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ABSTRACT
In this work, we present the invertible neural network for predict-
ing the posterior distributions of the design space of broadband
active mixers with RF from 100 MHz to 10 GHz. This invertible
method gives a fast and accurate model when investigating crucial
properties of active mixers such as conversion gain and noise figure.
Our results show that the response generated by the invertible neu-
ral network model has close correlation with the output response
from the circuit simulator.

CCS CONCEPTS
• Hardware → Electronic design automation; Modeling and
parameter extraction.
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1 INTRODUCTION
In electronic design automation (EDA), circuit and system design-
ers often iterate through copious amounts of design variables, a
process termed design space exploration, in an attempt to find the
optimal solution that satisfies a target performance. This process is
usually time-consuming and cost-intensive because a lot of evalu-
ations have to be carried out. To tackle this task more effectively,
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Figure 1: Model-based design framework that offers a custom
solution.

optimization methods [16], and surrogate modeling [18], [19] have
been proposed. However, the best solution may still not be achieved,
or several possibilities may be ignored [6].

Recently, machine learning (ML) frameworks have taken strides
in learning the forward and inverse mappings between a set of
inputs and outputs [14]. Consider a design space 𝑋 of a parameter-
ized system, as succinctly shown in Fig. 1, that forms the input of
the ML framework or surrogate model, with corresponding output
response 𝑌 . This mapping relationship can be represented as:

𝑌 = 𝑇 (𝑋 ) + 𝜖, (1)

where 𝑇 (·) is the forward mapping and 𝜖 models the system noise.
The forward model learns the input-output relationship and pre-
dicts the output response given the input parameters. To estimate
the best set of input parameters that satisfies the desired target, we
find the inverse mapping:

𝑋 = 𝑇−1 (𝑌 ), (2)

where 𝑋 is the inverse solution. This process is called inverse de-
sign. Inverse problems are often inherently ill-posed and intractable
for the following reasons: (1) Existence, which asks if the inverse
even exists and (2) Uniqueness, due to the ambiguity brought by
the one-to-many mapping in the inverse direction. Several archi-
tectures have been proposed to address the problem of invertibility.
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Artificial neural network models have been proposed to solve the
inverse problem by either: (1) Evaluating models iteratively to find
the optimal solutions for the specified output response, or (2) Train-
ing the input and output nodes by transposing them [10]. These
methods produce deterministic and point-estimate solutions with
no reliability guarantees. State-of-the-art generative models like the
generative adversarial network (GAN) [8], variational auto-encoder
(VAE) [11], and invertible neural network (INN) [5], [2] address this
issue by generating conditional posterior distributions rather than
point-estimates. One major advantage that the INN enjoys is that
the forward and inverse mappings can be efficiently computed [2].

In this paper, we propose an inverse design method for mi-
crowave circuits and electronic systems using INN. With inverse
design, the design parameters can be directly determined from
the output objectives. This offers the benefit of reduced design-
cycle time and related costs by increasing the overall efficiency of
the design process. We demonstrate the validity of the proposed
method with the inverse design of broadband active mixers with
output dimensionality up to 200. Active mixers is one of the vari-
ous sensitive circuitry in the make-up of the RF front end, hence,
accurate nonlinear modeling of mixers is crucial to getting good
performance.

The rest of this paper is organized as follows: section II delves
into the invertible neural network framework; sections III and IV
explore different applications of the INN method to electronic de-
sign, and present the results; we provide a concluding remark in
section V.

2 INVERTIBLE NEURAL NETWORK (INN)
The INN is a flow-based generative model [5]. It is based on the
concept of normalizing flows which utilizes the change-of-variable
law of probabilities to compute posterior probability distributions.
The INN possesses the properties of bijectivity to allow for efficient
computation of forward and inverse mappings. It guarantees the
existence of the inverse solution. Consider a sample 𝑥 from design
space 𝑋 and its probability density 𝑝𝑋 (𝑥), with its corresponding
𝑦 from the response space 𝑌 and its unknown probability density
𝑝𝑌 (𝑦) with a transformation 𝑌 = 𝑓 (𝑋 ), we can form a relationship
between their probability densities through the change-of-variables
method [5], [9]:

𝑝𝑌 (𝑦 |𝜃 ) = 𝑝𝑋 (𝑓 −1𝜃
(𝑦)) ·

�����det( 𝑑 𝑓 −1𝜃

𝑑𝑥

)����� , (3)

where we define all the composition of the INN architecture in a
single function 𝑓𝜃 , and 𝜃 is the set of all network parameters. The
INN comprises stacks of invertible blocks, known as affine coupling
blocks, that can be trained simultaneously in either direction, as
shown in Fig. 2. Latent variables 𝑧 (usually Gaussian) use the latent
space to learn the nonlinear transformation between this known
distribution and the original data distribution [20]. In Fig. 3, the
input vector to the affine coupling block is halved into [𝑥1, 𝑥2], and
they are transformed by an affine function with coefficients 𝑒𝑠 and
𝑡 , given by [5], [2]:

𝑦1 = 𝑥1, 𝑦2 = 𝑥2 ◦ 𝑒𝑠 (𝑥1) + 𝑡 (𝑥1). (4)

Figure 2: Architecture of the Invertible Neural Network (𝑋 :
input, 𝑌 : output, 𝑍 : latent variable) [4].

Figure 3: Computational graphs for (a) forward and, (b) in-
verse propagation [5].

Given the block’s output [𝑦1, 𝑦2], these expressions are invertible
through [5], [2]:

𝑥1 = 𝑦1, 𝑥2 = (𝑦2 − 𝑡 (𝑦1)) ◦ 𝑒−𝑠 (𝑦1) . (5)

(4) represents the forward mapping while (5) represents the inverse
mapping (see Fig. 3 for a graphical illustration). The transformations
in (4) and (5) use element-wise additive (+) and multiplicative
(◦) operations which allows the inverse to be computed without
requiring the scale 𝑠 (·) and translation 𝑡 (·) networks to be inverted.
The bijectivity of the INN model allows for bi-directional operation
and training, and therefore both forward and inverse processes can
be well learned [20], [1]. We present the pseudocode for the INN
training in Algorithm 1 which is adapted from the source code [3].

3 APPLICATION I: INVERSE DESIGN OF
LOW-POWER SINGLE TRANSISTOR ACTIVE
MIXER

To demonstrate the effectiveness of the proposed method, we apply
the INN method for the design of a low-power active mixer, which
is a nonlinear device used for summing and subtracting frequencies.
They are characterized by their conversion gain or loss and how
much noise they introduce in the circuit. Consequently, accurate
nonlinearmodeling ofmixers is crucial to getting good performance.
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Algorithm 1: INN training
Input: training data: {𝑋,𝑌 }, #𝑒𝑝𝑜𝑐ℎ𝑠 , learning rate: 𝛼 ,

𝑝 (𝑧) = N(0, 𝐼𝐷𝑧
)

Output: training losses: L, trained model
while 𝑖 ≤ #epochs do

for 𝑥𝑏𝑎𝑡𝑐ℎ, 𝑦𝑏𝑎𝑡𝑐ℎ ∈ {𝑋,𝑌 } , do
[𝑦𝑝𝑟𝑒𝑑 , 𝑧𝑝𝑟𝑒𝑑 ] = 𝑓𝜃 (𝑥𝑏𝑎𝑡𝑐ℎ)
L𝑦 = MSE(𝑦𝑝𝑟𝑒𝑑 , 𝑦𝑏𝑎𝑡𝑐ℎ)
/* MSE: mean squared error */

L𝑧 = MMD(𝑞(𝑦, 𝑧), 𝑝 (𝑦)𝑝 (𝑧))
/* MMD: maximum mean discrepancy [2] */

sample 𝑧 ∼ 𝑝 (𝑧)
𝑥𝑝𝑟𝑒𝑑 = 𝑓 −1

𝜃
( [𝑦𝑏𝑎𝑡𝑐ℎ, 𝑧])

L𝑥 = MMD(𝑔(𝑥), 𝑝 (𝑥))
L𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑥L𝑥 +𝑤𝑦L𝑦 +𝑤𝑧L𝑧
𝑝 ← 𝑝 − 𝛼∇(L𝑡𝑜𝑡𝑎𝑙 )

Figure 4: Low-power single transistor active mixer schematic
[15].

