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ABSTRACT
Food image classification serves as the foundation of image-based
dietary assessment to predict food categories. Since there are many
different food classes in real life, conventionalmodels cannot achieve
sufficiently high accuracy. Personalized classifiers aim to largely im-
prove the accuracy of food image classification for each individual.
However, a lack of public personal food consumption data proves
to be a challenge for training such models. To address this issue, we
propose a novel framework to simulate personal food consumption
data patterns, leveraging the use of a modified Markov chain model
and self-supervised learning. Our method is capable of creating an
accurate future data pattern from a limited amount of initial data,
and our simulated data patterns can be closely correlated with the
initial data pattern. Furthermore, we use Dynamic Time Warping
distance and Kullback-Leibler divergence as metrics to evaluate the
effectiveness of our method on the public Food-101 dataset. Our ex-
perimental results demonstrate promising performance compared
with random simulation and the original Markov chain method.
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•Computingmethodologies→Discrete-event simulation;Markov
decision processes; • Applied computing→ Health informatics.
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1 INTRODUCTION
Image-based methods have been developed to provide timely feed-
back on an individual’s dietary intake [22] with reduced user effort
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compared to traditional self-reported methods [3]. Classification
of food images is typically the first and most fundamental step in
automated image-based food analysis [8, 10]. Most existing works
focus on designing methods to improve the accuracy of food clas-
sification using static food image datasets [16–20, 23]. However,
static datasets such as Food-101[2] or VireoFood-172[4] are limited
to training fixed classifiers, which may not be suitable for real-life
scenarios because each person has their unique food consump-
tion patterns. In addition, accurate classification of food images
is challenging due to the intra-class diversity and inter-class sim-
ilarity. Food images may have diverse appearances for the same
food class due to different cooking styles, and different food classes
may have a similar visual appearance. To improve the accuracy of
food image classification and tailor it to an individual food con-
sumption pattern, certain researchers have designed personalized
classifiers [14]. Instead of classifying images on static datasets, a
personalized classifier uses food images based on a personal food
consumption pattern.

Currently, there are few works that focus on designing a per-
sonalized classifier for food images. One of the main challenges
is the lack of publicly available personal eating datasets. Q. Yu et
al. designed a personalized classifier by building a personal data-
base for each person incrementally and comparing the similarity
of images at each time step with images in each food class, com-
bined with a time-dependent model to predict the food image at
each time step [27]. However, it took around 2 years to collect suf-
ficient eating data from each person to train their model, which
is time-consuming and difficult to generalize. Therefore, how to
efficiently simulate personal food eating data patterns remains an
open problem. A simulated data pattern that can closely mimic real
life scenario would be essential for developing personalized food
classification because the simulated data pattern can help train and
test the personalized classifier without collecting large amounts
of eating data from different people. In this paper, we focus on
simulating food consumption patterns that correlates well with
the initial data pattern and can be used for training and testing a
personalized classifier. To our best knowledge, we are the first to
simulate food consumption patterns that can be used for training
personalized classifiers.

In this work, we propose a novel method to simulate personal
food consumption patterns. Our method builds a food consump-
tion data pattern of any length from an initial data pattern, which
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generally consists of one to two weeks of eating data. Compared to
collecting real-life personal data, our method is much more efficient
while allowing the simulated data pattern to correlate well with
the initial data pattern. Specifically, we leverage a Markov chain
model to predict the occurrence of food in the future. The Markov
chain model has the advantage of not requiring a large amount of
data to train. Moreover, the logic behind the Markov chain model
is applicable in our scenario because it uses conditional probability
given what foods were eaten in the past, we simulate what will be
eaten in the future. We modified the original model to allow more
flexibility in predicting what a person tends to eat to mimic real-life
scenarios.

The contribution of our work is summarized as follows.
• We modify the Markov chain model to simulate food con-
sumption patterns that can be used for personalized classi-
fiers, considering the case of eating foods not appeared in
the initially provided pattern.

• We propose the use of Dynamic Time Warping distance and
Kullback-Leibler divergence to show the success of simulated
food consumption patterns.

• We sample images for the food consumption pattern by build-
ing a normal distribution based on the visual similarity clus-
tering for each class and personal preference.

