
Dynamic Programming: A Method for Taking Advantage of Technical
Terminology m Japanese Documents

Eiko Yamamoto*, Mikio Yamamoto**, Kyoji Umemura*, and Kenneth W. Church***

* Toyohashi university of Technology, Department of Information and Computer Sciences, Japan,
Email: eika@ss.ics.tut.ae__ip, umemura@mtics.tut.ae._ip,

** University of Tsukuba, Institution of Computer Sciences and Electronics, Japan,
Email: myama@is.tsukuba.ac.ip,

*** AT & T Labs ---Research, U.S.A,
Email: kwc@research.att.eom

A b s ~ a ~

We introduce a new similarity measure based on dynamic programming, intended for technical terms

such as machine translation system, which are quite common in technical writing. We compare our

proposal with systems which use standard IDF cosine similarity, but on different vocabularies. The

dynamic programming method is relatively strong when the query contains a single long technical term,

and none of the words in the term are particularly good keywords.

Keywords: Terminology; Edit Distance; Information Retrieval; Technical term; Similarity Measure.

1 I n t r o d u c t i o n

What are the most effective units for Information
- Retrieval? The current consensus, at least for English, is

leaning strongly in favor o f words. Hardly anyone uses
smaller units such as characters (or sequences of
characters), though there are a few exceptions such as
Damashek [4]. Character-based systems are more common
for Asian languages [2,10,11,16]. Larger units such as
phrases (or sequences of words) have received quite a bit
of attention. Early results such as Fagan's [5] were quite
promising. However, despite considerable effort over the
past decade by many authors such as Strzalkowski and his
colleagues [19], the community remains unconvinced. See
Mitra et al. [14] for a discussion of phrases, suggesting that
they don~t help very much, especially at high ranks.

Mitra et al. found that phrases seem to be most helpful for
the grey area (medium ranks), documents that are not
obviously relevant (high ranks) and not obviously
irrelevant (low ranks). In the experiments to be reported
here we have also found that phrases are most helpful in
the grey area, especially when both the query and the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies and not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and / or a fee.
Proceedings of the 5th International Workshop Information
Retrieval with Asian Languages

Copyright ACM 1-58113-300-6/00/009 $5.00

documents make heavy use of technical terminology,
phrases like Computer Science, Information Retrieval and
machine translation.

It is difficult to define the term: technical terminology.
Unlike general vocabulary, the words that any speaker of
the language would be expected to know, technical
terminology is shared by a relatively small subgroup of
domain experts. The distinction between general
vocabulary and technical terminology is especially
important to human translators, who find terminology quite
challenging because they are rarely as familiar with the
domain as either the authors of the source document or the
readers of the target document. There is generally only a
single correct translation of the term, and it can be
dangerous to translate the parts of the term compositionally.
We believe that the distinction between general vocabulary
and technical terminology should also be important for
Information Retrieval. Technical terms, when they are
available, ought to be particularly strong clues for a
relevancy. I f you look at the index to almost any textbook
in a technical area, such as page 975 of volume A of the
Handbook o f Theoretical Computer Science [20], one finds
lots and lots of technical terms such as: binary tree, bitonic
sort, Boolean circuit, Boolean formula, breadth-first
search, bubble sort, bucket sort, butterfly network,
Chebychev's Inequality, Chinese Remainder Theorem,
Chomsky hierarchy and Church's Thesis. In fact, most of
the terms, at least on page 975 of [20], are more than one
word long. Multi-word terms are especially common in
technical writing. The experiments to be reported here are
based on a large corpus of technical abstracts in Japanese
[7,8]; previous studies of phrases have worked with a
variety of different (and often less technical) genres

125

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355214.355232&domain=pdf&date_stamp=2000-11-01

dynamo trap clamp bolt -> dynamo clamp bolt -> clamp bolt

gearbox end cover gasket -> end cover gasket -> gasket

exhaust valve lifter cable -> exhaust lifter cable -> cable

Figure 1: Examples of Variation from a Manual

Unlike general vocabulary, technical terminology is
remarkably fixed. It is considered good style, in technical
writing, to maintain, as much as possible, a one-to-one
relationship between "terms" and "concepts," the things
that terms refer to. It would be confusing to use two terms
for the same thing (synonYms), or one term for two things
(polysemy). Sager [17] makes this point by referring on
page 125 to a British Standards Guide (BS 0, 1981, A
Standard for Standards):

TERMINOLOGY: Properly defined, unequivocal
terminology is essential. Terminology within a
standard should be consistent, so that the same
object or concept is always described or
expressed by the same term and not by the use of
synonyms

However, some very limited variation is possible. Sager
[17] p. 215, mentions that it is sometimes possible to omit
words in a long complex noun phrase. Figure 1 were
selected from a manual, which by its instructive function,
as Sager points out, would normally be expected to use
stylistic variation very sparingly.