The mixer is a down converter, with an RF of 0.1 − 10 GHz and
855 MHz LO, operating from a 1 V DC supply at 600 𝜇A current.
This very low power consumption is typical of applications such as
pagers and cellular phones, where battery lifetime is critical [15].
The objective here is to (1) obtain the mixer design parameters that
correspond to a given specification of gain and noise figure, and (2)
validate the design parameters through a forward evaluation.

3.1 Model Setup
The design parameters of the mixer are shown in Fig. 4, and their
range of values are given in Table 1. Note that the parameters are
constrained within the limits of the operating region of the transis-
tor, and that the only 3 parameters that are varied for this example
are 𝑅𝐿 , 𝐶𝐿𝑂 and 𝐶𝑅𝐹 . The target characteristics investigated are
the conversion gain 𝐺 and the noise figure NF, given as [12], [13],
[15]:

𝐺 (dB) = 𝑃IF − 𝑃RF (6)

Table 1: Design Space Parameters of Low-power Single Tran-
sistor Mixer

Parameter Unit Min Max Step
Load resistor 𝑅𝐿 kΩ 1 5 0.5
LO capacitor 𝐶𝐿𝑂 pF 0.1 0.9 0.2
RF capacitor 𝐶𝑅𝐹 pF 1 2 0.2

Collector resistor 𝑅𝑐 kΩ 0.47
Base resistor 𝑅𝑏 kΩ 8.2
RF inductor 𝐿𝑅𝐹 nH 6.6
IF inductor 𝐿𝐼𝐹 nH 270

Parallel IF capacitor 𝐶𝑃𝐼𝐹 pF 33
Series IF capacitor 𝐶𝑆𝐼𝐹 pF 13.3
Motorola MMBR941 𝑄

Figure 5: Proposed Invertible Neural Network (INN) model
setup for low-power single transistor active mixer design.
𝑚 = 100 frequency points.

and

NF =
𝑁𝑖𝐺 + 𝑁0(mixer)

𝑁𝑖𝐺
, (7)

where 𝑃IF and 𝑃RF are the powers at the IF and RF ports respectively,
𝑁𝑖𝐺 and 𝑁0(mixer) are the input noise and noise added by the mixer
(both referred to the IF port), respectively. The RF is swept from
0.1−10 GHz with steps of 100 MHz. Consequently, each tuple in the
design space has the corresponding gain and noise figure with 100
frequency points. We generate 270 samples in a uniform fashion
using Keysight ADS [15]. The data is divided into train and test
sets.

The objective here is to determine an invertible mapping be-
tween the design space 𝑋 and output response 𝑌 . The proposed
model setup is shown in Fig. 5. The INN model is constructed using
8 reversible blocks with shuffling layers between them. Each re-
versible block contains the scale 𝑠 (·) and shift 𝑡 (·) networks which
are constructed with fully connected neural networks with one
hidden layer of 15 neurons and Rectified Linear Unit (ReLU) acti-
vation functions. On the input side of the model setup, there are
3 mixer design parameters, zero-padded to 2𝑚 dimensions, where
𝑚 = 100 frequency points. The output variables consist of mixer
design specifications (gain and noise figure) and 3-dimensional la-
tent variables 𝑧 sampled from a standard normal distribution, with
no zero-padding. The INN model is trained for 300 epochs with 10
iterations per epoch.
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Table 2: Performance of InverseDesignTuples for Low-power
Single Transistor Mixer Design

Inverse Design Tuple Normalized Mean Squared Error (NMSE)
Gain,𝐺𝐺𝐺 Noise Figure, NF

%%% %%%
1 {3.5 kΩ, 0.7 pF, 1.6 pF} 0.001 0.083
2 {3.5 kΩ, 0.1 pF, 1.8 pF} 0.002 0.013

Figure 6: Predicted conditional posterior distributions
𝑝 (𝑥 |𝑦target) of low-power single transistor active mixer de-
sign parameters. Red vertical lines indicate the points with
the highest densities. When the points corresponding to the
highest densities are sampled for the design parameters, the
tuple obtained is {3.5 kΩ, 0.7 pF, 1.6 pF}.

