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This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the

past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning

methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis

of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail

meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in

NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future

emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and

other artificial intelligence areas, such as computer vision, text and computational creativity.
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1 INTRODUCTION

This paper surveys the current state of the art in Natural Language Generation (NLG), defined

as the task of generating text from underlying non-linguistic representation of information [102].

NLG has been receiving more and more attention from researchers because of its extremely chal-

lenging and promising application prospects.
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1.1 What is Natural Language Generation?

Natural Language Generation (NLG) is the process of producing a natural language text in order to

meet specified communicative goals. The texts that are generated may range from a single phrase

given in answer to a question, through multi-sentence remarks and questions within a dialog, to

full-page explanations.

In contrastwith the organization of theNatural LanguageUnderstanding (NLU) process –which

can follow the traditional stages of a linguistic analysis: morphology, syntax, semantics, pragmat-

ics/discourse – the generation process has a fundamentally different character. Generation pro-

ceeds involve the content planning, determination and realization from content to form, from

intentions and perspectives to linearly arrayed words and syntactic markers. Coupled with its ap-

plication, the situation, and the discourse, they provide the basis for making choices among the

alternative wordings and constructions that the language provides, which is the primary effort

in constructing a text deliberately [78]. With its opposite flow of information, one might assume

that a generation process could be organized like an understanding process but with the stages in

opposite order.

Both data-to-text generation and text-to-text generation are instances of NLG. Generating text

from image is an application of data-to-text generation. A further text-to-text generation com-

plication is dividing NLG tasks into three categories, i.e., text abbreviation, text expansion, text

rewriting and reasoning. The text abbreviation task is formulated to condense information from

long texts to short ones, typically including research on text summarization [8, 9, 20, 24, 53, 96, 116],

question generation [5, 26, 44, 46, 66, 112, 122, 133, 134, 153, 158], and distractor generation [30, 61,

76, 89, 98, 103, 117, 118]. The text expansion tasks, such as short text expansion [6, 106, 113, 124] and

topic-to-essay generation [27, 97, 135, 146, 152], generate complete sentences or even texts from

some meaningful words by considering and adding elements like conjunctions and prepositions to

transform the input words into linguistically correct outputs. The goal of text rewriting and reason-

ing task is to rewrite the text into another style or applying reasoning methods to create responses.

There are two sub-tasks: text style transfer [13, 28, 43, 63, 72, 80, 85, 95, 143, 157], and dialogue

generation [4, 45, 57, 60, 74, 136, 145, 159]. The task of visual based text generation targets at gen-

erate the explanation or summarization of the given image or video, involving the study of image

caption [1, 71, 104, 129, 148, 149], video caption [22, 49, 52, 88, 114, 121, 128, 131, 140, 142, 160, 161],

and visual storytelling [40, 55, 147].

1.2 Why a Survey on Natural Language Generation?

Here, we will explain the reasons and motivations why the natural language generation is worth

reviewing and investigating.

Reiter et al. [102] provided the most classical survey of NLG. However, the field of NLG has

changed drastically in the last 20 years, with the emergence of successful deep learning meth-

ods. For example, since 2014, various neural encoder-decoder models pioneered by sequence-to-

sequence (Seq2Seq) have been proposed to achieve the goal by learning to map input text to output

text. In addition, the evaluation of NLG output should start to receive systematic attention.

Since Reiter et al. [102] published their book, various other NLG overview texts have also ap-

peared. Gatter et al. [31] introduce the core tasks, applications and evaluation metrics of natural

language generation. While useful, this survey is not highly timely and does not include the state-

of-the-art research on the novel deep learning models such as graph neural networks. Perera et al.

[92] cover some tasks or architectures of NLG. Santhanam et al. [108] review the NLG research

progress of dialogue systems. Mogandala et al. [82] study the integration of vision and language

in multimodal NLG, such as image dialogue and video storytelling. Otter et al. [86] concludes the
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progress of deep learning for NLP, display some classic text generation methods but barely dis-

cuss the research progress of NLG. Yu et al. [151] offers a survey of the knowledge-enhanced text

generation methods.

The goal of the our survey is to present a highly timely overview of NLG developments from the

aspect of data-to-text generation and text-to-text generation. Though NLG has been a part of AI

and Natural language processing for long time, it has only recently begun to take full advantage

of recent advances in data-driven, machine learning and deep learning approaches. Therefore this

survey will focus on introducing the latest development and future directions of deep learning

methods in field of NLG. This survey can have broad audiences, researchers and practitioners, in

academia and industry.

1.3 Contribution of this Survey

In this paper, we provide a thorough review of different natural language generation tasks as well

as its corresponding datasets and methods. To summarize, this paper presents an extensive survey

of natural language generations with the following contributions:

(1) To give an up-to-date synthesis of deep learning research on the core tasks in NLG, as well

as the architectures adopted in the field;

(2) To detail meticulously and comprehensively various NLG tasks and datasets, and draw at-

tention to the challenges in NLG evaluation, focusing on different evaluation methods and

their relationships.

(3) To highlight some future emphasis and relatively recent research issues that arise due to the

increasing synergy between NLG and other artificial intelligence areas, such as computer

vision, text and computational creativity.

The rest of this survey is organized as follows. In Sec.2, we introduce the general methods of

NLG to give a comprehensive understanding. From Sec.3 to Sec.6, we will give a comprehensive in-

troduction to the four main areas of NLG from the perspectives of task, data, and methods. In Sec.7,

we present the important evaluation metrics used in various aforementioned NLG tasks. Besides,

we propose some problems and challenges of NLG as well as several future research directions in

Sec.8. And finally we conclude our survey in Sec.9.

2 GENERAL METHODS OF NLG

In general, the task of natural language generation (NLG) targets at finding an optimal sequence

~
<)+1 = (~1, ~2, ..., ~) ) that satisfies:

~
<)+1 = argmax

~<) +1∈Y
log %\ (~<) +1 |G) = argmax

~<) +1∈Y

)∑

C=1

log %\ (~C |~<C , G), (1)

where) represents the number of tokens of the generated sequence,Y represents a set containing

all possible sequences, and %\ (~C |~<C , G) is the conditional probability of the next token ~C based

on its previous tokens ~<C = (~1,~2, ..., ~C−1) and the source sequence G with model parameters \ .

