
DyTIS: A Dynamic Dataset Targeted Index Structure
Simultaneously Efficient for Search, Insert, and Scan

Jin Yang1, Heejin Yoon1, Gyeongchan Yun1, Sam H. Noh2*, Young-ri Choi1
1UNIST, 2Virginia Tech

1{yangjin, heejin5178, rugyoon, ychoi}@unist.ac.kr, 2samhnoh@vt.edu

Abstract
Many datasets in real life are complex and dynamic, that is,
their key densities are varied over the whole key space and
their key distributions change over time. It is challenging
for an index structure to efficiently support all key opera-
tions for data management, in particular, search, insert, and
scan, for such dynamic datasets. In this paper, we present
DyTIS (Dynamic dataset Targeted Index Structure), an index
that targets dynamic datasets. DyTIS, though based on the
structure of Extendible hashing, leverages the CDF of the
key distribution of a dataset, and learns and adjusts its struc-
ture as the dataset grows. The key novelty behind DyTIS is
to group keys by the natural key order and maintain keys
in sorted order in each bucket to support scan operations
within a hash index. We also define what we refer to as a
dynamic dataset and propose a means to quantify its dy-
namic characteristics. Our experimental results show that
DyTIS provides higher performance than the state-of-the-art
learned index for the dynamic datasets considered.

CCS Concepts: • Information systems → Data struc-
tures; Data management systems.

Keywords: dynamic datasets, index structure, key distribu-
tion

ACM Reference Format:
Jin Yang1, Heejin Yoon1, Gyeongchan Yun1, Sam H. Noh2*, Young-
ri Choi1. 2023. DyTIS: A Dynamic Dataset Targeted Index Structure
Simultaneously Efficient for Search, Insert, and Scan. In Eighteenth
European Conference on Computer Systems (EuroSys ’23), May 8–
12, 2023, Rome, Italy. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3552326.3587434

*This research was conducted while at UNIST.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00
https://doi.org/10.1145/3552326.3587434

1 Introduction
For in-memory datamanagement systems, such as in-memory
databases and key-value stores [4, 12, 34, 35, 56], the ef-
ficiency of the index structure is critical, strongly affect-
ing the final latency of the systems [21, 44, 57, 62]. More-
over, even for disk-based data management systems where,
previously, storage I/O latency had been the dominant per-
formance bottleneck [5], the software layer (i.e., the index
structure) becomes important with the recent advent of fast
storage systems such as the Samsung Z-SSD [54], KIOXIA
XL-FLASH [17], and CXL SSDs [33]. Traditional indexes such
as B+-trees and hash indexes are excellent structures that
have been embraced by data management systems. They
are an integral part of systems today supporting three key
operations, specifically, search, insert, and scan. Their limi-
tations, however, are that each excels for one operation but
may not support another efficiently. For example, while hash
indexes perform superbly for individual key search, they
do not support range queries well, while in contrast, the
B+-tree is the other way around. Recently, learned index
structures have been proposed that excel for all three op-
erations [21, 26, 57]. However, there is a catch here as well.
Learned indexes need to be trained, and training, in recent
work, has been done in the form of bulk loading [21, 26, 57].
When the characteristics of a dataset are static and simple,
they are excellent. However, once this assumption breaks,
how much to train and when to train again become diffi-
cult hurdles to overcome, potentially resulting in degraded
performance.
Consider that in a data management system, a dataset

is defined by a key distribution (i.e., keys inserted to the
system) and the insertion order of the keys. Many datasets
in real life are actually complex and dynamic such that the
key distribution is not uniform and also changes as keys are
inserted. In this paper, we present DyTIS (Dynamic dataset
Targeted Index Structure), an index structure that competi-
tively supports all search, insert, and scan operations, does
not require a training phase (i.e., bulk loading), and is espe-
cially effective for dynamic datasets. DyTIS, though based
on Extendible hashing [25], leverages the CDF (Cumulative
Distribution Function) of the key distribution of a dataset,
and learns and adjusts its structure as the dataset grows. The
key novelty behind DyTIS is to group keys by the natural
key order and maintain keys in sorted order in each bucket
to support scan operations within a hash index. A natural

370

https://doi.org/10.1145/3552326.3587434
https://doi.org/10.1145/3552326.3587434
https://doi.org/10.1145/3552326.3587434

EuroSys ’23, May 8–12, 2023, Rome, Italy Jin Yang, Heejin Yoon, Gyeongchan Yun, Sam H. Noh, and Young-ri Choi

Variance of Skewness

(Avg. number of linear models per 0.1M keys)

K
e
y
 D

is
tr

ib
u
ti

o
n
 D

iv
e
rg

e
n
c
e

(A
v
e
ra

g
e

K
L
 d

iv
e
rg

e
n
c
e
)

Group 1

Group 2

Group 3

Figure 1. Dynamic characteristics of various datasets

question, then, is how to manage the hash index when the
dataset becomes non-uniform, that is, unbalanced or skewed,
which is typical of datasets. To efficiently handle such key
distributions, DyTIS employs remapping functions that re-
distribute the non-uniform keys into a uniform distribution
while preserving the natural order of the keys.

Aside from learned indexes, to the best of our knowl-
edge, DyTIS is the first index structure that is simultane-
ously efficient for all search, insert, and scan operations. Un-
like learned indexes, DyTIS focuses on realistic real-world
datasets with various dynamic characteristics that have com-
plex key insertion order such that while keys are inserted over
time, the distribution of inserted keys continuously changes.

The main contributions of this work are as follows: First,
we give our definition of a dynamic dataset and propose a
means to quantify its dynamic characteristics. Second, we de-
sign an efficient index, DyTIS, which adjusts the CDF, as keys
are inserted, to reflect the real key distribution. Finally, we
implement DyTIS 1 and evaluate its performance by compar-
ing it with three different dynamic indexing techniques over
five different real-world datasets. Our experimental results
demonstrate that DyTIS provides higher performance than
the state-of-the-art learned index for the dynamic datasets
considered.

2 Motivation and Design Direction
2.1 Dynamic Datasets
Dynamic Dataset:We first define what we mean by a dy-
namic dataset and show how this is quantified. A dynamic
dataset is defined based on two observations; one, that the
whole key space of a dataset can consist of small key ranges
with different key densities [11, 45, 65] and two, that the
key densities of key ranges, and thus, the key distribution of
the dataset, change over time [42, 57]. The former is termed
skewness, which refers to how dense keys are over a key

1https://github.com/unist-ssl/DyTIS

0

 C
D

F
1

Key range (4.4 × 𝟏𝟎𝟏𝟒)

0

 C
D

F
1

Key range (3.6 × 𝟏𝟎𝟏𝟑)

0

 C
D

F
1

Key range (3.5 × 𝟏𝟎𝟏𝟒)

(a) Map-M, 2 models

0

 C
D

F
1

Key range (3.5 × 𝟏𝟎𝟏𝟒)

0

 C
D

F
1

Key range (3.6 × 𝟏𝟎𝟏𝟑)

(b) Taxi, 8 models

0

 C
D

F
1

Key range (3.6 × 𝟏𝟎𝟏𝟑)

(c) Review-L, 24 models

Figure 2. Variance of skewness for three datasets

range; if keys are dense (sparse), then skewness is high (low).
The latter is termed distribution divergence, which captures
the rate in which the key distribution of the dataset tends
to change. We find that variance of skewness and key distri-
bution divergence are the key factors that strongly affect the
performance of indexes that leverage the key distribution
of a dataset. This is because the number of linear models
used to approximate the CDF and the retraining/adjusting
of the linear models have strong impact on the performance
of these indexes, which we discuss in detail below. Figure 1
shows how various datasets fare in terms of these dynamic
characteristics. (The datasets are discussed in detail in Sec-
tion 4.2.) Note that the Uniform dataset shows no skewness
and no divergence in key distribution throughout the whole
key space. We now discuss how these values are quantified
and how they are to be interpreted.
Variance of Skewness: Variance of skewness is a metric
we use to capture how skewness changes throughout the
dataset. This represents the complexity of approximating the
CDF of the key distribution of the key space. Considering
that piecewise linear regression is used to approximate the
CDF [64], if the skewness of each small key range is highly
varied, a large number of linear models are needed. Figure 2
shows how the number of linear models varies for the Map-
M, Taxi, and Review-L datasets that show low, medium, and
high variance of skewness, respectively, where lines with dif-
ferent colors represent different linear models. Hereafter, for
simplicity, we use skewness to refer to variance of skewness.
To quantify skewness for a dataset, we take the average

number of linear models used to approximate the CDF for a
fixed number of keys per key range. Note that we use a fixed
number of keys, then average them to normalize their values
as real-world datasets will all differ in size. The approximated
CDF is measured by the maximum error-bounded Piecewise
Linear Representation (PLR) technique [64]2.
KeyDistributionDivergence: Formany real-world datasets,
keys are inserted to a data management system in dynamic
patterns. For example, in map datasets where keys are usu-
ally based on the longitudes and latitudes of locations [51],
data with similar longitude and latitude values may be in-
serted consecutively as a bulk, while in sensing or weather

2https://github.com/RyanMarcus/plr. In this work, to construct the PLR of
a dataset, the error bound is set such that the Uniform dataset only needs
one linear model.

371

https://github.com/unist-ssl/DyTIS
https://github.com/RyanMarcus/plr

DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Insert, and Scan EuroSys ’23, May 8–12, 2023, Rome, Italy
0

1
0
0
0

N
u
m

b
e
r

o
f

k
e
y
s

0

1
0
0
0

0

1
0
0
0

116.3M-th key distribution 116.4M-th key distribution

(a) Review-L

116.5M-th key distribution

0

1
5
0
0

N
u
m

b
e
r

o
f

k
e
y
s

0

1
5
0
0

0

1
5
0
0

163.2M-th key distribution 163.3M-th key distribution

(b) Taxi

163.4M-th key distribution

(a) Review-L0

1
0
0
0

N
u
m

b
e
r

o
f

k
e
y
s

0

1
0
0
0

0

1
0
0
0

116.3M-th key distribution 116.4M-th key distribution

(a) Review-L

116.5M-th key distribution

0

1
5
0
0

N
u
m

b
e
r

o
f

k
e
y
s

0

1
5
0
0

0

1
5
0
0

163.2M-th key distribution 163.3M-th key distribution

(b) Taxi

163.4M-th key distribution

(b) Taxi

Figure 3. Key distribution divergence for two datasets

related datasets [9], data may be inserted with some periodic
patterns such as diurnality and seasonality, and, as a final
example, in datasets where a timestamp is used as a part
of keys [28], keys may be inserted sequentially. Therefore,
the distribution of data (i.e., inserted keys) typically changes
over time.
Key Distribution Divergence (KDD) captures how vastly

the distributions change. It is measured by adopting the
Kullback–Leibler divergence (KL divergence) [41], which
measures the difference between two probability distribu-
tions, where higher KL divergence value means that the two
probability distributions are more different. To attain KDD,
we divide the whole dataset into sub-datasets with a fixed
number of keys and assume that each key in the sub-dataset
is a random variable following the same discrete probabil-
ity distribution. Then, the average of the KL divergence of
every two consecutive sub-datasets is taken as the KDD
for that dataset. To compute the KL divergence of two sub-
datasets, we approximate the probability distribution of each
sub-dataset using a histogram such that the key range of
its histogram is determined by the minimum and maximum
key values from the two sub-datasets. Note that for these
metrics, the number of keys considered per key range and
the size of a sub-dataset need to be chosen. While we choose
0.1 million for both, we also find the trend of the computed
metrics are largely insensitive to this choice.
Figure 3 shows how the key distributions diverge over

three consecutive sub-datasets for Review-L and Taxi that
represent datasets with low and high KDD values, respec-
tively. We observe that the three key distributions of Review-
L are virtually all the same, while for those of Taxi, the three
show quite different distributions even to the naked eye.
Revisiting Figure 1:We now revisit Figure 1 where there
are three groups of datasets. Group 1 contains the dynamic
datasets that we use throughout our experiments, while those
in Group 2, marked with (s), are the shuffled version of those
in Group 1. The shuffled datasets contain keys that are ran-
domly shuffled so that the keys in the key space are inserted
uniformly over time. We make the following observations

of Groups 1 and 2. First, real-world datasets (Group 1) show
varying degrees of dynamism such as high skewness and
low KDD (Review-M/L), to low skewness and moderate KDD
(Map-M/L), to moderate skewness and high KDD (Taxi). Sec-
ond, shuffled datasets (Group 2) have the effect of lowering
the KDD value, that is, stabilizing the distribution of the keys.
For datasets in Group 3, we observe little dynamic charac-
teristics having both low skewness and KDD. We emphasize
here that the target dataset of our study, Group 1, is different
from Groups 2 and 3 used in previous studies [18, 21, 40].

