
The MuSe 2022 Multimodal Sentiment Analysis Challenge:
Humor, Emotional Reactions, and Stress

Lukas Christ
University of Augsburg
Augsburg, Germany

Shahin Amiriparian
University of Augsburg
Augsburg, Germany

Alice Baird
Hume AI

New York, USA

Panagiotis Tzirakis
Hume AI

New York, USA

Alexander Kathan
University of Augsburg
Augsburg, Germany

Niklas Müller
University of Passau
Passau, Germany

Lukas Stappen
Recoro

Munich, Germany

Eva-Maria Meßner
University of Ulm
Ulm, Germany

Andreas König
University of Passau
Passau, Germany

Alan Cowen
Hume AI

New York, USA

Erik Cambria
Nanyang Technological University

Singapore

Björn W. Schuller
Imperial College London
London, United Kingdom

ABSTRACT

TheMultimodal Sentiment Analysis Challenge (MuSe) 2022 is ded-
icated to multimodal sentiment and emotion recognition. For this
year’s challenge, we feature three datasets: (i) the Passau Spon-
taneous Football Coach Humor (Passau-SFCH) dataset that con-
tains audio-visual recordings of German football coaches, labelled
for the presence of humour; (ii) the Hume-Reaction dataset in
which reactions of individuals to emotional stimuli have been an-
notated with respect to seven emotional expression intensities,
and (iii) the Ulm-Trier Social Stress Test (Ulm-TSST) dataset com-
prising of audio-visual data labelled with continuous emotion val-
ues (arousal and valence) of people in stressful dispositions. Us-
ing the introduced datasets, MuSe 2022 addresses three contempo-
rary affective computing problems: in the Humor Detection Sub-
Challenge (MuSe-Humor), spontaneous humour has to be recog-
nised; in the Emotional Reactions Sub-Challenge (MuSe-Reaction),
seven fine-grained ‘in-the-wild’ emotions have to be predicted; and
in the Emotional Stress Sub-Challenge (MuSe-Stress), a continu-
ous prediction of stressed emotion values is featured. The challenge
is designed to attract different research communities, encouraging
a fusion of their disciplines. Mainly, MuSe 2022 targets the com-
munities of audio-visual emotion recognition, health informatics,
and symbolic sentiment analysis. This baseline paper describes the
datasets as well as the feature sets extracted from them. A recur-
rent neural network with LSTM cells is used to set competitive
baseline results on the test partitions for each sub-challenge. We
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report an Area Under the Curve (AUC) of .8480 for MuSe-Humor;
.2801 mean (from 7-classes) Pearson’s Correlations Coefficient (𝜌)
for MuSe-Reaction, as well as .4931 Concordance Correlation Co-
efficient (CCC) and .4761 for valence and arousal in MuSe-Stress,
respectively.
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1 INTRODUCTION

The 3rd edition of the Multimodal Sentiment Analysis (MuSe)
Challenge addresses three tasks: humour detection and categori-
cal as well as dimensional emotion recognition. Each correspond-
ing sub-challenge utilises a different dataset. In the Humor De-
tection Sub-Challenge (MuSe-Humor), participants will detect
the presence of humour in football press conference recordings.
For MuSe-Humor, the novel Passau Spontaneous Football Coach
Humor (Passau-SFCH) dataset is introduced. It features press
conference recordings of 10 German Bundesliga football coaches,
recorded between August 2017 and November 2017. Initially, the
dataset comprises about 18 hours of video, where each of the 10
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Table 1: Reported are the number (#) of unique subjects, and

the duration for each sub-challenge hh :mm :ss.

MuSe-Humor MuSe-Reaction MuSe-Stress

Partition # Duration # Duration # Duration

Train 4 3 :52 :44 1334 51 :04 :02 41 3 :25 :56
Development 3 3 :08 :12 444 14 :59 :27 14 1 :10 :50
Test 3 3 :55 :41 444 14 :48 :21 14 1 :10 :41∑

10 10 :56 :37 2222 74 :26 :19 69 5 :47 :27

coaches accounts for at least 90 minutes of data. The subset pro-
vided in the challenge still features 11 hours of video. Originally,
the data is annotated for direction as well as sentiment of humour
following the two-dimensional model of humour proposed in [36].
In the challenge, only the presence of humour is to be predicted.

For the Emotional Reactions Sub-Challenge (MuSe-Reaction),
emotional reactions are explored by introducing a first of its kind,
large-scale (2,222 subjects, 70+ hours), multi-modal (audio and
video) dataset: Hume-Reaction . The data was gathered in the
wild, with subjects recording their own facial and vocal reactions to
a wide range of emotionally evocative videos via their webcam, in a
wide variety of at-home recording settings with varying noise con-
ditions. Subjects selected the emotions they experienced in response
to each video out of 48 provided categories and rated each selected
emotion on a 0-100 intensity scale. In this sub-challenge, partici-
pants will apply a multi-output regression to predict the intensities
of seven self-reported emotions from the subjects’ multi-modal
recorded responses: Adoration, Amusement, Anxiety, Disgust, Em-
pathic Pain, Fear, Surprise .