The general methods to deal with the tasks of NLG mainly contain: Recurrent Neural Network,

Transformer, Attention Mechanism, Copy and Pointing Mechanisms, Generative Adversarial Net-

work, Memory Network, Graph Neural Network, and Pre-trained Model.

2.1 Recurrent Neural Network

As proposed by [123], the encoder of the sequence-to-sequence (Seq2Seq) framework is an Recur-

rent Neural Network (RNN), it will traverse every token (word) of the input, the input of each

time is the hidden state and input of the previous time, and then there will be an output and a
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new hidden state. The new hidden state will be used as the input hidden state of the next time.

We usually only keep the hidden state of the last time, which encodes the semantics of the whole

sentence. After the encoder processing, the last hidden state will be regarded as the initial hidden

state of the decoder. The Decoder is also an RNN, which outputs one word at a time. The input of

each time is the hidden state of the previous time and the output of the previous time. The initial

hidden state is the last hidden state of the encoder, and the input is special. Then, RNN is used

to calculate the new hidden state and output the first word, and then the new hidden state and

the first word are used to calculate the second word. Until EOS is encountered and the output is

finished. A standard RNN computes a sequence of outputs (~1, ..., ~) ) given a sequence of inputs

(G1, ..., G) ) by iterating the following equation:

~C =,
yh · ℎC =, yh · f (, hxGC +, hhℎC−1), (2)

where f is activation function,, hx,, hh,, yh are learnable parameters, and ℎC is the hidden

state at C-th timestep.

2.2 Transformer

Transformer [126] is based on the encoder-decoder framework, and both encoder and decoder are

composed of stacked identified layers. The encoder is used to map an input sequence of symbol

representations to another sequence of continuous representations, and then the decoder auto-

regressively generates an output sequence based on its previously generated symbols and the con-

tinuous representations from encoder. In the encoder, each layer contains two sub-layers, which

are multi-head self-attention mechanism (MultiHeadAttn) and position-wise fully connected feed-

forward network (FFN) respectively. The multi-head self-attention can be formulated by:

MultiHeadAttn(&, ,+ ) = Concat(head1, ..., headℎ),$ , (3)

head8 = Attention(&,&
8 ,  ,

 
8 ,+,

+
8 ), (4)

Attention(&, ,+ ) = softmax(& 
⊤

√
3:
)+ , (5)

where&, ,+ are the query, key, and value matrices, 3: is the dimension of queries and keys. And

the feed-forward network can be formulated by:

FFN(G) = max(0, G,1 + 11),2 + 12. (6)

Each of the stacked layer is surrounded by a residual connection followed by layer normalization.

While in the decoder, each layer contains three sub-layers with an additional multi-head attention

over the encoder’s output. The self-attention in decoder is masked to prevent attending to subse-

quent tokens. In addition, to inject the position information, the position encodings are added to

the input embeddings as formulated by:

%�?>B,28 = B8=(?>B/1000028/3<>34;), %�?>B,28+1 = 2>B (?>B/1000028/3<>34;), (7)

where ?>B is the position and 8 is the dimension.

The most commonly used loss function is the conditional language modeling loss, which can be

formulated as:

! =

)∑

C=1

log %\ (~C |~<C , G), (8)

where log %\ (~C |~<C , G) is the log-likelihood of the C-th generated token conditioned on the previ-

ously generated sequence ~<C and the source sequence G .
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2.3 A�ention Mechanism

Attention mechanism [15] is used to perform amapping from a query to a series of key value pairs.

There are three steps in the calculation of attention. The first step is to calculate the similarity

between query and each key to get the weight. The common similarity functions are dot product,

splicing, perceptron, etc.; the second step is to normalize these weights by using a softmax function;

the last step is to sum the weight and the corresponding key value to get the final attention. The

tokens in an article are first fed into the encoder to generate a sequence of encoder hidden states

ℎ8 , then the decoder receives the word embedding of previous step and derive the decoder state BC
at each step C . After that, the attentive context vector ℎ∗C can be obtained based on the attention

distribution 0C as:

ℎ∗C =
∑

8

0C8ℎ8, where 0
C
8 = softmax(4C8 ), 4C8 = E⊤tanh(,ℎℎ8 +,BBC + 10CC=), (9)

in which E,,ℎ,,B, 10CC= are learnable parameters. Finally, the predicted vocabulary distribution

%E>201 is obtained by:

%E>201 = softmax(+ ′(+ [BC , ℎ∗C ] + 1) + 1 ′), (10)

where + ,+ ′, 1, 1 ′ are learnable parameters.

2.4 Copy and Pointing Mechanisms

The copy and pointing mechanisms proposed by PGN [110] is widely used in abstractive sum-

marization, which is designed for alleviating the problem of inaccurate reproduced factual details

via a pointer, dealing with out-of-vocabulary words and repetition via a generator and a coverage

mechanism, respectively. In the pointer and generator, a generation probability ?64= based on the

context vector ℎ∗C , decoder state BC and decoder input GC at step C is calculated by:

?64= = f (F⊤ℎ∗ℎ
∗
C +F⊤B BC +F⊤G GC + 1?CA ), (11)

which serves as a soft switch to choose between generating a word based on the vocabulary prob-

ability, or copying a word from the source document based on the attention distribution. The

probability distribution over the extended vocabulary % (F) can be formulated as:

% (F) = ?64=%E>201 (F) + (1 − ?64=)
∑

8 :F8=F

0C8 . (12)

And in the coverage mechanism, a coverage vector 2C at step C is calculated by the sum of attention

distributions over previous decoder timesteps as 2C =
∑C−1
C′=0 0

C′ , which is then added to the attention

mechanism and the primary loss function as:

4C8 = E
⊤tanh(,ℎℎ8 +,BBC +F22C8 + 10CC=), (13)

;>BBC = −log% (F∗C ) + _
∑

8

min(0C8 , 2C8 ), (14)

whereF∗C is the target word at step C .