2.2 DyTIS Design Focus and Philosophy
An index structure that will perform well for scan as well
as insert and search operations has long been sought after.
Recent developments seem to have finally found the solution
in learned index structures [21, 26, 40, 57]. A learned index
leverages the key distribution to build an index structure
for keys stored in a sorted array. It uses machine learning
algorithms such as neural networks and linear regression
to approximate the CDF for the key distribution, and this
CDF is used to predict the position of a given key in the
sorted array. Of learned indexes, ALEX [21], a representa-
tive approach, maintains a data structure that looks like
a B+-tree, where each internal node stores a linear model
(i.e., an approximated CDF) and a pointer array to children
nodes, and each leaf node (i.e., data node) stores a linear
model and two arrays for keys and values. Unlike the origi-
nal learned index [40] with the static recursive-model index
(RMI), ALEX is dynamically adapted such that depending
on the dataset, each data node can have a different depth.
The index maintaining operations such as split, which is con-
ceptually similar to the B+-tree split, or expansion, where
the data node size increases with a scaled or retrained linear
model, are selected by a cost model that is learned with bulk
loading and, thereafter, re-learned during runtime. Through
the adaptive RMI, ALEX can find a queried key by passing
through multiple linear models in internal and data nodes.

Unfortunately, a couple of key constraints remain in learned
indexes, especially for real-world datasets [11, 42, 45, 57, 65].
The first is that the model must first be pre-trained (i.e., bulk
loaded). Currently, bulk loading is done manually in an ad-
hoc manner as it is difficult to know how many keys should
be used for learning so that the model sufficiently reflects
the real distribution. This limitation naturally requires re-
training of the model if the key distribution changes, so as
not to degrade performance. Second, existing learned in-
dexes leverage a hierarchy of models for either the whole
key space [40, 57] (i.e., RMI) or certain key ranges with high
key density [21] (i.e., adaptive RMI). Therefore, model re-
training in a node may result in a cascade of retraining of
other models such as the model of a parent or grandparent
node, which will be an expensive operation. Moreover, the
quality of the model in the upper hierarchy (such as the
model of the root) will have stronger effect on the overall

372

EuroSys ’23, May 8–12, 2023, Rome, Italy Jin Yang, Heejin Yoon, Gyeongchan Yun, Sam H. Noh, and Young-ri Choi

performance. Third, considering that a large number of linear
models must be built to approximate the CDF for a dataset
with high skewness, existing learned indexes that allow only
one linear model for a node [21, 40] need to create a large
number of nodes for such a dataset, resulting in a complex
index structure.

DyTIS targets dynamic datasets with high skewness and/or
high KDD. When designing DyTIS, we took into account the
valuable lessons from learned indexes. However, the follow-
ing unique considerations also needed to be distilled into the
design to efficiently support the dynamic nature of datasets.
1) Free of bulk loading: DyTIS learns and adjusts the CDF
incrementally as keys are inserted without bulk loading over-
head and also without performance degradation caused by
inaccurate models built during bulk loading. 2) Local model
re-training: The cost of model retraining should be low to
handle high KDD. DyTIS enables models for particular key
ranges to be retrained locally and independently, making it
more suitable for dynamic datasets. 3) Multiple models per
node: To accommodate key ranges with high skewness more
efficiently, DyTIS allows a node to have multiple models.

3 DyTIS: The Index Structure
3.1 Extendible Hashing
Extendible hashing is a dynamic indexing structure that can
grow and shrink as the workload dynamically changes [25].
It is unlike traditional hashing structures that require re-
hashing [20, 32, 48, 52, 53]. Figure 4 shows Extendible hash-
ing, in which 𝑛 is the number of bits used for a key 𝐾 , and
a pseudo-key 𝐾 ′ = ℎ(𝐾), where ℎ is the hash function, is
used for indexing [25]. In Extendible hashing, the hash table
is organized with a directory and buckets. A directory (i.e.,
𝑑𝑖𝑟) is an array where prefixes, i.e., the most significant bits
(MSBs), or suffixes, i.e., the least significant bits (LSBs), of the
pseudo-key are used as an index. In Figure 4(a), two MSBs of
a pseudo-key are used for the directory. The directory has a
global depth 𝐺𝐷 that indicates how many MSBs are used as
an index. Thus, 𝐺𝐷 determines the size of the directory.
Each entry in the directory points to a bucket that can

store a fixed number of key-value pairs. Note that a value
in each pair can be a pointer to an actual value associated
with the key. When inserting a key-value pair,𝐺𝐷 MSBs of
its hash key are first used to find the directory entry, and
then it is stored in the bucket pointed to by the directory
entry (if there is free space). For example, Figure 4(a) shows
the state after inserting the key “011101 ...” to the hashing
index. Each bucket has a local depth 𝐿𝐷 , where 𝐿𝐷 ≤ 𝐺𝐷 ,
indicating that this bucket contains all keys starting with 𝐿𝐷
MSBs of its associated directory index. Thus, two or more
entries of the directory can point to the same bucket.
When a bucket finally overfills, the bucket must be split

into two buckets. There are two situations when a bucket

00 01 10 11GD=2

dir[0] dir[1] dir[2] dir[3]

001101 …
001011 …
000101 …

011101 …
010110 …
011011 …
011000 …

110101 …
101011 …
100101 …
100110 …

Original Key 𝐾

Hash Key 𝐾’

100110

011101

𝐾’=𝒽(𝐾)

…

…
2𝑛-10

LD=2 LD=1

000 001 010 011 100 101 110 111

GD=3

dir[0] dir[1] dir[2] dir[3] dir[4] dir[5] dir[6] dir[7]

010111 …

001101 …
001011 …
000101 …

011101 …
011011 …
011000 …

110101 …
101011 …
100101 …
100110 …

010110 …
010111 …

Hash Key 𝐾’
(a) Insertion

00 01 10 11GD=2

dir[0] dir[1] dir[2] dir[3]

001101 …
001011 …
000101 …

011101 …
010110 …
011011 …
011000 …

110101 …
101011 …
100101 …
100110 …

Original Key 𝐾

Hash Key 𝐾’

100110

011101

𝐾’=𝒽(𝐾)

…

…
2𝑛-10

LD=2 LD=1

000 001 010 011 100 101 110 111

GD=3

dir[0] dir[1] dir[2] dir[3] dir[4] dir[5] dir[6] dir[7]

010111 …

001101 …
001011 …
000101 …

011101 …
011011 …
011000 …

110101 …
101011 …
100101 …
100110 …

010110 …
010111 …

Hash Key 𝐾’

(b) Directory doubling

Figure 4. Extendible hashing

splits. The first is when 𝐿𝐷 < 𝐺𝐷 , which means that multi-
ple directory entries were pointing to the bucket as in the
case of the rightmost bucket in Figure 4(a). For this case,𝐺𝐷
simply remains the same and 𝐿𝐷 of both buckets is increased
by one, while the contents of the original bucket are adjusted
according to the 𝐿𝐷 + 1MSBs of the pseudo-keys. The sec-
ond situation is when𝐺𝐷 = 𝐿𝐷 . In this case, one bucket is
pointed to by only one directory entry. Thus, the directory
has to be expanded to accommodate the split, which is re-
ferred to as directory doubling. For this, the number of bits
used as an index, that is, 𝐺𝐷 , must first be increased by one.
Then, the dividing of the contents and the 𝐿𝐷 values are
adjusted in the same manner as the first case. For example,
as one more key is added to the bucket pointed to by 𝑑𝑖𝑟 [1]
in Figure 4(a), the directory is doubled such that the values of
𝐿𝐷 for the buckets pointed to by 𝑑𝑖𝑟 [2] and 𝑑𝑖𝑟 [3] become
three, while those for other buckets remain unchanged as
shown in Figure 4(b).
CCEH [49] is a variant of Extendible hashing that uses a

three-level structure of a directory, intermediate segments
composed of a number of buckets, and buckets. CCEHutilizes
MSBs of a pseudo-key as a segment index, while it utilizes
LSBs of the key as a bucket index in the segment. Having
intermediate segments is useful in reducing the overhead
of directory doubling. In DyTIS, we adopt this three-level
structure of CCEH, but we do not use LSBs of the keys since
keys are stored in sorted order to support scan operations.

3.2 System Overview
DyTIS has an Extendible hash table structure, but uses remapped
keys as pseudo-keys, rather than hash keys, to preserve the
natural order of keys. It also leverages CDFs like learned
indexes, but, as we will see, not in exactly the same manner.
Figure 5 presents the architecture of DyTIS as well as a

walk-through example that we will use. DyTIS consists of
multiple Extendible Hashing (EH) tables and has a key range

373

DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Insert, and Scan EuroSys ’23, May 8–12, 2023, Rome, Italy

01011101

K’=Remap(1101)

Original Key K (n=8)
00 01 10 11

000 001 010 011 100 101 110 111

1st Level

2nd Level

XX 011101

XXX 11110

GD=3
LD=2

Sorted
buckets

…
0001

1100
…

R=2

01010

01101

11011

11110

EH[1]

Sibling
pointer

Bucket index Segment A

0011

0101

1011

1111

EH[0] EH[2] EH[3]

=11110

dir[0] dir[1] …

buc[0]

buc[1]

Remapped Key K’

Figure 5. DyTIS architecture

of [0,2𝑛), where 𝑛 is the number of bits used for a key. It has
a two-level architecture so that the first level has an array
of EHs. The first level statically divides the entire key range
into 2𝑅 sub-ranges based on 𝑅 MSBs of the key so that each
EH handles, in the second level, keys only in a given sub-
range. This two-level structure allows each EH to deal with
a smaller number of keys within the sub-range individually.
Therefore, the range of keys for each EH becomes [0,2𝑛−𝑅)
set by the (𝑛 − 𝑅) LSBs from the keys. In Figure 5, 𝑛 = 8 and
𝑅 = 2, thus, each EH makes use of the six LSBs of the key.

