
Generalized Map Coloring for Use in Geographical
Information Systems*

Robert Freimer
Caliper Corporation
1172 Beacon Street

Newton, MA 02461-1149
robert@caliper.com

A B S T R A C T
We propose a new model for cartographic map coloring for
use in Geographical Information Systems. Map coloring too-.
t ivated the famous four-color problem in Mathematics. The
published proofs of the four-color theorem yield impractical
polynomial-t ime algorithms. Actual political maps often re-
quire generalizations to the s tandard four-coloring problem
given the topology of some regions. We allow each region
to have m disjoint pieces, which is Heawood's ra-pire prob-
lem. We also count node adjacency between regions, i.e.,
two regions are adjacent if they share a common point. The
adjacency graphs using node adjacency are known as map
graphs. By combining m-pires with node and island ad-
jacency, we formulate a new model to handle actual GIS
instances. We implemented Br61az's Dsatur heuristic, since
no specific algorithm exists for coloring our resulting carto-
graphic graphs. The choice works well in practice and we
discuss the details of the implementation in TransCAD ®.

Keywords
Coloring, Cartographic maps, Dsatur heuristic, GIS, Hea-
wood's m-pire problem, Map Graphs

1. INTRODUCTION
In 1852, Francis Guthrie observed that four colors always

sufficed for any cartographic map that he a t t empted to color
in such a way that no two adjacent regions had the same
color; he wondered whether this was always true [3, 32].
This simple conjecture remained open for many years and
would become an important motivator to the field of Math-
ematics. It led to the concept of an abstract graph and the
equivalent and more modern form of the problem: whether
a planar graph can always be four-colored. Finally in 1976,
the problem was solved in the affirmative using a long, but

*An earlier version of this material appeared in Dr. Frei-
mer 's Ph.D Dissertation[12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page,
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
8 th A C M Symposium on GIS 11/00 Washington, D.C., USA
© 2000 ACM ISBN 1-58113-319-7/0010011 ... $5.00

unsatisfying proof tha t included many pages of computer
generated case analysis [2].

In the Mathematical l i terature, map coloring refers to as-
signing colors to simple connected planar regions based on
edge adjacency; w.l.o.g., we can assume that the regions are
polygonal [13]. This simplistic definition does not accurately
reflect what cartographers face in practice because political
countries may have multiple disconnected pieces; also node
adjacency and islands should be considered for reasons of
clarity.

In this paper, we return to Guthrie 's original motivation
and consider the problem of coloring cartographic maps,
only in the modern setting of Geographical Information Sys-
tems. We review the current knowledge and consider two ex-
tensions which more closely reflect actual cartographic prac-
tice: regions with multiple disconnected pieces and more
general definitions of adjacency. We use this more accurate
model to create an actual implementation for use as part
of a commercial GIS. We note that some instances require
more than four colors with this model.

Surprisingly before our work, map coloring was not a fea-
ture included in any commercially available GIS software 1.
Most packages include chloropleth mapping, which colors
regions using a thematic classification, but none had the
capabil i ty of coloring by adjacency.

Numerous non-cartographic applications have provided
the practical motivation for coloring algorithms. These in-
clude school t imetables and other scheduling problems [24],
various compiler optimizations [IJ, circuit layout and testing
[34], and electronic bandwidth allocation [6l.

The l i terature on planar and general graph theory is ex-
tensive. The book by Jensen and Toft[22] provides a very
complete description of the current knowledge on graph col-
oring, including references to the original papers.

We begin in Section 2 with some basic definitions. We also
formalize the relationship between map and graph coloring,
so tha t results can be s ta ted in either form as appropriate.

In Section 3, we consider the original planar maps and
state the four-color theorem. Next in Sections 4 and 5,
we discuss two previously known extensions: coloring maps
with at most m pieces per region, bet ter known as Hea-
wood's m-pire problem [16], and coloring simple regions us-
ing a node adjacency rule.

By combining these two generalizations along with is-
lands, we can formulate a sufficiently general model to han-

1At least one th i rd-par ty coloring extension exists for
ArcInfo ®. Manifold ® has also released a coloring extension.

