracy of the model when other parameter settings

are the same. However, the TPVD of AC are lower than those of

CA. The results showed proposed a modification of AC, as showed

changing the sequence of adding noise and clipping can achieve

higher accuracy and faster convergence that outperforms the con-

ventional method even under different parameter settings and the

TPVD metric proposed in this paper as a privacy protection metric

for DL models can better reflect the perturbation effects.

In [3], the authors introduced a FL framework, with the proposed

method of DL to add noise to the objective function of the optimiza-

tion at each site to produce a minimizer of the perturbed objective.

The proposed model is tested on two different datasets for two

major tasks ;(1) prediction of adverse drug reaction (ADR), Dataset

used Limited MarketScan Explorys Claims-EMR Data (LCED); (2)

prediction of mortality rate, dataset using Medical Information

Mart for Intensive Care (MIMIC III) data. The results show that

although DL offers a strong level of privacy, it deteriorates the

predictive capability of the produced global models due to the ex-

cessive amount of noise added during the distributed FL training

process, while in [8] the authors proposed a novel framework based

on the concept of DP, in which artificial noises are added to the

parameters at the clients side before aggregating, namely, noising

before model aggregation FL (NbAFL), the proposed NbAFL evalu-

ated by using multi-layer perception (MLP) on MNIST dataset, they

found that there is an optimal K that achieves the best convergence

performance at a fixed privacy level.

In [10] the authors introduced a FL framework, called collabo-

rative FL (CFL), which enables edge devices to implement FL with

less reliance on a central controller to facilitate the deployment in

IOT applications. The concept of the proposed Framework based on

this study where some devices are directly connected to the Base

station, while others are associated with a certain number of neigh-

boring devices. The main objective was to overcome the challenge

of energy limitations or a potentially high transmission delay. In

order to overcome the short comings of the reviewed literature, the

main objective of the approach proposed in this paper is to conduct

an experimental framework to investigate the interaction between

DP and learning performance in a distributed FL system.

3 METHODS AND METHODOLOGY
This section introduces the notion of Federated Learning consider-

ing guaranteeing the model privacy protection through utilizing

the characteristic of keeping the data in the local node. Although

FL keeps the data in the local node, so that privacy is guaranteed,

in order to protect the model. Also, we are going to apply DP mech-

anisms to the models which are exchanged among the nodes in the

FL scenario. So, we are also going to introduce the concept of DP.

3.1 Federated Learning: definition and role of
the aggregator node

The notion of Federated Learning was first introduced in [7], which

demonstrates a new learning context in which a shared model is

learned by aggregating locally computed gradient changes without

centralizing different data on devices.

Federated averaging (FedAvg) is a communication efficient al-

gorithm for distributed training with a number of clients. As it is

mentioned in [9] its set-up is a system in which multiple clients

collaborate to solve machine learning problems, with a central

aggregator overseeing the process. This setting decentralizes the

training data, ensuring that each device’s data is secure. Federated



Using Decentralized Aggregation for Federated Learning with Differential Privacy Conference’17, July 2017, Washington, DC, USA

learning is based on two key principles: local computing and model

transmission, which mitigates some of the privacy risks and costs

associated with standard centralized machine learning methods.

The client’s original data is kept on site and cannot be transferred or

traded. Each device uses local data for local training, then uploads

the model to the server for aggregation, and finally, the server trans-

mits the model update to the participants to achieve the learning

goal.

Formally [8], the server aggregates the weights sent from the 𝑁

clients as (FedAvg), as

w =

𝑁∑︁
𝑖=1

𝑝𝑖w𝑖 (1)

where w𝑖 is the parameter vector trained at the 𝑖-th client, w is the

parameter vector after aggregating at the server, 𝑁 is the number

of clients, and 𝑝𝑖 = |D𝑖 |/|D|, with D𝑖 the dataset of node 𝑖 and

D = ∪𝑖D𝑖 the whole distributed dataset. The server solves the

optimization problem

w∗ = argmin

w

𝑁∑︁
𝑖=1

𝑝𝑖𝐹𝑖 (w,D𝑖 ) (2)

where 𝐹𝑖 is the local loss function of the 𝑖-th client. Generally, the

local loss function is given by local empirical risks.

