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A B S T R A C T  
We propose a new model for cartographic map coloring for 
use in Geographical Information Systems. Map coloring too-. 
t ivated the famous four-color problem in Mathematics.  The 
published proofs of the four-color theorem yield impractical  
polynomial-t ime algorithms. Actual  political maps often re- 
quire generalizations to the s tandard four-coloring problem 
given the topology of some regions. We allow each region 
to have m disjoint pieces, which is Heawood's ra-pire prob- 
lem. We also count node adjacency between regions, i.e., 
two regions are adjacent if they share a common point. The 
adjacency graphs using node adjacency are known as map 
graphs. By combining m-pires with node and island ad- 
jacency, we formulate a new model to handle actual GIS 
instances. We implemented Br61az's Dsatur heuristic, since 
no specific algorithm exists for coloring our resulting carto- 
graphic graphs. The choice works well in practice and we 
discuss the details of the implementation in TransCAD ®. 

Keywords 
Coloring, Cartographic maps, Dsatur heuristic, GIS, Hea- 
wood's m-pire problem, Map Graphs 

1. INTRODUCTION 
In 1852, Francis Guthrie observed that  four colors always 

sufficed for any cartographic map that  he a t t empted  to color 
in such a way that  no two adjacent regions had the same 
color; he wondered whether this was always true [3, 32]. 
This simple conjecture remained open for many years and 
would become an important  motivator to the field of Math- 
ematics. It led to the concept of an abstract  graph and the 
equivalent and more modern form of the problem: whether 
a planar graph can always be four-colored. Finally in 1976, 
the problem was solved in the affirmative using a long, but  

*An earlier version of this material  appeared in Dr. Frei- 
mer 's  Ph.D Dissertation[12]. 
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unsatisfying proof tha t  included many pages of computer 
generated case analysis [2]. 

In the Mathematical  l i terature, map coloring refers to as- 
signing colors to simple connected planar regions based on 
edge adjacency; w.l.o.g., we can assume that  the regions are 
polygonal [13]. This simplistic definition does not accurately 
reflect what  cartographers face in practice because political 
countries may have multiple disconnected pieces; also node 
adjacency and islands should be considered for reasons of 
clarity. 

In this paper,  we return to Guthrie 's  original motivation 
and consider the problem of coloring cartographic maps, 
only in the modern setting of Geographical Information Sys- 
tems. We review the current knowledge and consider two ex- 
tensions which more closely reflect actual cartographic prac- 
tice: regions with multiple disconnected pieces and more 
general definitions of adjacency. We use this more accurate 
model to create an actual implementation for use as part  
of a commercial GIS. We note that  some instances require 
more than four colors with this model. 

Surprisingly before our work, map coloring was not a fea- 
ture included in any commercially available GIS software 1. 
Most packages include chloropleth mapping, which colors 
regions using a thematic  classification, but  none had the 
capabil i ty of coloring by adjacency. 

Numerous non-cartographic applications have provided 
the practical motivation for coloring algorithms. These in- 
clude school t imetables and other scheduling problems [24], 
various compiler optimizations [IJ, circuit layout and testing 
[34], and electronic bandwidth allocation [6l. 

The l i terature on planar and general graph theory is ex- 
tensive. The book by Jensen and Toft[22] provides a very 
complete description of the current knowledge on graph col- 
oring, including references to the original papers. 

We begin in Section 2 with some basic definitions. We also 
formalize the relationship between map and graph coloring, 
so tha t  results can be s ta ted in either form as appropriate.  

In Section 3, we consider the original planar maps and 
state the four-color theorem. Next in Sections 4 and 5, 
we discuss two previously known extensions: coloring maps 
with at  most m pieces per region, bet ter  known as Hea- 
wood's m-pire problem [16], and coloring simple regions us- 
ing a node adjacency rule. 