An EH table in the second level has a three-level struc-
ture of a directory, segments, and buckets as in CCEH [49].
Each bucket is composed of an array of keys and an array
of values such that a key and its value are stored in sorted
order by the values of keys separately in the two different
arrays [21]. Also, segments within the same EH maintain a
sibling pointer to the next segment to accelerate scan perfor-
mance. Note that buckets have a fixed size. In this three-level
structure, each segment contains all keys starting with the
same 𝐿𝐷 MSBs, where 𝐿𝐷 is the local depth of the segment.
In the example, 𝐿𝐷 = 2 and thus, all keys with MSBs 01 are
in Segment A. Consequently, the key range of a segment
becomes [0,2𝑛−𝑅−𝐿𝐷) set by the (𝑛 − 𝑅 − 𝐿𝐷) LSBs of the
keys. In Figure 5, the four LSBs (for example, 1101(2) for key
01011101(2)) are used resulting in a range of [0,24). Note that
in Figure 5, instead of original keys, remapped keys, which
are discussed next, are shown in Segment A.

We have, so far, only described how the bits (actually their
positions) that comprise the key are used within DyTIS. Now
we describe the key idea behind DyTIS, which is to use the
raw keys themselves as pseudo-keys, rather than the hash
keys, enabling efficient scan operations. However, the key
predicament here is that non-uniform key distributions may
result in a huge and imbalanced directory where a large
number of keys exist in a certain range, while in the rest of
the ranges, only a few keys exist so that many entries in the
directory are pointing to the same bucket. Such situations
will result in high directory doubling cost. To remedy this
issue, DyTIS uses remapping functions that re-distribute keys
with any distribution uniformly. That is, in each segment

B
u
c
k
e
t

ID
0
 1

2
3
 4

5
 6

 7

B
u
c
k
e
t

ID
0

 1
2

3
 4

5
 6

 7

(a) Before remapping

B
u
c
k
e
t

ID
0
 1

2
3
 4

5
 6

 7

B
u
c
k
e
t

ID
0

 1
2

3
 4

5
 6

 7

(b) After remapping

Figure 6. Adjusting the remapping functions

within the EH, if DyTIS deems the keys within the segment
to be skewed, remapping spreads the keys evenly over the
segment. This is depicted as 𝐾 ′ = Remap(1101) in Figure 5.
DyTIS leverages the CDF for a key distribution as the

remapping function of each segment. We exploit the fact
that since the CDF is a monotonic increasing function, each
key 𝐾 has a unique 𝐾 ′ value, and thus, all the keys with any
distribution mapped using its CDF are mapped to a uniform
distribution. In DyTIS, the CDF for the remapping function is
approximated as a set of linear functions (similarly to other
learned index techniques [21, 28, 38, 57]). That is, given the
key range of a segment, the key range is statically divided
into 2𝑃 sub-ranges based on 𝑃 MSBs of the given keys, and
each sub-range is associated with a linear function.
Initially, we assume that keys are uniformly distributed

within each sub-range, initializing the linear function as
𝐾 ′ = 𝐾 , as shown in the left sub-figure of Figure 6(a) where
there are four sub-ranges for a segment. As keys are inserted
into EH, we incrementally and dynamically adjust the lin-
ear function (i.e., slope and intercept) for each sub-range to
reflect the real distribution as in the left sub-figure of Fig-
ure 6(b). For a sub-range where more keys are inserted than
predicted (for example, [1/4, 1/2)), we increase the slope of
its linear function, while for a sub-range where less keys are
inserted than predicted (for example, [0, 1/4)), we decrease
the slope of the function. Moreover, intercept values of linear
functions need to be modified such that the functions are
connected to handle the entire range of the remapped keys.
(Note that the right sub-figures of Figure 6 will be discussed
in Section 3.3.)

Alongwith remapping functions, to handle possibly highly
skewed key distributions without directory doubling or split,
DyTIS also exploits segments with varying sizes such that
DyTIS can dynamically adjust the number of buckets that a
segment can hold. We now discuss how a key is rescaled, i.e.,

374

EuroSys ’23, May 8–12, 2023, Rome, Italy Jin Yang, Heejin Yoon, Gyeongchan Yun, Sam H. Noh, and Young-ri Choi

how the bucket index of a key is computed, within a segment
with multiple buckets. Consider a segment where𝐾 ′ = 𝐹 (𝐾),
with 𝐾 and 𝐾 ′ being the raw key and the remapped key,
respectively, and 𝐹 is the scaled approximate CDF for the
distribution to the function range (i.e., the range of 𝑦-axis
of 𝐹). The function domain (i.e., the range of 𝑥-axis of 𝐹) is
the same as the key range of the corresponding segment,
which is [0,2𝑛−𝑅−𝐿𝐷), while, initially, when the segment has
only one bucket, the function range is [0,2𝑛−𝑅−𝐿𝐷). As the
number of buckets in the segment, 𝐵, increases, this range
will proportionally extend to [0, 𝐵 × 2𝑛−𝑅−𝐿𝐷). Accordingly,
function range [𝑖 × 2𝑛−𝑅−𝐿𝐷 , (𝑖 + 1) × 2𝑛−𝑅−𝐿𝐷) corresponds
to a bucket index 𝑖 , where 0 ≤ 𝑖 < 𝐵. Therefore, with a
given remapped key 𝐾 ′, the bucket index, where 𝐾 ′ is stored,
can be computed by dividing 𝐾 ′ with 2𝑛−𝑅−𝐿𝐷 , the size of
the function domain. Note that in general, the number of
buckets in a segment need not be a multiple of 2 as described
in Section 3.3 and thus, only the quotient is used since the
bucket index is an integer. Also, note that in Figure 6(a), the
domain of the function is given as [0,1). A similar simplifi-
cation is made for Figure 7 with the function domain and
range. While this is to simplify the explanations, the actual
function domain and range are as discussed above.

3.3 Individual Operations
Search: We explain how the search operation works using
the walk-through example in Figure 5. In this figure, we have
an 8 bit key (i.e., 𝑛 = 8) and use two bits in the first level (i.e.,
𝑅 = 2). Assume we want to find key 𝐾 = 01011101(2) . We
find EH[1] using two MSBs (01(2)) of 𝐾 . Within EH[1], the
𝑛 −𝑅 LSBs (011101(2)) of 𝐾 are used to compute the index in
the directory, whose size is always a multiple of 2, using𝐺𝐷
MSBs. As𝐺𝐷 is 3, we use threeMSBs, 011(2) , to find the direc-
tory index, which points to segment A. Since 𝐿𝐷 of segment
A is 2, its key range is [0,24) and the range of the remap-
ping function is [0,25) as it has two buckets, where 𝑏 [0] and
𝑏 [1] correspond to [0, 10000(2)) and [10000(2) , 100000(2)),
respectively. Then, we remap the four LSBs of 𝐾 (1101(2)) to
a new key 𝐾 ′ = 11110(2) , and find the bucket index to be 1
by dividing 𝐾 ′ by 24 (10000(2)).
Once the bucket is located, an exponential search [21] is

performed on the key array. If 𝐾 is found, DyTIS reads the
value of 𝐾 stored at the same location in the value array and
returns it. Otherwise, it returns “not exist”.
Scan: For a scan operation, a starting key 𝐾 and a scan key
range 𝑐 are given. DyTIS first finds the index of the directory
entry 𝑑 that could contain 𝐾 . It finds the starting position
by searching for 𝐾 or the smallest key larger than 𝐾 in the
segment of 𝑑𝑖𝑟 [𝑑]. If not found in that segment, the starting
position is the first key in the first bucket of the segment of
𝑑𝑖𝑟 [𝑑+1]. It then linearly reads 𝑐 keys, possibly continuing on
to subsequent buckets, segments, or EHs, or until it reaches
the end of the index. For scanning multiple segments within
an EH, sibling pointers of segments are used.

Algorithm 1 Insert(𝑘𝑒𝑦 𝐾 , 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑠 , 𝑏𝑢𝑐𝑘𝑒𝑡 𝑏)
1: If 𝑏 in 𝑠 is not full, insert 𝐾 to 𝑏 and return;
2: 𝐿𝐷 = a local depth of 𝑠;
3: 𝑈𝑠 = utilization of 𝑠;
4: if 𝐿𝐷 < 𝐺𝐷 then
5: if 𝑈𝑠 > 𝑈𝑡 then
6: Do Split;
7: else
8: Do Remapping;
9: If it fails, do split;
10: end if
11: else if 𝐿𝐷 == 𝐺𝐷 then
12: if 𝑈𝑠 > 𝑈𝑡 then
13: Do Expansion;
14: else
15: Do Remapping;
16: end if
17: if the above fails then
18: Do Directory Doubling;
19: end if
20: end if

Insertion: DyTIS inherits the basic schemes of split and
directory doubling of Extendible hashing. DyTIS, though,
employs additional schemes, remapping, and expansion, to
handle non-uniform key distributions. DyTIS is required to
use the MSBs of remapped keys so that keys can be clustered
by the natural key order in this way. Note that a remapped
key is used to find the bucket index but the raw key is stored
in the bucket. For the operations that alter the indexing
structure, we utilize a threshold𝑈𝑡 that determines whether
the utilization of a segment is high or low.
Algorithm 1 shows the insertion algorithm of DyTIS. To

insert a key 𝐾 , DyTIS first finds bucket 𝑏 of segment 𝑠 where
the key will be stored, as in the search operation. DyTIS
checks if key 𝐾 already exists. If so, it performs an in-place
update for𝐾 such that the updated value will be stored at the
same location in the value array of 𝑏. Otherwise, if 𝑏 is not
full, DyTIS inserts 𝐾 and the value of 𝐾 to 𝑏 (Line 1), which
could shift keys larger than 𝐾 and their values to maintain
the sorted order.

If 𝑏 is full, then there is no space to insert𝐾 . Depending on
the local depth of segment 𝑠 , and the current utilization of 𝑠 ,
DyTIS performs one of the following operations: split, remap-
ping, expansion, and doubling. Note that at the beginning,
DyTIS only performs basic schemes of Extendible hashing
until EH reaches a certain local depth, having a number of
inserted keys, before leveraging the key distribution to build
an index structure.
Low utilization of segment 𝑠 indicates that the key dis-

tribution of 𝑠 is currently non-uniform (because the bucket
of interest is full, yet the overall utilization of the segment
is low). Therefore, in such cases regardless of 𝐿𝐷 < 𝐺𝐷 or

375

DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Insert, and Scan EuroSys ’23, May 8–12, 2023, Rome, Italy

𝐿𝐷 == 𝐺𝐷 , DyTIS attempts to adjust the remapping func-
tions of 𝑠 to alleviate the skewed distribution of keys in 𝑠
(Lines 8 and 15). While adjusting the remapping functions,
it might increase the size of segment 𝑠 .
On the other hand, high utilization of 𝑠 means that the

current remapping functions for 𝑠 are distributing keys uni-
formly to a good degree, but 𝑠 lacks space to store more keys.
Therefore, when 𝐿𝐷 < 𝐺𝐷 , it performs a split (Line 6). On
the other hand, when 𝐿𝐷 == 𝐺𝐷 , DyTIS performs an expan-
sion, which doubles the size of 𝑠 while scaling the remapping
functions (Line 13). This has the same effect of directory dou-
bling for keys in segment 𝑠 . As there is a cap on the segment
size that is dependent on its local depth, which is described
in the last part of this section, the expansion and remapping
of a segment can fail if DyTIS cannot increase the size of 𝑠
due to this limit. To handle the failure, when 𝐿𝐷 == 𝐺𝐷 , it
performs directory doubling (Line 18). When 𝐿𝐷 < 𝐺𝐷 , if
remapping fails, it performs a split (Line 9). Note that remap-
ping and expansion do not increase data movement (i.e.,
memory copy) as they are performed to avoid segment splits
that incur data movement (which is discussed in Section 4).