The training process of such a FL system usually contains the

following four steps: 1) Local training: All active clients locally

compute training gradients or parameters and send locally trained

ML parameters to the server; 2) Model aggregating: The server

performs secure aggregation over the uploaded parameters from

N clients without learning local information; 3) Parameters broad-

casting: The server broadcasts the aggregated parameters to the

N clients; 4) Model updating: All clients update their respective

models with the aggregated parameters.

In order to prevent information leakage and the local model

parameter which is circulated over the network from the inference

attacks as it is vulnerable to it, a natural approach to defining

privacy for those models will be used namely Differential Privacy

and this will be discussed in the next Section.

3.2 Differential Privacy
A Differential Privacy mechanism 𝑀 satisfies (𝜖, 𝛿)-DP for two

non-negative numbers 𝜖 and 𝛿 , if the following inequality holds

P
(
𝑀 (D) ∈ 𝑆

)
≤ 𝜖P

(
𝑀 (D′) ∈ 𝑆

)
+ 𝛿 (3)

where D and D′
are neighboring datasets under the Hamming

distance, and 𝑆 is an arbitrary subset of outputs of𝑀 .

Intuitively speaking, the number 𝛿 represents the probability

that a mechanism’s output varies by more than a factor 𝜖 when

applied to a dataset and any one of its close neighbors. A lower value

of 𝛿 signifies greater confidence and a smaller value of 𝜖 tightens

the standard for privacy protection [1, 4]. Typical mechanisms for

𝑀 include the perturbation of the dataset values with Laplacian,

Exponential, or Gaussian noise.

In order for the perturbation mechanisms to have formal privacy

guarantees, the amount of noise that is added to the local model

updates across each provider may result in exploding gradients

problem, which refers to large increases in the norm of the gradient

during training, so it requires a clipping operation, and this will be

discussed in the next Section.

3.3 Clipping and Bounded Norm Operation
As discussed in [1], clipping is a crucial step in ensuring the DP of

FL algorithms. so, each provider’s/client’s model update needs have

a bounded norm, which is ensured by applying an operation that

shrinks individual model updates when their norm exceeds a given

threshold. To create FL algorithms that protect DP is to know that

clipping impacts a FL algorithm’s convergence performance. There

are two major clipping strategies used for FL algorithms, one is

local model clipping which consists in the clients directly clipping

the models sent to the server; the other is difference clipping, where

the local update difference between the initial model and the output

model i clipped.

3.4 Proposed Framework of P2P FL with DP
In this Section we will define the peer-to-peer framework that

worked on and how the DP will be introduced in some of the nodes

and finally assess the results by measuring some metrics.

We consider a FL problem in a decentralized setting as shown in

Fig. 1, in which a set𝑉 = {1, . . . , 𝐾} of nodes can only communicate

with their respective neighbors. Each node 𝑖 ∈ 𝑉 stores a subset D𝑖

of samples of a common unknown distribution D from which we

are interested in learning. The connectivity is characterized by an

undirected graph 𝐺 = (𝑉 , 𝐸), with 𝑉 denoting the set of nodes and

𝐸 ⊆ {(𝑖, 𝑗) ∈ 𝑉 ×𝑉 : 𝑖 ≠ 𝑗} the set of edges. The set of neighbors
of node 𝑖 is denoted as 𝑁𝑖 = { 𝑗 ∈ 𝑉 : (𝑖, 𝑗) ∈ 𝐸}.

Each node has available a local data set D𝑖 , and all devices col-

laboratively train a machine learning model by exchanging model-

related information without directly disclosing data samples to one

another. Each node can play the role of aggregator of models or

provider of a model.

• When a node 𝑁 is an aggregator, it receives the model from

all its neighbors and obtains an aggregated model.

• When a node 𝑁 is a provider, it sends its model parameter

to the aggregator/aggregators.

The Peer to Peer FL scenario works in rounds. A round is defined

in the graph by identifying the node which is the aggregator. The

rounding process until the learning process converges. A round is

defined in the graph by identifying the node which is the aggrega-

tor. The aggregator broadcasts the global model Parameter to its

neighbor providers. Then sampled clients perform local training of

(e.g., SGD optimizer) and compute their updates.

