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ABSTRACT

The existing fake audio detection systems often rely on expert ex-
perience to design the acoustic features or manually design the
hyperparameters of the network structure. However, artificial ad-
justment of the parameters can have a relatively obvious influence
on the results. It is almost impossible to manually set the best set of
parameters. Therefore this paper proposes a fully automated end-to-
end fake audio detection method. We first use wav2vec pre-trained
model to obtain a high-level representation of the speech. Further-
more, for the network structure, we use a modified version of the
differentiable architecture search (DARTS) named light-DARTS. It
learns deep speech representations while automatically learning
and optimizing complex neural structures consisting of convolu-
tional operations and residual blocks. The experimental results
on the ASVspoof 2019 LA dataset show that our proposed system
achieves an equal error rate (EER) of 1.08%, which outperforms the
state-of-the-art single system.
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1 INTRODUCTION

In the last few years, the development of speech synthesis tech-
nology [1-4] is increasing rapidly driven by deep learning. These
models can generate high quality audio that is comparable to the
human voice. Although the technology itself has no negative at-
tributes, it is easy to be misused, such as faking audio to commit
fraud and spread public opinion. Therefore, an increasing num-
ber of work [5-10] have been focused on detecting the fake audio
recently.

In order to improve the performance of fake audio detection
systems, recent works have focused on two aspects: improving
the acoustic features of audio and designing effective classification
models. It is particularly important to select acoustic features that
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can effectively distinguish fake audios from real audios. Todisco et
al. [11] apply the constant Q-transform instead of the short-time
Fourier transform to process speech signals, which outperforms the
Mel frequency cepstrum coefficients(MFCC). Sahidullah et al. [12]
replace the Mel scale filters with linear filters and propose linear
frequency cepstrum coefficients(LFCC), making it more focused
on high frequency band features compared to MFCC. With the
development of unsupervised pre-training, Yang et al. [13] first use
the wav2vec pre-trained model as the feature extractor which ob-
tains more robust acoustic feature. At the latest ADD2022 challenge
[10], Donas et al. [14] also propose to use an improved version of
wav2vec 2.0 as a feature extractor and win the first place on Track 1.
The input to wav2vec feature extractor is the raw waveform, which
learns speech information from a large amount of unlabeled speech
that may contain information useful for fake audio detection.

Another approach is to design an effective classification model
that learns a distinguished representation of real and fake audio.
Gaussian mixture model (GMM) is the traditional classification
model. With the development of deep learning, the performance
of convolutional neural networks (CNN) [15, 16] is better than
GMM. For example, light convolution neural network (LCNN) [17]
with max feature map (MFM) activation function can not only
separate noise signals from information signals by competitive
learning, but also play a role in feature selection. The residual net-
work (ResNet) [18] proposes a residual module that addresses the
problem of network degradation. Compared with hand-designed
approaches, differentiable architecture search (DARTS) [19] makes
great achievements in the design of deep neural networks to au-
tomate the manual process of architecture design. Ge et al. [20]
first successfully use a Partially-Connected DARTS approach to
the fake audio detection tasks. Although Ge et al. [20] implement
automation in the network structure, they choose LFCC and fast
Fourier transform (FFT) in the feature level, which still requires
manual parameter setting. For example, LFCC features need to set
the window length, fft transform length, filter set coefficients and
so on. However, artificial adjustment of the parameters can have a
relatively obvious influence on the results. It is almost impossible
to manually set the best set of parameters. Therefore, it’s necessary
to design a fully automated fake audio detection system.

To address these problems, we propose a fully automated end-
to-end fake audio detection. More generally, we use pre-trained
wav2vec model as feature extractor instead of traditional acoustic
features. Inspired by light-CNN [21], we propose a light-DARTS
based on DARTS to learn deep speech representations automatically.
As shown in Figure 1 (d), we apply the max feature map (MFM)
module to DARTS, which plays the role of feature selection. The
main contributions of this study can be summarized as follows:

e To our best knowledge, this is the first work to propose
light-DARTS for fake audio detection task.

e We propose a a fully automated end-to-end fake audio de-
tection method. We use wav2vec features as inputs for ligth-
DARTS.

