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A b s ~ a ~  

We introduce a new similarity measure based on dynamic programming, intended for technical terms 

such as machine translation system, which are quite common in technical writing. We compare our 

proposal with systems which use standard IDF cosine similarity, but on different vocabularies. The 

dynamic programming method is relatively strong when the query contains a single long technical term, 

and none of  the words in the term are particularly good keywords. 
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1 I n t r o d u c t i o n  

What are the most effective units for Information 
- Retrieval? The current consensus, at least for English, is 

leaning strongly in favor o f  words. Hardly anyone uses 
smaller units such as characters (or sequences of  
characters), though there are a few exceptions such as 
Damashek [4]. Character-based systems are more common 
for Asian languages [2,10,11,16]. Larger units such as 
phrases (or sequences of  words) have received quite a bit 
of  attention. Early results such as Fagan's [5] were quite 
promising. However, despite considerable effort over the 
past decade by many authors such as Strzalkowski and his 
colleagues [19], the community remains unconvinced. See 
Mitra et al. [14] for a discussion of  phrases, suggesting that 
they don~t help very much, especially at high ranks. 

Mitra et al. found that phrases seem to be most helpful for 
the grey area (medium ranks), documents that are not 
obviously relevant (high ranks) and not obviously 
irrelevant (low ranks). In the experiments to be reported 
here we have also found that phrases are most helpful in 
the grey area, especially when both the query and the 
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documents make heavy use of  technical terminology, 
phrases like Computer Science, Information Retrieval and 
machine translation. 

It is difficult to define the term: technical terminology. 
Unlike general vocabulary, the words that any speaker of  
the language would be expected to know, technical 
terminology is shared by a relatively small subgroup of  
domain experts. The distinction between general 
vocabulary and technical terminology is especially 
important to human translators, who find terminology quite 
challenging because they are rarely as familiar with the 
domain as either the authors of  the source document or the 
readers of  the target document. There is generally only a 
single correct translation of  the term, and it can be 
dangerous to translate the parts of  the term compositionally. 
We believe that the distinction between general vocabulary 
and technical terminology should also be important for 
Information Retrieval. Technical terms, when they are 
available, ought to be particularly strong clues for a 
relevancy. I f  you look at the index to almost any textbook 
in a technical area, such as page 975 of  volume A of  the 
Handbook o f  Theoretical Computer Science [20], one finds 
lots and lots of  technical terms such as: binary tree, bitonic 
sort, Boolean circuit, Boolean formula, breadth-first 
search, bubble sort, bucket sort, butterfly network, 
Chebychev's Inequality, Chinese Remainder Theorem, 
Chomsky hierarchy and Church's Thesis. In fact, most of  
the terms, at least on page 975 of  [20], are more than one 
word long. Multi-word terms are especially common in 
technical writing. The experiments to be reported here are 
based on a large corpus of  technical abstracts in Japanese 
[7,8]; previous studies of  phrases have worked with a 
variety of  different (and often less technical) genres 
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dynamo trap clamp bolt -> dynamo clamp bolt -> clamp bolt 

gearbox end cover gasket -> end cover gasket -> gasket 

exhaust valve lifter cable -> exhaust lifter cable -> cable 

Figure 1: Examples of  Variation from a Manual 

Unlike general vocabulary, technical terminology is 
remarkably fixed. It is considered good style, in technical 
writing, to maintain, as much as possible, a one-to-one 
relationship between "terms" and "concepts," the things 
that terms refer to. It would be confusing to use two terms 
for the same thing (synonYms), or one term for two things 
(polysemy). Sager [17] makes this point by referring on 
page 125 to a British Standards Guide (BS 0, 1981, A 
Standard for Standards): 

TERMINOLOGY: Properly defined, unequivocal 
terminology is essential. Terminology within a 
standard should be consistent, so that the same 
object or concept is always described or 
expressed by the same term and not by the use of 
synonyms .... 

However, some very limited variation is possible. Sager 
[17] p. 215, mentions that it is sometimes possible to omit 
words in a long complex noun phrase. Figure 1 were 
selected from a manual, which by its instructive function, 
as Sager points out, would normally be expected to use 
stylistic variation very sparingly. 

We find a similar pattern in Japanese. Technical terms are 
used very precisely. Just as with English, it is confusing for 
one term to refer to two things (polysemy) or two terms to 
refer to the same thing (synonymy). Stylistic variation is 
used very sparingly. Two instances of the same term are 
likely to match character for character. 