To introduce Differential Privacy in the previous P2P FL model,

a new graph is considered as follows. An undirected differential

private graph DPG (𝑁, 𝐸,DP) with DP denoting the applying DP

for a node 𝑖 , assuming that DP(𝑖) ∈ {0, 1} represents whether

the node applies differential Privacy when obtaining/updating the

local Model. Also, the rounding process is updated, so that the

perturbation mechanisms (DP) are added to the local updates for

a subset of nodes. In order for the perturbation mechanism to

have formal privacy guarantees, each local update needs to have a

bounded norm, which is ensured by applying a clipping operation

that reduces the clients’ individual model updates when their norm
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Figure 1: P2P FL Architecture

exceeds a given threshold. The network and communication model

are depicted in Figures 1 and 2, respectively.

Measuring quality of DP P2P FL: mainly, we will focused on the

relationship between the privacy budget and the utility of the model

as well as the performance of the attacker so, we are interested in

studying the trade-off utility (accuracy, loss ) vs. privacy (epsilon,

strength against model attacks) in them: (1) Privacy: evaluation of

how much information is leaked by the DF mechanisms; and (2)

Utility: evaluation of the difference between results obtained from

the original and deferentially private data (Loss - Accuracy)

4 IMPLEMENTATION DETAILS AND
EXPERIMENTAL SETUP

For system implementation, framing the experiments in previously

described way makes them manageable by Anaconda, which is a

Python-based data processing platform that runs on different envi-

ronment management systems like Windows, macOS and Linux.

It can easily create, save, load, and switch between environments

on the local computer as it comes with some default implemen-

tations of Integrated Development Environments (IDEs), the one

used is Spyder IDE, which is an editor with syntax highlighting,

introspection, and code completion.

Also, we used a set of frameworks, libraries, and dependencies

to meet all the requirements in a smooth environment for our peer-

to-peer framework.

The deepee differentially private PyTorch library is an open

source deep learning framework for developing deep learning mod-

els with the Opacus library that enables training PyTorch models

with differential privacy. Also, it supports training with minimal

Figure 2: Communication in P2P FL

code changes required on the client and allows tracking the privacy

budget expended at any given moment.
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Algorithm 1 Computations in the peer-to-peer FL model.

1: Initialize: for all 𝑖 = 1, . . . , 𝐾 , 𝑋
(0)
𝑖

= 𝑥 (0)

2: for each round 𝑡 = 0, 1, . . . do
3: for each node 𝑖 = 1, . . . , 𝐾 do in parallel do
4: Update nodes 𝑥

(𝑡,0)
𝑖

= 𝑥 (𝑡 )

5: for each neighbor node 𝑗 ∈ 𝑁𝑖 do in parallel do
6: local update: compute stochastic gradient and clip-

ping

7: DP: introduce noise into the model update

8: Local upload: send model to aggregator node

9: end for
10: Global averaging: average the model parameters at

the server

11: end for
12: end for

Also, one of the most important Framework used is Flwr for

building FL systems. It is used for edge devices to collaboratively

learn a shared prediction model, while keeping their training data

on the device.

Algorithm 1 describes aggregator execution pseudocode for Fed-

erated Averaging targeting updates from 𝐾 providers per round in

peer-to-peer.

The main goal of the experiment is to know whether DL will

affect the Learning process as we mentioned before in the problem

aswell as to get over the privacy concerns and to privacy-preserving

guarantee.

We consider working on two benchmarks dataset MNIST and

CIFAR-10. MNIST has been used in many research experiments.

It is a large database of handwritten digits of black and white im-

ages from NIST’s original datasets which is a large database of

handwritten uppercase and lowercase letters as well as digits. It

is normalized to fit into a 28x28 pixel, which introduces grayscale

levels, the dataset included images only of handwritten digits data-

base contains 60,000 training images and 10,000 testing images in

which, half of the training set and half of the test set were taken

from NIST’s training dataset, while the other half of the training

set and the other half of the test set were taken from MNIST’s

testing dataset. While the other one is CIFAR-10 which consists

of 60000 32 × 32 color images in 10 classes, with 6000 images per

class. There are 50000 training images and 10000 test images, the

dataset is divided into five training batches and one test batch, each

with 10000 images. The test batch contains exactly 1000 randomly

selected images from each class. The training batches contain the

remaining images in random order but some training batches may

contain more images from one class than another. Between them,

the training batches contain exactly 5000 images from each class.