The experimental results on the ASVspoof 2019 LA dataset show
that our proposed method can acquire the EER of 1.08%. This result
demonstrates the effectiveness of our proposed method.
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The rest of this paper is organized as follows: Section 2 presents
the related work. Section 3 illustrates the our proposed method.
Experiments, results and discussions are reported in Section 4 and
5, respectively. Finally, the paper is concluded in Section 6.

2 RELATED WORK

2.1 DARTS

Compared with hand-designed approaches, DARTS [3] has made
great achievements in the design of deep neural networks to au-
tomate the manual process of architecture design. Liu et al. [19]
proposed the DARTS algorithm to use softmax to serialize the dis-
crete search space for gradient-based structural search of neural
networks. Instead of fixing the execution of a single operation at a
specific layer, the authors define the structure search as a convex
optimization problem by selecting the optimal operation from a set
of operations and then alternating the operational parameters of
the network and the structural parameters corresponding to the
operations by gradient descent. Specifically, the learnable parame-
ters of the operations in the network are optimized on the training
dataset and the structural parameters corresponding to the different
operations are trained on the validation dataset. Ultimately, a sparse
network structure is obtained by solving this convex optimization
problem to select the most appropriate operation for each layer.

2.2 Self-supervised Pretraining Models

Self-supervised pre-training becomes a hot issue in recent years
and has been applied in the field of natural language processing and
computer vision already. For speech processing, more and more self-
supervised speech models are proposed, such as wav2vec [22, 23],
HuBERT [24], wav2vec 2.0 which allowing to learn high-level rep-
resentations of the speech signal. The above methods have been
successfully applied in the fields of speech recognition, speaker
recognition and emotion recognition [25, 26]. As for fake audio
detection, only a few works have explored this similar approach
[14, 27, 28]. Motivated by [27], we propose to use a pre-trained
wav2vec style model as a feature extractor instead of traditional
acoustic features, which solves exactly the problem of acoustic
features requiring manual parameter setting. Furthermore, the fea-
tures extracted from models pretrained on large-scale datasets help
reduce overfitting, thereby improving reliability and domain ro-
bustness.

3 OUR PROPOSED SYSTEM

As shown in Figure 1 (a), the fully automated end-to-end fake
audio detection consists of two modules: (1) The feature extraction
module: It consists of a wav2vec feature extractor, which obtains
a high-level representation of the speech. (2) The Light-DARTS
module: We apply the max feature map (MFM) module to DARTS,
which plays the role of feature selection.

3.1 Wav2vec Feature Extractor

The input to wav2vec [23] feature extractor is the raw waveform,
which learns speech information from a large amount of unlabeled
speech that may contain information useful for fake audio detection.
In addition, pre-trained models trained from a large amount of
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Figure 1: (a) Overall framework of the fully automated fake audio detection system. The system consists of the feature extrac-
tion module and the light-DARTS module. (b) Illustration of the wav2vec feature exctraction module. (c) Illustration of the
wav2vec 2.0 feature exctraction module. (d) Illustration of the light-DARTS module. We apply the max feature map (MFM)

module to DARTS.

unlabeled information can yield more generalized generic speech
features, which may also be useful for distinguishing real from fake
speech. Therefore, wav2vec is used as a feature extractor in this

paper.

3.1.1 Pretrained wav2vec. As shown in Figure 1 (b), the wav2vec
model contains two convolutional neural networks, an encoder
network that maps the original input audio signal to a hidden space,
and a context network that combines multiple time step outputs
of the encoder network. The encoder generates a representation
z; for each time step i, while the context network combines the
multiple encoder time step outputs into a new representation c; for
each time step i.