We find a similar pattern in Japanese. Technical terms are
used very precisely. Just as with English, it is confusing for
one term to refer to two things (polysemy) or two terms to
refer to the same thing (synonymy). Stylistic variation is
used very sparingly. Two instances of the same term are
likely to match character for character.

We will introduce a dynamic programming method to take
advantage of these kinds of variations, where it is possible
to insert or delete a few characters in a term. Most of the
characters of the term are kept intact. This kind of variation
rarely changes the order of the remaining characters very
much. That is why we believe that it would be better to
model the ~,ariation with dynamic programming than to
completely abandon the order and consider the string to be
a bag of words or a bag of characters.

For example, it is possible to add or delete a word in a long
Japanese phrase, at least in certain cases, so that machine
translation system and machine translation
EXPERIMENTAL system could both be used to refer to
more or less the same thing. Especially when the phrase
becomes quite long, as in the ease of GEOGRAPHICAL
information-NO retrieval system, the variation not only
involves the Kanji characters corresponding to
GEOGRAPHICAL, but can also involve a Hiragana
character, NO.

2 T w o B a s e l i n e S y s t e m s

Before introducing our dynamic programming proposal in
detail, we will introduce two baseline systems. There are
two types of systems in the literature, word-based systems
and ngram-based systems. Baseline-Diet is intended to be
representative of the first kind. We use an off-the-shelf
program Chosen [13] to tokenize the query and the
documents into words, and then we use a cosine measure
with IDF weighting, as suggested by Salton [18]. Chosen
uses a large dictionary of Japanese words to tokenize a
sequence of characters into words. Chosen also assigns
parts of speech. We use the nouns, verbs and unknown
words as terms. Words with other parts of speeeh are
considered stop words. More precisely,

Definition 1 Let Score(t) be - log2(df (t) / N) .

S I M tta = ~ t f (t) . Score(t) (1)
l

where term t appears in both the query and a document as a
noun, verb or unknown word. tf(t) is term frequency in the
document, df(t) is document frequency of term t. N is the
total number of documents.

The similarity function for Baseline-Ngram is described
precisely below. We also use a cosine measure with IDF
weighting for all ngrams that appear in both a query and a
document.

Definition 2 Let ¢x,t~,~ and r 1 be strings. Let otik be
the substring of cz from position i to i+k-1. Let [3# be the
substring i~ from j to j+k-1. Let Score be a function from
strings to reals.

sIM.~,,, = z~ Compm~,~:~) (2)

where Comp(~, 71) is defined as follows:

• if ~ =71 then Score(q)

• if~;~71thenO.O

where Score(~) = - / o g 2 (d f t ~) / N) .

In the definition, a~/'~) is the document frequency of the
subs~ng 4, just like the standard definition of df except
that it applies to subs~ngs rather than words.

Most character-based systems tokenize the query and the
document into short, possibly overlapping, ngrams of
characters such as bigrams or trigrams. Japanese text

126

<TITLE>about machine translation s~sSem</TITLE>
<EXPLANATION>Documents that explain the ~eatures,
the ~unctions and the performance o~ a machine
Sranslation ssstem either developed or under
development. It is not enough i~ the document
onls describes the application o~ machine
lSranslation sssSems, or related technolo~s such as

ompilation o~ dictionary. </EXPLANATION>

Figure 2: Query #24 and Its Translation

makes use of three alphabets, a very large alphabet of
several thousand Kanji characters borrowed from Chinese a
long time ago, plus two much smaller alphabets, about 50
Katakana characters for more recent loan words and a
handful of Hiragana characters for Japanese function words.
Because the Katakana alphabet is so much smaller than
Kanji, Katakana words tend to be longer than Kanji words.

For example, the Kanji words for machine and translation
are both two characters long, whereas the Katakana word
for system is four characters long.

As pointed out by Fujii and Croft [6], short ngrams may
work quite well for Kanji, but probably not for Katakana.
Short ngrams may be more promising in Chinese, since it
consists entirely of Chinese characters. See [2,10] for a
recent discussion of short ngrams systems for Chinese, and
[I 1] for Korean. Even so, it isn't necessary to restrict our
attention to just short substrings. Using sophisticated data
structures such as suffix arrays and PAT-trees [3,12,15,21],
it is possible to work with very long ngrams.