The Emotional Stress Sub-Challenge (MuSe-Stress) is a regres-
sion task on continuous signals for valence and arousal. It is based
on the Ulm-Trier Social Stress Test dataset (Ulm-TSST), comprising
individuals in a stress-inducing scenario following the Trier Social
Stress Test (TSST). This sub-challenge is motivated by the preva-
lence of stress and its harmful impacts in modern societies [12]. In
addition to audio, video and textual features, Ulm-TSST includes
four biological signals captured at a sampling rate of 1 kHz; EDA,
Electrocardiogram (ECG), Respiration (RESP), and heart rate (BPM).
MuSe-Stress was already part ofMuSe 2021 [42], where it attracted
considerable interest. Due to some participants reporting challenges
generalising to the test set [20, 27], we rerun the challenge, allow-
ing participants to submit more predictions than in the previous
iteration. We thereby hope to encourage participants to thoroughly
explore the robustness of their proposed approaches. Moreover, for
this year’s MuSe-Stress sub-challenge, we use the labels of last
year’s MuSe-Physio sub-challenge as the arousal gold standard.

By providing thementioned tasks in the 2022 edition ofMuSe, we
aim for addressing research questions that are of interest to affective
computing, machine learning and multimodal signal processing
communities and encourage a fusion of their disciplines. Further,
we hope that our multimodal challenge can yield new insights
into the merits of each of the core modalities, as well as various
multimodal fusion approaches. Participants are allowed to use the
provided feature sets in the challenge packages and integrate them
into their own machine learning frameworks.

The paper is structured as follows: Section 2 introduces the three
sub-challenges alongside with the datasets they are based on, and
outlines the challenge protocol. Then, pre-processing, provided
features, their alignment, and our baseline models are described in
Section 3. In Section 4, we present and discuss our baseline results
before concluding the paper in Section 5.

A summary of the challenge results can be found in [1].

2 THE THREE SUB-CHALLENGES

In what follows, each sub-challenge and dataset is described in
detail, as well as the participation guidelines.
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Figure 1: Frequency distribution in the partitions train,

development, and test for the continuous prediction sub-

challenge MuSe-Stress.

2.1 The MuSe-Humor Sub-Challenge

Humour is one of the richest and most consequential elements of
human behaviour and cognition [25] and thus of high relevance in
the context of affective computing and human-computer interac-
tion. As humour can be expressed both verbally and non-verbally,
multimodal approaches are especially suited for detecting humour.
However, while humour detection is a very active field of research
in Natural Language Processing (e. g., [16, 52]), only a few multi-
modal datasets for humour detection exist [28, 38, 51]. Especially,
to the best of our knowledge, there are no datasets for detecting hu-
mour in spontaneous, non-staged situations. With MuSe-Humor,
we intend to address this research gap.

In this challenge, the Passau-SFCH dataset is utilised. It features
video and audio recordings of press conferences of 10 German
Bundesliga football coaches, during which the coaches occasionally
express humour. The press conferences present natural, live, semi-
staged communication of the coaches to and with journalists in
the audience. All subjects are male and aged between 30 and 53
years. The dataset is split into speaker independent partitions. The
training set includes the videos of 4 coaches, while the development
and test partition both comprise the videos of 3 coaches. We only
include segments in which the coach is speaking to ensure that
humour is detected from the behaviour of the coach and not the
audience, e. g., laughter. Participants are provided with video, audio,
and ASR transcripts of said segments. To obtain the transcripts,
we utilise a Wav2Vec2-Large-XLSR [17] model fine-tuned on the
German data in Common Voice [6]1. Moreover, manually corrected
transcripts are included.
1https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german

https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german


MuSe 2022: Baseline Paper MuSe’ 22, October 10, 2022, Lisboa, Portugal

Every video was originally labelled by 9 annotators at a 2Hz
rate indicating sentiment and direction of the humour expressed, as
defined by the two-dimensional humour model proposed by Martin
et al. [36] in the Humor Style Questionnaire (HSQ). For the chal-
lenge, we only build upon binary humour labels, i. e., indicating if
the coach’s communication is humorous or not. We obtain a binary
label referring to presence or absence of humour using the follow-
ing three steps. First, we only consider the humour dimension label
of sentiment. Second, based on the sentiment labels, we filter out
annotators displaying low agreement with other annotators. In
order to account for slight lags in annotation signals, we choose to
compute the target humour labels for frames of two seconds using
a step size of one second. Finally, such a frame is considered as
containing humour if at least 3 of the remaining annotators indicate
humour within this frame. As a result, 4.9 % of the training parti-
tion frames, 2.9 % of the development partition frames, and 3.9 % of
the test partition frames are labelled as humorous. We deliberately
opted for a split in which the humour label is over-represented in
the training partition in order to help participants’ models with
learning. The provided features are extracted at 2Hz rates. They
can easily be mapped to the 2 s segments they belong to.