3.1.2  Pretrained wav2vec 2.0. As shown in Figure 1 (c), the wav2vec
2.0 [22] model includes three stages. Firstly, the raw speech is send
into a local encoder which contains several convolutional layers
(CNN). The stride of the local encoder is 20ms and the receptive field
is 25ms. The local encoder embeddings are then fed as input to the
context encoder, which consists of several transformer modules. In
the open source two pre-trained models, the base model contains 12
transformer blocks with 8 attention heads per block, while the large
model contains 24 transformer blocks with 16 attention heads per
block. At the third stage, the local encoder representation is input to
the quantization module, which consists of 2 codebooks, each with
320 entries. The linear mapping then converts the local encoder
representation into logits. Given the logits, Gumbel-Softmax [29]

is applied to a sample of each codebook. The selected codes are
concatenated and the resulting vectors are linearly transformed
to obtain a quantized representation of the local encoder output,
which is used in the objective function. The high-level embeddings
is represented as:

Xembedding(t) = W2V (X (1)) e RT*F (1)

where W2V (-) denotes the pretrained wav2vec model or wav2vec2.0
model, which aims to obtain high-level representations X, mpedding (t)
of raw speech X(t).

3.2 Light-DARTS

Inspired by light-CNN [21], we propose a light-DARTS based on
DARTS to learn representations of wav2vec features automatically.
Search space, using a cell-based approach for spatial definition, finds
a computational cell as the building block of the final architecture,
and the learned cells can be stacked to form a convolutional network.
By training out one small cell to form a large network. Suppose the
node is represented as x() , then each directed edge (i, j) will be
associated with a node x(? with some operation 0:) associated
with it. To construct a continuous search space and generate an
architecture, the predecessors and edges must be computed, i.e., a
continuous relaxation optimization must be performed. First, the
intermediate nodes based on the predecessor nodes are calculated
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as follows.
*U) = Z 0(B) (5 (D) )
i<j

where o denotes a set of candidate operations (e.g., convolution,
max-pool, zero), and each operation denotes a function o(-) to be
applied to the node x(@.

Secondly, in order to make the search space continuous, we
relax the classification choice of a particular operation to softmax,
among all possible operations, by the following formula.

B (i.j)
(—)(l,]) (x) — Z eXp(aO ()i 5 o(x) (3)
0c0 Xoreo expl(a,”’)

where the operational mixing weights of a pair of nodes (i, j)
are parameterized by a vector of dimension |O| parametrized. The
task of architectural search will be reduced to learning a set of
continuous variables & = a(»/). Finally replacing each mixed oper-
ation with the most probable operation 527 to obtain a discrete
architecture. The formula is as follows.

o)) = arg max aéi’j) 4)
oe0

Then, light-DARTS jointly learns operation parameters a and
weight parameters w (e.g., convolution kernels) using the gradient
descent method by solving a bilevel optimization problem, where
operation parameters « are upper-level variables and weight pa-
rameters w are lower-level variables:

moin Loy (0™ (@), @) )
0" (@) = argming, Lirgin (o, @)
Lirain and L, denote the training and validation losses.

The key to handling edges is the combination of node connec-
tions and activation functions into a matrix, where each element
represents the weight of the connection and activation function.
When searching, light-DARTS traverses all nodes and finds the
average weight of the relevant connections, thus turning the search
space into a continuous space. The objective function becomes dif-
ferentiable, and both the structure weights and the network weights
are optimized. At the end of the search, the connection and activa-
tion function with the highest weight are selected to form the final
network.

Furthermore, we introduce the MFM module in the architecture
search space, which plays the role of feature selection. The MFM
operation which combines two feature maps and outputs element-
wise maximum one as shown in Fig. 2 can be written as:

h(x) = max (x1, x2) (6)

By using MFM, we select and retain 50% of the information from
the input feature maps through element-level maximum operations
across feature channels.

We define all possible candidate operations in a neural cell in
the search space O, containing the following nine operations.