167

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355274.355299&domain=pdf&date_stamp=2000-11-01

/

T

Figure 1: Correspondence between a map and its
(edge) adjacency graph.

dle real GIS instances. In Section 6, we consider this im-
portant new model, whose adjacency graphs we call carto-
graphic graphs. We discuss our implementation of Br~laz's
Dsatur algorithm [5], which is a heuristic that works ex-
tremely well in practice on cartographic maps, producing
colorings with a small number of colors.

We conclude with a couple of extensions in Section 7.

2. DEFINITIONS
We begin by formally defining map coloring. A map is a

polygonal subdivision A4 of R 2, with n > 1 regions (coun-
tries) with exactly one unbounded region. For r E N, a
r-coloring of the map A4 is one that assigns a color c E
{1, 2 , . . . , r} to each region, using at most r different colors,
so that any two adjacent regions are colored using distinct
colors. The minimum r for which f14 can be colored is called
the chromatic number X(fl4). A more through topological
treatment of maps is available in [13], which shows for the
context of coloring why it is sufficient to consider only polyg-
onal subdivisions instead of a more general definition using
simple closed Jordan curves.

Map coloring is closely related to the more general prob-
lem of graph coloring, which is concerned with coloring each
vertex of a graph so that no two adjacent vertices, i.e. ones
that share an edge, have the same color. More formally, let
G = (V,E) be a graph of n = IV[vertices and m = IEI
edges. A coloring is a function p : V --+ {1, 2 , . . . , r} so that
p(Vl) ¢ p(V2) for every e = (vl,v2) E E. The minimum r
for which G has a coloring is denoted x(G), the chromatic
number of G.

The map coloring problem can easily be transformed into
a graph coloring problem by building the adjacency graph
G for a map A4. Let V = {regions of A4} and add an edge
e = (7~1, T~2) for each pair of adjacent regions ~1 and 7~2.
Any coloring of G corresponds to a coloring of A4. Hence,
map coloring is just graph coloring on a restricted subclass of
graphs (see Figure 1). We will often use the equivalent graph
form of the problem in this paper, following the practice of
most of the coloring literature. See [13] for a much more
rigorous presentation of this correspondence.

We assume in this paper that G does not contain any
loops, i.e. edges of the form e = (v,v). Let A(G) be the
maximum degree of any vertex v E V.

We make use of special notation for a classes of graphs

named after Kuratowski. K~,,~ is the complete bipartite
graph on n and m vertices.

Two regions axe said to be edge adjacent if they share
a common linear boundary (map edge) of A4. This is the
common definition, when the map only contains simple poly-
gons, i.e., one connected component per region. The class
of such graphs defined by edge adjacency are those called
planar graphs. If the regions are each allowed to have m
pieces, then the resulting class are the m-pire graphs.

Two regions are said to be node adjacent if they share a
common boundary corner point (map node) of S (e.g., Four-
corners, AZ, CO, NM and UT in Figure 1). If at most k
regions meet at any node then the adjacency graph is called
a k-map graph using the terminology of Chen et al.[7]. The
3-map graphs are the ordinary planar graphs. Collectively,
the k-map graphs are called map graphs.

To match cartography, we sometimes may want to allow
an "empty" region, which includes the unbounded portion
of the plane. This uncolored region would correspond to the
ocean and inland water bodies. Using this model, two re-
gions are said to be island adjacent if they are visible across
the water within some threshold distance d. I.e., some point
pl of region ~z can "see" across the water along a straight
line to some point p2 of region T~2 and the distance Iplp2[is
at most d. This is a superset of the node adjacency version,
since node adjacent regions can vacuously see each other
at distance 0. A similar model that required the water
to be connected (no lakes) was examined by Jackson and
Ringel[20]. They found slightly tighter bounds on X(fl4) for
these island maps, which are m-pires with the requirement
that each region has some ocean shoreline.

In this paper we will consider the coloring problems de-
fined by using edge, node and island adjacency. Adjacency
graphs which result from the combination of island adja-
cency with m-pires will be called cartographic graphs.

3. PLANAR GRAPHS
In this section, we consider the classical problem of color-

ing maps using edge adjacency where each region must be
connected. Planar graphs are the equivalent graph version
of this problem, which have been extensively studied [28].