For evaluation, the AUC metric is utilised, indicating how well a
model can separate humorous from non-humorous frames.

2.2 The MuSe-Reaction Sub-Challenge

Computational approaches for understanding human emotional
reactions are of growing interest to researchers [32, 46], with emerg-
ing applications ranging from pedagogy [15] to medicine [41]. A
person’s reaction to a given stimulus can be informative about both
the stimulus itself, e. g., whether educational material is interesting
to a given audience, and about the person, e. g., their level of empa-
thy [48] and well-being [57]. However, progress in developing com-
putational approaches to understand human emotional reactions
has been hampered by the limited availability of large-scale datasets
of spontaneous emotional reactions. Thus, for the MuSe-Reaction
sub-challenge, we introduce the Hume-Reaction (Hume-Reaction)
dataset, which consists of more than 70 hours of audio and video
data, from 2,222 subjects from the United States (1,138) and South
Africa (1,084), aged from 18.5 – 49.0 years old.

The subjects within the dataset are reacting to a wide range
of emotionally evocative stimuli (2,185 stimuli in total [18]). Each
sample within the dataset has been self-annotated by the subjects
themselves for the intensity of 7 emotional expressions in a range
from 1-100: Adoration, Amusement, Anxiety, Disgust, Empathic
Pain, Fear, Surprise.

The data is self-recorded via subjects’ own webcams in an envi-
ronment of their choosing, including a wide variety of background,
noise, and lighting conditions. Furthermore, different subjects spon-
taneously reacted with their faces and voices to varying degrees,
such that the audio and multi-modal aspects of this sub-challenge
will be particularly interesting to incorporate. The organisers also
provide labels for detected (energy-based) vocalisations to aid par-
ticipants in incorporating audio, with a total of 8,064 multi-modal
recordings found to include vocalisations.

For the MuSe-Reaction sub-challenge the aim is to perform a
multi-output regression from features extracted from the multi-
modal (audio and video) data for the intensity of 7 emotional re-
action classes. For this sub-challenge’s evaluation, the Pearson’s
correlations coefficient (𝜌) is reported as the primary baseline.

2.3 The MuSe-Stress Sub-challenge

The MuSe-Stress task is based on the multimodal Ulm-TSST data-
base, for which subjects were recorded in a stress-inducing, free
speech scenario, following the TSST protocol [31]. In the TSST, a
job interview situation is simulated. Following a short period of
preparation, a five-minute free speech oral presentation is given by
the subjects. This presentation is supervised by two interviewers,
who do not communicate with the subjects during the five minutes.
Ulm-TSST comprises recordings of such TSST presentations of 69
participants (49 of them female), aged between 18 and 39 years.
Overall, Ulm-TSST includes about 6 hours of data (cf. Table 1).
On the one hand, the dataset features the audio, video, and text
modalities. On the other hand, the physiological signals ECG, RESP,
and BPM are provided. For extensive experiments on multimodal
emotion recognition in TSST-based multimodal datasets see [9].

Ulm-TSST has been annotated by three raters continuously for
the emotional dimensions of valence and arousal, at a 2Hz sam-
pling rate. Regarding valence, a gold standard is created by fus-
ing the three corresponding annotator ratings, utilising the Rater
Aligned Annotation Weighting (RAAW) method from the MuSe-
Toolbox [45]. RAAWaddresses the difficulties arising when emotion
annotations – subjective in their nature – are to be combined into
a gold standard signal. In short, RAAW first tackles the inherent
rater lag by aligning the (per annotator) standardised signals via
generalised Canonical Time Warping (CTW) [56]. After that, the
Evaluator Weighted Estimator (EWE) [26] is applied to the aligned
signals. EWE fuses the individual signals using a weighting based
on each rater’s inter-rater agreement to the mean of all others. A
detailed description of RAAW can be found in [45]. We obtain a
mean inter-rater agreement of 0.204 (± 0.200) for valence.

As for the arousal gold standard, a different approach is em-
ployed. Instead of fusing the three annotators’ arousal ratings, we
take the labels of last year’s MuSe-Physio sub-challenge as the
arousal gold standard. Here, the annotator with lowest inter-rater
agreement is discarded and replaced with the subject’s electroder-
mal activity signal (EDA) which is known to indicate emotional
arousal [14]. This signal is downsampled to 2Hz and smoothed us-
ing a Savitzky–Golay filtering approach (window size of 26 steps) in
advance. Then, the two remaining annotators and the preprocessed
EDA signal are again fused via RAAW, resulting in a mean inter
annotator agreement of 0.233 (±0.289). This signal is called phys-
iological arousal in the following. The motivation to employ this
kind of gold standard is to obtain a more objective arousal signal.
Considering such an objective criterion for arousal in addition to
subjective annotations is especially relevant given the task at hand:
in the job interview setting, individuals can be expected to try to
hide their arousal, making it more difficult for annotators to recog-
nise it. Detailed experiments on combining subjective annotations
with objective physiological signals are provided in [8].
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Ulm-TSST is split into train, development, and test partitions
containing 41, 14, and 14 videos, respectively. The split is identical
to the split used in last year’s challenge. Figure 1 shows the dis-
tributions of the valence and physiological arousal signals for the
dataset.