2.5 Generative Adversarial Network

The generative adversarial network (GAN) [35] is a framework that uses an adversarial training

process to estimate generative models. This framework can be regarded as a minimax two-player

game containing a generative model and a discriminative model, and these twomodels are simulta-

neously trained. The generator (G) captures the data distribution and tries to produce fake samples,

and the discriminator (D) attempts to determine whether the samples come from the model distri-

bution or data distribution. In detail, G is trained to maximize the probability identified by D for
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1:6 Dong and Li, et al.

the sample coming from the data rather than G, while D is trained to maximize the probability

of assigning the correct label to training samples and samples generated by G. The training pro-

cess continues until the counterfeits are indistiguishable from the genuine articles. The training

objective with value function + (�,�) can be formulated as:

min
�

max
�

+ (�,�) = Ex∼?30C0 (x) [log� (x)] + Ez∼?z (z) [log(1 − � (� (z)))] . (15)

2.6 Memory Network

The end-to-endmemory network [120] is based on the recurrent neural network. Before outputting

a symbol, the recurrence reads from a possibly large external memorymultiple times. In this frame-

work, a discrete set of input sentences is written to the memory up to a fixed size, and a continuous

representation for eachmemory sentence and the query (i.e., the question) is calculated and is then

processed through multiple hops to output the answer. Specifically, for the single hop operation,

the matching probability between each query and memory is first computed by the inner product

followed by a softmax in the embedding space. The input set G and the query @ are first embedded

to obtain the memory vectors< and D, respectively, and the match probability ?8 of the 8-th input

sentence is calculated as:

?8 = softmax(D⊤<8 ). (16)

Then the output memory representation > is obtained by a weighted sum over another embedded

memory sentences 2 based on the matching probability as:

> =

∑

8

?828 . (17)

Finally, the final prediction 0̂ can be obtained through a weight matrix and a softmax over the sum

of output memory vector > and input embedding D as:

0̂ = softmax(, (> + D)). (18)

To handle multiple hop operations, the memory layers are repeatedly stacked, and the input of

each layer is the sum of the output memory vector and the input from its previous layer.

2.7 Graph Neural Network

The graph neural network (GNN) [109] is used to process the data in graph form,which can capture

the dependency information between nodes of a graph via message passing. Compared with CNN

and RNN, GNN can propagate on each node respectively and is able to ignore the input orders

of nodes, which is more computational efficient. The representation of each node in a graph is

iteratively updated by aggregating information from its neighboring nodes and edges. So far, many

propagation strategies have been proposed, such as convolution [48], RNN based gate mechanism

[59], and attention mechanism [127]. Meanwhile, many works attempt to improve the training

method, such as sampling-based training [38] and unsupervised training [47]. Take the graph

convolution network [48] as an example, it follows the layer-wise propogation rule as:

� (;+1) = f
(
�̃−

1
2 �̃�̃−

1
2� (; ), (; )

)
, (19)

wheref (·) refers to an activation fuction, �̃ = �+�# is the adjacencymatrix of the graph (including

the identity matrix �# ), �̃88 =
∑
9 �̃8 9 is the degree of node 8 ,,

(; ) is a trainable weight matrix in

the ;-th layer, and � (; ) is the matrix of node feature vectors in the ;-th layer.
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2.8 Pre-trained Model

The pre-trained models can be divided into two categories: non-contextual and contextual. The

non-contextual pre-trained models (e.g., Word2vec [79], GloVe [91]) can learn high quality of word

and phrase representations, and are widely used to initialize the embeddings and improve the

model performance for generation tasks. However, since the non-contextual embeddings are static,

it is unable to handle context-dependent words and out-of-vocabulary words.

To overcome these problems, contextual pre-trained models are proposed, which can dynam-

ically change the word embeddings when the word appears in different sentences. Traditional

contextual models mainly focus on the tasks of natural language understanding (NLU), which are

based on the architectures of LSTM (e.g., ELMo [93]) or Transformer encoder (e.g., BERT [18]).

To tackle the more challenging tasks of natural language generation (NLG), the architecture of

Transformer decoder is widely adopted, and the pre-training objective is further modified to adapt

to the NLG task. For example, GPT [7] uses the standard language modeling as the pre-training

objective. T5 [99] designs a unified text-to-text framework for both NLU and NLG. During pre-

training, each corrupted token span in the input sequence is replaced with a sentinel token, and

the output sequence is composed of the dropped-out spans. MASS [116] predicts the sentence

fragment with input of masked sequence during pre-training. UniLM [23] propose a unified pre-

training framework for both NLU and NLG tasks, which is based on a shared Transformer model

with three different types of self-attention masks to switch among different tasks, including unidi-

rectional, bidirectional, and sequence-to-sequence. BART [53] designs a reconstruction objective

to restore corrupted documents, where five types of transformation strategies are proposed, includ-

ing token masking, token deletion, text infilling, sentence permutation, and document rotation.

PLATO [4] propose a pre-training framework targeting the dialogue generation tasks with two

reciprocal pre-training tasks, i.e., response generation and latent act recognition. The latent dis-

crete variables are also introduced to solve the one-to-many mapping problem. ERNIE-GEN [141]

is a multi-flow Seq2Seq pre-training model, which pays attention to the exposure bias problem of

pre-training models on downstream NLG tasks such as question generation, and aims to make the

NLG models generate more human-like and fluent texts. OFA [132] present a unified multimodal

pre-training framework to unify various vision and language tasks, such as NLU, NLG, and image

classification. Transformer is applied as the backbone architecture, and the sparse coding and a

unified vocabulary are utilized to represent the images and linguistic words.

3 TEXT ABBREVIATION

3.1 Task

The goal of text abbreviation is to distill key information from long texts to short ones, which

consists of three subtopics: text summarization, question generation, and distractor generation.

There are two kinds of methods for text abbreviation: extractive and abstractive methods. Since

the abstractive approach ismore flexible and can createmore human-like sentences than the extrac-

tive approach, it has been paid more and more attentions in recent years and is our main focus in

this paper. Text summarization is the process of generating entirely new phrases and sentences to

capture the meaning of the source document. Question generation concentrates on automatically

generating questions from a given sentence or paragraph. Distractor generation is the automatic

generation of adequate distractors for a given question answer pair generated from a given article

to form an adequate multiple-choice question. We summarize the most representative methods for

each subtask in Table 1.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Table 1. Natrual language generation models for text abbreviation.