After more than a century, planar graphs were finally
shown to be four-colorable in 1976 by Appel et al.[2], us-
ing a computer generated case analysis to reduce a graph
to one of 1900+ unavoidable configurations. This has been
greatly simplified by a new proof by Robertson et al.[31],
which still has 633 cases. Summarizing their result:

THEOREM 1. ([2]) Given a map S, where each region in
the subdivision is connected, then the map using edge adja-
cency can be four-colored.

We now discuss algorithms to color planar graphs using
between two and five colors. Two is possible only when the
graph is bipartite, which can be easily checked in linear time.
No polynomial-time algorithm is likely to exist for three-
coloring, since Stockmeyer showed that deciding whether
a planar graph can be three-colored is NP-Complete, even
when A(G) = 4 [15].

Each of the two proofs of Theorem 1 can be transformed
to provide a theoretical algorithm for four-coloring planar
graphs. Unfortunately, neither seems to be practical with re-
gards to implementation. The algorithm derived from Appel

168

Figure 2: H e a w o o d ' s 2 -p i r e w h i c h r e q u i r e s 12 colors .

et al. 's proof has O(n 4) t ime complexity with astronomical
coefficients [30]. The somewhat simpler coloring algorithm
from Robertson et al.[30] still has O(n 2) t ime complexity
and as far as we are aware has not been implemented.

Efficient and practical algorithms for five-coloring have
been known for many years [28]. The most recent is due to
Thomassen[35], whose proof tha t every planar graph is five-
choosable, yields an extremely simple linear-time algorithm.
Our implementation of this five-coloring algorithm works
well in practice [12]; we have successfully colored all 1,081,
257 atomic polygons of Texas from 1998 TIGER/Line ® .

Unfortunately, many geographic layers encountered are
not planar and hence cannot be colored by Thomassen's al-
gorithm. E.g., the edge adjacency graph of world countries
has been non-planar since the demise of the Soviet Union;
Azerbaijan is a 2-pire, which along with Georgia, Iran, Ar-
menia, Russia and Turkey define a K3,3-minor. However, it
is still possible to four-color this graph.

A variety of other implementations and heuristics exist for
coloring planar graphs [19, 27]. The LEDA[25] l ibrary also
includes a FIVE_COLOR function for planar graphs. The
only implementation by a cartographer that we found is an
impractical exponential-t ime map coloring heuristic [11].

4. M-PIRES
In practice, cartographic regions may have multiple dis-

connected pieces. Coloring such regions is known as Hea-
wood's Empire problem after the English mathematician,
since in the late 1800's countries often had many colonies
(e.g., the British Empire) and because of the convenient pun.
Heawood[16] proved the upper bound on the number of col-
ors required for an m-pire and gave a lower bound example
for m = 2 (see Figure 2). The case m = 1 is Theorem 1.
The lower bound examples for m = 3, 4 were discovered by
Taylor[14]. Almost 100 years after the problem was first
posed, the complete lower bound was proved by Jackson
and Ringel[21] and later shortened by Wessel[38]. The tight
bound is s tated as follows:

THEOREM 2. ([16, 21]) Given a map S, where each re-
gion in the subdivision has at most m >_ 1 disjoint con-

neeted components, then the map using edge adjacency can

be colored with [½(6m + 1 + X/(6m + 1)2 - 48)] colors and

for each m this bound is tight for some maps.

From Heawood's proof, we have derived and implemented
a l inear-time algorithm that colors an m-pire with 6m or
fewer colors using edge adjacency [12]. The algorithm turns
out not to be useful for real maps, since 6m is almost al-
ways much larger than X(A4). E.g., the West Aleutians are
comprised of 28 islands, so the algorithm uses 168 colors for
the U.S. counties, which is absurd since five is sufficient.

When the number of pieces per region is unbounded, n
colors may be required for an m-pire, since it is possible to
simulate a general graph by using two pieces for each edge,
one for each endpoint. Hence, finding the minimum coloring
is NP-Complete by a reduction from general graph coloring.

5. M A P GRAPHS
Cartographers often need to consider node adjacency for

reasons of clarity given the complexity of many political re-
gions. In this section, we will again consider maps with a
single polygon per region, but this t ime use the node adja-
cency definition for coloring. The adjacency graphs arising
from such maps (map graphs) can be divided into classes
based upon k, the maximum number of regions which meet
at a single node. Obviously, k-map graphs always require
at least k colors. We will demonstrate in this section that
some k-map graphs can require [~k] colors and conjecture
tha t this is also sufficient.