2.4 Challenge Protocol

All challenge participants are required to complete the End User
License Agreement (EULA) which is available on the MuSe 2022
homepage2. Further, the participants must hold an academic affili-
ation. Each challenge contribution should be followed by a paper
that describes the applied methods and provides the obtained re-
sults. The peer review process is double-blind. To obtain results on
the test set, participants upload their predictions for unknown test
labels on CodaLab3. The number of prediction uploads depends
on the sub-challenge: for MuSe-Humor and MuSe-Reaction, up
to 5 prediction uploads can be submitted, while for MuSe-Stress,
up to 20 prediction uploads are allowed. We want to stress that
the organisers themselves do not participate as competitors in the
challenge.

3 BASELINE FEATURES AND MODEL

To enable the participants to get started quickly, we provide a set
of features extracted from each sub-challenge’s video data. More
precisely, the provided features include of up to five model-ready
video, audio, and linguistic feature sets, depending on the sub-
challenge4. Regarding the label sampling rate, labels refer to 2 s
windows in MuSe-Humor. The MuSe-Stress data is labelled at a
2Hz rate. For MuSe-Reaction, there is one label vector of 7 classes
per sample.

3.1 Pre-processing

All datasets are split into training, development, and test sets. For all
partitions, ratings, speaker independence, and duration are taken
into consideration (cf. Table 1). The videos in Passau-SFCH are cut
to only include segments in which the respective coach is actually
speaking. As the press conference setting can be seen as a dia-
logue between journalists and the coach, the answers given by each
coach provide a natural segmentation of the Passau-SFCH data.
For MuSe-Reaction – as can be seen in Table 1 –, a 60-20-20% split
strategy is applied. There is no additional segmentation applied to
clean the data further, each sample contains a single reaction to an
emotional stimulus, and labels were normalised per sample to range
from [0 :1]. For further exploration, the participants are also pro-
vided with voice activity segments from the samples, which show
to contain audio of substantial energy. In the Ulm-TSST dataset,
we make sure to exclude scenes which are not a part of the TSST
setting, e. g., the instructor speaking. Moreover, we cut segments in
which TSST participants reveal their names. The Ulm-TSST dataset
is not segmented any further.

2https://www.muse-challenge.org
3https://codalab.lisn.upsaclay.fr/
4Note: Participants are free to use other external resources such as features, datasets,
or pretrained networks. The accompanying paper is expected to clearly state and
explain the sources and tools used.

3.2 Audio

All audio files are first normalised to -3 decibels and then converted
from stereo to mono, at 16 kHz, 16 bit. Afterwards, we make use of
the two well-established machine learning toolkits openSMILE [23]
and DeepSpectrum [3] for expert-designed and deep feature extrac-
tion from the audio recordings. Both systems have proved valuable
in audio-based Speech Emotion Recognition (SER) tasks [5, 10, 24].

3.2.1 eGeMAPS. The openSMILE toolkit [23]5 is used for the ex-
traction of the extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) [22]. This feature set which is proven valuable for
SER tasks [7], also in past MuSe challenges (e. g., [50]), includes 88
acoustic features that can capture affective physiological changes
in voice production. In MuSe-Humor, we use the default configu-
ration to extract the 88 eGeMAPS functionals for each two second
audio frame. For the audio of MuSe-Reaction, the 88 eGeMAPS
functionals are extracted with a step size of 100ms and window size
of 1 second. Regarding MuSe-Stress, the functionals are obtained
with a 2Hz rate, using a window size of 5 seconds.

3.2.2 DeepSpectrum. The principle of DeepSpectrum [3]6 is to
utilise pre-trained image Convolutional Neural Networks (CNNs)
for the extraction of deep features from visual representations (e. g.,
Mel-spectrograms) of audio signals. The efficacy of DeepSpectrum
features has been demonstrated for SER [39], sentiment analysis [2],
and general audio processing tasks [4]. For our DeepSpectrum
baseline experiments, we use DenseNet121 [30] pre-trained on
ImageNet [40] as the CNN backbone. The audio is represented as
a Mel-spectrogram with 128 bands employing the viridis colour
mapping. Subsequently, the spectrogram representation is fed into
DenseNet121, and the output of the last pooling layer is taken as
a 1 024-dimensional feature vector. The window size is set to one
second, the hop-size to 500ms.

3.3 Video

To extract specific image descriptors related to facial expressions,
wemake use of two CNN architectures: Multi-task Cascaded Convo-
lutional Networks (MTCNN) and VGGface 2. We also provide a set
of Facial Action Units (FAUs) obtained from faces of individuals in
the datasets. Further, participants are also given the set of extracted
faces from the raw frames. In the videos of MuSe-Humor, typically
more than one face is visible. As this sub-challenge’s objective is to
predict the expression of humour of the coach, we only provide the
faces of the respective coach and the features computed for them.