We will introduce a dynamic programming method to take 
advantage of these kinds of variations, where it is possible 
to insert or delete a few characters in a term. Most of the 
characters of the term are kept intact. This kind of variation 
rarely changes the order of the remaining characters very 
much. That is why we believe that it would be better to 
model the ~,ariation with dynamic programming than to 
completely abandon the order and consider the string to be 
a bag of  words or a bag of characters. 

For example, it is possible to add or delete a word in a long 
Japanese phrase, at least in certain cases, so that machine 
translation system and machine translation 
EXPERIMENTAL system could both be used to refer to 
more or less the same thing. Especially when the phrase 
becomes quite long, as in the ease of GEOGRAPHICAL 
information-NO retrieval system, the variation not only 
involves the Kanji characters corresponding to 
GEOGRAPHICAL, but can also involve a Hiragana 
character, NO. 

2 T w o  B a s e l i n e  S y s t e m s  

Before introducing our dynamic programming proposal in 
detail, we will introduce two baseline systems. There are 
two types of systems in the literature, word-based systems 
and ngram-based systems. Baseline-Diet is intended to be 
representative of the first kind. We use an off-the-shelf 
program Chosen [13] to tokenize the query and the 
documents into words, and then we use a cosine measure 
with IDF weighting, as suggested by Salton [18]. Chosen 
uses a large dictionary of Japanese words to tokenize a 
sequence of characters into words. Chosen also assigns 
parts of  speech. We use the nouns, verbs and unknown 
words as terms. Words with other parts of speeeh are 
considered stop words. More precisely, 

Definition 1 Let Score(t) be - log2(df ( t  ) / N ) .  

S I M  tta = ~ t f  ( t ) . Score( t ) (1) 
l 

where term t appears in both the query and a document as a 
noun, verb or unknown word. tf(t) is term frequency in the 
document, df(t) is document frequency of term t. N is the 
total number of documents. 

The similarity function for Baseline-Ngram is described 
precisely below. We also use a cosine measure with IDF 
weighting for all ngrams that appear in both a query and a 
document. 

Definition 2 Let ¢x,t~,~ and r 1 be strings. Let otik be 
the substring of  cz from position i to i+k-1. Let [3# be the 
substring i~ from j to j+k-1. Let Score be a function from 
strings to reals. 

sIM.~,,, = z~ Compm~,~:~) (2) 

where Comp(~, 71) is defined as follows: 

• if ~ =71 then Score(q) 

• if~;~71thenO.O 

where Score(~) = - / o g 2 ( d f t ~ ) / N ) .  

In the definition, a~/'~) is the document frequency of the 
subs~ng 4, just like the standard definition of df  except 
that it applies to subs~ngs  rather than words. 

Most character-based systems tokenize the query and the 
document into short, possibly overlapping, ngrams of  
characters such as bigrams or trigrams. Japanese text 
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<TITLE>about machine translation s~sSem</TITLE> 
<EXPLANATION>Documents that explain the ~eatures, 
the ~unctions and the performance o~ a machine 
Sranslation ssstem either developed or under 
development. It is not enough i~ the document 
onls describes the application o~ machine 
lSranslation sssSems, or related technolo~s such as 

ompilation o~ dictionary. </EXPLANATION> 

Figure 2: Query #24 and Its Translation 

makes use of three alphabets, a very large alphabet of 
several thousand Kanji characters borrowed from Chinese a 
long time ago, plus two much smaller alphabets, about 50 
Katakana characters for more recent loan words and a 
handful of  Hiragana characters for Japanese function words. 
Because the Katakana alphabet is so much smaller than 
Kanji, Katakana words tend to be longer than Kanji words. 

For example, the Kanji words for machine and translation 
are both two characters long, whereas the Katakana word 
for system is four characters long. 

As pointed out by Fujii and Croft [6], short ngrams may 
work quite well for Kanji, but probably not for Katakana. 
Short ngrams may be more promising in Chinese, since it 
consists entirely of Chinese characters. See [2,10] for a 
recent discussion of  short ngrams systems for Chinese, and 
[I 1] for Korean. Even so, it isn't necessary to restrict our 
attention to just short substrings. Using sophisticated data 
structures such as suffix arrays and PAT-trees [3,12,15,21], 
it is possible to work with very long ngrams. 

We have found that long ngrams help. The bigram system 
has rather low performance (11 point average precision of 
0.134), much lower than the Baseline-Ngram system (11 
point average precision of 0.164). The Baseline-Ngram 
system uses all ngrams (subslrings) in the query, not just 
the ngrams of length two. Since our proposed DP system 
uses all ngrams, we have chosen the character based 
system using all ngrams. 