2 RELATEDWORK
2.1 Food Image Classification
Many different models of food image classification have already
been published. P. Ma et al. compiled a food image dataset named
ChinaMartFood-109 with nutrition information [16]. They tried
different network architectures on this dataset, such as VGG [25],
ResNet [13], Wide ResNet [28] , and InceptionV3 [26], to train
the classifier and compare the classification accuracy. They found
that InceptionV3 obtained the best food recognition accuracy. In
another work [19], P. McAllister et al. found that Resnet-152 fea-
tures provide better generalization for food image classification on
popular datasets such as Food 5K, Food-11, RawFooT-DB [6], and
Food-101 [2]. S. Phiphiphatphaisit and O. Surinta [20] also applied
modified MobileNet architecture to improve the food image classi-
fication accuracy and reduce computational time. Besides, recently
the food image classification has been studied under a more realistic
continual learning scenario where new foods come sequentially
overtime [9, 11, 12]. However, none of existing work can tailor
to individual food consumption patterns, which can help provide
more accurate dietary assessment results.

2.2 Personalized Classifier
S. Horiguch et al. proposed a dataset named FLD that compiled 1.5
million images of eating data from 20,000 people over two years [14]
. It trained a fixed class classifier on static food datasets first and
then applied the classifier to the collected eating data to extract
features for each image at each time step. Using the nearest class
mean method, a personalized classifier can be constructed. Q. Yu et
al. improved the classification method that was originally proposed
in [14] by applying a time-dependent food distribution model [27].
However, the data collection is time-consuming and the dataset is
not open to the public.

3 SYSTEM OVERVIEW
The objective of this work is to simulate personalized food con-
sumption patterns by using (1) initial data pattern, and (2) static
food image datasets as the input. The initial data pattern is pro-
vided by the user, which contains what a person eats in the past
few days. Allowing the user to provide a short initial data pattern
ensures that the simulation is not done randomly and there are
some correlations within the simulated pattern. In addition, it is
easier to collect short-term food records from each person than a
long-term ones. The overview of our proposed food consumption
pattern simulation system is shown in Figure 1, which includes
simulation based on modified Markov chain method that will be
described in Section4.1 and the image sampling in Section 4.3. The
output of our system is the personalized food consumption pattern
that simulates what a person eats every day.

Figure 1: System overview of the simulation

The simulation using the modified Markov chain method is intro-
duced in section 4.1.2. The purpose is to simulate a food consump-
tion pattern that has some correlations with the initial data pattern
so that the simulated data pattern is learnable by the personalized
classifier. Since a person may eat new types of food from time to
time, we can choose to incorporate new food classes that have not
appeared in the initial data pattern, which is described in Section
4.2.

We introduce the image sampling process in Section 4.3. After
the simulated data pattern is generated, which contains food types
that a person may eat, we need to sample food images for each food
type to complete the food image data simulation. We leverage visual
similarity clustering and cluster sampling, which are described in
Section 4.3.1 and section 4.3.2, respectively. The purpose is to mimic
the scenario that a person typically prefers certain cooking styles for
each type of food so that the simulated food consumption pattern
is more realistic.

4 METHODS FOR SIMULATING FOOD
CONSUMPTION PATTERN

We propose a new framework to simulate food consumption pat-
terns of any length that closely mimics a provided initial data pat-
tern while allowing flexibility for generalization. We assume an
initial food consumption pattern is available for each individual.
We then extend this data pattern by building a modified Markov
chain model, which does not require a large amount of training
data. A Markov chain model is suitable in our scenario since the
simulation of the data pattern is based on what was eaten in the
past. However, the original Markov chain method can result large
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difference in the probability of food appearing between the sim-
ulated data pattern and the initial data pattern. This is because
it tends to forget the probability distribution of the original data
pattern in the later part of the simulation. Therefore, we propose
a modified Markov chain model. We also sample images for food
classes that appeared in food consumption patterns via a clustering
method. Figure 2 describes the overall pipeline of our method. The
user first provides an initial food consumption pattern, then we
simulate the food consumption pattern by extending this initial
data pattern using a modified Markov chain method. Finally, we
sample images of each food class that appeared in the simulated
data pattern.