Task Model Description

Text Summarization

MASS [116] Transformer

BART [53] Transformer + Multi-task Learning

PEGASUS [154] Transformer + Multi-task Learning

RCT [8] Transformer + RNN + CNN + Long-term Dependency

ProphetNet [96] Transformer + Long-term Dependency

En-Semantic-Model [20] RNN + Long-term Dependency

Post-Editing Factual Error Corrector [9] Transformer + Factual Consistency

SpanFact [24] Transformer + Factual Consistency

Question Generation

Key-Phrase-based Question Generator [26] Keyphrase + Template

Dynamic Mathematical Question Generator [5] Constraint Handling Rules

KB-based Factoid Question Generator [112] RNN

Teacher Forcing and RL Based Question Generator [153] RNN + RL

Paragraph-level Question Generator [158] RNN

Answer-Position-aware Question Generator [122] RNN + Answer-focused

ASs2s [46] RNN + Answer-focused

NQG-MP [134] RNN + Multi-task Learning

Paraphrase Enhanced Question Generator [44] RNN + Multi-task Learning

CGC-QG [66] RNN + Multi-task Learning + GNN

PathQG [133] RNN + Multi-task Learning + KG

UniLM [23] Transformer + Multi-task Learning

ERNIE-GEN [141] Transformer + Multi-task Learning

Distractor Generation

Educational Ontology Distractor Generator [118] Ontology + Embedding

Learning to Rank Based Distractor Generator [61] Embedding + Ranking + GAN + RL

BERT-based Distractor Generation [16] BERT + Multi-task Learning

Hierarchical Dual-attention Distractor Generator [30] RNN

EDGE [98] RNN + Answer Interaction

HMD-Net [76] Transformer + RNN + Answer Interaction

Code Compression Distractor Generator [117] Abstract Syntax Tree

CSG-DS [103] LDA + KB + Ranking

Named Entity Distractor Generator [89] Tree + Clustering

3.2 Data

3.2.1 Text Summarization. There are mainly four datasets in the field of text summarization as

shown below.

CNN/DailyMail. TheCNN/DailyMail dataset [39] is a large scale reading comprehension dataset.

This dataset contains 93k and 220k articles collected from the CNN and Daily Mail websites, re-

spectively, where each article has its matching abstractive summary.

NYT. The New York Times (NYT) dataset [90, 107] contains large amount of articles written

and published by the New York Times between 1987 and 2007. In this dataset, most of the articles

are manually summarized and tagged by a staff of library scientists, and there are over 650,000

article-summary pairs.

XSum. The extreme summarization (XSum) dataset [83] is an extreme summarization dataset

containing BBC articles and corresponding single sentence summaries. In this dataset, 226,711

Wayback archived BBC articles are collected, which range from 2010 to 2017 and cover a wide

variety of domains.

Gigaword. The English Gigaword dataset [36, 105] is a comprehensive collection of English

newswire text data acquired by the Linguistic Data Consortium. This corpus contains four dis-

tinct international sources of English newswire, and has totally 4,111,240 documents.

3.2.2 �estionGeneration. The two popular datasets for the task of question generation are shown

below.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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SQuAD. The StanfordQuestion Answering Dataset (SQuAD) [100] is a large reading comprehen-

sion dataset created by crowdworkers. The questions in this dataset are posed by crowdworkers

based on a set of Wikipedia articles, and the answers are text segments from the corresponding

passages. In total, SQuAD contains 107,785 question-answer pairs on 536 articles.

MS MARCO. The Microsoft Machine Reading Comprehension (MS MARCO) dataset [84] is a

collection of anonymized search queries issued through Bing or Cortana for reading comprehen-

sion. The dataset contains both answerable and unanswerable questions. Each answerable question

has a set of extracted passages from the retrieved response documents of Bing. There are totally

1,010,916 questions and 8,841,823 answering passages extracted from 3,563,535 web documents in

this dataset.

3.2.3 Distractor Generation. There are three datasets widely used for distractor generation as

shown below.

SciQ. SciQ [137] is a crowdsourced multiple choice question answering dataset, which consists

of 13.7k science exam questions. The domain of this dataset covers biology, chemistry, earth sci-

ence, and physics.

MCQL. The MCQL dataset [61] is a collection of multiple choice questions at the Cambridge O

level and college level, which is crawled from theWeb. This dataset totally contains 7.1k questions

covering biology, phisics, and chemistry.

RACE. RACE [51] is a reading comprehension dataset collected from the English exams in Chi-

nese middle and high schools. This dataset contains 27,933 passages and 97,687 questions, covering

all types of human articles.

3.3 Method

3.3.1 Text Summarization. Recently, the most common methods in this field are encoder-decoder

based pre-trained languagemodels. Song et al. [116] design a novel pre-training objective to jointly

pre-train the encoder and decoder, where the decoder learns to predict the masked sentence frag-

ments in the encoder side. Given an unpaired source sentence G from the source domain X, the
model with parameter \ predicts the sentence fragment GD :E from position D to E with the masked

sequence G\D :E as input, and the objective function is formulated as:

!(\ ;X) = 1

|X|
∑

G ∈X
log % (GD :E |G\D :E ; \ ) = 1

|X|
∑

G8=X
log

E∏

C=D

% (GD :EC |GD :E<C , G
\D :E ; \ ). (20)

Lewis et al. [53] present a denoising autoencoder for pre-training, which consists of a series of

noising strategies to corrupt text and a training objective to reconstruct the original sentence. In

addition, Zhang et al. [154] propose a self-supervised pre-training objective specific for the text

summarization task, namely the gap-sentences generation objective, and their PEGASUS model

achieves state-of-the-art performances on the mainstream datasets.

However, the pre-trained language models’ ability of capturing long-term dependencies and

maintaining global coherence is poor. To solve this problem, Cai et al. [8] introduce an additional

encoder with a bidirectional RNN and a convolution module to simultaneously model sequential

context and capture local importance to the base Transformer model. The encoder first applies a

bidirectional LSTM on the source text embedding � and derive the hidden states sequence� , then

uses three convolution operations with kernel sizes of 1,3,5 to learn n-gram features � from � ,

and finally a gated linear unit is applied to select features, which can be formulated by:

' = f (,3� + 13 ) ⊙ (,ℎ� + 1ℎ), (21)
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where � = BiLSTM(�). Yan et al. [96] make several improvements to the traditional language

models. Specifically, a new self-supervised objective called future n-gram prediction has been ap-

plied, and the n-stream self-attention mechanism is used in the decoder to be trained to predict the

future n-gram of each time step. Given a source sequence G and its target sequence ~, the future

n-gram prediction objective can be formulated as:

L = −
=−1∑

9=0

U 9 ·
(
)− 9∑

C=1

log?\ (~C+9 |~<C , G)
)
. (22)

Ding et al. [20] propose an enhanced semantic model based on double encoders and a decoder with

a Gain-Benefit gate structure, which is able to provide richer semantic information and reduce the

influence of the length of generated texts on the decoding accuracy. The dual-encoder is used to

capture both global and local context semantic information based on the bidirectional RNN, and

the output vector of the Gain-Benefit gate module is calculated by:

PC = (1 − 0) ⊙ M + 0 ⊙ CC−1, where 0 = sigmoid(W1CC +W2SC−1 + ~C−1), (23)

in which CC is the contextual semantic representation with both global and local semantic infor-

mation at current time step, SC−1 is the decoder hidden state of last time step, ~C−1 is the word

generated at last time step, and M is the global semantic vector of the original text.