Next, we discuss each of the operations in Algorithm 1.
Directory Doubling (Line 18): DyTIS uses the same dou-

bling mechanism as Extendible hashing described previously.
Split (Lines 6 and 9): DyTIS uses a similar split mechanism

as Extendible hashing, but with the following difference.
When the original segment is split into two new segments, it
is possible that one of the new segments may contain most
of the keys, if the keys are skewed. Therefore, for each of the
new segments, DyTIS first computes the segment size that
will accommodate the keys of a sub-range from the original
segment and then doubles its size, while keeping the slope(s)
of the remapping function(s) of the sub-range for the new
segment. For example, assume that the original segment has
four buckets where one bucket is used to store keys from
the left half of its key range and the other three buckets are
used to store keys from the right half of its key range. Then
the segments are doubled such that one segment will have
two buckets, while the other will have six buckets.

Expansion (Line 13): DyTIS simply doubles the size while
scaling the remapping functions (i.e., doubling the slope).
Therefore, a certain key range that originally uses one bucket
will use two buckets after the expansion.

Remapping (Lines 8 and 15): Recall that for a segment 𝑠 ,
we divide its key range into multiple sub-ranges. Initially, a
segment has one sub-range, but may be divided into multiple
sub-ranges as the following discussion. Consider that we are
trying to insert key 𝐾 into bucket 𝑏 in segment 𝑠 , but have
found that 𝑏 is full, but the utilization of 𝑠 is low. It is at this
condition that we are performing remapping. Thus, DyTIS
first checks if the sub-ranges of 𝑠 are fine-grained enough
such that each linear function for each sub-range, denoted
𝑟 , truly reflects the real CDF of 𝑟 . For example, Figure 7(a)
illustrates a case where the DyTIS CDF in [1/4, 1/2) does

0 1/4 1/2 3/4 1
Key sub-ranges

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Actual CDF
DyTIS CDF

(a) Four sub-ranges

0 1/4 1/2 3/4 1
Key sub-ranges

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Actual CDF
DyTIS CDF

(b) Eight sub-ranges

Figure 7. Dividing a sub-range into smaller ones

not approximate the real CDF accurately. In this sub-range,
many keys exist in the left half of the sub-range while only a
few keys exist in the right half. In such cases, the DyTIS CDF
is too coarse and cannot represent the skewness of the sub-
range. This results in the utilization of 𝑟 being low and yet,
the bucket in which 𝐾 is to be inserted being full. To remedy
this, remapping is employed. In remapping, we partition
the key range of 𝑠 into smaller sub-ranges until the target
sub-range to which 𝐾 will belong has utilization larger than
𝑈𝑡 . Figure 7(b) shows the case where the four sub-ranges in
Figure 7(a) are divided into eight sub-ranges. We observe
that DyTIS CDF for [1/4, 3/8) and [3/8, 1/2) now becomes
closer to the real CDF. For this, the remapping functions also
need to be adjusted.
Adjusting the remapping functions, generally speaking,

is done in the following manner. If there exists a sub-range
whose utilization is low, then DyTIS simply steals some num-
ber of buckets from that sub-range and gives those buckets
to the target sub-range 𝑡 with high utilization.
Let us illustrate how remapping functions are adjusted

using the example in Figure 6. In this example,𝑈𝑡 = 0.5. In
the figure, a segment with 8 buckets (b[0] to b[7]) is divided
into four sub-ranges, having each sub-range correspond to a
slope of 8 as in Figure 6(a). To be remapped as Figure 6(b),
DyTIS steals two buckets, one each from sub-ranges 0 and 2
(i.e., [0,1/4) and [1/2, 3/4)) whose utilization is 0.25, and gives
them to sub-range 2 (i.e., [1/4, 1/2)), altering the remapping
functions as follows. The slopes of sub-ranges 0, 1, 2, and 3
are first computed as 4, 16, 4, and 8, and the intercepts of the
sub-ranges are computed such that the remapping functions
are started at (0,0), (1/4,1), (1/2, 5), and (3/4, 6), respectively.
After remapping, sub-range 1 can use four buckets, lowering
the utilization of the sub-range to 0.5 making it the same as
the other sub-ranges.
Specifically, in DyTIS, we attempt to double the number

of buckets for the target sub-range 𝑡 . To do so, we compute
how many buckets we can steal from other sub-ranges in
segment 𝑠 based on the utilization of a sub-range. For each
sub-range (that is not 𝑡) whose utilization is less than𝑈𝑡 , we
compute the minimum number of needed buckets. Based on
this, we compute the number of buckets that this sub-range

376

EuroSys ’23, May 8–12, 2023, Rome, Italy Jin Yang, Heejin Yoon, Gyeongchan Yun, Sam H. Noh, and Young-ri Choi

can give to 𝑡 . If we can steal all the needed buckets from other
sub-ranges, we adjust the remapping functions accordingly.
The above process can fail if the utilization of other sub-

ranges is also high and thus, DyTIS is prevented from steal-
ing the needed buckets from other sub-ranges. In this case,
DyTIS increases the size of segment 𝑠 such that the number
of buckets for sub-range 𝑡 is doubled. Therefore, the slope
of the remapping function for sub-range 𝑡 is doubled and
thus, the overall function range for segment 𝑠 is increased
proportionally to the number of buckets in 𝑠 .
Once the new remapping functions are computed along

with the size of the segment, DyTIS creates a new segment
and copies each key from the old segment to the new segment
using the new remapping functions. Once this is done, the
segment location that points to the old segment, which is
stored in the directory entry, is made to point to the new
segment. Then, the old segment is deleted.
Deletion: To delete a key 𝐾 , DyTIS searches for the bucket
where 𝐾 is stored and deletes it from the bucket. This will
shift keys that are larger than 𝐾 and also their values, if
any. Similar to ALEX [21], if deletion causes high under-
utilization of a bucket, the bucket can be merged with others,
reducing the size of the segment. This process is similar to
remapping but in the opposite direction.
Selecting a segment size: DyTIS basically imposes a limit
on the segment size that is dependent on the local depth
of the segment. This limit doubles when the local depth in-
creases by one so that with a larger local depth, a larger
number of keys can be stored in a segment. The effect of the
segment size on performance will differ depending on the
type of key distribution.With highly skewed keys, DyTISwill
invoke remapping frequently and thus, a large segment size
will increase remapping overhead. With uniform keys, then
DyTIS leverages expansion and thus, a large segment size
is beneficial as more keys can be handled without increas-
ing the local or global depth. DyTIS optimizes performance
considering both cases as follows. Assume DyTIS starts to
perform remapping and expansion at local depth 𝐿. Until
DyTIS reaches a certain local depth 𝐿′ where 𝐿′ > 𝐿, it keeps
track of the occurrences of the expansion operations. At lo-
cal depth 𝐿′, if the portion of segments where expansion is
performed is large, this means that the keys are uniformly
distributed. Thus, DyTIS increases the limit on the segment
size at 𝐿′. Note that the value of 𝐿′ needs to be selected
so that DyTIS can collect sufficient information about the
occurrences of split, remapping, and expansion operations,
but, at the same time, early enough such that not too many
doubling operations occur. For this, we empirically decide
that 𝐿′ = 𝐿 + 2 and use this in our implementation.

3.4 Concurrency
With the advance of multi-core technologies, a server node
commonly used for data management systems can leverage
a large number of cores, which requires efficient concurrent

accesses to the index structure [14, 19, 30, 31, 44, 57, 58]. Pro-
viding efficient concurrency support is critical in sustaining
performance scalability as the number of cores continues
to increase [19, 24, 44]. Concurrency is supported in DyTIS
so that it can be used for a multi-threaded system such as
Memcached [1, 27]. Note that storage systems, developed
for distributed clusters and/or multi-core servers may lever-
age multiple single-threaded engines for data access as in
H-Store [6, 35] and Redis Cluster [3, 12]. Such systems may
also use the single-threaded version of DyTIS that does not
use locks instead of the multi-threaded one discussed in this
section. Recall that we adopt the structure of CCEH [49],
which supports concurrent accesses based on the two-level
locking scheme adapted from Ellis [23]. Inherently, DyTIS
adopts two levels of locking for each EH. At the high level,
the directory array 𝑑𝑖𝑟 needs to be synchronized, that is, at
the EH level, while at the lower level, we synchronize at
the segment level. For segments, synchronization is done
through a metadata container that we call a segment object,
which contains information such as remapping functions of
the segment and a pointer to a data array where key-value
pairs are actually stored.

Using reader/writer locks, synchronization is administered
only at the segment level when performing insert operations
such as the normal insert (which inserts a key to a bucket
without altering the indexing structure), remapping, and
expansion, as these operations only change values of the
information inside a segment object. Similarly, for search
and scan operations, segment level locking is used. For scan,
multiple segments, within or across EHs, are locked one by
one over the scan range, and once done, all the locks are
released.

For insert operations that change the structure such as the
split, which creates a new segment object and then updates
the segment object pointer to the new one, both segment
and EH level locks are used to prevent other threads from
performing directory doubling. Similarly, directory doubling
or updating a sibling pointer between two segments require
segment and EH level lock synchronization.

Note that CCEH leverages concurrency at finer grains of
buckets within segments. We also explored this, but found
that performance of DyTIS generally degrades. Our analysis
shows that this is due to the overhead of additional mem-
ory for the fine-grained locks and the handling of segments
with variable sizes, which is unlike CCEH that uses a fixed
segment size.

4 Experimental Results
4.1 Methodology
For our experimental study, we use a machine with two Intel
Core i9-9900K (8 core, 3.6Ghz) with 16MB L3 cache and 64GB
DDR DRAM. Ubuntu 18.04 LTS with Linux kernel version
5.4 was installed on the machine. Hyperthreading is turned
off during our experiments. To evaluate DyTIS, we compare

377

DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Insert, and Scan EuroSys ’23, May 8–12, 2023, Rome, Italy

its performance with the STX B+-tree3 [2, 10] (hereafter,
simply referred to as B+-tree), ALEX [7, 21], and XIndex [8,
57], which uses a two-level architecture for learned models,
where the first level uses a learned RMI while the second
level uses linear models and supports concurrent operations.
For B+-tree, the fanout is set to 128 that shows the best
performance in our setup. ALEX and XIndex require bulk
loading of datasets. Thus, 70% of each dataset are bulk loaded
for XIndex, while 10% or 70% are used for ALEX. Note that
in the original ALEX paper [21], the authors use roughly
10∼50% of the datasets to train the index. A discussion of
the effect of bulk loading is given in Section 4.3. Also, unlike
DyTIS and XIndex, the original ALEX and B+-tree do not
support in-place updates. For our experiments, we modified
ALEX and B+-tree to support in-place updates as suggested
within the ALEX code 4. For DyTIS, in the default setting,
the array size in the first level is set to 29 (i.e., 𝑅 = 9), 𝑈𝑡

is set to 0.6, and the bucket size is 2KB. The local depth
𝐿𝑠𝑡𝑎𝑟𝑡 where DyTIS starts remapping and expansion, is set
to 6. For datasets with large expansion operations (which
is determined by DyTIS dynamically), at local depth 8, a
limit on the segment size 𝐿𝑖𝑚𝑖𝑡𝑠𝑒𝑔 is increased to 128 times
(from 2 times by default). We will discuss the effect of these
parameter settings in Section 4.3. We run the experiments
with a single thread, except for those in Section 4.5, and
report the average of 3 runs.