By combining these two generalizations along with is- 
lands, we can formulate a sufficiently general model to han- 

1At least one th i rd-par ty  coloring extension exists for 
ArcInfo ®. Manifold ® has also released a coloring extension. 
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Figure 1: Correspondence  between a map and its 
(edge) adjacency graph. 

dle real GIS instances. In Section 6, we consider this im- 
portant new model, whose adjacency graphs we call carto- 
graphic graphs. We discuss our implementation of Br~laz's 
Dsatur algorithm [5], which is a heuristic that works ex- 
tremely well in practice on cartographic maps, producing 
colorings with a small number of colors. 

We conclude with a couple of extensions in Section 7. 

2. DEFINITIONS 
We begin by formally defining map coloring. A map is a 

polygonal subdivision A4 of R 2, with n > 1 regions (coun- 
tries) with exactly one unbounded region. For r E N, a 
r-coloring of the map A4 is one that  assigns a color c E 
{1, 2 , . . .  , r} to each region, using at most r different colors, 
so that  any two adjacent regions are colored using distinct 
colors. The minimum r for which f14 can be colored is called 
the chromatic number X(fl4). A more through topological 
treatment of maps is available in [13], which shows for the 
context of coloring why it is sufficient to consider only polyg- 
onal subdivisions instead of a more general definition using 
simple closed Jordan curves. 

Map coloring is closely related to the more general prob- 
lem of graph coloring, which is concerned with coloring each 
vertex of a graph so that  no two adjacent vertices, i.e. ones 
that  share an edge, have the same color. More formally, let 
G = (V,E) be a graph of n = IV[ vertices and m = IEI 
edges. A coloring is a function p : V --+ {1, 2 , . . .  , r} so that  
p(Vl) ¢ p(V2) for every e = (vl,v2) E E. The minimum r 
for which G has a coloring is denoted x(G), the chromatic 
number of G. 

The map coloring problem can easily be transformed into 
a graph coloring problem by building the adjacency graph 
G for a map A4. Let V = {regions of A4} and add an edge 
e = (7~1, T~2) for each pair of adjacent regions ~1 and 7~2. 
Any coloring of G corresponds to a coloring of A4. Hence, 
map coloring is just  graph coloring on a restricted subclass of 
graphs (see Figure 1). We will often use the equivalent graph 
form of the problem in this paper, following the practice of 
most of the coloring literature. See [13] for a much more 
rigorous presentation of this correspondence. 

We assume in this paper that G does not contain any 
loops, i.e. edges of the form e = (v,v). Let A(G) be the 
maximum degree of any vertex v E V. 

We make use of special notation for a classes of graphs 

named after Kuratowski. K~,,~ is the complete bipartite 
graph on n and m vertices. 

Two regions axe said to be edge adjacent if they share 
a common linear boundary (map edge) of A4. This is the 
common definition, when the map only contains simple poly- 
gons, i.e., one connected component per region. The class 
of such graphs defined by edge adjacency are those called 
planar graphs. If the regions are each allowed to have m 
pieces, then the resulting class are the m-pire graphs. 

Two regions are said to be node adjacent if they share a 
common boundary corner point (map node) of S (e.g., Four- 
corners, AZ, CO, NM and UT in Figure 1). If at most k 
regions meet at any node then the adjacency graph is called 
a k-map graph using the terminology of Chen et al.[7]. The 
3-map graphs are the ordinary planar graphs. Collectively, 
the k-map graphs are called map graphs. 

To match cartography, we sometimes may want to allow 
an "empty" region, which includes the unbounded portion 
of the plane. This uncolored region would correspond to the 
ocean and inland water bodies. Using this model, two re- 
gions are said to be island adjacent if they are visible across 
the water within some threshold distance d. I.e., some point 
pl of region ~z can "see" across the water along a straight 
line to some point p2 of region T~2 and the distance Iplp2[ is 
at most d. This is a superset of the node adjacency version, 
since node adjacent regions can vacuously see each other 
at distance 0. A similar model that  required the water 
to be connected (no lakes) was examined by Jackson and 
Ringel[20]. They found slightly tighter bounds on X(fl4) for 
these island maps, which are m-pires with the requirement 
that  each region has some ocean shoreline. 

In this paper we will consider the coloring problems de- 
fined by using edge, node and island adjacency. Adjacency 
graphs which result from the combination of island adja- 
cency with m-pires will be called cartographic graphs. 