3.2 Results
We perform 2 inferences with the trained INN model to validate
the method: inverse and forward evaluations. During the inference
process, we choose a random response 𝑦target from the test set and
we obtain the inverse solution. The INN model generates rich con-
ditional posterior distributions of the mixer design parameters as
shown in Fig. 6. Next, we obtain an inverse tuple from these distribu-
tions by sampling the points with the highest densities in the mixer
design space. The tuple obtained is 𝑥 = {3.5 kΩ, 0.7 pF, 1.6 pF}. We
take this tuple and perform a forward evaluation with the INN
model to obtain the corresponding gain and noise figure. These
are compared with the actual responses in Fig. 7. We observe that
the responses from the INN model almost completely overlap the
responses from the Keysight ADS circuit simulator. We repeat the
inverse-forward inference above for another response 𝑦target cho-
sen randomly from the test set and present the results in Fig. 8 and
9. Similarly, the responses from the INN model almost completely
overlap the responses from the Keysight ADS circuit simulator. We
provide a summary of our results in Table 2.

4 APPLICATION II: INVERSE DESIGN OF
GILBERT CELL MIXER

We further validate the INN method with another mixer design.
Consider the IAM-81018 Gilbert cell mixer [7], [17], [15], shown in
Fig. 10. The mixer is a down converter, with an RF of 0.1 − 10 GHz
and 1.75 GHz LO, operating from a 5𝑉 DC supply. The double
balanced structure has the advantage of better isolation between
all ports and increased linearity. The objective here is two-fold: (1)

Figure 7: Forward evaluation showing gain 𝐺 and noise fig-
ure NF for low-power single transistor active mixer, with the
trained INN model and Keysight ADS circuit simulator for
the INN-generated design tuple {3.5 kΩ, 0.7 pF, 1.6 pF}. The
responses from the trained INN model and the circuit simu-
lator almost completely overlap.

Figure 8: Predicted conditional posterior distributions
𝑝 (𝑥 |𝑦target) of low-power single transistor active mixer de-
sign parameters. Red vertical lines indicate the points with
the highest densities. When the points corresponding to the
highest densities are sampled for the design parameters, the
tuple obtained is {3.5 kΩ, 0.1 pF, 1.8 pF}.

to obtain the mixer design parameters that correspond to a given
specification of gain and noise figure, and (2) to validate the design
parameters through a forward evaluation.

Table 3: Design Parameters of Gilbert Cell Mixer

Parameter Unit Min Max Step
Collector resistor 𝑅𝑐 Ω 50 450 50

Tail resistor 𝑅𝑡 Ω 20 220 50
Base resistor (top) 𝑅𝑏1 Ω 10 160 30

Base resistor (bottom) 𝑅𝑏2 Ω 10 90 20
Coupling capacitor 𝐶𝑐 𝜇F 0.4 1.2 0.2
Bypass capacitor 𝐶𝑏 𝜇F 0.4 1.2 0.2
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Figure 9: Forward evaluation showing gain 𝐺 and noise fig-
ure NF for low-power single transistor active mixer, with the
trained INN model and Keysight ADS circuit simulator for
the INN-generated design tuple {3.5 kΩ, 0.1 pF, 1.8 pF}. The
responses from the trained INN model and the circuit simu-
lator almost completely overlap.

Figure 10: IAM-81018 Gilbert cell mixer schematic [7], [17],
[15].

4.1 Model Setup
The design parameters of the mixer are the passive components
as shown in Fig. 10, and their range of values are given in Table
3. Note that the parameters are constrained within the limits of
the operating region of the transistor. The target characteristics
investigated are the conversion gain 𝐺 and the noise figure NF,
as described in (6) and (7), respectively. We perform a parametric
sweep of the mixer design space, with the RF being swept from
0.1 − 10 GHz with steps of 100 MHz for each combination of the
design parameters. Consequently, each tuple in the design space
has the corresponding gain and noise figure with 100 frequency

Figure 11: Proposed Invertible Neural Network (INN) model
setup for Gilbert cell mixer design.𝑚 = 100 frequency points.