Figure 2 shows one of the 30 queries in the test collection, 
query #24. The query contains the Japanese term for 
machine translation system, and very little else that any of 
our retrieval systems are able to make use of. Both of  the 
baseline systems have trouble with this query. 

Baseline-Diet tokenizes machine translation system into 
the three Japanese words corresponding to machine, 
translation and system. 

Unfortunately for Baseline-Dict, none of  these three words 
are very useful keywords by themselves. In fact, system is 
particularly poor: it appears in about half of  the 330,000 
documents, so many that its IDF weighted contribution is 
negligible. Yet, the word system is crucial to the query, 
since, as the last sentence of the query explains, documents 
that mention machine translation but not system are 
considered irrelevant. 

Baseline-Ngram is in a better position to deal with this 
term, because it will give a very high score to a document 
that contains the entire term, machine translation system, 
and lesser scores to documents that contain only fragments 
of the term. Although Baseline-Ngram does better than 
Baseline-Diet, at least for this query, Baseline-Ngrem does 
not do a very good job of capturing the kind of variations 
of technical terms. In fact, for most of the queries in our 
test set, Baseline-Ngram performs remarkably poorly, 
much worse than Baseline-Dict. 

Although the Score function could be more sophisticated, 
we use a function based on pure IDF. This is because we 
are more interested in relative improvements from one 
condition to another than absolute score. While the more 
sophisticated Score function will improve the absolute 
scores, it makes the comparison unclear. The terminology 
issues is real and independent of the choice of Score 
function. 

3 Edit Distance and the Proposed System 

Edit distance is a natural way to think about the variation 
between machine translation system and machine 
translation EXPERIMENTAL system, where a few 
insertions and deletions are possible. Edit distance is 
described in the appendix of  the book [9]; it is the 
minimum number of  edit operations, such as insertion and 
deletion, that are required to map one string into the other. 
It is widely used in spelling correctiorL We have tried to 
use a variation of this distance measure for information 
retrieval. 
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A few of modifications are required in order to achieve 
respectable precision. We 'need to introduce IDF-weights 
on substrings, so that not all edit operations count equally. 
This is accomplished by the function Score. In addition, 
because the weighting function can assign very good scores 
to long substrings (technical terms), we need to generalize 
the dynamic programming algorithm that is usually used to 
compute edit distances. Normally, the dynamic 
programming procedure considers just a single character at 
a time, but because long substrings can receive such good 
scores, we need to consider all prefixes of the longest 
common prefix, not just the next character. 

We call the resulting similarity SWS (String Weight 
dynamic programming Similarity). It resembles Ukkonen's 
Enhanced Dynamic Programming ASM (Approximate 
String Matching) [1], but it is based on the weights of 
strings, not characters. 

Definition 3 Let ct, fl,~ and 77 be strings. Let c t~ be 
the substring of  tt from position k to k+m-1. Let or,,, be 
the substring of  ct from position n to the last. Let fl~,, be 
the substring f3 from k to k+m-1. Let fin, be the substring 
of  fl from position n to the last. Let Score be a function 
from strings to reals. 

$1Mnp = .m~. (Coml,(cqi,l~/)+ SIMm,(ai+l,,[3j+l,D (3) 
t ,g 

where Comp(~, 77) is defined as follows: 

• if ~ = rl then Score(g) 

• if ~ ~ 7? then 0.0 

where Score(7~)= - log2(df t~j / N ) .  

The standard one-character-at-a-time dynamic 
programming method for computing edit distance assumes 
that long matches cant receive exceptionally good scores. 

In other words, it regards as if Score(~) is 0 if length of 
is greater than one. If the scoring function obeys the 
inequality, Score(~ry) <_ Score(~d)+ Score(y), for all 
substrings t~ and y,  then the best path would consist of a 
sequence of single characters, and we would not need to 
consider long phrases. However, the scoring function we 
have in mind is not like this. They will sometimes assign 
very good scores to long phrases (technical terms), and 
therefore we need to extend the dynamic programming 
procedure to consider more than just one character at a 
time. 

Our experiments reported use IDF as the scoring function 
as the two baseline systems. 

4 Experimental Results 

As mentioned above, we used the Nacsis [7,8] test set 
which consists of 330,000 technical abstracts in Japanese, 
plus relevance judgements. We have used 30 queries in the 
first distribution. We report results for three systems: our 
proposal (DP), Baseline-Diet (BE}) and Baseline-Ngram 

(BN). Many of the queries contain a single technical term, 
and very little else that any of the three systems can make 
use of. 