We have found that long ngrams help. The bigram system
has rather low performance (11 point average precision of
0.134), much lower than the Baseline-Ngram system (11
point average precision of 0.164). The Baseline-Ngram
system uses all ngrams (subslrings) in the query, not just
the ngrams of length two. Since our proposed DP system
uses all ngrams, we have chosen the character based
system using all ngrams.

Figure 2 shows one of the 30 queries in the test collection,
query #24. The query contains the Japanese term for
machine translation system, and very little else that any of
our retrieval systems are able to make use of. Both of the
baseline systems have trouble with this query.

Baseline-Diet tokenizes machine translation system into
the three Japanese words corresponding to machine,
translation and system.

Unfortunately for Baseline-Dict, none of these three words
are very useful keywords by themselves. In fact, system is
particularly poor: it appears in about half of the 330,000
documents, so many that its IDF weighted contribution is
negligible. Yet, the word system is crucial to the query,
since, as the last sentence of the query explains, documents
that mention machine translation but not system are
considered irrelevant.

Baseline-Ngram is in a better position to deal with this
term, because it will give a very high score to a document
that contains the entire term, machine translation system,
and lesser scores to documents that contain only fragments
of the term. Although Baseline-Ngram does better than
Baseline-Diet, at least for this query, Baseline-Ngrem does
not do a very good job of capturing the kind of variations
of technical terms. In fact, for most of the queries in our
test set, Baseline-Ngram performs remarkably poorly,
much worse than Baseline-Dict.

Although the Score function could be more sophisticated,
we use a function based on pure IDF. This is because we
are more interested in relative improvements from one
condition to another than absolute score. While the more
sophisticated Score function will improve the absolute
scores, it makes the comparison unclear. The terminology
issues is real and independent of the choice of Score
function.

3 Edit Distance and the Proposed System

Edit distance is a natural way to think about the variation
between machine translation system and machine
translation EXPERIMENTAL system, where a few
insertions and deletions are possible. Edit distance is
described in the appendix of the book [9]; it is the
minimum number of edit operations, such as insertion and
deletion, that are required to map one string into the other.
It is widely used in spelling correctiorL We have tried to
use a variation of this distance measure for information
retrieval.

127

A few of modifications are required in order to achieve
respectable precision. We 'need to introduce IDF-weights
on substrings, so that not all edit operations count equally.
This is accomplished by the function Score. In addition,
because the weighting function can assign very good scores
to long substrings (technical terms), we need to generalize
the dynamic programming algorithm that is usually used to
compute edit distances. Normally, the dynamic
programming procedure considers just a single character at
a time, but because long substrings can receive such good
scores, we need to consider all prefixes of the longest
common prefix, not just the next character.

We call the resulting similarity SWS (String Weight
dynamic programming Similarity). It resembles Ukkonen's
Enhanced Dynamic Programming ASM (Approximate
String Matching) [1], but it is based on the weights of
strings, not characters.

Definition 3 Let ct, fl,~ and 77 be strings. Let c t~ be
the substring of tt from position k to k+m-1. Let or,,, be
the substring of ct from position n to the last. Let fl~,, be
the substring f3 from k to k+m-1. Let fin, be the substring
of fl from position n to the last. Let Score be a function
from strings to reals.

$1Mnp = .m~. (Coml,(cqi,l~/)+ SIMm,(ai+l,,[3j+l,D (3)
t ,g

where Comp(~, 77) is defined as follows:

• if ~ = rl then Score(g)

• if ~ ~ 7? then 0.0

where Score(7~)= - log2(df t~j / N) .

The standard one-character-at-a-time dynamic
programming method for computing edit distance assumes
that long matches cant receive exceptionally good scores.

In other words, it regards as if Score(~) is 0 if length of
is greater than one. If the scoring function obeys the
inequality, Score(~ry) <_ Score(~d)+ Score(y), for all
substrings t~ and y, then the best path would consist of a
sequence of single characters, and we would not need to
consider long phrases. However, the scoring function we
have in mind is not like this. They will sometimes assign
very good scores to long phrases (technical terms), and
therefore we need to extend the dynamic programming
procedure to consider more than just one character at a
time.

Our experiments reported use IDF as the scoring function
as the two baseline systems.

4 Experimental Results

As mentioned above, we used the Nacsis [7,8] test set
which consists of 330,000 technical abstracts in Japanese,
plus relevance judgements. We have used 30 queries in the
first distribution. We report results for three systems: our
proposal (DP), Baseline-Diet (BE}) and Baseline-Ngram

(BN). Many of the queries contain a single technical term,
and very little else that any of the three systems can make
use of.