Figure 2: Pipeline for simulating an eating data pattern

4.1 Modified Markov Chain Method to Simulate
food consumption Pattern

4.1.1 Original Markov Chain Method. T. Almutiri and F. Nadeem
presented a survey of example applications that use the Markov
chain method [1]. The Markov chain method [7] uses conditional
probability to simulate the next state from only the previous state.
It can be represented in the following equation 1

𝑃 (𝑆𝑡 = 𝐴|𝑆1 ...𝑆𝑡−1) = 𝑃 (𝑆𝑡 = 𝐴|𝑆𝑡−1), (1)
where 𝑆𝑡 represents the predicted state at time 𝑡 and 𝑆𝑡−1 represents
the current state at time 𝑡 − 1. There is also a decision array that
represents the probability of each state that can happen in the
current time, as shown in equation 2

𝑃𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = [𝑃𝐴, 𝑃𝐵, 𝑃𝐶 , 𝑃𝐷 , ...], (2)
where 𝑃𝐴 represents the probability of state A in the current unit of
time and the same for 𝑃𝐵 , 𝑃𝐶 , etc. To predict the probability of the
next state, we also need a transition matrix, which represents the

conditional probability of transitioning from one state to another
in different combinations:

𝑃𝑡𝑟𝑎𝑛𝑠 =


𝑃𝐴 |𝐴 𝑃𝐵 |𝐴 ...

𝑃𝐴 |𝐵 𝑃𝐵 |𝐵 ...

... ... ...

 , (3)

where 𝑃𝐴 |𝐵 represents the probability of transitioning from state B
to state A. Each row will be normalized such that the summation
of each row equals 1. Then, the probability of predicting different
states at the next unit of time is calculated using equation 4

𝑃𝑛𝑒𝑤_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑜𝑙𝑑_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠 . (4)

The highest probability element in the decision array is then se-
lected as the prediction.

4.1.2 Food consumption Pattern Simulation using modified Markov
chain method. Figure 3 shows our modified Markov chain method
for simulating food consumption patterns. The old decision array
represents the probability of each food class in the last time step.
The new decision array represents the probability of each food class
in the current time step after multiplying the old decision array
with the transition matrix. The updated decision array represents
the updated probability of each food class in the current step after
handling special circumstances during the simulation of food con-
sumption patterns. Given an initial food consumption pattern, we
use the Markov chain method to simulate a subsequent data pattern.
However, the original Markov chain method results in repetitive
occurrences of the same food class, which is unrealistic. This is
expected because the goal of a Markov chain method is to predict
the state a data pattern converges to. We also noticed a few other
issues with the Markov chain method. For example, if multiple food
classes could have the same highest probability, the first one is
always chosen by default. There are also sometimes zero rows in
the transition matrix if the last food class in the initial data pattern
only appears once, which means that there is no data to construct
conditional probability for this particular class. To address these
issues, we modified the original Markov chain method to lower
the probability of simulating repetitive data patterns and make
decisions less biased. Our modifications include:

• If there are repetitive occurrences of one food class when
simulating the food consumption pattern, we reinitialize the
decision array randomly by assigning a food class with a
probability of 1 in the decision array.

• If two or more food classes share the highest probability, we
randomly select a food class from the classes sharing the
highest probability and reinitialize the decision array.

• For any zero rows in the transition matrix, we replace the
zero rowwith the average probabilities calculated from other
non-zero rows.

4.2 Incorporating New food Classes
It is highly probable that the initial food consumption pattern does
not include all the foods a person may eat, or that new foods may
be consumed over time. Therefore, our method incorporates new
food classes as follows.
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Figure 3: Modified Markov chain method for simulating data pattern

4.2.1 Adding New Food Class. Wefirst need to decide how to define
a new food class. At each time step, there is a probability that
new food is consumed. Therefore, we build a probability model to
estimate the likelihood of eating a new food at each time step, as
represented in equation 5

𝑃𝑛𝑒𝑤 =
1

𝑐𝑛𝑒𝑤 + 1
∗ ( 1
𝑐𝑡𝑜𝑡𝑎𝑙 + 1

)
1

𝑥𝑡 −𝑥𝑡−1+1 (5)

where 𝑐𝑛𝑒𝑤 represents the total number of new classes defined
after the initially provided data pattern, 𝑐𝑡𝑜𝑡𝑎𝑙 represents the total
number of food classes in the data pattern, 𝑥𝑡 represents the current
time index, and 𝑥𝑡−1 represents the last time index when a new food
class is defined. The idea behind this equation is that the longer a
person eats the old foods since the last time they ate new food, the
more likely they are to eat another new food, and vice versa. If the
probability of adding a new food class is larger than the probability
of eating an existing food, a new food class will be added to the
data pattern instead of inferring what food to eat from the modified
Markov chain method.