3. PLANAR GRAPHS 
In this section, we consider the classical problem of color- 

ing maps using edge adjacency where each region must be 
connected. Planar graphs are the equivalent graph version 
of this problem, which have been extensively studied [28]. 

After more than a century, planar graphs were finally 
shown to be four-colorable in 1976 by Appel et al.[2], us- 
ing a computer generated case analysis to reduce a graph 
to one of 1900+ unavoidable configurations. This has been 
greatly simplified by a new proof by Robertson et al.[31], 
which still has 633 cases. Summarizing their result: 

THEOREM 1. ([2]) Given a map S, where each region in 
the subdivision is connected, then the map using edge adja- 
cency can be four-colored. 

We now discuss algorithms to color planar graphs using 
between two and five colors. Two is possible only when the 
graph is bipartite, which can be easily checked in linear time. 
No polynomial-time algorithm is likely to exist for three- 
coloring, since Stockmeyer showed that  deciding whether 
a planar graph can be three-colored is NP-Complete, even 
when A(G) = 4 [15]. 

Each of the two proofs of Theorem 1 can be transformed 
to provide a theoretical algorithm for four-coloring planar 
graphs. Unfortunately, neither seems to be practical with re- 
gards to implementation. The algorithm derived from Appel 
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Figure 2: H e a w o o d ' s  2 -p i r e  w h i c h  r e q u i r e s  12 colors .  

et al. 's proof has O(n 4) t ime complexity with astronomical 
coefficients [30]. The somewhat simpler coloring algorithm 
from Robertson et al.[30] still has O(n 2) t ime complexity 
and as far as we are aware has not been implemented. 

Efficient and practical algorithms for five-coloring have 
been known for many years [28]. The most recent is due to 
Thomassen[35], whose proof tha t  every planar graph is five- 
choosable, yields an extremely simple linear-time algorithm. 
Our implementation of this five-coloring algorithm works 
well in practice [12]; we have successfully colored all 1,081, 
257 atomic polygons of Texas from 1998 TIGER/Line  ® . 

Unfortunately, many geographic layers encountered are 
not planar and hence cannot be colored by Thomassen's al- 
gorithm. E.g., the edge adjacency graph of world countries 
has been non-planar since the demise of the Soviet Union; 
Azerbaijan is a 2-pire, which along with Georgia, Iran, Ar- 
menia, Russia and Turkey define a K3,3-minor. However, it 
is still possible to four-color this graph. 

A variety of other implementations and heuristics exist for 
coloring planar graphs [19, 27]. The LEDA[25] l ibrary also 
includes a FIVE_COLOR function for planar graphs. The 
only implementation by a cartographer that  we found is an 
impractical  exponential-t ime map coloring heuristic [11]. 

4. M-PIRES 
In practice, cartographic regions may have multiple dis- 

connected pieces. Coloring such regions is known as Hea- 
wood's Empire problem after the English mathematician,  
since in the late 1800's countries often had many colonies 
(e.g., the British Empire) and because of the convenient pun. 
Heawood[16] proved the upper bound on the number of col- 
ors required for an m-pire and gave a lower bound example 
for m = 2 (see Figure 2). The case m = 1 is Theorem 1. 
The lower bound examples for m = 3, 4 were discovered by 
Taylor[14]. Almost 100 years after the problem was first 
posed, the complete lower bound was proved by Jackson 
and Ringel[21] and later shortened by Wessel[38]. The tight 
bound is s tated as follows: 

THEOREM 2. ([16, 21]) Given a map S,  where each re- 
gion in the subdivision has at most m >_ 1 disjoint con- 

neeted components, then the map using edge adjacency can 

be colored with [½(6m + 1 + X/(6m + 1)2 - 48)] colors and 

for each m this bound is tight for some maps. 

From Heawood's proof, we have derived and implemented 
a l inear-time algorithm that  colors an m-pire with 6m or 
fewer colors using edge adjacency [12]. The algorithm turns 
out not to be useful for real maps, since 6m is almost al- 
ways much larger than X(A4). E.g., the West Aleutians are 
comprised of 28 islands, so the algorithm uses 168 colors for 
the U.S. counties, which is absurd since five is sufficient. 