3.3.1 MTCNN. The MTCNN [54] model7, pre-trained on the data-
sets WIDER FACE [53] and CelebA [33], is used to detect faces in
the videos. Two steps are carried out to filter extracted faces that
do not show the coach in Passau-SFCH: first, we automatically
detect the respective coach’s faces using FaceNet8 embeddings of
reference pictures showing the coach. The results of this proce-
dure are then corrected manually. Ulm-TSST, in contrast, has a
simple, static setting. The camera position is fixed and videos only
show the TSST subjects who typically do not move much. Similarly,

5https://github.com/audeering/opensmile
6https://github.com/DeepSpectrum/DeepSpectrum
7https://github.com/ipazc/mtcnn
8https://github.com/timesler/facenet-pytorch

https://www.muse-challenge.org
https://codalab.lisn.upsaclay.fr/
https://github.com/audeering/opensmile
https://github.com/DeepSpectrum/DeepSpectrum
https://github.com/ipazc/mtcnn
https://github.com/timesler/facenet-pytorch
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for MuSe-Reaction, the video is captured from a fixed webcam.
Hence, the performance of MTCNN is almost flawless for both
Hume-Reaction and Ulm-TSST. The extracted faces then serve as
inputs of the feature extractors VGGface 2 and Py-Feat .

3.3.2 VGGface 2. The purpose of VGGface 2 is to compute gen-
eral facial features for the previously extracted faces. VGGface
2 [13] is a dataset for the task of face recognition. It contains 3.3
million faces of about 9,000 different persons. As the dataset is orig-
inally intended for supervised facial recognition purposes, models
trained on it compute face encodings not directly related to emotion
and sentiment. We use a ResNet50 [29] trained on VGGface 29 and
detach its classification layer, resulting in a 512-dimensional feature
vector output referred to as VGGface 2 in the following.

3.3.3 FAU. FAUs as originally proposed by Ekman and Friesen [21],
are closely related to the expression of emotions. Hence, detecting
FAUs is a promising and popular approach to the visual prediction
of affect-related targets (e. g., [35]). We employ Py-Feat 10 to obtain
predictions for the presence of 20 different FAUs. We do not change
Py-Feat ’s default configuration, so that a pre-trained random forest
model is used to predict the FAUs.

3.4 Language: Bert

In recent years, pre-trained Transformer language models ac-
count for state-of-the-art results in numerous Natural Language
Processing tasks, also in tasks related to affect (e. g., [10]). In
general, these models are pretrained in a self-supervised way
utilising large amounts of text data. Subsequently, they can be
fine-tuned for specific downstream tasks. For the transcripts of
MuSe-Humor and MuSe-Stress, we employ a German version
of the BERT (Bidirectional Encoder Representations from Trans-
formers [19]) model11. No further fine-tuning is applied. For both
Passau-SFCH and MuSe-Stress, we extract the BERT token em-
beddings. Additionally, we obtain 768 dimensional sentence em-
beddings for all texts in Passau-SFCH by using the encodings of
BERT ’s [𝐶𝐿𝑆] token. In all cases, we average the embeddings pro-
vided by the last 4 layers of the BERTmodel, following [47].

3.5 Alignment

For each task, at least two different modalities are available. Typi-
cally, sampling rates per modality may differ. We sample the visual
features with a rate of 2Hz in all sub-challenges. The only excep-
tion is the FAUs in MuSe-Reaction, which are sampled at a 4Hz
rate. Regarding the audio features (DeepSpectrum and eGeMAPS),
we apply the same frequency in MuSe-Humor and MuSe-Stress,
while eGeMAPS features are obtained using a step size of 100ms
in MuSe-Reaction. As VGGish and FAUs are only meaningful if
the respective frame actually includes a face, we impute frames
without a face with zeros.

For MuSe-Humor, the binary humour label refers to frames
of at most 2 seconds length. Hence, each label in MuSe-Humor
corresponds to at most 4 facial and acoustic feature vectors. 2Hz
sentence embedding vectors are constructed by assigning every

9https://github.com/WeidiXie/Keras-VGGFace2-ResNet50
10https://py-feat.org
11https://huggingface.co/bert-base-german-cased

sentence to the 500ms frames it corresponds to. If two sentences
fall into the same frame, their embeddings are averaged to form the
feature for that frame.

Regarding MuSe-Reaction, there is no alignment needed with
labels, as each file is associated to a single vector of 7 emotional
reaction labels.

For the MuSe-Stress sub-challenge, we provide label-aligned
features. Hence, these features exactly align with the labels. We
apply zero-padding to the frames, where the feature type is absent.
Moreover, we downsample the biosignals in Ulm-TSST to 2Hz, fol-
lowed by a smoothing utilising a Savitzky-Golay filter. Participants
are provided with both the raw signals and the downsampled ones.