The node adjacency generalization was first considered by
Ore and Plummer[22]. Restating their result:

THEOREM 3. For k > 3, given a k-map graph G such that
no region is completely surrounded by another, x(G) <_ 2k.

This was strengthened slightly to x(G) ~ 2k - 3 for k >_ 8
by Borodin[22]. He also conjectured that :

CONJECTURE 1. For k >_ 3, any k-map graph can be col-
ored using 3 [~kJ colors.

We independently developed this conjecture while investi-
gating this problem, as did [7]. Their motivation to extend
the definition of planari ty was a restricted version of the
topological inference problem. They have an extremely com-
plicated method for deciding in polynomial t ime whether a
graph is 4-map and conjectured that this was also possible
for any k >_ 4. The affirmative answer was provided by
Thorup[36]. Collectively, they gave a useful description of
the region configurations from which the maximum cliques
arise, including flowers and hamantaschen using Thorup's
terminology (see Figure 3). I t is easy to see for the haman-
tasch tha t [~kJ colors may be iequired for a k-map graph,
matching the conjectured upper bound.

For k = 3, Conjecture 1 is the Theorem 1. For k = 4,
every 4-map graph can be shown to be 1-planar, i.e., they
can be embedded in the plane so that each edge is crossed
by at most one other edge, which can be six-colored [36].
The conjecture remains open for k _> 5.

Finding a minimum coloring for map graphs remains NP-
Complete, since they are a generalization of planar graphs.

An interesting, but very restricted version of node adja-
cency coloring arises when coloring quadtrees using corner

169

(a) (b)

F i g u r e 3: T w o t y p e s o f m a x i m u m cl iques:
f lower and (b) a h a m a n t a s c h .

(a) a

adjacency. A quadtree is defined by star t ing with an ini-
tial square and recursively split t ing some of the squares into
four smaller squares. Clearly quadtrees are a special case
of planar maps. A quadtree is balanced, if for any inside
edge, the ratio of the lengths of the squares adjacent to
the edge is within a factor of two. Bern et al.[4] showed
for edge adjacency tha t x(G) = 3 for balanced quadtrees
and x(G) = 4 otherwise. For node adjacency, they showed
tha t 5 < x(G) _< 6 and gave a linear-time algorithm for
six-coloring quadtrees.

6. CARTOGRAPHIC MAPS
In the preceding sections, we examined various general-

izations to planar graphs. We will now consider the com-
bination of island adjacency with m-pires. The resulting
cartographic graphs are an a t tempt to model how actual
maps are colored. Frequently, countries have multiple com-
ponents and node adjacency needs to be considered for clar-
ity. Nearby islands also need to be colored differently, so tha t
different nations can be distinguished as in the Caribbean.

This new coloring problem remains NP-Complete, since
cartographic graphs are a generalization of planar graphs.

An upper bound on x(G) for cartographic graphs is A(G)
+1, using Brooks Theorem for general graphs [22].

In this section, we review some of the methods from the
l i terature for coloring general graph and explain our choice
of Br~laz's Dsatur algorithm [5]. We provide the details of
our implementat ion and discuss how it works well in practice
with the class of adjacency graphs arising from actual GIS
datasets.

6.1 Coloring Algorithms
Exact algorithms for coloring general graphs are imprac-

ticable given the NP-Completeness results. This has not
prevented some a t t empts using various methods to speed
them up [27], but they are usually prohibitively slow except
on small examples (say a few hundred vertices) due to the
exponential- t ime complexity. Approximation algorithms are
primari ly of theoretical interest, since the bounds tha t they
guarantee are far from optimal. Even finding an approxi-
mation within a factor of 2 is also NP-Complete [15]. In
fact, graph coloring serves as one of the canonical problems
in Class IV of inapproximabil i ty problems [18].

Heuristics have provided the most frequent solution for
practical graph coloring problems, since they typically find
small colorings in a reasonable amount of t ime (polynomial).

However, in order to achieve this performance, they need to
be tuned for the part icular class of input graphs. No heuris-
tic is known that works well across the complete spectrum
of general graphs.