4.2 Datasets
Table 1 shows the five real-world datasets with different key
distribution characteristics used in our experiments where
MM, ML, RM, RL, and TX denote the Map-M, Map-L, Review-
M, Review-L, and Taxi datasets, respectively, and L, M, and
H denote low, medium, and high skewness or KDD, respec-
tively. For each record in the datasets, the size of the keys is
configured to 8 bytes as done in prior works [21, 26, 40, 57]
and also the size of the values is configured in the same
way. In the table, for each dataset, we provide the number of
keys (in millions: M), the key range size (i.e., the difference
between the minimum and maximum key values), and the
dataset size.
For the datasets, we adopt real-world datasets that have

been widely used in existing indexing studies [21, 22, 28,
57, 62]. To generate unique integer keys, transformations
are applied with selected fields in the real-world datasets.
MM and ML are generated by combining the longitudes and
latitudes of two different continents, respectively, from the
OpenStreetMap [29, 51] (similarly to ALEX). RM and RL are
generated from the Amazon review data [46]. From the orig-
inal data, we select three fields, item ID, user ID, and review
time, and generate unique keys by concatenating them. TX
3We choose this open-sourced B+-tree implementation as it was the choice
of multiple earlier studies on efficient index structures [21, 45, 57].
4https://github.com/microsoft/ALEX/blob/master/src/core/alex.h, lines 1123
and 1124

Table 1. Datasets used in our experiments

Name Description
Number
of keys

Key range
size (×1018)

Dataset
size

Skewness,
KDD

MM South America 356M 5.92 7.0GB L,M
ML Africa 903M 15.4 18GB L,M
RM Deduplicated data 82M 1.31 1.6GB H,L
RL Ratings only 228M 5.18 4.5GB H,L
TX Taxi trip in New York 325M 1.08 6.7GB M,H

consists of pickup time and drop-off time fields of yellow
taxi trips in New York City from 2017 to 2020 in the TLC
Trip Record data [15]. Note that unlike ALEX [21], where
the keys are randomly shuffled, our datasets are generated
from the original datasets without shuffling and thus, the
key distribution can dynamically shift over time as discussed
in Section 2.1.

4.3 Results with Real-World Workloads
We evaluate the performance of the four different index
structures, DyTIS, ALEX, XIndex, and B+-tree, using seven
workloads that roughly correspond to workloads Load, A,
B, C, D, E and F of YCSB [16]. For ALEX, two versions with
10% and 70% bulk loading, ALEX-10 and ALEX-70, are used.
Using such workloads for real-world datasets is similar to
that done for the ALEX study [21], where for each workload
except Load, a batch of the workload is repeated for at least
60 seconds. The Load workload is composed of 100% inserts,
the A workload, 50% reads and 50% updates, the B workload,
95% reads and 5% updates, the C workload, 100% reads, and
the E workload, 95% scans where the range value is set to
100, and 5% inserts. Note that unlike in the ALEX study [21],
we also include workloads F, which consists of 50% reads and
50% read-modify-write, and D’. D’ is the same as the original
workload D in that it includes 5% inserts, but is different in
that the 95% reads are selected from the existing keys, and not
from the latest keys5. For all workloads except Load, the keys
are selected from the datasets using Zipfian distribution (with
the default Zipfian constant in YCSB, 0.99). Note that we also
ran all the experiments with uniform distribution as well,
finding the results to be similar with Zipfian distribution.
For workloads A, B, C, and F, the Load workload is first

executed to insert all the records in the dataset to the index.
In this Load phase, for ALEX, 10%/70% are bulk loaded and
90%/30% are inserted, while for XIndex, 70% are bulk loaded
and 30% are inserted. Then, we run each workload such that
the number of operations performed is more than 50% of the
dataset size for at least 60 seconds. For workloads D’ and E
that include inserting new keys, 80% of the keys are loaded.
Then, we start measuring the throughput until all the keys
in the dataset are inserted.

Figure 8 shows the throughput of sevenworkloads of YCSB
(i.e., Load, A, B, C, D’, E, and F), respectively, for DyTIS, ALEX-
10, ALEX-70, XIndex, and B+-tree. From the results of Load, a
5Measuring the performance of repeated batches makes the exact modeling
of the D workload complex.

378

https://github.com/microsoft/ALEX/blob/master/src/core/alex.h

EuroSys ’23, May 8–12, 2023, Rome, Italy Jin Yang, Heejin Yoon, Gyeongchan Yun, Sam H. Noh, and Young-ri Choi

MM ML RM RL TX
(a) Load

0
2
4
6
8

10
12

Th
ro

ug
hp

ut
 (M

 o
ps

/s
ec

)

X X

MM ML RM RL TX
(b) Workload A

0

2

4

6

8

X X

MM ML RM RL TX
(c) Workload B

0

2

4

6

8

10

X
X

MM ML RM RL TX
(d) Workload C

0

2

4

6

8

10

X X

MM ML RM RL TX
(e) Workload D'

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

 o
ps

/s
ec

)

X X

MM ML RM RL TX
(f) Workload E

0

1

2

3

X
X

MM ML RM RL TX
(g) Workload F

0
1
2
3
4
5
6

X X

DyTIS
ALEX-10
ALEX-70
XIndex
B+-tree

Figure 8. Throughput of seven real-world workloads over various datasets

purely insert workload, shown in Figure 8(a), we observe the
following: First, DyTIS tends to provide better throughput
than the other indexes for datasets with high KDD such as TX
and for datasets with medium KDD and low skewness such
as ML, as the local adjustment of its model is effective when
the key distribution changes. Second, for datasets with high
skewness such as RM and RL, DyTIS performance is lower
(24.86% lower on average) than that of B+-tree because of
remapping overhead. However, it is still higher than those of
the learned indexes, ALEX-10, ALEX-70, and XIndex. Third,
DyTIS shows better insertion performance than ALEX for
more dynamic datasets of RM, RL and TX. Note that for
ALEX and XIndex, the results do not include bulk loaded
keys. Now, from the results of a purely search workload C
shown in Figure 8(d), we observe that the search throughput
of DyTIS is the highest, with DyTIS being higher than the
other indexes except for MM, where ALEX-70 is 6.8% better
than DyTIS.

The results of the above insert and search operations exem-
plify the key differences between DyTIS and ALEX and their
performance implications. Recall that DyTIS uses a hash-
based structure with segments, each with multiple models,
while ALEX uses an adaptive RMI based structure with data
nodes, each with a single model. Due to these structural
differences, for insert operations, with DyTIS, the overhead
for maintaining the index structure changes due to splits,
expansions, and remappings is low when KDD is relatively
high, such as for ML and TX, as the local model is effectively
adjusted. This overhead, though, increases with higher skew-
ness, such as for RM and RL.With ALEX-10, we find that sim-
ilar structure maintenance overhead is, compared to DyTIS,
50% higher on average as it needs to perform many more
expensive operations to retrain or create models for datasets

with high skewness or high KDD. For MM, ML, RM, RL, and
TX with ALEX-10, the percent of those expensive operations
over the total maintaining operations is 21%, 30%, 41%, 47%,
and 24%, respectively. For TX, even though the size of TX is
around 3 times smaller than ML, the absolute number of the
maintaining operations and consequently, that of the expen-
sive operations are around 10 and 8 times higher than those
of ML. For search operations, we first note that to query a
key, DyTIS always uses a linear model once, but ALEX uses
at least two linear models, one at the root node and the other
at a data node, with, possibly, more models in internal nodes
of the tree. For the datasets, the average number of models
used in ALEX-10 is up to 3.33× (for RL) of that in DyTIS. Due
to this, we find that the traversal overhead to traverse to a
target bucket or data node for a given key with ALEX-10 is
22% higher on average than that with DyTIS. Finally, we find
that the performance difference between DyTIS and ALEX
for searching or inserting a key within a bucket or data node
is not a dominant factor.
In Figure 8, we also observe that for MM, compared to

DyTIS, the performance of ALEX-10 is higher for Load, while
that of ALEX-70 is higher for workloads B, C, and D’. MM has
low skewness and is smaller in size relative to ML. Also, its
KDD is medium. Therefore, the built structure with ALEX-10
has minimum depth similar to the Uniform dataset, showing
higher insert performance. Note that even though the index
structure with ALEX-10 has minimum depth, its search per-
formance is lower than DyTIS as the root node has a large
number of children nodes (i.e. data nodes), which increases
the traversal overhead. With ALEX-70, the effect of KDD for
MM becomes much lower as it bulk loads a larger amount of
the dataset compared to ALEX-10. Therefore, ALEX-70 ends
up having the smallest number of nodes for the index among

379

DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Insert, and Scan EuroSys ’23, May 8–12, 2023, Rome, Italy

MM ML RM RL TX
(a) Insertion

0

3

6

9

12

Th
ro

ug
hp

ut
 (M

 o
ps

/s
ec

)

X

MM ML RM RL TX
(b) Search

0

5

10

15

20

X

DyTIS CCEH EH

Figure 9. Comparison of DyTIS with CCEH and EH

all the datasets (which is 7% smaller than that with ALEX-10).
Consequently, its traversal overhead becomes small, result-
ing in good performance as exemplified for workloads B, C,
and D’.
From Figure 8, we also observe that aside from Load and

MM with ALEX-70 as mentioned above, DyTIS performance
is always the highest among all the indexes for all datasets
as DyTIS provides good search and update performance. For
workload E, we find that performance of B+-tree is lower
than those of ALEX and DyTIS mainly due to its small data
node size. The average data node size is 4.0∼295.1× and
4.7∼319.2× smaller than those of ALEX(-10 and -70) and
DyTIS, respectively, forcing accesses to a much larger num-
ber of data nodes.

Overall, XIndex performs considerably worse than DyTIS
or ALEX because it employs a delta index and a tempo-
rary delta index to handle key insertion along with a back-
ground compaction thread. Such additional structures and
background thread overhead for merging data in the index
and the delta index take their toll compared to DyTIS and
ALEX, which are free of such structures and overhead. In
the experiments, XIndex cannot load MM and ML (with 70%
bulk loading) due to out-of-memory faults and thus, the
subsequent workloads cannot run.
Next, we discuss the performance of DyTIS when using

the datasets in Groups 2 and 3 of Figure 1, which are rela-
tively simple ones. For the datasets in Group 2, which are the
shuffled versions of those in Group 1, DyTIS shows the high-
est throughput among all the indexing techniques for all the
YCSB workloads, except for Load with RM and RL, similarly
to the original datasets, and for MM. The datasets in Group 3,
which are used in the ALEX study [21], are much less dy-
namic than those in Group 1 such that their key distributions
are easy to predict, which is ideal for traditional learned in-
dexes. For the Uniform dataset of one billion keys, ALEX-10
shows 18.6% better throughput than DyTIS on average for
the YCSB workloads. DyTIS, however, still provides up to
3.5× (for workload C) higher throughput compared to B+-
tree for all the workloads. For Longlat, which has the highest
skewness in Group 3, DyTIS performs better (7.3∼16.6%)
than ALEX-10 for workloads A, E and F, while performing
lower (2.5∼6.4%) for workloads Load, B, C and D’.