In both Ulm-TSST and Passau-SFCH, manual transcripts are
available. However, they lack timestamps. Hence, we reconstruct
word level timestamps utilising the Montreal Forced Aligner
(MFA) [37] tool. Here, we employ the German (Prosodylab) model
and the German Prosodylab dictionary. The text features are then
aligned to the 2Hz label signal by repeating each word embedding
throughout the determined interval of the corresponding word. In
case a 500ms frame comprises more than oneword, we average over
the word embeddings. Zero imputing is applied to parts where sub-
jects do not speak. For the sentence embeddings in Passau-SFCH
we choose an analogous approach, repeating and, if applicable,
averaging the embeddings.

3.6 Baseline Model: LSTM-RNN

The sequential nature of the tasks makes recurrent neural networks
(RNNs) a natural choice for a fairly simple baseline system. More
specifically, we employ a Long Short-Term Memory (LSTM)-RNN.
Initially, we train a single model on each of the available feature
sets. Regarding MuSe-Stress, we separately train a model for both
labels, valence and physiological arousal. We conduct an extensive
hyperparameter search for each prediction target and feature. We
thus optimise the number of RNN layers, the dimensionality of
the LSTM’s hidden vectors and the learning rate. Of note, we also
experiment with both unidirectional and bidirectional LSTMs. The
code as well as the configurations found in the hyperparameter
search are available in the baseline GitHub repository12.

Each label in MuSe-Humor is predicted based on all feature
vectors belonging to the corresponding 2 s window. Hence, the
sequence length in the MuSe-Humor training process is at most 4
steps.

In both MuSe-Reaction and MuSe-Stress, we make use of a
segmentation approach which showed to improve results in previ-
ous works [43, 44, 47]. We find that a segmentation of the training
data with a window size of 50 s (i. e., 200 steps) and a hop size
of 25 s (i.e., 100 steps) leads to good results for MuSe-Stress. For
MuSe-Reaction a slightly larger size of 500 steps and a hop size
of 250, lead to more robust results.

Following the unimodal experiments, in order to combine differ-
ent modalities, for MuSe-Humor and MuSe-Stress, we implement
a simple late fusion approach. We apply the exact same training pro-
cedure as before, now treating the predictions of previously trained
unimodal models as input features. In these experiments, we use
one configuration per task, without performing a hyperparameter

12https://github.com/EIHW/MuSe2022

https://github.com/WeidiXie/Keras-VGGFace2-ResNet50
https://py-feat.org
https://github.com/EIHW/MuSe2022
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search for every possible modality combination in MuSe-Stress.
As this approach for late fusion is less suited to a multi-label strat-
egy, we apply an early fusion strategy for MuSe-Reaction. For
early fusion, we simply concatenate the best performing feature
sets for eachmodality (audio and video), and then train a newmodel
with the same hyperparameters from the uni-modal experiments.
The code and configuration for the two fusion methods are also
part of the baseline GitHub repository13. Moreover, the repository
also includes links to the best model weight files in order to ease
reproducibility.

4 EXPERIMENTS AND BASELINE RESULTS

We apply the model described above for every sub-challenge. In
what follows, we discuss the baseline results in more detail.

4.1 MuSe-Humor

The results for MuSe-Humor are given in Table 2. Each result is
obtained from running the LSTM using the specified features with
5 different fixed seeds, consistent with the challenge setting.

Table 2: Results for MuSe-Humor. We report the AUC-

Scores for the best among 5 fixed seeds, as well as the mean

AUC-Scores over these seeds and the corresponding stan-

dard deviations.

[AUC]
Features Development Test

Audio

eGeMAPS .6861 (.6731 ± .0172) .6952 (.6979 ± .0098)
DeepSpectrum .7149 (.7100 ± .0030) .6547 (.6497 ± .0102)

Video

FAU .9071 (.9030 ± .0028) .7960 (.7952 ± .0077)
VGGface 2 .9253 (.9225 ± .0024) .8480 (.8412 ± .0027)

Text

BERT .8270 (.8216 ± 0045) .7888 (.7905 ± 0035)

Late Fusion

A+T .8901 (.8895 ± .0005) .7804 (.7843 ± .0037)
A+V .8252 (.8219 ± .0038) .6643 (.6633 ± .0027)
T+V .8908 (.8893 ± .0015) .8232 (.8212 ± .0017)
A+T+V .9033 (.9026 ± .0006) .7973 (.7910 ± .0057)

Evaluating audio and video features for the MuSe-Humor sub-
challenge shows a clear pattern. The video-based features, FAU and
VGGish, clearly outperform the audio-based features with VGGish
accounting for an AUC of .8480 on the test set while eGeMAPS
only achieves .6952 AUC. This comes as no surprise, given that the
expression of humour is often accompanied by smile or laughter
and thus recognisable from facial expressions features. A manual
inspection of the humorous segments confirms this intuition. Nev-
ertheless, audio features are able to detect humour, too. Partly, this
may be due to the presence of laughter. The performance of text
features (.7888 on the test set) is slightly worse than for the features
13https://github.com/EIHW/MuSe2022

based on the video modality, but also better than the performance
of the audio features. We find that the sentence-level BERT fea-
tures outperform the token-level features. With the simple fusion
of modalities, the performance is not improved. Specifically, the late
fusion approach typically shows worse generalisation to the test
data than the unimodal experiments. e. g., there is a discrepancy of
about .16 between mean AUC on the development (.8219) and test
(.6633) sets for the combination of audio and video.