Heuristics can be broken down into two general classes:
sequential (successive augmentation) and iterative improve-
ment. See [27] for a complete discussion.

Sequential heuristics color the vertices of G, one at a time,
using some order a. Color choices, once made, are usually
considered to be unchangeable. If only information avail-
able before any vertices have been colored is used to deter-
mine a, then the method is called static. Commonly used
stat ic orderings include random, largest-first (degree) and
smallest-last. A dynamic method makes use of the previ-
ously assigned colors in determining a. A good comparison
of sequential algorithms is provided by [29].

The most frequently used dynamic sequential heuristic is
Br~laz's Dsatur algorithm [5] (a.k.a., the saturat ion algo-
ri thm): select the vertex with the greatest saturat ion (num-
ber of colors already used by neighbors), breaking ties using
the largest degree vertex. This method typically works well
in practice for sparse graphs. Turner[37] further supports
this claim with a probabil ist ic analysis showing Dsatur's av-
erage performance rat io is good for almost all sparse graphs.
However, the worst-case behavior of Dsatur is poor: O(n)
[33]; they give three-colorable examples with O(n) vertices,
for which Dsatur uses n colors. Dsatur is often considered
to be the best sequential method.

Various strategies have been employed to improve upon
stat ic colorings. Iterated improvement heuristics use a se-
quence of i terations tha t s tar t with an initial coloring and
search for bet ter solutions. A variety of general optimiza-
tion strategies have been used, including hybrid genetic algo-
r i thms [10], simulated annealing [23], and Tabu search [17].
While success has been repor ted with the general methods,
specific coloring strategies such as i terated greedy [9] and
distr ibuted coloration neighborhood search [26] usually will
do even better. Unfortunately, in either case the resulting
heuristics usually perform well on only a small class of prob-
lems. We omit any further discussion of i terated heuristics,
since they are complex and we do not feel that they are
appropriate for our GIS problem.

Very little code for heuristics for general graph coloring is
publicly available. Culberson[8] has provided a useful suite
of programs for exploring different methods for graph color-
ing. Thanks to these, we decided to implement the Dsatur
algorithm. An implementat ion of Dsatur is also provided
with Mathematica ® for graph coloring.

6.2 Implementation
We implemented the Dsatur heuristic in C to add car-

tographic coloring functionality to TransCAD ®, which is
a high-end GIS with many extensions for t ransportat ion,
planning and logistics. A large amount of geographic da ta
is included with the software, which provides many huge real
examples for our experiments.

As is frequently the case for geometric algorithms, a fair
portion of the implementat ion effort is spent on support rou-
tines and da ta structures, which are omit ted from most the-
oretical descriptions. For our coloring implementations, this
involved approximately half the time. For instance, we had
to process the native geographic area layers to efficiently
compute the different types of adjacency. TransCAD®'s

170

geographic database structures are optimized for drawing,
storage and quick spatial queries. They are not designed
to provide cheap and simple navigation around the plane
graph bounding the faces of an area layer. So we devel-
oped functions to efficiently process an area layer and create
a sparse memory-based structure to contain the adjacency
graph. The structure, which contains the upper triangu-
lar portion of the symmetric adjacency matrix, is stored in
an array. The first n cells contain records for the n re-
gions. Each record includes the index to the first cell in its
adjacency list. The lower half of the adjacency matrix is
populated before one of our coloring algorithms is used.

Edge adjacency is computed by simply looping over all the
map edges once, adding an entry to the adjacency matrix
for the pair of regions which border an edge if it does not
already exist.

For node adjacency, a temporary point database is cre-
ated to efficiently locate map nodes. The edge adjacency
processing step within the loop is expanded to process each
endpoint of the edge. The presence of each node is tested
against the point database and is added if missing. An in-
memory list for each node is maintained to keep track of
its incident regions. At the conclusion of the edge loop, the
list of nodes is processed to update the adjacency matrix for
every pair of regions incident to the node.

Island adjacency is computed by augmenting the point
database used for node adjacency with extra shape points
from edges which border water, region 0. Every 25 th inter-
nal shape point of each water edge is added; this sampling
rate is employed to simplify the final processing step which
occurs after the node adjacency has been computed. Each
water node is processed in turn, looking at all the other wa-
ter nodes within distance d. For any which are incident to
different regions, the adjacency matrix is updated. Notice
that the cartographic detail, i.e. number of shape points, of
the layer has an important impact on the running time for
computing island adjacency.