3*3 separable convolutions
5*5 separable convolutions
33 dilated convolutions
5*5 dilated convolutions
3*3 average pooling

3*3 max pooling

skip connnection
zero

max feature map
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4 EXPERIMENTS

4.1 Dataset

4.1.1  ASVspoof 2019 challenge database. Our focus is on the inter-
ference of speech synthesis and speech conversion with real speech,
so we use the ASVspoof2019 logical access (LA) dataset [8]. The LA
data set contains three subsets: training set, development set and
evaluation set.

4.1.2  ASVspoof 2021 challenge database. We focused on the deep
fake (DF) tracks for the ASVSpoof2021 challenge [7], where the
training and development sets are the same as the ASVspoof 2019
LA database, but the evaluation set differs. The DF evaluation set
shows audio coding and compression artifacts which includes ap-
proximately 600K of audio processing with various commercial
audio codecs.

4.1.3 ADD 2022 challenge database. We focused on the low-quality
fake audio detection(LF) track for the ADD2022 challenge. The train
and development sets contain clean speech based on the multi-
speaker Mandarin speech corpus AISHELL-3 [19]. The training
set contains 27084 audio and the development set contains 28324
audio. The evaluation set contains a variety of ambient noise and
background music.

4.2 Evaluation Metrics

In this work, in order to evaluate the results of different fake au-
dio detection systems, the equal error rate (EER) is used as the
evaluation metrics. The EER is the operating point where the false
rejection rate (FRR) and false acceptance rate (FAR) are equal.

4.3 Experimental Setup

The wav2vec pretrained model variant “wav2vec large”, which we
use as a pretrained feature extractor using additional linear trans-
formations and a larger context network, is trained on 960 hours
Librispeech [30]. The model’s downsampling factor is 160. Thus,
there is a 512-dimensional vector for every 10 ms of speech. To
form batches, the 400 time frames are fixed by truncating or con-
catenating. Therefore, the shape of wav2vec feature is 400 * 512.
For wav2vec 2.0 feature extractor, we have adopted two versions:
‘wav2vec 2.0 base’ and ‘wav2vec 2.0 large’. The base model con-
tains 768 model dimension, 12 transformer blocks, inner dimension
(FFN) 3,072 and 8 attention heads. The large model contains 24
transformer blocks with model dimension 1,024, inner dimension
4,096 and 16 attention heads. Like the wav2vec features, we also
performed truncating or concatenating in the temporal dimension.
Therefore, the shape of wav2vec 2.0 base and large are 400 * 768
and 400 * 1024, respectively.

In the search stage, we followed the same experimental setup
as the original DARTS [19] study. The neural cells were divided
into two categories, namely normal cells and reduction cells. The
number of cells N is 8, contains 6 normal cells and 2 reduction cells.
The reduction cells were inserted into the 1/3 and 2/3 locations of
the entire network. At each step, the model is trained for 50 epochs
by Adam optimiser with the learning rate 0.0001.



Fully Automated End-to-End Fake Audio Detection

Table 1: The results of EER(%) for our proposed different sys-
tems on ASVspoof2019 LA.

Feature Network Architecture Dev Eval
LFCC LCNN 0.13 4.75
Wav2vec LCNN 0.03 3.51
Wav2vec 2.0-base LCNN 0.02 3.32
Wav2vec 2.0-large LCNN 0.14 3.56
LFCC DARTS 0.01 4.82
Wav2vec DARTS 0.02 2.18
Wav2vec 2.0-base DARTS 0.01 223
Wav2vec 2.0-large DARTS 0.05 1.97
LFCC light-DARTS 0.05 435
Wav2vec light-DARTS 0.06 1.51
Wav2vec 2.0-base light-DARTS 0.01 1.19
Wav2vec 2.0-large light-DARTS 0.02 1.08

Table 2: The results of EER(%) for our proposed different sys-
tems on ASVspoof2021 DF. For the characteristics of this test
set, we also evaluated narrow-band (NB) FIR filters using a
data enhancement approach, following a similar procedure
as in [21]. Where T23 refers to the first place team of the
ASVspoof2021 DF track.