Table 1: Dynamic programming (DP) shows best 11
point average precision with IDF term weighL

System 1 lpt

DP 0.28 !

Baseline-Ngram 0.164

Baseline-Diet 0.154

Table 2: Dynamic programming (DP) is better than
both Baseline-Dict and Baseline-Ngram

worse better

DP vs BD 7 23

DP vs BN 1 29

BD vs BN 15 15

Table 1 shows 11 points average precision of all queries.
Table 1 suggests that DP is better than both Baseline-Diet
and Baseline,-Ngrarn. Table 2 show the comparisons in
each single query. Each pair of systems was tested on all
30 queries. Judgements (better, worse) were made by the
11 points average precision of each query. We can
conclude DP shows better performance than both Baseline-
Diet and Baseline-Ngrarn. The score 23 vs 7 is statistically
significant with the level of 2.6× 10 -3. The score 29 vs 1
is also statistically significant with the level of 2.9 x 10 's.

Table 3 shows more detail for 13 of the 30 queries. A plus
sign indicates good performance, and a minus sign
indicates poor performance. The first three lines are easy
for all the systems since the term and many of the words
that make up the term are good keywords, as indicated by
their IDF weights. The next six lines play into DP's
strength. The term is a much stronger clue than its
constituent words. The numbers in parentheses indicate
how many times the term was found verbatim in the corpus,
not counting the variant forms, which were also attested.
The last four lines play into BD's strength. In these cases,
the query is described in general vocabulary, and does not
mention a technical term.

Four of the queries in Table 3 are marked with an asterisk.
Recall plots for these four queries are shown in Figure 3 -
Figure 6. When there are differences, the differences are
most salient in the grey area. Mitra et al. [13] also found
that phrases made little difference for the top few
documents.

128

Table 3: Dynamic programming (DP) works well when the query mentions a technical term, and each of the words in
the term have little IDF weight.

BD BN DP

l* + + +

4 + + +

6 + + +

•

16 - +

23 - +

24* - +

30 - +

5 +

10 +

13 +

29* +

Query Comment

autonomous mobile robot easy task

document image understanding easy task

Agent easy task

data mining no variation

parse tree analysis (56) variation

news paper article data (22) variation

machine translation system (244) variation

data flow processor (9) variation

natural language knowledge acquisition only variation

reduction of space dimension general term

automatic extraction of keyword general term

analysis of loop region general term

measurement of position general term

5 C o n c l u s i o n

We have proposed a new dynamic programming method
and shown that it works well especially when the query
consists of a single technical term such as machine
translation system, and the words in the term are poor
keywords with low IDF weights. Since we have a
characterization of when the proposed method works well,
it ought to be possible to combine the new dynamic
programming method with more traditional methods to
form a hybrid system that would get the best of both worlds.

R e f e r e n c e s

1 H. Berghel and D. Roach. An Extension of
Ukkonen's Enhanced Dynamic Programming ASM
Algorithm. ACM Transactions on Information
Systems, 1996, 14(1), pp. 94 - 106.

2 Aitao Chen, Jianzhang He, Liang~ie Xu, Fredric C.
Gey, and Jason Meggs. Chinese text retrieval without
using a dictionary. In SIGIR97. 1997, pp. 42 - 49.

3 Lee-Feng Chien. Pat-tree-based keyword extraction
for chinese information retrieval. In SIGIR97. 1997.

4 Mare. Damashek. Gauging similarity with n-grams:
Language independent categorization of text. Science
Feb 1995, 267(10), pp. 843 - 848.

5 J. L. Fagan. Experiments in Automatic Phrase
Indexing For Document Retrieval: A Comparison of
Syntactic and Non-Syntactic Methods. PhD thesis,
Department of Computer Science, Comell University,
Ithaca, NY, 1987.

6 Hideo Fujii and W. Bruce Croft. A comparison of
indexing techniques for japanese text retrieval. In
SIGIR93. 1993, pp. 237 - 246.

7 K Kageura and et al. Nacsis corpus project for ir and
terminological research. In Natural Language
Proceeding Pacific Rim Symposium 97. Dec 1997, pp.
2 - 5 .

8 Noriko Kando and et ai. Ntoir: nacsis test collection
project. In 20~th Annual Colloquium of BCSIRSG.

Mar 1997, pp. 25 - 27.

9 Robert R. Korthage. Information Storage and
Retrieval, chapter Appendix A, pp. 300 - 304.
WILEY COMPUTER PUBLISHING, Johon Wiley
& Sons, Inc., USA, 1997.