Except for the poor capability of capturing long-term dependency in traditional pre-trained

language models, the problem of factual inconsistency between the generated content and source

text is also severe and has not been tackled by previous works. To reduce this phenomenon,Meng et

al. [9] propose an end-to-end neural correctormodel with a post-editing correction strategy, which

is pre-trained on artificial corrupted reference summaries. Dong et al. [24] introduce a factual

correction framework containing a QA-span factual correction model and an auto-regressive one.

The QA-span correctionmodelmasks and replaces one entity at a time during the iteration process.

Specifically, given the source text G and a masked query @ = (~′1, ..., ["�( ], ..., ~′<), the correction
model needs to predict the answer span via ? (8 = BC0AC) and ? (8 = 4=3), which are calculated based
on the hidden states of the top layer ℎ8 as:

? (8 = BC0AC) = 0BC0AC8 =

exp(@B8 )∑�−1
9=0 exp(@B9 )

, where @B8 = ReLU(F⊤B ℎ8 + 1B), (24)

in which� is the number of hidden states in the encoder, and ? (8 = 4=3) is calculated in the similar

way. The auto-regressive correction model masks all entities at the same time without iteration.

Specifically, given the source text G and a masked query @ = (~′1, ..., ["�( ]1, ..., ["�( ]) , ..., ~′<)
from a summary with ) entities, the correction model runs ) steps to predict the answer span

of each mask based on the corresponding masked token representation and its previously pre-

dicted entity representations. The entity representation s4=CC at time step C is predicted based on

the argmax and mean pooling operations, as calculated by:

s4=CC = Mean-Pool(h?BC0AC , h?4=3 ), (25)

where ?BC0AC = argmax(0BC0AC1 , ..., 0BC0AC" ), ?4=3 = argmax(04=31 , ..., 04=3" ).

3.3.2 �estion Generation. Early methods to solve the task of question generation are mainly

based on hand-crafted rules and always contain multiple procedures. Wijanarko et al. [26] pro-

pose a method that generates questions based on key-phrase which embeds Bloom’s taxonomic in

selecting contexts for constructing questions. The key-phrases can be selected via two methods.
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The first method is based on probability of two-word sequence as formulated below:

B2>A4 (F8,F 9 ) =
2>D=C (F8F 9 ) − X

2>D=C (F8) × 2>D=C (F 9 )
, (26)

where 2>D=C (F8 ,F 9 ) is the number of a sequence of word F8 followed by F 9 , 2>D=C (F8 ) is the
number of word F8 in the input document, and X is a constant to limit the number of phrases

formed by less frequent words. The second method is based on a Naive Bayes model, and the

probability of a unique phrase is measured by:

%A [:4~ |) , �] = %A [) |:4~] × %A [� |:4~] × %A [:4~]
%A [) ,�] , (27)

where %A [) |:4~] is the probability that a key-phrase has a)� ×��� score) , %A [� |:4~] is the prob-
ability that it has a distance � , and %A [) , �] is the normalization factor. Bhatia et al. [5] propose

a dynamic question answering generator to generate questions and answers for the mathematical

topic-quadratic equations. The randomization technique, first order logic and automated deduc-

tion are used for the study.

In the past few years, driven by advances in deep learning, end-to-end neural models based on

Seq2Seq framework have attained more and more attentions and have shown better performances.

Serban et al. [112] study the factoid questions generation with RNN to transduce facts into neural

language questions, and provide an enormous question-answer pair corpus. Yuan et al. [153] use

a Seq2Seq model with teacher forcing to improve the training and adopts policy gradient in rein-

forcement learning to optimize the generated results. During supervised learning, in addition to

minimize the negative log-likelihood with teacher forcing, two additional signals are introduced

to prevent the model from generating answer words (LB ) and encourage the output variety (L4)
as formulated below:

LB = _B
∑

C

∑

0̄∈Ā
?\ (~C = 0̄ |~<C , �,�), L4 = _4

∑

C

p)C logpC , (28)

where Ā refers to the set of words appearing in the answer but not in the ground-truth question,

pC refers to the full pointer-softmax probability of the C-th word, which enables the model to in-

terpolate between copying from the source document and generating from shortlist. And during

reinforcement learning, the total reward '%%!+&� is a combination of question answering reward

'&� (measured by F1 score) and question fluency reward '%%! (measured by perplexity), as formu-

lated below:

'%%!+&� = _&�'&� (.̂ ) + _%%!'%%! (.̂ ), (29)

'%%! (.̂ ) = −2−
1
)

∑)
C=1 log2 %!" (~̂C |~̂<C ) , (30)

'&� (.̂ ) = F1(�̂,�), (31)

where �̂ = "%�" (.̂ ) refers to the answer of the generated question by the Multi-Perspective

Context Matching (MPCM)model, %!" is a languagemodel. Zhao et al. [158] study the paragraph-

level neural question generation by proposing a maxout pointer and gated self-attention networks,

which mainly deals with the problem that long text (mostly paragraphs) does not perform well in

the Seq2Seq model. In detail, the gated self-attention network contains two steps: 1) the encoded

passage-answer representation uC is conducted matching against itself to derive the self matching

representation sC at time step C :

sC = U · aBC = U · softmax(U⊤WBuC ). (32)
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And 2) the self matching representation sC is combined with the original passage-answer represen-

tation uC , which is then fed into a feature fusion gate to obtain the final encoded passage-answer

representation ûC at time step C :

û = gC ⊙ fC + (1 − gC ) ⊙ uC , where fC = tanh(W5 [uC , sC ]), gC = sigmoid(W6 [uC , sC ]). (33)

However, the rich information lying in the answer has not been fully explored, which leads to

generating low-quality questions (e.g., having mismatched interrogative words with the answer

type, copying context words far and irrelevant to the answer, including words from the target

answer, and so on). To solve the problem, Sun et al. [122] propose an answer-focused and position-

aware model. It incorporates the answer embedding to explicitly generate a question word match-

ing the answer type, and designs a position-aware attention mechanism by modeling the relative

distance with the answer, which guides the model to copy the context words that are more close

and relevant to the answer. Kim et al. [46] propose to separate the target answer from the original

passage, in order to avoid the generated question copying words from the answer. Specifically, it

replaces the answer with a mask token, and introduces a keyword-net to extract key information

from the answer. Given the encoded answer representation ℎ0 and the context vector 2C of current

decoding step, the keyword feature of each layer of the keyword-net >;C can be formulated as:

>;C =
∑

9

?;C 9ℎ
0
9 , where ?