Feature Network Architecture DF
LFCC light-DARTS 16.34
Wav2vec light-DARTS 9.21
Wav2vec 2.0-base light-DARTS 8.16
Wav2vec 2.0-large light-DARTS 7.86
T23 best result in ASVspoof2021 [7]  15.64

Table 3: The results of EER(%) for our proposed different sys-
tems on ADD2022 Track 1. For the characteristics of this test
set, we also evaluated narrow-band (NB) FIR filters using a
data enhancement approach, following a similar procedure
as in [21]. Where A01 refers to the first place team of the
ADD2021 Track 1.

Feature Network Architecture Track 1
LECC light-DARTS 24.18
Wav2vec light-DARTS 22.52
Wav2vec 2.0-base light-DARTS 21.23
Wav2vec 2.0-large light-DARTS 20.11
A01 best result in ADD 2022 [10] 21.71

5 RESULTS AND DISCUSSION
5.1 Results on ASVspoof2019

Table 1 shows the results of our proposed different systems. We
can find the following observations. Firstly, the wav2vec features
perform better than the LFCC features, one of the accepted base-
lines. More specifically, the EER of w2v features is 3.51% while the
EER of LFCC features is 4.75% with both fixed LCNN as back-end

DDAM °22, October 14, 2022, Lisboa, Portugal

Table 4: Performance comparison between the pro-
posed model and other models on the evaluation set
of ASVspoof2019 LA.

Metheds Dev Eval
W2V-XLSR-LGF [28] - 128
FFT-L-SENet [31] - 114
Attention-based CNN [32] 0.16  1.87
RAWNET? [33] - 112
LFCC-PC-DARTS [20] 0.002 4.87
W2V-Siamese [13] 0.004 1.15

W2V2.0-light-DARTS(ours) 0.02  1.08

classifiers. The reason is that the features extracted from models
pre-trained on large-scale datasets help reduce overfitting, thereby
improving reliability and domain robustness. In addition, when the
pre-trained model is replaced with wav2vec 2.0-base, the result is
further improved to 3.32%. A possible explanation for this might be
that compared to wav2vec, wav2vec 2.0 employs the transformer
architectures to model the dependencies between feature sequences,
resulting in a more discriminative representation of speech. Inter-
estingly, the EER of wav2vec 2.0-large is observed to 3.56%, even
slightly higher than wav2vec. This inconsistency may be due to the
fact that the speech representation obtained from the pre-trained
model of wav2vec 2.0-large is not adapted to the LCNN structure.
These results indicate that the wav2vec pre-trained model is effec-
tive as a feature extractor, they may contain information useful for
fake audio detection.

Secondly, for the network structure, the performances of DARTS
is better than LCNN. For example, we control wav2vec feature
remains consistent. We can see that the EER of LCNN is higher
than that of DARTS, which decreased from 3.51% to 2.18%. A similar
conclusion is reached for wav2vec 2.0-base and wav2vec 2.0-large.
This result may be explained by the fact that the advantage of darts
over LCNN is that it automatically tunes the parameters of the
network structure, thus eliminating the need for manual parameter
setting. A surprising aspect of the data is in the result of LFCC
feature. When we control LFCC feature remains consistent, we
find that the EER of the DARTS is slightly higher than that of
LCNN. This discrepancy could be attributed to parameters that
yield optimal results on the validation set do not necessarily yield
optimal results on the test set. These results indicate that DARTS
whose architecture and parameters are learned automatically is
effective for fake audio detection task.

Thirdly, the results are further improved when the network
structure is replaced with light-DARTS. When we control for LFCC,
wav2vec, wav2vec 2.0-base, and wav2vec 2.0-large separately to
remain consistent, the results all show a significant decrease in EER.
More specifically, using the wav2vec 2.0 large feature, we could
achieve EER of 1.08% for evaluation with the best checkpoint. A
possible explanation for this might be that the MFM we used in light-
DARTS not only separates the noisy signal from the informative
signal, but also plays the role of feature selection between the two
feature maps. Thus, it is effective for fake audio detection.
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Figure 2: A t-SNE visual of LFCC-LCNN system. Blue dots
represents real speech and red dots represents fake speech.

blue: real
red: fake

Figure 3: A t-SNE visual of wav2vec 2.0-large + light-DARTS
system. Blue dots represents real speech and red dots repre-
sents fake speech.