Once the desired adjacency has been computed, D S A T -
U R is called. This assigns a region a color by updating the
value of a specified database field. The area layer is then
redrawn using a manual, list of values, chloropleth map on
the color field.

We now formally state Br~laz's Dsatur algorithm [5]:

D S A T U R (G) :
1. Choose an uncolored vertex v with maximum saturation

degree (the number of distinct colors already used by ad-
jacent vertices), breaking ties using the largest vertex de-
gree. For the initial iteration, this selects the vertex with
the largest degree.

2. Color v with the lowest available color c.
3. Increment the saturation degree for each neighbor w of v

for which this is the first use of c in w's neighborhood.
4. Stop if all vertices are colored, otherwise repeat Step 1.

A priority queue based on an AVL tree is used to keep
track of the saturation and vertex degrees of the uncolored
vertices. A bit-vector of size degree(v) + 1 is maintained
for each vertex v to keep track of the colors already used.
This leads to an O(m log n) implementation, where m = IEI,
since each saturation update for neighbors is handled by a
deletion from and an addition to the priority queue and there
can be O(m) updates.

The strategy behind the Dsatur algorithm is that the

most constrained vertex at each stage should be colored next
to prevent running out of colors later. Ties are broken us-
ing the largest-first rule, since vertices with larger degree
are often more difficult to color. This combination works
well in practice on sparse graphs as can be seen from the
experimental results presented in the next subsection.

Br@laz's original algorithm had O(n 2) time complexity
due to the initialization of bit-vectors. We employed Mor-
genstern's observation [27] that each bit-vector need only
be of length degree(v) + 1 to eliminate that issue. Further
information can be found in Morgenstern's dissertation, in-
cluding a O(m) time PASCAL implementation based on lazy
arrays, which didn' t seem practical for our GIS application.
Morgenstern did not provide any experimental results for
his Dsatur implementation.

6.3 Performance
We ran our algorithm on a wide spectrum of instances,

ranging from nationwide U.S. Census Block Groups to World
Countries (see Figure 4 for U.S. Counties). The U.S. ge-
ography was derived from 1998 TIGER/Line ® . The World
Countries were derived from the Digital Chart of the World.

For each layer, we report in Table 1 the following statis-
tics to better understand the complexity of the instance: the
number of colors used for edge, node and island adjacency,
the number of geographic regions in the layer, the number of
geographic polygons in the layer, the maximum number of
polygons comprising any single geographic region, the num-
ber of geographic boundary edges in the layer, the number
of shape points in the layer, and the maximum and average
node degrees.

We also report in Table 1 for each layer and type of adja-
cency, the running times in seconds for computing the adja-
cency graph and for coloring the adjacency graph. We ran
our trials under Microsoft Windows ® NT 4.0 with a 450MHz
Pentium ® II processor. Only the edge adjacency rule was
used for the larger instances due to the long running times.
Notice that the adjacency computations completely domi-
nates the time required for determining the coloring, which
is roughly linear to the number of adjacency graph edges.

For smaller instances, say less than 2,000 regions, the
speed of the implementation is sufficiently good to be used
in real-time while a user interacts with the software. For
larger instances, it really should be run offiine, saving the
result in a field for later use. This works well in practice,
since colorings do not need to be recomputed unless an area
layer is changed.

Observe that the colorings produced (see Figure 4) are
not close to being evenly balanced; the smaller colors ap-
pear with much greater frequency due Step 2 of D S A T U R .
Unfortunately changing this rule to randomly select a color
often causes more colors to be used.

7. EXTENSIONS
We conclude this paper with a couple of extensions to

cartographic map coloring.
Cartographers like to use colors evenly throughout a map

for esthetic reasons. A couple of metrics that can be used for
balancing the colors are the number of countries with each
color [11] and the total area colored by each color. None of
the algorithms discussed in this paper at tempt to satisfy this
requirement. A theorem of Hajnal and Szemer@di[22] shows
for general graphs that balancing is possible when using the

171

Q D
0

.oQ

U.S. C o u n t i e s
Color

(814)
~ 1 (794)
~ 2 (785)
~ 3 (785)

(5s)

F i g u r e 4: A D s a t u r f i v e - c o l o r i n g o f U . S . c o u n t i e s u s i n g t h e i s l a n d a d j a c e n c y r u l e .