4.2.2 Expansion Of Transition Matrix And Decision Array. When
we define a new food class, we add one row and one column to the
transition matrix. The simplest way to fill the additional row or
column is to assign random values to each element. However, this
could lead to a higher probability for the newly added entries during
the update of the decision array. When a decision array multiplies
with the transition matrix, each element in the decision matrix
corresponds to the dot product between the decision array and the
corresponding column in the transition matrix. If the corresponding
column does not have any sparsity (defined as the proportion of
zeroes), the element will have a larger value, which means a higher
probability to be selected in the updated decision array. To address
this issue, we randomly add sparsity in the additional column to
keep the sparsity close to that of the original transition matrix.
This would ensure that the decision at each time step is always
alternating between new food classes and existing food classes.

4.3 Image Sampling For simulated Food
consumption Pattern

After obtaining the food consumption pattern, we can sample im-
ages from existing food datasets such as Food-101 [2] to simulate
personalized consumption data. As indicated in [14, 27], one of the
characteristics of personalized data is that foods from the same
class are more visually similar, as each person may prefer certain
cooking styles for the same foods. This motivates us to perform

visual similarity clustering within each food class first, and then
sample images in the same cluster to make the data pattern more
realistic.

Figure 4: Pipeline for visual similarity clustering

4.3.1 Visual Similarity Clustering. To cluster visually similar im-
ages within each food class, we first need to learn the discriminative
features for each food image. Figure 4 shows the pipeline for visual
similarity clustering. The first step is performing image feature
extraction and the second step is clustering images based on these
extracted features. To extract discriminative image features, we pro-
pose to apply self-supervised learning techniques to learn the visual
representation of food images with static datasets. Our pipeline can
work with any existing self-supervised approaches. In this work,
we apply SimSiam [5] as an example to illustrate our method.

SimSiam [5] learns the visual representation by passing two dif-
ferent augmented views of an input image into an encoder network
and through a projection MLP head. Finally, it will pass through the
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prediction MLP to maximize the agreement with the other augmen-
tation. SimSiam is trained on minimizing negative cosine similarity
between the prediction output 𝑝 (·) on one path and a stop gradient
of the projection output 𝑠𝑡𝑜𝑝_𝑔𝑟𝑎𝑑 (ℎ(·)) on the other. The same
process will be repeated for the other pair of paths. The two dif-
ferent negative cosine similarities sum together to form the total
loss. Here, the stop gradient is a critical part to avoid a collapsing
solution. The whole process can be formulated as equation 6.

𝐿𝑜𝑠𝑠 =
1
2
𝐷 (𝑝1 (·), 𝑠𝑡𝑜𝑝_𝑔𝑟𝑎𝑑 (ℎ2 (·)) +

1
2
𝐷 (𝑝2 (·), 𝑠𝑡𝑜𝑝_𝑔𝑟𝑎𝑑 (ℎ1 (·))

(6)
where D refers to the negative cosine similarity between two dif-
ferent vectors.

Clustering: After self-supervised learning, we apply the Power
Iteration Clustering (PIC) [15] as our clustering approach, which is
a graph based method. One advantage of PIC is that the number of
simulated clusters is not predefined, so there will be more clusters
if the food class has higher intra-class variations and vice versa.
Given 𝑛𝑐 images for one food class 𝑐 , we first simulate the nearest
neighbor graph by connecting their 10 neighbor data points in
the Euclidean space using extracted feature embeddings. Let 𝑓 (x𝑖 )
denote the extracted feature for the 𝑖-th image. The sparse graph
matrix 𝐺 = R𝑛𝑐×𝑛𝑐 with zeros on the diagonal and the remaining
elements of 𝐺 are defined by equation 7

𝑒𝑖, 𝑗 = 𝑒𝑥𝑝
− | |𝑓 (x𝑖 ) − 𝑓 (x𝑗 ) | |2

𝜎2
(7)

where 𝜎 denotes the bandwidth parameter and we empirically
use 𝜎 = 0.5 in this work. Then, we initialize a starting vector
𝑠𝑛𝑐×1 = [ 1