;
C 9 = softmax((>;−1C )⊤ℎ09 ), (34)

in which >0C is initialized by 2C . And the decoding hidden state BC of current timestep is calculated

by:

BC = LSTM(~C−1, BC−1, 2C , >!C ), (35)

where ~C−1 is the output token of previous timestep, ! is the layer number of the keyword-net.

Moreover, many works recently attempt to conduct multi-task learning with external related

tasks to further enhance the performance of question generation. Wang et al. [134] introduce a

message passing mechanism to simultaneously learn the tasks of phrase extraction and question

generation, which helps the model be aware of question-worthy phrases that are worthwhile to be

asked about. Jia et al. [44] conduct multi-task learning with paraphrase generation and question

generation, which can diversify the question patterns of the question generation module. During

training, the weights of the encoder are shared by all tasks while those of the first layer of decoder

are shared with a soft sharing strategy, which is formulated by:

LB 5 =
∑

d∈D
‖\3 − q3 ‖2, (36)

whereD is a set of shared decoder parameters, \,q refer to the parameters of the question genera-

tion task and paraphrase generation task, respectively. And amin-loss function is employed among

the golden reference question and several expanded question paraphrases, which is represented

by:

L@6 = min
q∈Q
(− 1

)@6

)@6∑

C=1

;>6% (~@6C = qC )). (37)

Despite the outstanding performance achieved by previous methods, the rich structure infor-

mation hidden in the passage is ignored, which can be used as an auxiliary knowledge of the

unstructured input text to improve the performance. Liu et al. [66] adopt a graph convolutional

network (GCN) to identify the clue words in the input passage that should be copied into the target

question. Specifically, the GCN is constructed on the syntactic dependency tree representation of

each passage, and a Gumbel-Softmax layer is applied to the final representation of GCN to sample
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the binary clue indicator for each word. A sample y = (~1, ..., ~: ) drawn from the Gumbel-Softmax

distribution is formulated as:

~8 =
exp((log(c8 ) + 68 )/g)∑:
9=1 exp((log(c 9 ) + 6 9 )/g)

, (38)

where g is the temperature parameter, c8 is the unnormalized log probability of class 8 , and 68 is

the Gumbel noise formulated by:

68 = − log(− log(D8 )), where D8 ∼ Uniform(0, 1). (39)

Wang et al. [133] construct a knowledge graph for each input sentence as the auxiliary structured

knowledge and aims to generate a question based on a query path from the knowledge graph. The

query representation learning is formulated as a sequence labeling problem for identifying the

involved facts to form a query, which is used to generate more relevant and informative questions.

Recently, pre-trained language models have achieved remarkable performances in question gen-

eration, far exceeding those of the previous RNN-based methods. Dong et al. [23] propose a uni-

fied model that is pre-trained with three types of natural language understanding or generation

tasks, namely unidirectional, bidirectional, and sequence-to-sequence prediction. Through the pre-

training of these three tasks, the model’s question generation performance achieve significant im-

provements on SQuAD. Xiao et al. [141] propose an enhanced multi-flow seq2seq pre-training

and fine-tuning framework to alleviate the exposure bias, which consists of an infilling generation

mechanism and a noise-aware generation method, which achieves state-of-the-art performances

on a wide range of datasets.

3.3.3 Distractor Generation. The researches mainly focus on generating multi-choice question

distractors for ontologies or articles. Traditional methods primarily use hand-crafted rules or rank-

ing method for distractor generation. Stasaski et al. [118] introduce a novel method with several

ontology- and embedding-based approaches. The graph structure of the ontology is used to create

complex problems linking different concepts. Liang et al. [61] introduce a ranking method with a

feature-based model and a neural net (NN) based model. The NN-based model consists of a gener-

ator � and a discriminator � , where � generates distractors 3 based on a conditional probability

% (3 |@, 0) given question stems @ and answers 0, and � predicts whether a distractor sample comes

from the real training data or� . The objective for � is to maximize the log-likelihood as:

maxqE3∼%CAD4 (3 |@,0) [log(f (5q (3 |@, 0)))] + E3∼%\ (3 |@,0) [log(1 − f (5q (3 |@, 0)))], (40)

where 5q (3,@, 0) is an arbitrary scoring function parameterized by q . And each distractor 38 sam-

pled by � is based on another scoring function 5\ (3, @, 0) as formulated as:

?\ (38 |@, 0) =
exp(g · 5\ (38, @, 0))∑
9 exp(g · 5\ (3 9 , @, 0))

, (41)

where g is a temperature hyper-parameter. Then a cascaded learning framework is proposed to

make the ranking more effective, which divides the ranking process into two stages to reduce the

candidates.

Recently, deep learning-based models are widely adopted due to its overwhelming performance.