The CIFAR-10 classes are airplane, automobile, bird, cat, deer, dog,

frog, horse, ship, and truck.

We are going to propose a set of successive Experiments con-

fined to a FL problem in a decentralized setting with applied DL

mechanisms to some nodes depending on some aspects related to

the state of the infrastructure of our Peer-to-Peer Framework.

The entire experiments will be having:

• a scheduler to regulate (control) the process of the Peer-to-

Peer Network in each round for all the nodes as to set a role

for each node in the Network to be an aggregator from the

neighbor nodes or the provider.

• Also, the scheduler will control whether the node has DL or

not, depending on two aspects:

– The number of samples in dataset (size of dataset).

– The number of connections with other nodes.

Here, the experiments run on 5 clients with equalized data but it is

split randomly.

For the setup of peer to peer, the role of the aggregator goes to

the node which has the highest number of connections with the

other nodes while its neighbors play the role of provider as well as

all of them will have DL and so on in each successive round.

5 EXPERIMENTAL RESULTS AND DISCUSSION
This Section shows the extensive evaluations were conducted to

show the performance of the proposed methods as there are the

results of four different approaches Centralized (Traditional) Feder-

ated Learning, Differential Privacy to centralized Federated Learn-

ing, peer-to-peer Federated Learning and Differential Privacy to

Peer to Peer on two different Datasets MNIST and CIFAR in Five

Rounds.

The experiments showwhen it runs on five clients with equalized

data among all the clients with a single aggregator (server) until

convergence achieved, and this is go to the part of the traditional

FL. On the other hand, the second part of the experiments is when

it runs on peer to peer FL, the rule of the aggregator does not go to

a specific node among all the rounds but it depends on the node

with the highest connections among the nodes and it differs from

round to round in which every node can play either one rule of

aggregator or provider per round until the learning process over

all the rounds finishes.

Tables 1 and 2 list the baseline results for the two datasets in a

classical FL setting, namely with a fixed node acting as a server for

5 clients, wherein the dataset is uniformly split among the clients.

The final accuracy and loss attained for standard FL without DP

and with DP Server, respectively, are listed in Tables 3 and 4, also

for both datasets.

In turn, Tables 5 and 6 list the performance (loss and accuracy)

for the case of decentralized FL, where the aggregator is changing

in each round (the aggregator node is marked in boldface numbers).

The nodes that do not participate in a given round are due to

the graph connectivity, recall that our graph is not complete, so

in a particular round there might be no physical communication

between a client and the aggregator node. Even in absence of DP,

this could slow down the rate of learning for the whole system in

comparison to a full interchange in a round, as in classical FL.

According to the results, when comparing the centralized FL

and DP centralised FL: accuracy on MNIST is consistently high for

all the rounds, so little sensitive to the introduction of privacy; in

contrast, accuracy on CIFAR is initially low and gradually increases

up to 70% in round 5. As expected, Table 7 shows that, in standard FL,

with and without DP at the clients, performance is homogeneous

across all the clients, which attain similar performance. This is

simply an indication that the data have been split uniformly without
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client 1 client 2 client 3 client 4 client 5