𝑛𝑐
, ..., 1

𝑛𝑐
]𝑇 and iteratively update it using Equation 8

𝑠 = 𝐿1 (𝛼 (𝐺 +𝐺𝑡 )𝑠 + (1 − 𝛼)𝑠) (8)

where 𝛼 = 0.001 refers to a regularization parameter and 𝐿1 (•)
denotes the L-1 normalization step. The simulated clusters are given
by the connected components of a directed, unweighted subgraph
of𝐺 denoted as �̃� . We set �̃�𝑖, 𝑗 = 1 if 𝑗 = argmax𝑗𝑒𝑖, 𝑗 (𝑠 𝑗 −𝑠𝑖 ) where
𝑠𝑖 refers to the 𝑖-th element of the vector. Note that no edge starts
from 𝑖 if {∀𝑗 ≠ 𝑖, 𝑠 𝑗 ≤ 𝑠𝑖 }, i.e. 𝑠𝑖 is a local maximum.

4.3.2 Cluster Sampling. Given the simulated clusters for each food
class, we can start sampling images to simulate the personalized
food consumption patterns. Based on the obtained food consump-
tion pattern as illustrated in Section 4.1, we know the appearance
frequency for each food class, which allows us to learn the number
of images we need to sample for each food class. In addition, we
learn the user’s preferred cooking style based on their provided
initial food consumption pattern. Specifically, we calculate the stan-
dard deviation 𝜎 of the initial food consumption pattern, which is
used to construct a Gaussian distribution with the same 𝜎 where a
high 𝜎 indicates that the person prefers a diverse range of cooking
styles while a low 𝜎 indicates that the person prefers a small range
of cooking styles. Finally, given the appearance frequency and the
constructed Gaussian distribution, we sample the appropriate num-
ber of food images from each cluster and randomly place them in
the food consumption pattern to simulate the personalized food
consumption pattern.

5 EXPERIMENTS
In this section, we conduct experiments to show that our modified
Markov chain method can improve the quality of the simulated data
pattern compared to the original Markov chain method or random
simulation method. If the simulated data pattern correlates better
with the initially provided data pattern, we know that the simulated
data pattern is of higher quality. First, we manually select foods
from the Food-101 dataset [2] as the initial data pattern. The image
sampling process is also conducted on the Food-101 dataset [2].
We use Dynamic Time Warping distance [21] and Kullback-Leibler
Divergence [24] as our evaluation metrics. These two metrics can
evaluate the correlation between the simulated pattern and the
initial data pattern. Note that since there is no label for the future
eating pattern, we cannot use the prediction accuracy directly as
our metric. In addition, the goal of the simulation is not to make
correct prediction. Instead, we want to simulate a food consumption
pattern that correlates well with the initial data pattern so that a
personalized classifier can learn from the data distribution. We use
different lengths of the initially provided food consumption pattern
in the experiments to see how length may affect performance. We
also show examples of image sampling results on simulated food
consumption for qualitative evaluation.

5.1 Evaluation Metric
5.1.1 Dynamic Time Warping. To evaluate how well the extended
data pattern infers from the initially provided data pattern, we
use Dynamic Time Warping (DTW) [21] distance between the
extended data pattern and the initially provided data pattern. Unlike
Euclidean distance, which compares two data patterns by aligning
only the corresponding points, DTW compares two data patterns by
aligning one point in one data pattern to multiple points in another
data pattern, which can better correlate the two data patterns. In
general, DTW measures how well one sequence can follow the
pattern of another sequence.

In our case, DTW only needs to be applied on the Hamming
distance since we just want to see whether the inference is correct
or not instead of the degree of correctness. To calculate the DTW
distance between time series 𝐴 and 𝐵 with lengths𝑚 and 𝑛 respec-
tively, we construct an𝑚 × 𝑛 matrix. Each element of the matrix
represents the distance between 𝐴 and 𝐵 at (𝑖, 𝑗). The distance is
represented by 𝑑𝑖𝑠 (𝐴𝑖 , 𝐵 𝑗 ) = ℎ𝑎𝑚𝑚𝑖𝑛𝑔(𝐴𝑖 , 𝐵 𝑗 ). After constructing
the matrix, we find the path with a minimum distance from (0, 0)
to (𝑚,𝑛) in the matrix. The cumulative distance is calculated using
dynamic programming and can be represented by Equation 9:

𝐷𝑑𝑡𝑤 (𝑖, 𝑗) = 𝑑𝑖𝑠 (𝐴𝑖 , 𝐵 𝑗 ) +𝑚𝑖𝑛{𝐷𝑑𝑡𝑤 (𝑖 − 1, 𝑗 − 1),
𝐷𝑑𝑡𝑤 (𝑖, 𝑗 − 1),
𝐷𝑑𝑡𝑤 (𝑖 − 1, 𝑗)}

(9)

where 𝐷𝑑𝑡𝑤 represents the cumulative DTW distance at (i,j).
A lower DTW distance indicates a better correlation between the
simulated data pattern and the initial data pattern. However, only
using DTW distance as our metric is not enough to confirm that
the simulated food consumption pattern has been well inferred
from the initially provided food consumption pattern. For example,
The DTW distance may be small when a certain food consecutively
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appears multiple times in the simulated food consumption pattern
since these consecutive decisions will only match one decision
point in the initial data pattern and can cause a zero distance at
that point, which makes total DTW distance very small. However,
the simulated data pattern is likely not realistic. This is particularly
true for the original Markov chain method. Therefore, we need
another metric to compare the performance of the original Markov
Chain method and our modified version.

5.1.2 Kullback-Leibler Divergence. Kullback-Leibler(KL) Divergence
[24] is used to measure the degree of difference between two prob-
ability distributions. In our case, it measures the probability of each
food appearing in the initial food consumption pattern and the
simulated food consumption pattern and compares the difference
between the two distributions. It is formulated as in Equation 10

𝐷𝐾𝐿 (𝑝, 𝑞) =
𝑛∑︁
𝑖=1

𝑝𝑖𝑙𝑜𝑔(
𝑝𝑖

𝑞𝑖
) (10)

where 𝑝𝑖 represents the probability of a food class appearing in
the simulated food consumption pattern, 𝑞𝑖 represents the prob-
ability of a food class appearing in the initial food consumption
pattern, and 𝑛 represents the number of food classes in the simu-
lated food consumption pattern. A lower KL divergence indicates
better probability distribution matching of food appearance be-
tween the simulated food consumption pattern and the initial food
consumption pattern.

5.2 Experiment Setup and Results
Since our goal is to simulate a food consumption pattern that can
be used for training a personalized classifier, the simulated data
pattern needs to have some correlations with the initial data pattern.
To check whether our simulated data pattern is successful, we
randomly simulate a data pattern that has the same number of
food classes as the data pattern simulated by the modified Markov
Chain method. Then we compare the random simulation method
with our modified Markov Chain method using DTW distance.
We calculate the DTW distance and KL divergence on simulated
food consumption patterns with different lengths of initial food
consumption patterns and methods. We also use KL divergence to
show that the modified Markov Chain method is better than the
original Markov Chain method.

5.2.1 Datasets. To simulate a data pattern, we manually select
food classes from the Food-101 [2] dataset to form initial food
consumption patterns. Each initial data pattern can be used to
form additional data patterns of different lengths to evaluate the
effect of the initial data pattern length. The initial data pattern has
a length of [5,10,20,30,40,50], and each length corresponds to 20
initial data patterns, giving us a total of 120 initial data patterns.
We experimentally trained 20 sets for each length of the initial food
consumption pattern. The image sampling is then evaluated based
on the corresponding classes of images from the Food-101 dataset.

5.2.2 Comparison between using the original and our modified
Markov chain method. As pointed out in Section 4.1.2, there are
some issues with using the original Markov chain method for our

purpose. We conduct experiments to see the difference in the simu-
lated food consumption pattern. The sample simulated food con-
sumption is shown in Figure 5. Different colored dots represent food
class eaten at each unit of time assuming the simple case where
only one type of food is consumed at a time. The first 5 units of time
present the initially provided food consumption pattern. We can
see the food consumption pattern simulated by the original Markov
chain method always samples the same food type in later units of
time, which is not realistic in real life. We also observe the food con-
sumption pattern simulated by the modified Markov chain method
better mimics the initial food consumption pattern and is more
realistic. In Table 1, we use KL divergence to illustrate problems
using the original Markov chain. We can see the KL divergence
for the original Markov Chain method is large because there is a
large difference between the probability of food appearing between
the simulated data pattern and the initial data pattern. This issue
can be addressed by the modified Markov chain method because
if there is any consecutive occurrence of decisions, it will try to
correct this bias. In addition, if a person prefers certain foods in
the initial data pattern, the simulated food consumption pattern
will still keep this preference. We can see from the results that the
modified Markov chain method can obtain lower KL divergence,
which shows a better matching to the pattern of food appearing in
the initial data pattern.