Table 1: Dynamic programming (DP) shows best 11 
point average precision with IDF term weighL 

System 1 lpt 

DP 0.28 ! 

Baseline-Ngram 0.164 

Baseline-Diet 0.154 

Table 2: Dynamic programming (DP) is better than 
both Baseline-Dict and Baseline-Ngram 

worse better 

DP vs BD 7 23 

DP vs BN 1 29 

BD vs BN 15 15 

Table 1 shows 11 points average precision of all queries. 
Table 1 suggests that DP is better than both Baseline-Diet 
and Baseline,-Ngrarn. Table 2 show the comparisons in 
each single query. Each pair of systems was tested on all 
30 queries. Judgements (better, worse) were made by the 
11 points average precision of each query. We can 
conclude DP shows better performance than both Baseline- 
Diet and Baseline-Ngrarn. The score 23 vs 7 is statistically 
significant with the level of 2.6× 10 -3. The score 29 vs 1 
is also statistically significant with the level of 2.9 x 10 's. 

Table 3 shows more detail for 13 of the 30 queries. A plus 
sign indicates good performance, and a minus sign 
indicates poor performance. The first three lines are easy 
for all the systems since the term and many of the words 
that make up the term are good keywords, as indicated by 
their IDF weights. The next six lines play into DP's 
strength. The term is a much stronger clue than its 
constituent words. The numbers in parentheses indicate 
how many times the term was found verbatim in the corpus, 
not counting the variant forms, which were also attested. 
The last four lines play into BD's strength. In these cases, 
the query is described in general vocabulary, and does not 
mention a technical term. 

Four of the queries in Table 3 are marked with an asterisk. 
Recall plots for these four queries are shown in Figure 3 - 
Figure 6. When there are differences, the differences are 
most salient in the grey area. Mitra et al. [13] also found 
that phrases made little difference for the top few 
documents. 
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Table 3: Dynamic programming (DP) works well when the query mentions a technical term, and each of  the words in 
the term have little IDF weight. 

# BD BN DP 

l* + + + 

4 + + + 

6 + + + 

• 

16 - + 

23 - + 

24* - + 

30 - + 

5 + 

10 + 

13 + 

29* + 

Query Comment 

autonomous mobile robot easy task 

document image understanding easy task 

Agent easy task 

data mining no variation 

parse tree analysis (56) variation 

news paper article data (22) variation 

machine translation system (244) variation 

data flow processor (9) variation 

natural language knowledge acquisition only variation 

reduction of space dimension general term 

automatic extraction of  keyword general term 

analysis of loop region general term 

measurement of  position general term 

5 C o n c l u s i o n  

We have proposed a new dynamic programming method 
and shown that it works well especially when the query 
consists of a single technical term such as machine 
translation system, and the words in the term are poor 
keywords with low IDF weights. Since we have a 
characterization of when the proposed method works well, 
it ought to be possible to combine the new dynamic 
programming method with more traditional methods to 
form a hybrid system that would get the best of both worlds. 
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Figure 3: Query #1, a u t o n o m o u s  m o b i l e  robot." easy for all three systems. 
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Figure 4: Query #12, d a t a  m i n i n g ;  hard for Baseline-Dict, because the word segmentator split d a t a  inappropriately. 

131 



DP> >ngram>dictionary 

LU fr 

0.8 

0.6 

0.4 

0.2 

DP o 
ngram ÷ 

dictionary [] 

O 0 0 0 0 0 0 0 0 0 0 0 ~ O 0 0 0 0 0 0 ~ O ~ 0 0 0 0 0 0 0 ~  

ooooooo~oO°°°~°°°°~° 

o 

~o o° 
o C. + +  I I I : I I I I I I ~ ~ ' ' : : ' ; : ' ' ' ' : ; ' : ' 

Q . . . . . . . . . . . . .  I [ i I I "H-~ 'F '4 "F 'P~"  

oo<> ++++ ~ ............. : ................. ~ I 

~ ~ ........... ~ :~ 

J / 
@ 

# 
0 I [ I I I I I I I 

0 100 200 300 400 500 600 700 800 900 1000 
RANK 

Figure 5: Query #24, machine translation system: ideal for dynamic programming (DP) 
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Figure 6: Query #29, position + measurement." hard for dynamic programming (DP) because there is no technical term. 
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