round MNIST CIFAR MNIST CIFAR MNIST CIFAR MNIST CIFAR MNIST CIFAR

1

Loss 0.125 2.287 0.131 2.286 0.124 2.287 0.129 2.283 0.116 2.278

Accuracy 0.959 0.151 0.964 0.150 0.958 0.144 0.958 0.155 0.964 0.151

2

Loss 0.081 1.351 0.085 1.333 0.068 1.360 0.076 1.326 0.075 1.370

Accuracy 0.975 0.548 0.971 0.562 0.977 0.545 0.973 0.547 0.977 0.538

3

Loss 0.078 0.982 0.079 0.965 0.064 0.979 0.071 0.970 0.074 0.969

Accuracy 0.978 0.667 0.974 0.674 0.979 0.666 0.979 0.676 0.978 0.660

4

Loss 0.078 0.952 0.075 0.899 0.061 0.9902 0.068 0.943 0.07 0.879

Accuracy 0.979 0.693 0.975 0.715 0.979 0.712 0.978 0.705 0.978 0.705

5

Loss 0.078 0.979 0.072 0.958 0.060 0.983 0.065 0.993 0.072 0.985

Accuracy 0.979 0.714 0.976 0.731 0.980 0.720 0.979 0.710 0.979 0.727

Table 1: Performance for standard FL without DP. Clients

client 1 client 2 client 3 client 4 client 5

round MNIST CIFAR MNIST CIFAR MNIST CIFAR MNIST CIFAR MNIST CIFAR

1

Loss 0.093113 0.073505 0.089048 0.0735248 0.087845 0.0735352 0.0903270 0𝑙 .0735159 0.0931194 0.0734737

Accuracy 0.695 0.163 0.708333 0.147 0.714186 0.132 0.70333 0.14 0.6975 0.177

2

Loss 0.050274 0.070985 0.044131 0.0710392 0.046384 0.0711034 0.0497613 0.0710027 0.0532784 0.0708465

Accuracy 0.86 0.187 0.87166 0.186 0.87166 0.3203 0.85083 0.187 0.8525 0.199

3

Loss 0.047559 0.066884 0.041380 0.0669977 0.044854 0.0670923 0.0497825 0.0669886 0.0540392 0.0667669

Accuracy 0.885 0.229 0.894166 0.221 0.8866 0.234 0.869186 0.198 0.875 0.259

4

Loss 0.048086 0.065885 0.039818 0.0656856 0.043185 0.0655003 0.0488195 0.0658598 0.0534120 the 0.0654942

Accuracy 0.905 0.256 0.9033 0.247 0.90583 0.258 0.8841 0.227 0.8983 0.258

5

Loss 0.04594 0.065530 0.037074 0.0651977 0.041597 0.0648178 0.0448278 0.0655778 0.04965 0.06506

Accuracy 0.90583 0.275 0.9116 0.258 0.908 0.263 0.9001 0.243 0.9025 0.28

Table 2: Performance for standard FL with DP. Clients

bias among the clients. Note also that, when DP is introduced

(Table 8, performance decreases drastically for CIFAR, while is

stable for MNIST. Thus, we clearly see that DP is more effective (for

a constant 𝜖) in the latter case, and that the tuning of DP needs to

be carefully set depending on the statistical distribution of the data.

MNIST CIFAR

accuracy loss accuracy loss

1 0.70366658 0.09069073 0.3114 1.853063607

2 0.8613333 0.048766047 0.4782 1.146727948

3 0.88199 0.047523097 0.5142 1.373809791

4 0.899933 0.046664422 0.5128 1.364574289

5 0.90599 0.043820837 0.5374 1.333600569

Table 3: Performance for standard FL w/o DP. Server

MNIST CIFAR

accuracy loss accuracy loss

1 0.70366658 0.09069073 0.1518 0.0735108

2 0.8613333 0.048766047 0.15586 0.071215

3 0.88199 0.047523097 0.2282 0.0669454

4 0.899933 0.046664422 0.2492 0.0656846

5 0.90599 0.043820837 0.2638 0.0652362

Table 4: Performance for standard FL with DP. Server

We also confirm experimentally that DP has a substantial impact

on accuracy, and can therefore make convergence quite slow in FL.

6 CONCLUSIONS
This paper has analyzed a decentralized approach for a Federated

Learning, namely peer-to-peer FL with Differential Privacy to en-

able privacy among the network nodes and significantly improve

upon established ways for protecting privacy. Peer-to-peer FL with

DP (with noise multiplier 0.5, 𝜖 = 2.59 for every client) is able to

protect personal data much better than the traditional methods. We

have compared as well different approaches to ML according to

privacy: 1) Centralized FL (reduction of the P2P model where the

aggregator is the same in all rounds); 2) P2P FL (decentralized); 3)

DP Centralized ; 4) DP P2P FL.