Finally, our proposed fully automated end-to-end system is ef-
fective for fake audio detection task. As shown in the last three row
of Table 1, wav2vec features combined with light-DARTS improves
the performance of detecting fake audio while eliminating the need
for manual setting of parameters. More specifically, the wav2vec
2.0 large feature combined with light-DARTS achieve the EER of
1.08%, which achieves best performance of single system.

5.2 Results on ASVspoof2021

To verify the generalizability of our proposed method, we also tested
it on ASVspoof2021 DF dataset. The results of the correlational
analysis are presented in Table 2. The overall conclusion remains
consistent with section 5.1. More specifically, the “wav2vec 2.0 large
+ light-DARTS” reduces the EER to 7.86% on DF. In addition, our
proposed method compares far better with ASVspoof2021 DF track

Trovato and Tobin, et al.

first place. The above results demonstrate the generalizability of
our proposed method to different datasets.

5.3 Results on ADD 2022

In order to further validate the effectiveness of the proposed method
on Chinese dataset, we have conducted relevant experiments on
ADD 2022 Track 1. Table 3 provides the experimental data on ADD
2022 Track 1. The results show that the “wav2vec 2.0-base + light-
DARTS” and “wav2vec 2.0-base + light-DARTS” achieved EERs of
21.23% and 20.11%, respectively, on the test set, both better than
the first place in the competition results. The above results show
that the proposed method works on the Chinese dataset as well.

5.4 Comparison with Other Systems

In order to evaluate the performance of our proposed method, we
also compared the proposed system with other state-of-the-art
systems on the evaluation set of the ASVspoof 2019 LA database.
Recent published novel systems are compared, such as sub-band
models [31], raw waveform based models [33] and frequency at-
tention model [32]. Table 4 shows the performance comparison
with other systems on the evaluation set of the ASVspoof 2019 LA
database. From Table 4 we can find that our proposed fully auto-
mated end-to-end system achieves an EER of 1.08%, outperforms
the second-ranked system (EER 1.12%) among all known systems.
These results verify that the proposed method is quite effective for
fake audio detection.

5.5 Visualization Analysis

To visualize the effectiveness of the proposed method, we also used
t-SNE [34] to visualize LFCC-LCNN and wav2vec 2.0-large + light-
DARTS, respectively. Both models are trained on the asvspoof2019
LA dataset and take the penultimate layer of the network. As shown
in Figure 2 and Figure 3, we can see that the real and fake speech
of LFCC-LCNN are not clearly distinguished, and there are many
red dots embedded inside the blue dots. The real and fake speech
of wav2vec 2.0-large + light-DARTS, on the other hand, is clearly
separated, and only a little mixed at the boundary. The above visu-
alization results are consistent with our experimental results.

6 CONCLUSION

The existing fake audio detection systems often rely on expert ex-
perience to design the acoustic features or manually design the
hyperparameters of the network structure. However, artificial ad-
justment of the parameters can have a relatively obvious influence
on the results. It is almost impossible to manually set the best set
of parameters. In order to reduce the impact of manually set pa-
rameters on the stability of the fake audio detection system, this
paper designs a fully automated end-to-end fake audio detection
method. For features, we use wav2vec pre-trained model to ob-
tain a high-level representation of the speech. As for classification
model, we propose a light-DARTS to learn deep speech represen-
tations automatically. The results show that our proposed method
achieves better detection results while not requiring manual param-
eter setting. The EER of our proposed method is relatively reduced
by 77.26% compared to the baseline. In the future, we will further
explore the application of DARTS on fake audio detection.
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