4.2 MuSe-Reaction

Table 3 shows the results for the MuSe-Reaction baseline. As
expected, the audio results are substantially lower than those from
the video modality. Of particular note, as it pertains to audio, we see
that the emotion-tailored feature-set of eGeMAPS performs poorly,
almost 0.05 𝜌 lower on the development set than the DeepSpectrum
features. Given that there is limited speech in the data set, this may
be why the DeepSpectrum features perform better, as due to being
spectrogram-based, they can potentially capture a more general
acoustic scene and non-speech verbalisations potentially better.

For the video features, the FAUs are performing much better on
the test set than VGGface 2 (although both are derived from faces),
given the nature of the data being ‘reactions’, it may be that the
facial action units are much more dynamic generally, and these
features model more accurately the emotional expression occurring
within the scene.

Interestingly, when we observe the individual class scores, we
see that Amusement is consistently performing better than all other
classes, a finding which is consistent for audio and video features
(eGeMAPS: .148 𝜌 , and FAU: .405 𝜌). As well as being the most
likely class to contain non-verbal communication e. g., laughter,
this performance may be due to the known ease of modelling highly
aroused states of emotional expression [49]. However, it may also
relate to the valence of the emotions as we can see from Figure 2,
the Disgust class is the worst performing for FAU.

It is worth noting that in this case, the early-fusion of the two
best-performing feature sets in each modality does not yield any
beneficial results. This holds, although we do consider that through
the use of a knowledge-based audio approach, we may see more
improvement for audio, which may result in stronger performance
via fusion.

4.3 MuSe-Stress

Table 4 reports the results obtained for MuSe-Stress. Consistent
with results reported by some of last year’s participants [20, 27],
the results for MuSe-Stress partly fail to generalise to the test data.
With respect to single modality experiments, this observation is
particularly significant for the video features. For example, the best
seed for predicting physiological arousal based on Facial Action
Units yields a CCC of .5191 on the development set, but only results
in a CCC of .0785 on the test partition. The audio feature sets, in
comparison, achieve better generalisation with the most extreme
difference between development and test CCC being about .12 (for
eGeMAPS on physiological arousal). Moreover, for both prediction
targets, the DeepSpectrum audio features perform best among the
unimodal approaches with CCC values of .4239 and .4931 on the
test sets for physiological arousal and valence, respectively.

https://github.com/EIHW/MuSe2022
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(a) Amusement (FAU 𝜌 .405) (b) Disgust (FAU 𝜌 .171 )

Figure 2: Confusion matrices for the best (Amusement) and worst (Disgust) performing classes for the best test set configura-

tions in MuSe-Reaction as reported in Table 3.

Table 3: Results for MuSe-Reaction. Reported is the mean

Pearson’s Correlation Coefficient (𝜌) for the 7 emotional re-

action classes. For each feature and late fusion configura-

tion, the result for the best of 5 fixed seeds is given. The

respective mean and standard deviation of the results are

provided in parentheses.

[𝜌]
Features Development Test

Audio

eGeMAPS .0583 (.0504 ± .0069) .0552 (.0479 ± .0062)
DeepSpectrum .1087 (.0945 ± .0096) .0741 (.0663 ± .0077)

Video

FAU .2840 (.2828 ± .0016) .2801 (.2777 ± .0017)
VGGface 2 .2488 (.2441 ± .0027) .1830 (.1985 ± .0088)

Early Fusion

A+V .2382 (.2350 ± 0.0016) .2029 (.2014 ± .0086)

A surprising aspect of the unimodal results is that audio features
yield better results for valence than for arousal, contrary to previ-
ous results in the domain of multimodal emotion recognition. For
the visual features, no such tendency to work better for one of the
two dimensions can be observed: FAUs lead to better results for
predicting valence (mean CCC of .3878 on the test set) than for
physiological arousal (.1135); the same is true for the VGGface 2
features (.1968 and .1576 mean CCC on the test set for valence and
arousal, respectively). The textual BERT features account for higher
CCCs on the development partition for valence (mean CCC of .3221)
than for physiological arousal (.2828). Surprisingly, however, for
arousal, they generalise better to the test data, while for valence,
the mean BERTCCCs drops from .3221 to .1872 when evaluating on
the test set. These partly counterintuitive results may be attributed

to the job interview setting. Job interviewees typically suppress
nervousness in an attempt to give a relaxed, sovereign impression.
This might make the detection of arousal from audio and video
difficult. The comparably stable performance of textual features for
physiological arousal may be due to correlations between partici-
pants pausing their speech for a longer time – or hardly at all – and
arousal. We find such correlations to exist for several participants.