Figure 12: Predicted conditional posterior distributions
𝑝 (𝑥 |𝑦target) of Gilbert cell mixer design parameters. Red ver-
tical lines indicate the points with the highest densities.
When the points corresponding to the highest densities are
sampled for the design parameters, the tuple obtained is
{300 Ω, 170 Ω, 40 Ω, 50 Ω, 1 𝜇F, 0.8 𝜇F}.

points. We generate 33750 samples using Keysight ADS [15], and
the dataset is divided into train and test sets.

The objective here is to determine an invertible mapping be-
tween the design space 𝑋 and output response 𝑌 . The proposed
model setup is shown in Fig. 11. The INNmodel is constructed using
8 reversible blocks with shuffling layers between them. Each re-
versible block contains the scale 𝑠 (·) and shift 𝑡 (·) networks which
are constructed with fully connected neural networks with one
hidden layer of 15 neurons, 70% dropout regularization, batch nor-
malization layers and Leaky Rectified Linear Unit (LeakyReLU)
activation functions. On the input side of the model setup, there are
6 mixer design parameters, zero-padded to 2𝑚 dimensions, where
𝑚 = 100 frequency points. The output variables consist of mixer
design specifications (gain and noise figure) and 6-dimensional la-
tent variables 𝑧 sampled from a standard normal distribution, with
no zero-padding. The INN model is trained for 300 epochs with 10
iterations per epoch.

4.2 Results
We perform a two-step inference process with the trained INN
model: the inverse evaluation to obtain the inverse solution, then,
the forward evaluation to validate the method. First, we choose a
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Figure 13: Forward evaluation showing gain 𝐺 and noise
figure NF for the Gilbert cell mixer, with the trained INN
model and Keysight ADS circuit simulator for the INN-
generated design tuple {300 Ω, 170 Ω, 40 Ω, 50 Ω, 1 𝜇F, 0.8 𝜇F}.
The responses from the trained INN model and the circuit
simulator have close correlation.

Figure 14: Predicted conditional posterior distributions
𝑝 (𝑥 |𝑦target) of Gilbert cell mixer design parameters. Red ver-
tical lines indicate the points with the highest densities.
When the points corresponding to the highest densities are
sampled for the design parameters, the tuple obtained is
{50 Ω, 170 Ω, 40 Ω, 50 Ω, 1 𝜇F, 0.8 𝜇F}.

random response 𝑦target from the test set and we obtain the inverse
solution with the INN model, which generates rich conditional pos-
terior distributions of the mixer design parameters as shown in Fig.
12. Next, we obtain an inverse tuple from these distributions by sam-
pling the points with the highest densities in the mixer design space.
The tuple obtained is 𝑥 = {300 Ω, 170 Ω, 40 Ω, 50 Ω, 1 𝜇F, 0.8 𝜇F}.
We take this tuple and perform a forward evaluation with the INN
model to obtain the corresponding gain and noise figure. These
are compared with the actual responses in Fig. 13. We observe that
the responses from the INN model have close correlation with the
responses from the Keysight ADS circuit simulator. We repeat the
inverse-forward inference above for another response 𝑦target cho-
sen randomly from the test set and present the results in Fig. 14 and

Figure 15: Forward evaluation showing gain 𝐺 and noise fig-
ure NF for the Gilbert cell mixer, with the trained INNmodel
and Keysight ADS circuit simulator for the INN-generated de-
sign tuple {50 Ω, 170 Ω, 40 Ω, 50 Ω, 1 𝜇F, 0.8 𝜇F}. The responses
from the trained INN model and the circuit simulator have
close correlation.