5.2.3 Results Of Data Pattern Simulation. The results of simu-
lating food consumption patterns are shown in Table 1, and Ta-
ble 2. In these tables, 𝑴𝒂𝒓𝒌𝒐𝒗𝒐𝒓 𝒊𝒈 means the original Markov
chain method without adding new food classes during simulation.
𝑴𝒂𝒓𝒌𝒐𝒗𝒐𝒓 𝒊𝒈 𝒘𝒊𝒕𝒉 𝒏𝒆𝒘 means the original Markov Chain with
added new food classes during simulation. 𝑴𝒂𝒓𝒌𝒐𝒗𝒐𝒖𝒓𝒔 means
our modified Markov chain method without adding new food
classes. 𝑴𝒂𝒓𝒌𝒐𝒗𝒐𝒖𝒓𝒔 𝒘𝒊𝒕𝒉 𝒏𝒆𝒘 means modified Markov Chain
method with added new food classes during simulation. 𝑹𝒂𝒏𝒅𝒐𝒎
means random simulation method without adding new classes.
𝑹𝒂𝒏𝒅𝒐𝒎 𝒘𝒊𝒕𝒉 𝒏𝒆𝒘 means random simulation method with added
new classes. The bold number in the table means the performance
is better than another method.

Results without adding new classes. To show the results of
simulating data patterns without adding new food classes on dif-
ferent methods, we ran experiments on 20 different initial data
patterns. We then took the average DTW distance (for compari-
son between the random simulation method and modified Markov
chain method) and average KL divergence(for comparison between
the original Markov chain method and modified Markov chain
method). We conduct experiments using initial data pattern lengths
of [5,10,20,30,40,50]. In the second and third columns of Table 1, we
observe higher KL divergence of the original Markov Chain method.
Worse performance in the original Markov chain method is due
to the unbalanced likelihood of food appearing in the simulated
food consumption pattern. Therefore, the original Markov Chain
method is not suitable to simulate the food consumption pattern. In
the second and third columns of Table 2, we observe higher DTW
distance of the random simulation method. Worse performance in
the random simulation method is because the simulated pattern has
almost no correlation with the initially provided pattern. The simu-
lation does not follow the pattern in the initial data pattern. Finally,
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Figure 5: Comparison of food consumption pattern using original and modified Markov chain method

Length of initial
pattern

𝑀𝑎𝑟𝑘𝑜𝑣𝑜𝑟𝑖𝑔 𝑀𝑎𝑟𝑘𝑜𝑣𝑜𝑢𝑟𝑠 𝑀𝑎𝑟𝑘𝑜𝑣𝑜𝑟𝑖𝑔 with
new

𝑀𝑎𝑟𝑘𝑜𝑣𝑜𝑢𝑟𝑠 with
new

5 1.9 ± 0.158 0.531±0.031 1.371 ± 0.28 0.551±0.12
10 1.35 ± 0.54 0.237±0.176 0.957 ± 0.371 0.382±0.16
20 1.07 ± 0.34 0.0756±0.04 0.78 ± 0.135 0.301±0.09
30 0.903 ± 0.251 0.085±0.043 0.649 ± 0.119 0.269±0.076
40 0.758 ± 0.171 0.123±0.061 0.566 ± 0.073 0.282±0.093
50 0.652 ± 0.114 0.138±0.069 0.503 ± 0.065 0.238±0.06

Table 1: Comparison between the original Markov chain method and the modified Markov chain method using 𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ±
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 between the initial provided food consumption pattern and the simulated food consumption pattern (smaller
value indicates better performance). Second and third columns show the results without adding new classes. The last two
columns show the results with added new classes. 𝑀𝑎𝑟𝑘𝑜𝑣𝑜𝑟𝑖𝑔 means original Markov chain method, 𝑀𝑎𝑟𝑘𝑜𝑣𝑜𝑢𝑟𝑠 is our modified
Markov chain method, 𝑤𝑖𝑡ℎ 𝑛𝑒𝑤 indicates with added new food classes