Figure 9 shows the performance of DyTIS, CCEH, and
Extendible Hashing (EH) described in Section 3.1. Figure 9
shows that DyTIS provides better insert and search perfor-
mance than EH for all the datasets. It also shows that for
insertion, CCEH and DyTIS give and take depending on the
dataset, while for search performance, DyTIS is lower than
CCEH by an average of 50%. Note that CCEH fails for ML
due to out-of-memory. Generally speaking, DyTIS supports
scans by replacing a hash function with a remapping func-
tion resulting in deteriorated search performance compared
to CCEH, but which is still higher than B+-tree, ALEX-10,
ALEX-70 (except for MM), and XIndex.
Effect of Bulk Loading on Learned IndexesWe discuss
how bulk loading affects the performance of ALEX and
XIndex, which influences our first design consideration. As
shown in Figure 8, ALEX-70 does not always provide bet-
ter performance than ALEX-10. In particular, for RM, the
performance of ALEX-10 is better than or similar to that
of ALEX-70 for the YCSB workloads. Also, as shown in Fig-
ure 8(a), the load performance of ALEX-70 tends to be lower
than that of ALEX-10. This is because as nodes are updated
with splits and expansions due to insertion, the structure
becomes more complex and more keys need to be moved. In
the end, we find that the node size and depth of ALEX-70
are 337% larger and 26% deeper, on average, than ALEX-10
after bulk loading. To observe the influence of bulk loading
further, we also evaluate ALEX with 30%, 50%, and 90% bulk
loading for each dataset. Figure 10 shows the throughput of
each workload normalized to that with ALEX-10. Note that
for workloads D’ and E, 80% of the keys are loaded as in the
earlier experiments except for ALEX-90 (which bulk-loads
90% of the dataset), and the number of operations for each of
these workloads remains the same over various bulk loading
percentages except for Load, and workloads D’ and E with
ALEX-90. The key finding from the experiments is that no
regularity can be found between load size and performance.
For example, in the case of RM, as we increase bulk load-
ing from 10% to 70%, performance generally decreases or
remains similar, while for TX, ALEX-50 performs better than
or similarly to ALEX-90, in most cases. Also, for MM and
ML, ALEX-70/90 tend to provide better performance than
ALEX with lower bulk loading (i.e., ALEX-10/30/50), while
ALEX-10/30/50 show similar performance with each other.
Overall, for our datasets, the performance difference over
the different bulk loading percentages is as high as 21%, 31%,
36%, 40%, 42%, 14%, and 32% for the Load, A, B, C, D’, E,
and F workloads, respectively. Our deeper analysis reveals
that bulk loading is critical with ALEX as once the structure
is built with a particular depth during bulk loading, ALEX
vigorously deters increasing this depth.

Similar experiments were conducted for XIndex for TX,
showing similar impact of bulk loading percentages on its
performance to ALEX. We also find that for RM and RL,
insertion failed with less than 70% bulk loading, conjecturing

380

EuroSys ’23, May 8–12, 2023, Rome, Italy Jin Yang, Heejin Yoon, Gyeongchan Yun, Sam H. Noh, and Young-ri Choi

Load A B C D E F
(a) MM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
Th

ro
ug

hp
ut

Load A B C D E F
(b) ML

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
ALEX-30 ALEX-50 ALEX-70 ALEX-90

Load A B C D E F
(c) RM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Load A B C D E F
(d) RL

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Load A B C D E F
(e) TX

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Figure 10. Throughput of ALEX over various bulk loading percentages normalized to ALEX-10

that memory access issues during insertion result in the
failures. Thus, 70% bulk loading was chosen for the earlier
experiments.
Insertion Breakdown and Tail Latency Analysis: We
analyze the insertion execution time breakdown for DyTIS,
that is, how much time it spends for each operation. We
observe that for RM and RL with high skewness, remapping
is leveraged the most. For TX with high KDD, it spends
a relatively large portion of time for both remapping and
expansion. We also analyze that the overhead of remapping
is composed of memory copy overhead (58% on average over
the five datasets) and remapping function adjustments (42%),
and thus, it is proportional to the size of the segment. It is
worth noting that considering a segment with size 𝑥 , the
overhead of remapping, which ends up having a size slightly
larger than 𝑥 , is similar to or only a bit larger than that of
split, which ends up having a size of 2𝑥 , for the segment.
Furthermore, the expansion of 𝑥 , which results in a segment
of 2𝑥 , has the same memory copy overhead as split, having
similar overhead to remapping.
Table 2 presents the average, the 99th and the 99.99th

percentile tail latency numbers of workloads Load and A,
where best values are bold faced, for DyTIS, ALEX-10, ALEX-
70, XIndex, and B+-tree. In the case of the Load workload,
DyTIS is better than ALEX(-10 and -70) for dynamic datasets,
RM, RL, and TX. However, B+-tree performs the best for
most cases. For the 99.99th percentile tail latency, DyTIS per-
forms worse than B+-tree due to the overhead for remapping
large segments. However, we also see that the 99.99th tail
latency of ALEX(-10 and -70) whose (re)training operations
can be more expensive is 3.3× and 3.1× larger on average,
respectively, than that of DyTIS. For workload A, DyTIS does
better than ALEX-10 and ALEX-70 except for the average
latency for TX with ALEX-70. Note that though not shown,
for the other workloads, DyTIS provides better or similar
performance compared to ALEX in most cases.
Memory Usage Analysis:Wemeasure the maximummem-
ory usage of each index structure using “dstat” where the
amount of memory used for the benchmark execution and
for bulk loading in the case of ALEX and XIndex is included,
though, it is important to note that the memory needed for
bulk loading is released once the bulk loading process is

done. We find that on average, the maximum memory us-
age of ALEX-10, ALEX-30, ALEX-50, ALEX-70, ALEX-90,
and B+-tree is 25.9%, 26.3%, 27.0%, 22.6%, 5.3%, and 27.4%
less than that of DyTIS for the YCSB workloads. DyTIS uses
more memory because a segment consists of multiple buck-
ets as in CCEH [49] and thus, each key must be stored in
a particular bucket unlike ALEX and B+-tree. Interestingly,
the memory usage of ALEX-90 increases (using only 5.3%
less memory than DyTIS) as the sum of the memory needed
for bulk loading and for the index structure when the bulk
loading is done, which is the point of the maximum memory
usage, becomes much larger. For XIndex, we observe that
its memory usage is much higher than the others (e.g., 4.2×
higher than DyTIS).
Parameter Effect: We investigate how the control parame-
ters affect DyTIS performance. We use throughput as our per-
formance metric, averaged over all the datasets for the YCSB
workloads, normalized to that of the default parameter value.
With smaller 𝐵𝑠𝑖𝑧𝑒 , insertion and search become cheaper as
the overhead to shift keys for insert and to find a key within
a bucket is reduced. However, more buckets need to be ac-
cessed for scan, degrading its performance. Over different
𝐵𝑠𝑖𝑧𝑒 values, 1KB, 2KB (default), and 4KB, insertion, search,
and scan throughput changes are −16.3~0.2%, −10.1~12.8%,
and −13.2~2.8%, respectively. Larger 𝐿𝑠𝑡𝑎𝑟𝑡 reduces remap-
ping overhead, improving insertion performance, but gener-
ates more segments, degrading search and scan performance.
On the other hand, smaller 𝐿𝑠𝑡𝑎𝑟𝑡 degrades insertion perfor-
mance due to structure changes based on a small number of
inserted keys. Over different 𝐿𝑠𝑡𝑎𝑟𝑡 values, 4, 6 (default), 8,
and 10, insertion, search, and scan performance is affected by
−11.0~7.3%, −2.8~0.3%, and −5.5~2.8%, respectively. Larger
first level bit 𝑅 increases the number of EHs having the effect
of spreading keys and reducing rebalancing overhead, result-
ing in improved insertion performance. The performance
change for insertion over different 𝑅 values, 7, 9 (default), 11,
and 13 is −6.7~6.2%. Lower utilization threshold 𝑈𝑡 reduces
remappings, improving insertion performance. However, this
also decreases memory utilization. Over different𝑈𝑡 values,
0.5, 0.55, 0.6 (default), 0.65, and 0.7, insertion performance
is affected by −12.6~6.8%. In addition, larger 𝐿𝑖𝑚𝑖𝑡𝑠𝑒𝑔 causes
degradation of insertion performance for datasets with high

381

DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Insert, and Scan EuroSys ’23, May 8–12, 2023, Rome, Italy

Table 2. Average, 99th and 99.99th percentile tail latencies. na: not available (Best values are bold faced)
Average / 99th / 99.99th percentile latency (in ns)

Load YCSB A
DyTIS ALEX-10 ALEX-70 XIndex B+-tree DyTIS ALEX-10 ALEX-70 XIndex B+-tree

MM 223/624/43054 201/582/122640 210/573/131120 na/na/na 254/740/12050 185/541/797 207/627/954 197/610/920 na/na/na 361/800/2063
ML 233/643/51346 221/617/131380 224/583/119780 na/na/na 275/802/2253 211/586/828 257/712/1093 236/685/1044 na/na/na 401/842/2190
RM 477/1066/46086 542/1240/90494 538/1204/61704 668/1288/18195 370/810/2793 269/719/1008 274/743/1097 271/748/1434 376/892/2535 277/679/970
RL 460/1052/37576 560/1235/86570 578/1178/91276 618/1225/16448 374/852/2456 313/772/1473 396/971/2209 348/912/2178 445/1047/5806 339/773/1994
TX 97/140/26250 169/338/177400 165/324/172400 281/536/9360 184/307/1698 236/653/898 273/743/1287 230/674/950 697/1557/15996 340/770/2000

MM ML RM RL TX
Insertion

0.00

1.00

2.00

3.00

No
rm

al
ize

d
th

ro
ug

hp
ut 4.4

(a) KDD

DyTIS ALEX-10 B+-tree

MM ML RM RL TX
Search

0.00

0.25

0.50

0.75

1.00

MM ML RM RL TX
Insertion

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
th

ro
ug

hp
ut

(b) Skewness

DyTIS ALEX-10 B+-tree

MM ML RM RL TX
Search

0.00

0.25

0.50

0.75

1.00

Figure 11. Influence of dynamic characteristics

skewness (like RM, RL and TX) due to frequent remappings,
but for datasets with low skewness (like MM and ML), it has
no effect on insertion performance while search and scan
performance increases.