T a b l e 1: C o m b i n a t o r i a l s t a t i s t i c s a n d D s a t u r r u n n i n g t i m e s (s e c o n d s) f o r v a r i o u s s u m m a r y l e v e l s o f g e o g r a p h y .

Adj. Dsatur
Area Layer Rule Colors Regions
World Edge 4 260
Countries Node 4

Island 5
U.S. States Edge 4 57

Node 4
Island 4

U.S. Counties Edge 5 3,233
Node 5
Island 5

U.S. County Edge 5 36,244
Subdivisions Node 6

Island 6
U.S. Census Edge 5 62,829
Tracts Node 6
U.S. Census Edge 5 230,446
Block Groups

Max. # Bndry. # Shape
Polygons Polygons Edges Points

27,007 5,225 27,646 1,508,574

314 49 435 302,621

3,575 28 10,613 1,779,943

43,794 89 110,651 5,829,124

64,390 18 2,580,416 9,505,979

232,771 19 5,320,913 18,603,919

Max. Avg. Adj. Dsatur
Degree Degree Time Time

14 2.40 36.24 0.12
14 2.40 63.32 0.06
16 2.90 1,035.96 0.05

8 3.79 7.54 0.03
8 3.86 8.43 0.03
8 4.25 52.86 0.03

13 5.60 51.32 0.58
14 5.83 60.56 0.59
14 5.95 125.82 0.59
35 5.19 191.77 6.32
35 6.19 290.37 7.19
35 6.24 592.76 7.17

108 5.48 550.74 22.27
108 6.20 3,450.94 12.62

89 5.49 1,198.42 43.61

172

worst-case number of colors. Does an algorithm for carto-
graphic graphs exist which guarantees a balanced coloring
with a small number of colors for cartographic graphs?

Are there better definitions of island adjacency? For in-
stance, consider the Voronoi diagram of the islands. Two
regions might be adjacent if they share a Voronoi edge.

8. REFERENCES
[1] A. Aho, R. Sethi, and J. D. Ullman. Compilers,

principles, techniques and tools. Addison-Wesley,
Reading, MA, 1986.

[2] K. Appel and W. Haken. Every Planar Map is Four
Colorable. Amer. Math. Soc., Providence, RI, 1989.

[3] D. Barnette. Map Coloring, Polyhedra, and the
Four-Color Problem. Math. Assoc. Amer.,
Washington, DC, 1983.

[4] M. W. Bern, D. Eppstein, and B. Hutchings.
Algorithms for coloring quadtrees. To appear in
Algorithmica, 1999.

[5] D. Br~laz. New methods to color the vertices of a
graph. Commun. ACM, 22(4):251-256, Apr. 1979.

[6] B. Chamaret, S. Ubeda, and J. Zerovnik. A
randomized algorithm for graph coloring applied to
channel allocation in mobile telephone networks. In
T. Hunjak, L. J. Martid, and L. Neralid, editors, Proc.
6th Intl. Conf. Oper. Res., pages 25-30, 1996.

[7] Z.-Z. Chen, M. Grigni, and C. H. Papadimitriou. Map
graphs. Draft, Dept. Math. Sci., Tokyo Denki Univ.,
Hatoyama, Saitama, Japan, 1999.

[8] J. Culberson. Graph Coloring Programs Manual. Dept.
Comput. Sci., Univ. Alberta, Edmonton, AB, 1997.

[9] J. C. Culberson and F. Luo. Exploring the k-colorable
landscape with iterated greedy. In D. S. Johnson and
M. A. Trick, editors, Cliques, Coloring, and
Satisfiability: Second DIMA CS Implementation
Challenge, 1993, pages 245-284, Providence, RI, 1996.
Amer. Math. Soc.

[10] C. Fleurent and J. A. Ferland. Genetic and hybrid
algorithms for graph coloring. In G. Laporte and
I. Osman, editors, Metaheuristics in combinatorial
optimization, pages 437-461. J. C. Baltzer, 1996.

[11] D. Forrest. Colouring the political map. Cartographic
J., 33(2):141-147, Dec. 1996.