10 K . L . Kwok. Comparing representations in chinese
information retrieval. In SIGIR97. 1997, pp.34 - 41.

11 Joon Ho Lee and Jeong Soo Ahn. Using n-grams for
korean text retrieval. In SIGIR96. 1996, pp. 216 - 224.

12 Udi Manber and E. Myers, Suffix array: A new
method for on-linestring searches. SIAM Journal on
Computing. 1993, 22(5), pp. 935 - 948.

129

13 Yuji Matsumoto, Akim Kitauchi, Tatsuo Yamashita,
Yoshitaka Hirano, Osamu Imaichi, and Tomoaki
Imamura. Japanese morphological analysis system
chasen manual. Technical Report NAIST-IS-
TR97007, NAIST, Nam, Japan, Feb ! 997.

14 M. Mitra, C. Buckley, A. Singhal, and C. Cardie. An
analysis of statistical and syntactic phrases. In
RIA097, 1997, pp. 200 - 214.

15 M. Nagao and S. Mori. A new method of n-gram
statistics for large number of n and automatic
extraction of words and phrases from large text data
ofjapanese. In Coling94. 1994, pp. 611 - 615.

16 Yasushi Ogawa and Toru Matsuda. Overlapping
statistical word indexing: a new indexing method for
japanese text. In SIGIR97. 1997, pp. 226 - 234.

17 Juan C. Sager. A Practical Course in Terminology
Processing. John Benjamins Publishing company,
Amsterdam/Philadelphia, 1990.

18 Gerard Salton and Christopher Buckley. Term-
weighting approaches in automatic text retrieval
Information Proceeding and Management, 1988, 24,
pp. 513 - 523.

19 T. Strzalkowski, L. Guthrie, J. Karlgren, J.
Leistensnider, F. Lin. Perez-Carballo, T. Stmszheim,
J. Wang, and J. Wilding. Natural language
information retrieval: Tree-5 report. In The Fifth Text
REtrival Conference (TREC-5), E. M. Voorhees and
D. K. Harman editors, 1996, pp. 291 - 314.

20 Jan van Leeuwen. Handbook of Theoretical
Computer Science. The MIT Press/Elsevier, 1990.

21 Mikio Yamarnoto and Kenneth W. Church. Using
suffix arrays to compute term frequency and
document frequency for all substrings in a corpus. In
6 th Workshop on Very Large Corpora. 1998, pp. 28
- 37.

130

<
0
LU rr

0.8

0.6

0.4

0.2

DP=ngram=dictionary
i i i i i i i i I

DP <>
ngram +

dictionary []

~ooo¢~

° < ~ f ~' •

f /
I I I I I I I I I

100 200 300 400 500 600 700 800 900 1000
RANK

Figure 3: Query #1, a u t o n o m o u s m o b i l e robot." easy for all three systems.

DP = ngram > dictionary
1 i i J i i i

0.8

0.6

0.4

0.2

i i

DP o
ng~m +

dictionary []

o
D

o
o []

+ H .H ,H , i .H , r ,H . t
O H 'H ' I 'H 'H ' iH 'H 'H 'H 'H ,H ,H , ;

E~Z3
r'rt'a

4 []

o

[]

0 I I I I I I I I I

0 100 200 300 400 500 600 700 800 900 1000
RANK

Figure 4: Query #12, d a t a m i n i n g ; hard for Baseline-Dict, because the word segmentator split d a t a inappropriately.

131

DP> >ngram>dictionary

LU fr

0.8

0.6

0.4

0.2

DP o
ngram ÷

dictionary []

O 0 0 0 0 0 0 0 0 0 0 0 ~ O 0 0 0 0 0 0 ~ O ~ 0 0 0 0 0 0 0 ~

ooooooo~oO°°°~°°°°~°

o

~o o°
o C. + + I I I : I I I I I I ~ ~ ' ' : : ' ; : ' ' ' ' : ; ' : '

Q I [i I I "H-~ 'F '4 "F 'P~"

oo<> ++++ ~ : ~ I

~ ~ ~ :~

J /
@

0 I [I I I I I I I

0 100 200 300 400 500 600 700 800 900 1000
RANK

Figure 5: Query #24, machine translation system: ideal for dynamic programming (DP)

0.8

dictionaw > DP >> ngram
i i

DP o
ngram +

dictionary r~

o o
.

°
1,1.1 n-

O.4 ..a~a~o<,oe~<~ooo °~<~
/ O 0 0 0 0 0 0 >0,

. f _ H . +

O I 14"4"H'++'1"+++'~

0 I I I I 1 I I I I

0 100 200 300 400 500 600 700 800 900 1000
RANK

Figure 6: Query #29, position + measurement." hard for dynamic programming (DP) because there is no technical term.

132