Table 4: Performance of Inverse Design Tuples for Gilbert
Mixer Design

Inverse Design Tuple Normalized Mean Squared Error (NMSE)
Gain,𝐺𝐺𝐺 Noise Figure, NF

%%% %%%
1 {300 Ω, 170 Ω, 40 Ω, 50 Ω, 1 𝜇F, 0.8 𝜇F} 1.427 0.325
2 {50 Ω, 170 Ω, 40 Ω, 50 Ω, 1 𝜇F, 0.8 𝜇F} 0.801 0.134

15. Similarly, the responses from the INN model have close correla-
tion with the responses from the Keysight ADS circuit simulator.
We provide a summary of our results in Table 4.

5 CONCLUSION
We present an inverse design method for microwave circuits and
electronic systems using invertible neural network. With inverse
design, the design parameters can be directly determined from the
output objectives. This offers the benefit of reduced design-cycle
time and related costs by increasing the overall efficiency of the
design process.We demonstrate the validity of the proposedmethod
with the inverse design of broadband active mixers where we obtain
inverse posterior distributions. For the forward evaluation, our
results show that the responses generated by the invertible neural
network models have close correlation with the output responses
from the circuit simulator.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. CNS 16-2137259 - Center for Advanced
Electronics through Machine Learning (CAEML).

REFERENCES
[1] Nikita Ambasana, OsamaW. Bhatti, Majid A. Dolatsara, Madhavan Swaminathan,

Xianbo Yang, Pavel R. Paladhi, and Wiren Dale Becker. 2021. Invertible Neural

 

150



Invertible Neural Networks for Design of Broadband Active Mixers MLCAD ’22, September 12–13, 2022, Snowbird, UT, USA

Networks for High-Speed Channel Design & Parameter Distribution Estimation.
In 2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging
and Systems (EPEPS). 1–3. https://doi.org/10.1109/EPEPS51341.2021.9609225

[2] Lynton Ardizzone, Jakob Kruse, Sebastian J. Wirkert, Daniel Rahner, Eric Pelle-
grini, Ralf S. Klessen, Lena Maier-Hein, Carsten Rother, and U. Köthe. 2019. Ana-
lyzing Inverse Problems with Invertible Neural Networks. ArXiv abs/1808.04730
(2019).

[3] Lynton Ardizzone, Jakob Kruse, Sebastian J. Wirkert, Daniel Rahner, Eric Pel-
legrini, Ralf S. Klessen, Lena Maier-Hein, Carsten Rother, and U. Köthe. 2021.
Framework for Easily Invertible Architectures (FrEIA). Retrieved June, 2022 from
https://github.com/VLL-HD/FrEIA

[4] Osama Waqar Bhatti, Nikita Ambasana, and Madhavan Swaminathan. 2021.
Inverse Design of Power Delivery Networks using Invertible Neural Networks.
In 2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging
and Systems (EPEPS). 1–3. https://doi.org/10.1109/EPEPS51341.2021.9609211

[5] Laurent Dinh, Jascha Narain Sohl-Dickstein, and Samy Bengio. 2017. Density
estimation using Real NVP. ArXiv abs/1605.08803 (2017).

[6] Majid Ahadi Dolatsara, Huan Yu, Jose Ale Hejase, Wiren Dale Becker, and Madha-
van Swaminathan. 2020. Invertible Neural Networks for Inverse Design of CTLE
in High-speed Channels. In 2020 IEEE Electrical Design of Advanced Packaging
and Systems (EDAPS). 1–3. https://doi.org/10.1109/EDAPS50281.2020.9312919

[7] B. Gilbert. 1968. A precise four-quadrant multiplier with subnanosecond response.
IEEE Journal of Solid-State Circuits 3, 4 (1968), 365–373. https://doi.org/10.1109/
JSSC.1968.1049925

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[9] John A. Gubner. 2006. Probability and Random Processes for Electrical and Com-
puter Engineers. Cambridge University Press, USA.