Length of initial
data pattern

𝑅𝑎𝑛𝑑𝑜𝑚 𝑀𝑎𝑟𝑘𝑜𝑣𝑜𝑢𝑟𝑠 𝑅𝑎𝑛𝑑𝑜𝑚 with new 𝑀𝑎𝑟𝑘𝑜𝑣𝑜𝑢𝑟𝑠 with
new

5 66.3 ± 2.74 55.6±2.21 79.6 ± 3.67 57.15±14.79
10 69.2 ± 2.64 64.95±7.85 76.4 ± 4.95 63±7.42
20 67.75 ± 3.73 56.7±2.85 73.5 ± 2.78 59.55±5.32
30 68.4 ± 3.7 49.2±5.62 73.95 ± 2.64 58.1±6.54
40 68.25 ± 3.04 50.5±4.96 72.85 ± 3.41 59.8±6.15
50 71.6 ± 2.5 54.75±5.52 75.1 ± 3.48 62.7±4.27

Table 2: Comparison between the original Markov chain method and the modified Markov chain method using 𝐷𝑇𝑊 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ±
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 between the initially provided data pattern and the simulated data pattern with adding new food classes
(smaller value indicates better performance). Second and third columns show the results without adding new classes. The last
two columns show the results with added new classes. 𝑅𝑎𝑛𝑑𝑜𝑚 means Random simulation method, 𝑀𝑎𝑟𝑘𝑜𝑣𝑜𝑢𝑟𝑠 is our modified
Markov chain method, 𝑤𝑖𝑡ℎ 𝑛𝑒𝑤 indicates with added new food classes

the modified Markov chain method can obtain a good performance
when compared with both the original Markov chain method and
random simulation method. The modified Markov chain method
can simulate a pattern that has some correlation with the initial
food consumption pattern. In addition, if the length of the initial
food consumption pattern is large, the modified Markov chain can
output competitive results in terms of KL divergence.

Results with adding new classes.We apply the same experi-
ment setup when adding new classes. From the last two columns
of Table 1, when new food classes are included in simulating fu-
ture data patterns, we observe the KL divergence still decreases
compared to the original Markov Chain method. From the last two
columns of Table 2, we can observe the DTW distance also de-
creases compared to the random simulation method. Although the

 

67



MADiMa ’22, October 10, 2022, Lisboa, Portugal Xinyue Pan, Jiangpeng He, Andrew Peng, & Fengqing Zhu

Figure 6: Image sampling over simulated data pattern

resulting values of using both metrics for comparing the methods
are increased compared with the case without adding new classes,
this is within expectation because in the simulated data pattern
there are food classes that are not in the initial data pattern. With
longer initial data patterns, the KL divergence is lower for the modi-
fied Markov chain method as shown in Table 1. However, the DTW
distance does not decrease in this case as shown in Table 2 because
the number of new food classes included in the simulated pattern
is increasing.

5.2.4 Image sampling over simulated food consumption pattern. Fig-
ure 6 shows the sample results of image sampling over a simulated
data pattern. We select sample images of apple pie, pizza, and sushi
from the Food-101 dataset. We notice that image samples for the
same food category appear visually similar in the data pattern at
different time steps, which aligns with our assumption that a per-
son typically prefers the same cooking style resulting in a visually
similar appearance of the foods over time.

6 CONCLUSION
In this paper, we proposed to simulate food consumption pattern
using a modified Markov chain method. Our method can accommo-
date new foods not included in the initial data pattern and closely
mimic user preference of food choices and their occurrence as pro-
vided in the initial data pattern. Experimental results show that
our proposed method produces realistic data pattern compared to
using the original Markov chain method and a random simulation
method.

Our future work will focus on improving the simulation of food
consumption patterns incorporating other aspects. For example,
we can consider the timing of food consumption such as break-
fast, lunch, and dinner. We can use a hierarchical classification
of food types and use such hierarchy to simulate what someone
may eat during a meal. Methods to simulate food consumption
patterns efficiently and accurately could benefit the development
of personalized classifiers to improve food image classification.
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