4.4 Effects of Dynamic Characteristics
In this section, we discuss how our second and third design
considerations in Section 2.2 aremanifested in supporting dy-
namic datasets by analyzing the effects of KDD and skewness
of datasets on the performance of the indexes. We consider
insertion and search, and use the results of Load and work-
load C of the previous section. To separately analyze the
effect of KDD, we compare the performance of the original
datasets where the key distribution changes over time with
that of the shuffled versions that remove such changes. Fig-
ure 11(a) shows the insert and search performance of DyTIS,
ALEX-10, and B+-tree for the original datasets, normalized
to that for the shuffled versions. From these results, we ob-
serve the following: (1) In the case of insert, higher KDD
has a more positive effect on performance for all the index
structures. For RM and RL whose KDD is very small, the
performance difference is relatively small compared to other
datasets. For TX with high KDD, the performance improve-
ment of DyTIS is as high as 339.76%. Similarly, MM and ML,
with relatively high KDD, also show substantial performance
differences. This is due to the spatial locality that exists in

the original dataset, and the indexes exploit this when in-
serting. (2) Let us now observe search, which is an operation
that we call upon after the structure is constructed. First,
we see that B+-tree is insensitive to KDD, which is logical
as a balanced structure is constructed in the end, regardless
of KDD. In contrast, we observe that DyTIS and ALEX-10
are affected somewhat, with ALEX-10 being more strongly
so. Also, the performance degradation generally tends to be
proportional to the KDD values of the datasets. The reason
for this is that the structures were constructed in a more im-
balanced manner due to the spatial locality (i.e., KDD) during
insertion. However, ALEX-10 is more strongly affected as its
structure becomes more complex with a larger number of
linear models when the models in the upper hierarchy are
inaccurate for a dataset with high KDD such as TX, unlike
DyTIS which is based on remapping. One peculiar point is
that of RL, which has relatively low KDD and yet, strongly
influences ALEX-10. We find that though KDD of RL is not
high, as RL also has very high skewness, this results in diver-
gence affecting the built structure more strongly, increasing
the number of linear models by 83,209 (20% increase).
We now analyze the effect of skewness, and to do so, we

compare the performance for the shuffled versions of the
original datasets with that for the Uniform datasets of the
same size, which have no skewness. Figure 11(b) shows the
performance for shuffled datasets normalized to that for the
corresponding Uniform datasets. We observe the following:
(1) For B+-tree, there is no performance effect caused by
skewness of a dataset as the normalized performance for
all the datasets is 1. (2) DyTIS is robust to low skewness, as
we can see from the performance results for MM and ML.
However, for datasets with moderate and high skewness, the
performance of DyTIS degrades as DyTIS needs more models
to accommodate such skewness. (3) Finally, we find ALEX-10
is sensitive to any degree of skewness. This is because, unlike
DyTIS, ALEX-10 creates a node for every model resulting in a
large number of nodes compared to the Uniform dataset. For
RM and RL with high skewness, its performance degradation
becomes severe as the number of nodes increases by 1341×
on average, while, for DyTIS, there is only a 17× increase.

4.5 Concurrency
All results presented thus far were with single thread ex-
ecutions as ALEX and B+-tree are single thread solutions.
In this section, we evaluate the performance of DyTIS with

382

EuroSys ’23, May 8–12, 2023, Rome, Italy Jin Yang, Heejin Yoon, Gyeongchan Yun, Sam H. Noh, and Young-ri Choi

1 2 4 8
Number of threads

0
2
4
6
8

Th
ro

ug
hp

ut
 (M

 o
ps

/s
ec

) Insertion

DyTIS
XIndex

1 2 4 8
Number of threads

0
5

10
15
20
25 Search

DyTIS
XIndex

1 2 4 8
Number of threads

0
2
4
6
8

Scan 100
DyTIS
XIndex

(a) RL

1 2 4 8
Number of threads

0
5

10
15
20

Th
ro

ug
hp

ut
 (M

 o
ps

/s
ec

) Insertion

DyTIS
XIndex

1 2 4 8
Number of threads

0

10

20

30
Search
DyTIS
XIndex

1 2 4 8
Number of threads

0
3
6
9

12
Scan 100

DyTIS
XIndex

(b) TX

Figure 12. Throughput with different number of threads

XIndex over various numbers of threads. Figure 12 (a) and
(b) show the throughput of DyTIS and XIndex on the RL and
TX datasets, respectively, where requests for operations are
assigned to threads in round-robin fashion. As shown, DyTIS
provides performance better than that of XIndex for all op-
erations. For TX, the insertion scalability of DyTIS increases
only slightly when eight threads are used. The reason for
this is that TX is highly dynamic such that a range of keys ac-
cessed within a certain time period concurrently by multiple
threads is much smaller compared to other datasets. Thus,
the benefit of higher concurrency becomes smaller. Note
that though not shown, the performance trend of DyTIS and
XIndex for RM is similar to that for RL.

5 Related Work
There are efforts to make an efficient updatable learned in-
dex [21, 26, 28, 57, 61]. LIPP [61]6 attempts to reduce the
exponential search cost in the leaf node as well as to elimi-
nate unbounded last-mile searches in ALEX. The PGM index
has the structure of a linear piecewise regression model to
predict the CDF of each segment where the data is parti-
tioned [26]. The FITing-Tree also leverages piecewise linear
functions [28], while APEX proposes a learned index that
is optimized for persistent memory [43]. The RS index [38]
that leverages a linear spine has been proposed as another
way of approximating the CDF of the dataset. Flood [50] and
Tsunami [22] were proposed as multi-dimensional learned
indexes to address the limitation of existing learned indexes
that consider one-dimensional data. However, Flood and

6In our setup, LIPP cannot build an index for 4 of the 5 datasets due to
out-of-memory or type conversion errors. While we were able to insert for
RM, we observed a huge number of key losses upon search.

Tsunami aim to optimize multi-dimensional read-only work-
loads and do not support insertion operations and concur-
rency. While most learned index designs consider only inte-
ger keys, there have been efforts to support variable-length
string keys [55, 59]. Kipf et al. used real-world datasets for
benchmarks for learned indexes but only focused on search
performance over sorted datasets [37]. Simultaneously to
our work, skewness of a dataset is similarly analyzed for
learned indexes, where skewness is called “hardness” [60].
Bourbon [18] and SageDB [39] leverage learning of data

patterns for database system components. Bourbon [18] re-
places block indexes in Log-structured Merge Tree (LSM)
with learned indexes, while SageDB [39] employs index struc-
tures and sorting algorithms based on learned models.

Hybrid indexing structures that use both the hash and B+-
tree indexes have been investigated for large-scale memory-
based data storage systems [36] and for DRAM-NVM mem-
ory systems [63]. HiKV proposes to use a hash index per-
sisted to persistent memory, for single-key operations such
as insert and search, while it also uses a B+-tree index, which
resides in DRAM, to support scan operations [63]. Wormhole
is an in-memory indexing scheme that makes use of the hash,
B+-tree, and trie, focusing on string key optimizations [62].7

For concurrency, Masstree leverages fine-grained locking
for updates and optimistic concurrency control [13, 47] for
lookups [44]. Clevel hashing [14] supports high scalability
by eliminating expensive lock-based concurrency control.

6 Conclusion
In this paper, we presented an index structure targeting dy-
namic datasets called DyTIS, which is simultaneously ef-
ficient for all search, insert, and scan operations. We also
defined what dynamic datasets are and presented a means
to quantify their characteristics. Our experimental results
with real-world datasets demonstrate that DyTIS provides
performance that is superior to ALEX, the state-of-the-art
learned index.

Acknowledgement
We would like to thank our shepherd Angela Demke Brown
and the anonymous reviewers for their invaluable comments.
This research was partly supported by the MSIT (Ministry
of Science and ICT), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2023-
2021-0-01817) supervised by the IITP (Institute for Informa-
tion & Communications Technology Planning & Evaluation)
and National Research Foundation of Korea (NRF) (NRF-
2022R1H1A2091297), and also by Samsung Electronics Co.,
Ltd. Young-ri Choi is the corresponding author.

7As it targets string keys, its performance is not high for our datasets that
are composed of integer keys, as similarly discussed by Marcus et al. [45].

383

DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Insert, and Scan EuroSys ’23, May 8–12, 2023, Rome, Italy

References
[1] 2004. Memcached. http://memcached.org/.
[2] 2007. STX B+-tree. https://github.com/bingmann/stx-btree.
[3] 2009. Redis. https://redis.io/docs/management/scaling/.
[4] 2011. Kyoto Cabinet: a straightforward implementation of DBM. http:

//fallabs.com/kyotocabinet/.
[5] 2014. A fast and Lightweight Key-Value Store Library by Google.

http://code.google.com/p/leveldb.
[6] 2016. H-Store. https://hstore.cs.brown.edu/.
[7] 2020. ALEX. https://github.com/microsoft/ALEX/tree/57efb5.
[8] 2020. XIndex. https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.
[9] DF Andrews, AM Herzberg, DF Andrews, and AM Herzberg. 1985.

Monthly mean sunspot numbers. Data: A Collection of Problems from
Many Fields for the Student and Research Worker (1985), 67–74.

[10] Timo Bingmann. 2007. STX B+ Tree C++ Template Classes. https:
//panthema.net/2007/stx-btree/

[11] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020.
Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook. In Proceedings of 18th USENIX Conference on
File and Storage Technologies (FAST). 209–223.

[12] Josiah Carlson. 2013. Redis in action. Simon and Schuster.
[13] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon.

2001. Cache-Conscious Concurrency Control ofMain-Memory Indexes
on Shared-MemoryMultiprocessor Systems. In Proceedings of the VLDB
Endowment. 181–190.

[14] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-free
Concurrent Level Hashing for Persistent Memory. In Proceedings of
the 2020 USENIX Annual Technical Conference (USENIX ATC). 799–812.

[15] NYC Taxi & Limousine Commission. 2020. TLC Trip Record Data.
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

[16] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC). 143–154.

[17] Toshiba Memory Corporation. 2019. Toshiba Memory Corporation
Introduces XL-FLASH™ Storage Class Memory Solution. https://www.
kioxia.com/en-jp/about/news/2019/20190806-1.html.

[18] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan,
Brian Kroth, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2020.
FromWiscKey to Bourbon: A Learned Index for Log-Structured Merge
Trees. In Proceedings of 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 155–171.

[19] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asyn-
chronized Concurrency: The Secret to Scaling Concurrent Search Data
Structures. ACM SIGARCH Computer Architecture News (2015), 631–
644.

[20] Martin Dietzfelbinger and Christoph Weidling. 2007. Balanced alloca-
tion and dictionaries with tightly packed constant size bins. Theoretical
Computer Science 380 (June 2007), 47–68.

[21] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do,
Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke,
Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An
Updatable Adaptive Learned Index. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (SIGMOD).
969–984.

[22] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska.
2020. Tsunami: A learned multi-dimensional index for correlated data
and skewed workloads. In Proceedings of the VLDB Endowment. 74–86.

[23] Carla Schlatter Ellis. 1983. Extendible Hashing for Concurrent Oper-
ations and Distributed Data. In Proceedings of the 2nd ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems (PODS). 106–
116.

[24] Franz Faerber, Alfons Kemper, Per-Åke Larson, Justin Levandoski,
Thomas Neumann, Andrew Pavlo, et al. 2017. Main Memory Database

Systems. Foundations and Trends® in Databases (2017), 1–130.
[25] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond

Strong. 1979. Extendible Hashing—a Fast Access Method for Dynamic
Files. ACM Transactions on Database Systems (TODS) (1979), 315–344.

[26] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a
fully-dynamic compressed learned index with provable worst-case
bounds. In Proceedings of the VLDB Endowment. 1162–1175.

[27] Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux
journal (2004), 5.

[28] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca,
and Tim Kraska. 2019. FITing-Tree: A Data-aware Index Structure.
In Proceedings of the 2019 ACM SIGMOD International Conference on
Management of Data (SIGMOD). 1189–1206.

[29] Geofabrik. 2019. OpenStreetMap Data Extracts. https://download.
geofabrik.de/.

[30] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2003. Obstruction-
Free Synchronization: Double-Ended Queues as an Example. In Pro-
ceedings of the 23rd International Conference on Distributed Computing
Systems (ICDCS). 522–529.