[10] Humayun Kabir, Ying Wang, Ming Yu, and Qi-Jun Zhang. 2008. Neural Network
Inverse Modeling and Applications to Microwave Filter Design. IEEE Transactions
on Microwave Theory and Techniques 56, 4 (2008), 867–879. https://doi.org/10.
1109/TMTT.2008.919078

[11] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational
Bayes. In 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.
arXiv:http://arxiv.org/abs/1312.6114v10 [stat.ML]

[12] David M. Pozar. 2012. Microwave Engineering. Wiley, Hoboken, NJ, USA.
[13] Behzad Razavi. 2011. RF Microelectronics (Prentice Hall Communications Engineer-

ing and Emerging Technologies Series) (2nd ed.). Prentice Hall Press, USA.
[14] Madhavan Swaminathan, Hakki Mert Torun, Huan Yu, Jose Ale Hejase, and

Wiren Dale Becker. 2020. Demystifying Machine Learning for Signal and Power
Integrity Problems in Packaging. IEEE Transactions on Components, Packaging
and Manufacturing Technology 10, 8 (2020), 1276–1295. https://doi.org/10.1109/
TCPMT.2020.3011910

[15] Advanced Design System. 2022. Keysight ADS. Retrieved June 19, 2022 from
https://www.keysight.com

[16] Hakki Mert Torun and Madhavan Swaminathan. 2019. High-Dimensional Global
Optimization Method for High-Frequency Electronic Design. IEEE Transactions
on Microwave Theory and Techniques 67, 6 (2019), 2128–2142. https://doi.org/10.
1109/TMTT.2019.2915298

[17] JamesWholey and Issy Kipnis. Spring 1990. Silicon Bipolar ActiveMixers. Applied
Microwave Journal (Spring 1990), 287–293.

[18] Jianjun Xu, M.C.E. Yagoub, Runtao Ding, and Qi-Jun Zhang. 2002. Neural-
based dynamic modeling of nonlinear microwave circuits. IEEE Transactions on
Microwave Theory and Techniques 50, 12 (2002), 2769–2780. https://doi.org/10.
1109/TMTT.2002.805192

[19] Huan Yu, Hemanth Chalamalasetty, and Madhavan Swaminathan. 2019. Model-
ing of Voltage-Controlled Oscillators Including I/O Behavior Using Augmented
Neural Networks. IEEE Access 7 (2019), 38973–38982. https://doi.org/10.1109/
ACCESS.2019.2905136

[20] Huan Yu, Hakki Mert Torun, Mutee Ur Rehman, and Madhavan Swaminathan.
2020. Design of SIW Filters in D-band Using Invertible Neural Nets. In 2020
IEEE/MTT-S International Microwave Symposium (IMS). 72–75. https://doi.org/10.
1109/IMS30576.2020.9223952

 

151

https://doi.org/10.1109/EPEPS51341.2021.9609225
https://github.com/VLL-HD/FrEIA
https://doi.org/10.1109/EPEPS51341.2021.9609211
https://doi.org/10.1109/EDAPS50281.2020.9312919
https://doi.org/10.1109/JSSC.1968.1049925
https://doi.org/10.1109/JSSC.1968.1049925
https://doi.org/10.1109/TMTT.2008.919078
https://doi.org/10.1109/TMTT.2008.919078
https://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10
https://doi.org/10.1109/TCPMT.2020.3011910
https://doi.org/10.1109/TCPMT.2020.3011910
https://www.keysight.com
https://doi.org/10.1109/TMTT.2019.2915298
https://doi.org/10.1109/TMTT.2019.2915298
https://doi.org/10.1109/TMTT.2002.805192
https://doi.org/10.1109/TMTT.2002.805192
https://doi.org/10.1109/ACCESS.2019.2905136
https://doi.org/10.1109/ACCESS.2019.2905136
https://doi.org/10.1109/IMS30576.2020.9223952
https://doi.org/10.1109/IMS30576.2020.9223952

	Abstract
	1 Introduction
	2 Invertible Neural Network (INN)
	3 Application I: Inverse Design of Low-Power Single Transistor Active Mixer
	3.1 Model Setup
	3.2 Results

	4 Application II: Inverse Design of Gilbert Cell Mixer
	4.1 Model Setup
	4.2 Results

	5 Conclusion
	Acknowledgments
	References