When the number of pieces per region is unbounded, n 
colors may be required for an m-pire, since it is possible to 
simulate a general graph by using two pieces for each edge, 
one for each endpoint.  Hence, finding the minimum coloring 
is NP-Complete by a reduction from general graph coloring. 

5. M A P  GRAPHS 
Cartographers often need to consider node adjacency for 

reasons of clarity given the complexity of many political re- 
gions. In this section, we will again consider maps with a 
single polygon per region, but  this t ime use the node adja- 
cency definition for coloring. The adjacency graphs arising 
from such maps (map graphs) can be divided into classes 
based upon k, the maximum number of regions which meet 
at a single node. Obviously, k-map graphs always require 
at least k colors. We will demonstrate  in this section that  
some k-map graphs can require [~k] colors and conjecture 
tha t  this is also sufficient. 

The node adjacency generalization was first considered by 
Ore and Plummer[22]. Restating their result: 

THEOREM 3. For k > 3, given a k-map graph G such that 
no region is completely surrounded by another, x(G) <_ 2k. 

This was strengthened slightly to x(G) ~ 2k - 3 for k >_ 8 
by Borodin[22]. He also conjectured that :  

CONJECTURE 1. For k >_ 3, any k-map graph can be col- 
ored using 3 [~kJ colors. 

We independently developed this conjecture while investi- 
gating this problem, as did [7]. Their motivation to extend 
the definition of planari ty was a restricted version of the 
topological inference problem. They have an extremely com- 
plicated method for deciding in polynomial t ime whether a 
graph is 4-map and conjectured that  this was also possible 
for any k >_ 4. The affirmative answer was provided by 
Thorup[36]. Collectively, they gave a useful description of 
the region configurations from which the maximum cliques 
arise, including flowers and hamantaschen using Thorup's  
terminology (see Figure 3). I t  is easy to see for the haman- 
tasch tha t  [~kJ colors may be iequired for a k-map graph, 
matching the conjectured upper bound. 

For k = 3, Conjecture 1 is the Theorem 1. For k = 4, 
every 4-map graph can be shown to be 1-planar, i.e., they 
can be embedded in the plane so that  each edge is crossed 
by at  most one other edge, which can be six-colored [36]. 
The conjecture remains open for k _> 5. 

Finding a minimum coloring for map graphs remains NP- 
Complete,  since they are a generalization of planar graphs. 

An interesting, but  very restricted version of node adja- 
cency coloring arises when coloring quadtrees using corner 
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(a) (b) 

F i g u r e  3: T w o  t y p e s  o f  m a x i m u m  cl iques:  
f lower  and (b) a h a m a n t a s c h .  

(a)  a 

adjacency. A quadtree is defined by star t ing with an ini- 
tial square and recursively split t ing some of the squares into 
four smaller squares. Clearly quadtrees are a special case 
of planar maps. A quadtree is balanced, if for any inside 
edge, the ratio of the lengths of the squares adjacent to 
the edge is within a factor of two. Bern et al.[4] showed 
for edge adjacency tha t  x(G) = 3 for balanced quadtrees 
and x(G) = 4 otherwise. For node adjacency, they showed 
tha t  5 < x(G) _< 6 and gave a linear-time algorithm for 
six-coloring quadtrees. 

6. CARTOGRAPHIC MAPS 
In the preceding sections, we examined various general- 

izations to planar graphs. We will now consider the com- 
bination of island adjacency with m-pires. The resulting 
cartographic graphs are an a t tempt  to model how actual  
maps are colored. Frequently, countries have multiple com- 
ponents and node adjacency needs to be considered for clar- 
ity. Nearby islands also need to be colored differently, so tha t  
different nations can be distinguished as in the Caribbean. 

This new coloring problem remains NP-Complete,  since 
cartographic graphs are a generalization of planar  graphs. 

An upper bound on x(G) for cartographic graphs is A(G)  
+1, using Brooks Theorem for general graphs [22]. 