[31] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
2018. Endurable Transient Inconsistency in Byte-Addressable Persis-
tent B+-Tree. In Proceedings of the 16th Usenix Conference on File and
Storage Technologies (FAST). 187–200.

[32] LR Johnson. 1961. An Indirect Chaining Method for Addressing on
Secondary Keys. Commun. ACM (1961), 218–222.

[33] Myoungsoo Jung. 2022. Hello Bytes, Bye Blocks: PCIe Storage Meets
Compute Express Link for Memory Expansion (CXL-SSD). In Proceed-
ings of the 14th ACMWorkshop on Hot Topics in Storage and File Systems
(HotStorage). 45–51.

[34] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H Noh, and
Young-ri Choi. 2019. SLM-DB: Single-Level Key-Value Store with
Persistent Memory. In Proceedings of the 17th USENIX Conference on
File and Storage Technologies (FAST). 191–205.

[35] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, et al. 2008. H-Store: A High-
Performance, Distributed Main Memory Transaction Processing Sys-
tem. In Proceedings of the VLDB Endowment. 1496–1499.

[36] Ankita Kejriwal, Arjun Gopalan, Ashish Gupta, Zhihao Jia, Stephen
Yang, and John Ousterhout. 2016. SLIK: Scalable Low-Latency In-
dexes for a Key-Value Store. In Proceedings of the 2016 USENIX Annual
Technical Conference (USENIX ATC). 57–70.

[37] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian,
Alfons Kemper, Tim Kraska, and Thomas Neumann. 2019. SOSD: A
Benchmark for Learned Indexes. In Proceedings of NeurIPS Workshop
on Machine Learning for Systems.

[38] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Al-
fons Kemper, Tim Kraska, and Thomas Neumann. 2020. RadixSpline:
A Single-Pass Learned Index. In Proceedings of the Third International
Workshop on Exploiting Artificial Intelligence Techniques for Data Man-
agement (aiDM). 1–5.

[39] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan.
2019. SageDB: A Learned Database System. In Proceedings of the 9th
Biennial Conference on Innovative Data Systems Research (CIDR).

[40] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The Case for Learned Index Structures. In Proceedings of the
2018 ACM SIGMOD International Conference on Management of Data
(SIGMOD). 489–504.

[41] Solomon Kullback. 1997. Information theory and statistics. Courier
Corporation.

[42] Justin J. Levandoski, Per-Åke Larson, and Radu Stoica. 2013. Identifying
Hot and Cold Data in Main-Memory Databases. In Proceedings of 2013
IEEE 29th International Conference on Data Engineering (ICDE). 26–37.

384

http://memcached.org/
https://github.com/bingmann/stx-btree
https://redis.io/docs/management/scaling/
http://fallabs.com/kyotocabinet/
http://fallabs.com/kyotocabinet/
http://code.google.com/p/leveldb
https://hstore.cs.brown.edu/
https://github.com/microsoft/ALEX/tree/57efb5
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex
https://panthema.net/2007/stx-btree/
https://panthema.net/2007/stx-btree/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.kioxia.com/en-jp/about/news/2019/20190806-1.html
https://www.kioxia.com/en-jp/about/news/2019/20190806-1.html
https://download.geofabrik.de/
https://download.geofabrik.de/

EuroSys ’23, May 8–12, 2023, Rome, Italy Jin Yang, Heejin Yoon, Gyeongchan Yun, Sam H. Noh, and Young-ri Choi

[43] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng
Wang. 2021. APEX: A High-Performance Learned Index on Persistent
Memory. In Proceedings of the VLDB Endowment. 597–610.

[44] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache
Craftiness for Fast Multicore Key-Value Storage. In Proceedings of the
7th ACM European Conference on Computer Systems (EuroSys). 183–
196.

[45] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian,
Sanchit Misra, Alfons Kemper, Thomas Neumann, and Tim Kraska.
2020. Benchmarking Learned Indexes. In Proceedings of the VLDB
Endowment. 1–13.

[46] Julian McAuley and Alex Yang. 2016. Addressing Complex and Subjec-
tive Product-Related Queries with Customer Reviews. In Proceedings
of the 25th International Conference on World Wide Web. 625–635.

[47] Paul E McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger,
Rusty Russell, Dipankar Sarma, and Maneesh Soni. 2001. Read-copy
update. In AUUG Conference Proceedings. 175.

[48] Robert Morris. 1968. Scatter Storage Techniques. Commun. ACM
(1968), 38–44.

[49] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beom-
seok Nam. 2019. Write-Optimized Dynamic Hashing for Persistent
Memory. In Proceedings of the 17th USENIX Conference on File and
Storage Technologies (FAST). 31–44.

[50] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska.
2020. Learning Multi-Dimensional Indexes. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (SIG-
MOD). 985–1000.

[51] OpenStreetMap on AWS. 2021. Amazon AWS. https://registry.
opendata.aws/osm/.

[52] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing.
Journal of Algorithms (2004), 122–144.

[53] W. W. Peterson. 1957. Addressing for Random-Access Storage. IBM
Journal of Research and Development (1957), 130–146.

[54] SAMSUNG. 2017. Ultra-low latency with Samsung Z-NAND
SSD. https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-
NAND_Technology_Brief_v5.pdf.

[55] Benjamin Spector, Andreas Kipf, Kapil Vaidya, ChiWang, Umar Farooq
Minhas, and Tim Kraska. 2021. Bounding the Last Mile: Efficient
Learned String Indexing. In Proceedings of 3rd International Workshop
on Applied AI for Database Systems and Applications (AIDB). 1–5.

[56] Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main
Memory DBMS. IEEE Database Engineering Bulletin (2013), 21–27.

[57] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo
Wang,MinjieWang, andHaibo Chen. 2020. XIndex: A Scalable Learned
Index for Multicore Data Storage. In Proceedings of the 25th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). 308–320.

[58] Josh Triplett, Paul E McKenney, and JonathanWalpole. 2011. Resizable,
Scalable, Concurrent Hash Tables via Relativistic Programming. In
Proceedings of the 2011 USENIX Annual Technical Conference (USENIX
ATC). 11.

[59] Youyun Wang, Chuzhe Tang, Zhaoguo Wang, and Haibo Chen. 2020.
SIndex: A Scalable Learned Index for String Keys. In Proceedings of the
11th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys). 17–24.

[60] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo,
and Tianzheng Wang. 2022. Are Updatable Learned Indexes Ready?
(2022), 3004–3017.

[61] Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, and
Chunxiao Xing. 2021. Updatable Learned Index with Precise Positions.
In Proceedings of the VLDB Endowment. 1276–1288.

[62] Xingbo Wu, Fan Ni, and Song Jiang. 2019. Wormhole: A Fast Ordered
Index for In-Memory Data Management. In Proceedings of the 14th
ACM European Conference on Computer Systems (EuroSys). 1–16.

[63] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A
Hybrid Index Key-Value Store for DRAM-NVM Memory Systems. In
Proceedings of the 2017 USENIX Annual Technical Conference (USENIX
ATC). 349–362.

[64] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke
Deng. 2014. Maximum error-bounded Piecewise Linear Represen-
tation for online stream approximation. In Proceedings of the VLDB
Endowment. 915–937.

[65] Adar Zeitak and Adam Morrison. 2021. Cuckoo Trie: Exploiting
Memory-Level Parallelism for Efficient DRAM Indexing. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP). 147–162.

A Artifact Appendix
A.1 Abstract
DyTIS (Dynamic dataset Targeted Index Structure) is an
index that targets dynamic datasets. DyTIS, though based
on the structure of Extendible hashing, leverages the CDF of
the key distribution of a dataset, and learns and adjusts its
structure as the dataset grows. The key novelty behind DyTIS
is to group keys by the natural key order and maintain keys
in sorted order in each bucket to support scan operations
within a hash index.

The artifact is available as a public repository on Github at
https://github.com/unist-ssl/DyTIS. The DOI of the artifact
is https://doi.org/10.5281/zenodo.7721895.

A.2 Description & Requirements
A.2.1 Hardware dependencies. For our experimental
study, we use a machine with two Intel Core i9-9900K (8
core, 3.6Ghz) with 16MB L3 cache and 64GB DDR DRAM.

A.2.2 Software dependencies.

• Ubuntu 18.04 LTS with Linux kernel version 5.4
• g++ 8.4
• libboost-dev 1.65.1

A.2.3 Benchmarks. We provide a sample dataset, review-
small.csv (initial 1 million data of review-M), which is stored
in Google Drive.

• review-small.csv: https://bit.ly/3FjYJOZ

A.3 Set-up
The instructions for set-up are referred to README.md in
the repository of our source code.

• To install libboost: sudo apt-get install libboost-all-dev

A.4 Evaluation Workflow
A.4.1 Major claims.

• (C1): DyTIS efficiently supports all search, insert, and
scan operations for dynamic datasets without requir-
ing an up-front training phase (i.e., bulk loading).

• (C2): DyTIS shows the performance using seven work-
loads that roughly correspond to workloads Load, A,

385

https://registry.opendata.aws/osm/
https://registry.opendata.aws/osm/
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://github.com/unist-ssl/DyTIS
https://doi.org/10.5281/zenodo.7721895
https://bit.ly/3FjYJOZ

DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Insert, and Scan EuroSys ’23, May 8–12, 2023, Rome, Italy

B, C, D, E, and F of YCSB. This is proven by the experi-
ment (E2) described in Section 4.3 whose results are
illustrated in Figure 8.

A.4.2 Experiments.
Experiment (E1): Availability of source code [a few
human-minutes]: It shows insert, search and scan perfor-
mance of DyTIS.

[Preparation] Before running the experiment, the dataset
to be used in the experiment should be downloaded.
[Execution] The experiment has been automated by the

script (scripts/run_benchmark.sh). The script will automat-
ically run the experiments of insert, search, and then scan
workloads over a given dataset.

• To run benchmarks (insert, search and scan) on the
review-small dataset in the path data/ :
- ./scripts/run_benchmark.sh data/review-small.csv

[Results] All throughput and latency results are saved as a
log file in benchmark/result/.

Experiment (E2): Real-world workloads [10 human-
minutes]: It shows results with real-world workloads that
roughly correspond to workloads Load, A, B, C, D, E, and F
of YCSB.

[Preparation] Before running the experiment, the dataset
to be used in the experiment should be downloaded and
located in the proper path (e.g., in data/review-small.csv). If
the dataset is not the aforesaid one (e.g., different dataset or
different path), modify dataset_files properly in the script
scripts/run_ycsb_style_exp.sh.
[Execution] The experiment has been automated by the

script (scripts/run_ycsb_style_exp.sh). The script will auto-
matically run the experiments of seven real-world workloads
over a given dataset.

• To run real-world workloads:
- ./scripts/run_ycsb_style_exp.sh

[Results] All throughput and latency results for each work-
load are saved as a log file in benchmark/result/.

386

	Abstract
	1 Introduction
	2 Motivation and Design Direction
	2.1 Dynamic Datasets
	2.2 DyTIS Design Focus and Philosophy

	3 DyTIS: The Index Structure
	3.1 Extendible Hashing
	3.2 System Overview
	3.3 Individual Operations
	3.4 Concurrency

	4 Experimental Results
	4.1 Methodology
	4.2 Datasets
	4.3 Results with Real-World Workloads
	4.4 Effects of Dynamic Characteristics
	4.5 Concurrency

	5 Related Work
	6 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation Workflow