For example, Chung et al. [16] utilize the BERTmodel to generate distractorwith the auto-regressive

mechanism in a multi-tasking architecture. Additionally, Gao et al. [30] express the task as a

sequence-to-sequence learning problem based on a hierarchical encoder-decoder network. In this

model, static and dynamic attention mechanisms are adopted on the top of the hierarchical encod-

ing structure, and a question-based initializer is used as the start point to generate distractors in

the decoder. The question @, the answer 0 and the word vectors in the 8-th sentence (w8,1, ...,w8,<)
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are first encoded via three separate bidirectional LSTM networks into (q1, ..., q; ), (a1, ..., a:), and
(h48,1, ..., h8,<). Then another bidirectional LSTM is applied on the encoded word representations to

derive the contextualized sentence representation (u1, ..., u=), and an average pooling layer is ap-

plied to derive their entire representations q, a, and s8 . After that, the static attention distribution

W8 can be derived through a matching layer and a normalization layer as:

W8 = softmax(>8/g), where g = sigmoid(wq
⊤q + 1@), >8 = _@s⊤8 W<q − _0s⊤8 W<a + b< . (42)

In the decoder size, the decoder generates the hidden state h3C at the C-th time step through an LSTM

network. Then the sentence-level and word-level dynamic attention V8 and U8, 9 are formulated as:

V8 = u⊤8 W31h
3
C , U8, 9 = h48, 9

⊤W32h
3
C . (43)

Finally, the static and dynamic attentions are combined into Ũ8, 9 to reweight the article token

representations and predict the probability distribution %+ over vocabulary + :

%+ = softmax(W+ h̃
3
C + b+ ), where h̃3C = tanh(Wh̃ [h

3
C ; cC ]), cC =

∑

8, 9

Ũ8, 9h
4
8, 9 , Ũ8, 9 =

U8, 9V8W8∑
8, 9 U8, 9V8W8

.

(44)

However, the answer interaction is not considered by previous works and the incorrectness of

the generated distractors cannot be guaranteed. To address this problem, Qiu et al. [98] propose

a framework consisting of reforming modules and an attention-based distractor generator, which

is the state-of-the-art method on most widely adopted datasets (e.g., RACE). The reforming mod-

ules use the semantic distances to constrain the effect of words that are strongly related to the

correct answer, and the distractor generator leverages the information of the reformed question

and passage to generate the initial state and context vector respectively. In detail, three contex-

tual encoders are first applied to encode the passage, question and its answer into P, Q and A,

then an attention mechanism and a fusion kernel are leveraged to enrich the question and answer

representations into Q̃ and Ã, where Q̃ is formulated by:

Q̃ = Fuse(Q, Q̄) = tanh( [Q; Q̄;Q − Q̄;Q ◦ Q̄]W5 + b5 ), (45)

Q̄ = Attn(Q, P)P = softmax(QP
)

√
3
)P. (46)

In the reforming question module, the reformed question ¤Q8 is calculated through a self-attend

layer and a gate layer as:

¤Q = Gate(Q̃8 , ṽ0)Q̃8 = (Q̃8W@
6 ṽ
0⊤ + 1@6 )Q̃8, (47)

ṽ0 = SelfAlign(Ã) = softmax(ÃW0)⊤Ã. (48)

And in the reforming passage module, the reformed passage P̃ is calculated by:

P̃ = Fuse( ¤P, P̄), P̄ = Attn( ¤P, ¤Q) ¤Q, ¤P8 = Gate(P8 , v̂0)P8, (49)

v̂0 = SelfAlign(Â), Â = Fuse(Ã, Ā), Ā = Attn(Ã, Q̃)Q̃. (50)

Maurya et al. [76] use a single encoder to encode the input triplet and three decoders to generate

three distractors. The encoder employs SoftSel operation and a gated mechanism to capture the

semantic relations among the elements of the input triplet.

In addition, there are also many other scenarios for distractor generation. Srinivas et al. [117]

develop a semi-automatic tool to help teachers quickly create multiple choice questions on code

understanding. The tool first captures each code structure in the form of an abstract syntac tree,

and then train a code model that maps functions to vectors. Ren et al. [103] create a model based
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Table 2. Natrual language generation models for text expansion.

Task Model Description

Short Text Expansion

Associated-Query-based Query Expander [6] Ranking

ExpaNet [124] Retrieval + Memory Network

FC-LSTM [113] LDA + RNN + Ranking

Fiction Sentence Expander [106] RNN

Topic-to-Essay Generation

MTA-LSTM [27] RNN + Global Coherence

SRENN [135] RNN + Retrieval + Global Coherence

UD-GAN [152] RNN + GAN + RL

KB-based Topic-to-essay Generator [146] CNN + RNN + GAN + RL + KB

SCTKG [97] CNN + RNN + GAN + RL + KG

on a context-sensitive candidate set generator and a distractor selector for cloze-style multiple

choice questions. The model first uses the correct answer as the key, combines the LDA model

to mine the topic of the context, finds similar words in the semantic database, and then selects a

specified number of misleading items according to a ranking model. Specifically, the probability

distribution over all entites subsumed by the concepts in � is calculated based on the posterior

probability ? (2 |0, @) as:

?8 = ? (38 |0, @) ∝
∑

2∈�
? (38 |2)? (2 |0, @), where ? (2 |0, @) ∝ ? (2 |0)

 ∑

:=1

c
(:)
0,@ W

(:)
2 , (51)

in which 2 is the concept, c0,@ is the topic distribution of complete sentence formed by the stem

and key, W2 is the topic distribution of concept 2 , ? (2 |0) is the prior probability of 0 belonging to

2 ,  is the total number of topics, and ? (3 |2) is the typicality. Patra et al. [89] develop a system

to generate named entity distractors. The system performs two types of similarity computation

namely statistical and semantic. To speed up the distractor selection procedure, a hierarchical

clustering method is proposed to represent the entities, where the entity similarities are embedded

in a tree structure. The distractors are selected from the nearby entities of the correct answer of

the question in the tree. Specifically, the statistical distance between the numeric attributes is

calculated by:

(8<(%,&) = 1 − 1

!

∑

8=1,...,!

(%8 ∼ &8)
max(%8 , &8)

, (52)

where % and & represent two vectors corresponding to the target entities, ! is the total number of

numeric attributes. The hierarchical distance between two entities (G, G ′) is normalized by:

(8<(G, G ′) = 31(G, G ′)√
31(G, G) ⊙ 31(G ′, G ′)

, (53)

where 31(G, G ′) is the highest tree level connecting G and G ′. And the semantic similarity score

between the key G and a candidate distractor G ′ is formulated as:

(8<(G,G ′) = | (CA8?;4C8 ∈ G) |&(CA8?;4C8 ∈ G
′) |8

|CA8?;4C 9 ∈ G | 9
, (54)

where the normalization factor is the size of the triplet set corresponding to the key.
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4 TEXT EXPANSION

4.1 Task

The main purpose of text expansion is to inflate the short texts to longer ones that contains more

abundant information, which can be divided into two aspects: short text expansion and topic-to-

essay generation. Short text expansion aims to expand a short text into a richer representation

based on a set of long documents. Topic-to-essay generation aims at generating human-like di-

verse, and topic-consistent paragraph-level text with a set of given topics. The most representative

methods for each subtask are shown in Table 2.