Strong privacy requirements in FL among a fully decentralized

set of agents can be achieved by adapting the natural solution of

introducing DL at the clients in each communication and comput-

ing round. However, in contrast to the well-studied case of a FL

approach with DP in the scenarios of a single and central aggre-

gator, the peer-to-peer interactions during all the learning cycle

(including local learning, noise injection and distribution of the

models) is more complex and still not understood. In this respect,

the work in this paper are a first experimental attempt at getting

some insight into this interplay FL vs. DP vs. communications.
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client 1 client 2 client 3 client 4 client 5

round MNIST CIFAR MNIST CIFAR MNIST CIFAR MNIST CIFAR MNIST CIFAR

1

Loss 0.070 1.874
0.085013∗ 1.854197∗ 0.079 1.837 0.108 1.886 0.083 1.840

Accuracy 0.977 0.350 0.975 0.360 0.973 0.3444 0.96 0.346

2

Loss

DNP

0.163 1.864 0.149 1.844
0.15307 * 1.85297 *

0.147 1.851

Accuracy 0.947 0.323 0.955 0.329 0.958 0.340

3

Loss 0.137 1.834 0.136 1.809
DNP

0.133 1.839
0.13665∗ 1.8271 *

Accuracy 0.951 0.311 0.955 0.323 0.952 0.320

4

Loss

0.20864∗ 1.71693∗ 0.227 1.719
DNP DNP

0.190 1.715

Accuracy 0.925 0.393 0.930 0.396

5

Loss

DNP

0.220 1.625
0.2226∗ 1.63389∗ 0.226 1.643

DNP

Accuracy 0.923 0.421 0.924 0.415

Table 5: Performance for decentralized FL w/o DP. (DNP: Does Not Participate); (* the node is the aggregator in this round)

client 1 client 2 client 3 client 4 client 5

round MNIST CIFAR MNIST CIFAR MNIST CIFAR MNIST CIFAR MNIST CIFAR

1

Loss 0.1434536 0.0735429
0.1421104∗ 0.073515∗ 0.1442883 0.073528 0.140833 0.073529 0.142315 0.073507

Accuracy 0.50008 0.178 0.49333 0.14 0.515 0.161 0.5291 0.172

2

Loss

DNP

0.04892 0.07189 0.05340 0.07190
0.052364∗ 0.071975∗ 0.054835 0.07194

Accuracy 0.8383 0.209 0.9266 0.201 0.835 0.186

3

Loss 0.041484 0.067329 0.03560 0.06895
DNP

0.04003 0.068072
0.040854∗ 0.0682872∗

Accuracy 0.885 0.268 0.8883 0.256 0.8808 0.228

4

Loss

0.42075∗ 0.06580∗ 0.03644 0.066814
DNP DNP

0.04480 0.06698

Accuracy 0.89916 0.284 0.90083 0.26

5

Loss

DNP

0.03356 0.06569
0.0402994∗ 0.0650621∗ 0.038218 0.0658201

DNP

Accuracy 0.91166 0.298 0.90666 0.258

Table 6: Performance for decentralized FL with DP. (DNP: Does Not Participate); (* the node is the aggregator in this round)

MNIST CIFAR

accuracy loss accuracy loss

1 0.97525 0.0850137 0.35 1.854197413

2 0.96233 0.15307427 0.3307 1.85297886

3 0.95267 0.136656276 0.318 1.827163457

4 0.9275 0.20864009 0.3945 1.71693456

5 0.9235 0.222623288 0.418 1.633897543

Table 7: Performance for decentralized FL w/o DP: aggregator
nodes.

MNIST CIFAR

accuracy loss accuracy loss

1 0.50773 0.142110457 0.16275 0.073515633

2 0.83334 0.052364741 0.195 0.071975463

3 0.88471 0.040853945 0.248 0.068287218

4 0.9 0.042075122 0.272 0.06580271

5 0.9092 0.040299454 0.278 0.065062102

Table 8: Performance for decentralized FL with DP: aggrega-
tor nodes.
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