[12] R. Freimer. Shattering geometric objects and coloring
geographical maps. Ph.D. Thesis, Cornell Univ.,
Ithaca, NY, 2000. http://www, freimer, com/thes is. pdf.

[13] R. Fritsch and G. Fritsch. The Four-Color Theorem.
Springer-Verlag, New York, NY, 1998.

[14] M. Gardner. The last recreations: hydras, eggs, and
other mathematical mystifications. Copernicus, New
York, NY, 1997.

[15] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York, NY, 1979.

[16] P. J. Heawood. Map colour theorem. Quart. J. Pure
Appl. Math., 24:332-338, 1890.

[17] A. Hertz and D. de Werra. Using tabu search
techniques for graph coloring. Computing,
39(4):345-351, 1987.

[18] D. Hochbaum, editor. Approximation Problems for
NP-Complete Problems. PWS Publishing Company,

Boston, MA, 1997.
[19] J. P. Hutchinson and S. Wagon. Programming tips:

Four-coloring planar maps. Mathematica Educ. Res.,
6(1):42-51, 1997.

[20] B. Jackson and G. Ringel. Coloring island maps. Bull.
Austral. Math. Soc., 29(2):151-165, 1984.

[21] B. Jackson and G. Ringel. Solution of Heawood's
empire problem in the plane. J. Reine Angew. Math.,
347:146-153, 1984.

[22] T. R. Jensen and B. Tort. Graph Coloring Problems.
Wiley-Interscience Series in Discrete Mathematics and
Optimization. John Wiley & Sons, New York, NY,
1995.

[23] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and
C. Schevon. Optimization by simulated annealing: An
experimental evaluation; part II, graph coloring and
number partitioning. Oper. Res., 39(3):378-406,
May-June 1991.

[24] F. T. Leighton. A graph colouring algorithm for large
scheduling problems. J. Res. National Bureau of
Standards, 84(6):489-503, 1979.

[25] K. Mehlhorn, S. N~iher, M. Seel, and C. Uhrig. The
LEDA User Manual, Version 3.8, 1999.

[26] C. Morgenstern. Distributed coloration neighborhood
search. In D. S. Johnson and M. A. Trick, editors,
Cliques, Coloring, and Satisfiability: Second DIMA CS
Implementation Challenge, 1993, pages 335-357,
Providence, RI, 1996. Amer. Math. Soc.

[27] C. A. Morgenstern. Algorithms for General Graph
Coloring. PhD thesis, Dept. Comput. Sci., Univ. NM,
Albuquerque, NM, 1989.

[28] T. Nishizeki and N. Chiba. Planar Graphs: Theory
and Algorithms. North-Holland, Amsterdam,
Netherlands, 1988.

[29] J. PeemSller. Numerical experiences with graph
coloring algorithms. European J. Oper. Res.,
24(1):146-151, Jan. 1986.

[30] N. Robertson, D. P. Sanders, P. Seymour, and
R. Thomas. Efficiently four-coloring planar graphs. In
Proc. 28th Annu. ACM Sympos. Theory Comput.,
pages 571-575, 1996.

[31] N. Robertson, D. P. Sanders, P. D. Seymour, and
R. Thomas. The four colour theorem. J. Combin.
Theory Ser. B, 70:2-44, 1997.

[32] T. L. Saaty and P. C. Kainen. The Four-Color
Problem. Dover Publications, New York, NY, 1977.

[33] J. P. Spinrad and G. Vijayan. Worst case analysis of a
graph coloring algorithm. Discrete Appl. Math.,
12(1):89-92, 1985.

[34] I. Stewart. Math recreations: Empires and electronics.
Scientific Amer., 277(3):92-94, Sept. 1997.

[35] C. Thomassen. Every planar graph is 5-choosable. J.
Combin. Theory Ser. B, 62:180-181, 1994.

[36] M. Thorup. Map graphs in polynomial time.
Unpublished manuscript, Dept. Comput. Sci., Univ.
Copenhagen, Denmark, 1998.

[37] J. S. Turner. Almost all k-colorable graphs are easy to
color. J. Algorithms, 9:63-82, 1988.

[38] W. Wessel. A short solution of Heawood's empire
problem in the plane. Discrete Math., 191:241-245,
1998.

173