In this section, we review some of the methods from the 
l i terature for coloring general graph and explain our choice 
of Br~laz's Dsatur algorithm [5]. We provide the details of 
our implementat ion and discuss how it works well in practice 
with the class of adjacency graphs arising from actual GIS 
datasets. 

6.1 Coloring Algorithms 
Exact algorithms for coloring general graphs are imprac- 

ticable given the NP-Completeness results. This has not 
prevented some a t t empts  using various methods to speed 
them up [27], but  they are usually prohibitively slow except 
on small examples (say a few hundred vertices) due to the 
exponential- t ime complexity. Approximation algorithms are 
primari ly of theoretical interest, since the bounds tha t  they 
guarantee are far from optimal.  Even finding an approxi- 
mation within a factor of 2 is also NP-Complete [15]. In 
fact, graph coloring serves as one of the canonical problems 
in Class IV of inapproximabil i ty problems [18]. 

Heuristics have provided the most frequent solution for 
practical graph coloring problems, since they typically find 
small colorings in a reasonable amount of t ime (polynomial).  

However, in order to achieve this performance, they need to 
be tuned for the part icular  class of input  graphs. No heuris- 
tic is known that  works well across the complete spectrum 
of general graphs. 

Heuristics can be broken down into two general classes: 
sequential (successive augmentation) and iterative improve- 
ment. See [27] for a complete discussion. 

Sequential heuristics color the vertices of G, one at a time, 
using some order a. Color choices, once made, are usually 
considered to be unchangeable. If only information avail- 
able before any vertices have been colored is used to deter- 
mine a,  then the method is called static. Commonly used 
stat ic orderings include random, largest-first (degree) and 
smallest-last.  A dynamic method makes use of the previ- 
ously assigned colors in determining a. A good comparison 
of sequential algorithms is provided by [29]. 

The most frequently used dynamic sequential heuristic is 
Br~laz's Dsatur algorithm [5] (a.k.a., the saturat ion algo- 
ri thm): select the vertex with the greatest saturat ion (num- 
ber of colors already used by neighbors), breaking ties using 
the largest degree vertex. This method typically works well 
in practice for sparse graphs. Turner[37] further supports  
this claim with a probabil ist ic analysis showing Dsatur's av- 
erage performance rat io is good for almost all sparse graphs. 
However, the worst-case behavior of Dsatur is poor: O(n) 
[33]; they give three-colorable examples with O(n) vertices, 
for which Dsatur uses n colors. Dsatur is often considered 
to be the best sequential method.  

Various strategies have been employed to improve upon 
stat ic colorings. Iterated improvement heuristics use a se- 
quence of i terations tha t  s tar t  with an initial coloring and 
search for bet ter  solutions. A variety of general optimiza- 
tion strategies have been used, including hybrid genetic algo- 
r i thms [10], simulated annealing [23], and Tabu search [17]. 
While success has been repor ted with the general methods,  
specific coloring strategies such as i terated greedy [9] and 
distr ibuted coloration neighborhood search [26] usually will 
do even better.  Unfortunately, in either case the resulting 
heuristics usually perform well on only a small class of prob- 
lems. We omit any further discussion of i terated heuristics, 
since they are complex and we do not feel that  they are 
appropriate  for our GIS problem. 

Very little code for heuristics for general graph coloring is 
publicly available. Culberson[8] has provided a useful suite 
of programs for exploring different methods for graph color- 
ing. Thanks to these, we decided to implement the Dsatur 
algorithm. An implementat ion of Dsatur is also provided 
with Mathematica  ® for graph coloring. 

6.2 Implementation 
We implemented the Dsatur heuristic in C to add car- 

tographic coloring functionality to TransCAD ®, which is 
a high-end GIS with many extensions for t ransportat ion,  
planning and logistics. A large amount  of geographic da ta  
is included with the software, which provides many huge real 
examples for our experiments.  