We also experiment with the downsampled biosignals, motivated
by some of last year’s approaches ([11, 34, 55]) to the task which
used these signals as a feature. To do so, we concatenate the three
signals (BPM, ECG, and respiratory rate) into a three-dimensional
feature vector and normalise them. Here, severe generalisation
and stability problems can be observed. To give an example, for
arousal, the mean CCC performance of biosignal features on the
development set is .2793, but for the test set, it drops to .1095.
What is more, the standard deviations obtained with the biosignal
results are consistently higher than those of any other modality.
Because of these issues and in order not to inflate the number of
experiments, we exclude the physiological modality from the late
fusion experiments.

While valence prediction could not be improved by late fusion,
the late fusion of the audio and text modality accounts for the best
result on the test set for physiological arousal prediction (.4761
CCC), slightly surpassing the late fusion of audio and text (.4413) as
well as DeepSpectrum (.4239). For valence, a generalisation issue
for late fusion is apparent. To give an example, the late fusion of
acoustic and visual features yields by far the best result on the
development set (.6914) but only achieves a CCC of .4906 on the
test set.

5 CONCLUSIONS

This baseline paper introduced MuSe 2022 – the 3rd Multimodal
Sentiment Analysis challenge. MuSe 2022 features three multi-
modal datasets: Passau-SFCH with press conference recordings
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Table 4: Results for MuSe-Stress. Reported are the CCC values for valence, and physiological arousal. For each feature and

late fusion configuration, the result for the best of 20 fixed seeds is given. The respective mean and standard deviation of the

results are provided in parentheses. The combined results are the mean of arousal and valence test CCCs for each feature set.

(Physiological) Arousal Valence Combined

[CCC] [CCC] [CCC]
Features Development Test Development Test Test

Audio

eGeMAPS .4112 (.3168 ± .0459) .2975 (.3338 ± .0836) .5090 (.4744 ± .0244) .3988 (.3932 ± .0385) .3482
DeepSpectrum .4139 (.3433 ± .0548) .4239 (.4372 ± .0323) .5741 (.5395 ± .0207) .4931 (.4826 ± .0324) .4585

Video

FAU .5191 (.4257 ± .0475) .0785 (.1135 ± .0335) .4751 (.3886 ± .0534) .2388 (.3878 ± .0560) .1918
VGGface 2 .3171 (.2697 ± .0216) .2076 (.1576 ± .0285) .2637 (.1106 ± .0739) .0936 (.1968 ± .1130) .1506

Text

BERT .3280 (.2828 ± .0372) .3504 (.3218 ± .0423) .3672 (.3221 ± .0285) .1864 (.1872 ± .0269) .2683

Physiological

BPM + ECG + resp. .3917 (.2793 ± .0782) .1095 (.1151 ± .0656) .4361 (.2906 ± .0787) .1861 (.2141 ± .0953) .1478

Late Fusion

A+T .4478 (.4409 ± .0038) .4761 (.4716 ± .0034) .5243 (.4808 ± .0161) .3653 (.3163 ± .0211) .4207
A+V .5440 (.5167 ± .0142) .3777 (.4011 ± .0229) .6914 (.6811 ± .0081) .4906 (.4969 ± .0184) .4342
T+V .4609 (.4425 ± .0112) .3303 (.3327 ± .0112) .5144 (.4965 ± .0102) .2462 (.2364 ± .0082) .2883
A+T+V .5056 (.4940 ± .0070) .4413 (.4485 ± .0125) .6104 (.5720 ± .0215) .3703 (.3455 ± .0258) .4058

of football coaches annotated for humour, MuSe-Reaction con-
taining emotional reactions to stimuli, and Ulm-TSST consisting of
recordings of the stress-inducing TSST. The challenge offers three
sub-challenges accounting for a wide range of different prediction
targets: i) in MuSe-Humor, humour in press conferences is to be
detected; ii) in MuSe-Reaction, the intensities of 7 emotion classes
are to be predicted; and iii) MuSe-Stress is a regression task on
the levels of continuous valence and arousal values in a stressful
situation. Similar to previous iterations ([42, 43]), we employed
open-source software to provide participants with an array of ex-
tracted features in order to facilitate fast development of novel
methods. Based on these features, we set transparent and realistic
baseline results. Features, code, and raw data are made publicly
available. The official baselines on the test sets are as follows: .8480
AUC for MuSe-Humor as achieved using VGGface 2 features; a
mean 𝜌 over all classes of .2801 for MuSe-Reaction is obtained
utilising FAU, and a CCCs of .4761 and .4931 for physiological
arousal and valence, respectively, for MuSe-Stress, based on Deep-
Spectrum features and a late fusion of audio and text modalities,
respectively.

The provided baselines give a first impression on which features
and modalities may be suited best for the different tasks. We believe
that more refined methods of combining different modalities and
features may lead to significant improvements over the reported
baseline results. We hope that MuSe 2022 serves as a stimulating
environment for developing and evaluating such novel approaches.
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