As is frequently the case for geometric algorithms, a fair 
portion of the implementat ion effort is spent on support  rou- 
tines and da ta  structures,  which are omit ted from most the- 
oretical descriptions. For our coloring implementations,  this 
involved approximately half the time. For instance, we had 
to process the native geographic area layers to efficiently 
compute the different types of adjacency. TransCAD®'s 
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geographic database structures are optimized for drawing, 
storage and quick spatial queries. They are not designed 
to provide cheap and simple navigation around the plane 
graph bounding the faces of an area layer. So we devel- 
oped functions to efficiently process an area layer and create 
a sparse memory-based structure to contain the adjacency 
graph. The structure, which contains the upper triangu- 
lar portion of the symmetric adjacency matrix, is stored in 
an array. The first n cells contain records for the n re- 
gions. Each record includes the index to the first cell in its 
adjacency list. The lower half of the adjacency matrix is 
populated before one of our coloring algorithms is used. 

Edge adjacency is computed by simply looping over all the 
map edges once, adding an entry to the adjacency matrix 
for the pair of regions which border an edge if it does not 
already exist. 

For node adjacency, a temporary point database is cre- 
ated to efficiently locate map nodes. The edge adjacency 
processing step within the loop is expanded to process each 
endpoint of the edge. The presence of each node is tested 
against the point database and is added if missing. An in- 
memory list for each node is maintained to keep track of 
its incident regions. At the conclusion of the edge loop, the 
list of nodes is processed to update the adjacency matrix for 
every pair of regions incident to the node. 

Island adjacency is computed by augmenting the point 
database used for node adjacency with extra shape points 
from edges which border water, region 0. Every 25 th inter- 
nal shape point of each water edge is added; this sampling 
rate is employed to simplify the final processing step which 
occurs after the node adjacency has been computed. Each 
water node is processed in turn, looking at all the other wa- 
ter nodes within distance d. For any which are incident to 
different regions, the adjacency matrix is updated. Notice 
that the cartographic detail, i.e. number of shape points, of 
the layer has an important  impact on the running time for 
computing island adjacency. 

Once the desired adjacency has been computed, D S A T -  
U R  is called. This assigns a region a color by updating the 
value of a specified database field. The area layer is then 
redrawn using a manual, list of values, chloropleth map on 
the color field. 

We now formally state Br~laz's Dsatur algorithm [5]: 

D S A T U R ( G ) :  
1. Choose an uncolored vertex v with maximum saturation 

degree (the number of distinct colors already used by ad- 
jacent vertices), breaking ties using the largest vertex de- 
gree. For the initial iteration, this selects the vertex with 
the largest degree. 

2. Color v with the lowest available color c. 
3. Increment the saturation degree for each neighbor w of v 

for which this is the first use of c in w's neighborhood. 
4. Stop if all vertices are colored, otherwise repeat Step 1. 

A priority queue based on an AVL tree is used to keep 
track of the saturation and vertex degrees of the uncolored 
vertices. A bit-vector of size degree(v) + 1 is maintained 
for each vertex v to keep track of the colors already used. 
This leads to an O(m log n) implementation, where m = IEI, 
since each saturation update for neighbors is handled by a 
deletion from and an addition to the priority queue and there 
can be O(m) updates. 

The strategy behind the Dsatur algorithm is that the 

most constrained vertex at each stage should be colored next 
to prevent running out of colors later. Ties are broken us- 
ing the largest-first rule, since vertices with larger degree 
are often more difficult to color. This combination works 
well in practice on sparse graphs as can be seen from the 
experimental results presented in the next subsection. 

Br@laz's original algorithm had O(n 2) time complexity 
due to the initialization of bit-vectors. We employed Mor- 
genstern's observation [27] that each bit-vector need only 
be of length degree(v) + 1 to eliminate that  issue. Further 
information can be found in Morgenstern's dissertation, in- 
cluding a O(m) time PASCAL implementation based on lazy 
arrays, which didn' t  seem practical for our GIS application. 
Morgenstern did not provide any experimental results for 
his Dsatur implementation. 

6.3 Performance 
We ran our algorithm on a wide spectrum of instances, 

ranging from nationwide U.S. Census Block Groups to World 
Countries (see Figure 4 for U.S. Counties). The U.S. ge- 
ography was derived from 1998 TIGER/Line  ® . The World 
Countries were derived from the Digital Chart of the World. 

For each layer, we report in Table 1 the following statis- 
tics to better understand the complexity of the instance: the 
number of colors used for edge, node and island adjacency, 
the number of geographic regions in the layer, the number of 
geographic polygons in the layer, the maximum number of 
polygons comprising any single geographic region, the num- 
ber of geographic boundary edges in the layer, the number 
of shape points in the layer, and the maximum and average 
node degrees. 

We also report in Table 1 for each layer and type of adja- 
cency, the running times in seconds for computing the adja- 
cency graph and for coloring the adjacency graph. We ran 
our trials under Microsoft Windows ® NT 4.0 with a 450MHz 
Pentium ® II processor. Only the edge adjacency rule was 
used for the larger instances due to the long running times. 
Notice that the adjacency computations completely domi- 
nates the time required for determining the coloring, which 
is roughly linear to the number of adjacency graph edges. 

For smaller instances, say less than 2,000 regions, the 
speed of the implementation is sufficiently good to be used 
in real-time while a user interacts with the software. For 
larger instances, it really should be run offiine, saving the 
result in a field for later use. This works well in practice, 
since colorings do not need to be recomputed unless an area 
layer is changed. 

Observe that the colorings produced (see Figure 4) are 
not close to being evenly balanced; the smaller colors ap- 
pear with much greater frequency due Step 2 of D S A T U R .  
Unfortunately changing this rule to randomly select a color 
often causes more colors to be used. 

7. EXTENSIONS 
We conclude this paper with a couple of extensions to 

cartographic map coloring. 
Cartographers like to use colors evenly throughout a map 

for esthetic reasons. A couple of metrics that can be used for 
balancing the colors are the number of countries with each 
color [11] and the total area colored by each color. None of 
the algorithms discussed in this paper at tempt to satisfy this 
requirement. A theorem of Hajnal and Szemer@di[22] shows 
for general graphs that  balancing is possible when using the 
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F i g u r e  4:  A D s a t u r  f i v e - c o l o r i n g  o f  U . S .  c o u n t i e s  u s i n g  t h e  i s l a n d  a d j a c e n c y  r u l e .  

T a b l e  1: C o m b i n a t o r i a l  s t a t i s t i c s  a n d  D s a t u r  r u n n i n g  t i m e s  ( s e c o n d s )  f o r  v a r i o u s  s u m m a r y  l e v e l s  o f  g e o g r a p h y .  

Adj. Dsatur 
Area Layer Rule Colors Regions 
World Edge 4 260 
Countries Node 4 

Island 5 
U.S. States Edge 4 57 

Node 4 
Island 4 

U.S. Counties Edge 5 3,233 
Node 5 
Island 5 

U.S. County Edge 5 36,244 
Subdivisions Node 6 

Island 6 
U.S. Census Edge 5 62,829 
Tracts Node 6 
U.S. Census Edge 5 230,446 
Block Groups 

# Max. # Bndry. # Shape 
Polygons Polygons Edges Points 

27,007 5,225 27,646 1,508,574 

314 49 435 302,621 

3,575 28 10,613 1,779,943 

43,794 89 110,651 5,829,124 

64,390 18 2,580,416 9,505,979 

232,771 19 5,320,913 18,603,919 

Max. Avg. Adj. Dsatur 
Degree Degree Time Time 

14 2.40 36.24 0.12 
14 2.40 63.32 0.06 
16 2.90 1,035.96 0.05 

8 3.79 7.54 0.03 
8 3.86 8.43 0.03 
8 4.25 52.86 0.03 

13 5.60 51.32 0.58 
14 5.83 60.56 0.59 
14 5.95 125.82 0.59 
35 5.19 191.77 6.32 
35 6.19 290.37 7.19 
35 6.24 592.76 7.17 

108 5.48 550.74 22.27 
108 6.20 3,450.94 12.62 

89 5.49 1,198.42 43.61 
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worst-case number of colors. Does an algorithm for carto- 
graphic graphs exist which guarantees a balanced coloring 
with a small number of colors for cartographic graphs? 

Are there better definitions of island adjacency? For in- 
stance, consider the Voronoi diagram of the islands. Two 
regions might be adjacent if they share a Voronoi edge. 
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