4.2 Data

4.2.1 Short Text Expansion. There aremainly four datasets for short text expansion as listed below.

Wikipedia. [124] constructs this dataset through a snapshot of English Wikipedia. The titles

of Wikipedia articles are regarded as short texts, and the abstract of all Wikipedia articles are

leveraged to construct the related long documents. This dataset contains 30,000 short texts and

4,747,988 long documents in total.

DBLP. [124] uses the DBLP bibliography database to construct this dataset. The titles of com-

puter science literature represent short texts, and the abstracts of all papers are collected to con-

struct the corresponding long documents. Statistically, this dataset consists of 81,479 short texts

and 480,558 long documents.

Programmableweb. [113] establishes a real-world dataset for service recommendation and de-

scription expansion, which is crawled from programmableweb.com in 2013 and 2016. The entire

dataset contains 16012 APIs, 7816 Mashups and 16449 links between them.

Fiction Corpus. [106] creates an English fiction corpus, which is obtained by applying sentence

compression techniques on a modern fiction corpus scraped from online resources. Each story sen-

tence has a corresponding compression. In total, the dataset contains around 17,000,000 sentences.

4.2.2 Topic-to-Essay Generation. There are primarily five datasets for topic-to-essay generation

as listed below.

ESSAY. The ESSAY dataset [27] is a large collection of topic compressions crawled from the In-

ternet. The topic words are extracted by TextRank. This datast totally contains 305,000 paragraph-

level essays.

ZhiHu. [27] constructs this dataset by crawling from a Chinese question-and-anwering website

called ZhiHu, which consists of 55,000 articles. The topic words of each article are specified by

users in the community.

Moview Reviews. The Stanford Sentiment Treebank (SST) dataset [115] contains 11,855 single

sentences of movie reviews. This dataset has two sentiment classes for each review, and has a set

of fully labeled parse trees.

Beer Reviews. [77] creates this dataset by crawling from the beer review website BeerAdvocate.

In total, this dataset has 1,586,259 ratings on 66,051 items that are scored by 33,387 users.

Customer Reviews. [41] constructs a customer review dataset consisting of five electronics prod-

ucts, which is collected from Amazon.com and C|net.com. There are totally 1,886 items in this

dataset.
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4.3 Method

4.3.1 Short Text Expansion. Early works primarily use statistical similarity for short text expan-

sion. Billerbeck et al. [6] propose a method about the query expansion using associated queries for

web search engines. The main method is to associate a query that closely matches the document

in a given log containing a large number of queries. Then, the query associated with the query

document is a reasonable description of the document and can be used to expand the query text.

Benefit from the development of deep learning, many end-to-end frameworks based on neural

networks have been developed. Tang et al. [124] propose an end-to-end solution based on deep

memory network for short text extension. In this work, the original short text @ is firstly used

as a query to search for a set of potentially relevant long documents �@ , which will be used as

the material for text expansion, from an external large collection � . In the following process, the

short text @ is represented as the average vector of words in it, i.e. −→@ , and each document is also

represented by the average vector of words belong to it, i.e.
−→
3 . To further identify the relevant

documents in �@ , both soft attention and hard attention mechanism are utilized, the information

read from the document set can be written as:

−→> =

 ∑

8=1

?8 ·
−→
38 =

 ∑

8=1

so�max(
−→@ )−→38 + 68

g
) · −→38 , (55)

where 68 follows the Gumbel(0,1) distribution, and g is the temperature hyperparameter. Then the

two sources of information, −→@ and −→> are integrated by GRU as follows:

−→I = f (W(I)−→@ + U(I)−→> ), (56)

−→A = f (W(A )−→@ + U(A )−→> ), (57)

−→> ′ = tanh(W−→@ + −→A ◦ U−→> ), (58)

−→@ ′ = (1 − −→I ) ◦ −→@ + −→I ◦ −→> ′, (59)

where ◦means element-wise multiplication, both the Sigmoid function f (G) and C0=ℎ(G) are oper-
ated on element-wise. The output −→@ ′ is the expanded representation of the input short text @. This

process can be repeated several times for the same @ to continuously extend its representation to

mimic the human behavior when querying a piece of short text.

Shi et al. [113] present a text expansion method for service recommendation system. The descrip-

tion of services is first expanded at sentence level by a probabilistic topic model, in this process, the

similarity between target sentence D and another sentence E from existed corpus can be caculated

as:

(8<8;0A8C~(D, E) = ` · � � ( (D, E) + (1 − `) · � � ( ((D , (E), (60)

where (D and (E are descriptions contain D and E , respectively. ` is a parameter used to balance

weights of sentence and description on the final similarity measurement. � � ( is the function of

JS divergence which used to measure the similarity between two items; for more details, readers

can refer to [113]. So for each target sentence, a collection of similar sentences can be found and

ranked in descent order to select top N most similar ones for description extension.

Safovish et al. [106] design a neural sentence expander trained on a corpus of fiction sentence

compressions for the task of sentence expansion and enhancement, which is the state-of-the-art

method on existing datasets (e.g., Fiction Corpus). In this method, a Seq2Seq model is used to

predict sentences from the original input. To tackle the problem of copying input words during

generation process, the modified negative log-likelihood loss function is used to increase the sig-

nificance of learning newwords. Specifically, the modified cross-entropy of generating is caculated
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as:

L = −
∑

C

(1 + _I)−( (FC ))log? (FC |F1, ..., FC−1), (61)

in which I denotes the indicator function for a set, ) the ground truth, ( the source tokens, _ is

a parameter which controls the learning importance of the words in target sentence while not in

original input. With this modification, the model no longer degenerates to copying its input and

can be trained as desired. In addition, to increase the novelty of generated sentence, Safovish et al.

[106] also develop a controlled sampling method for the decoding process so that the model can

generate diverse output.

4.3.2 Topic-to-essay Generation. With the popularity of deep learning, the RNN-based Seq2Seq

framework has been widely used in this field. Many works have been proposed to improve the

traditional Seq2Seq framework.

To improve the global coherence of the generated essays, Feng et al. [27] propose an LSTM

model with attention mechanism for essay generation. The main idea of this work is to maintain

a topic coverage vector, each dimension of which represents the degree to which a topic word

needs to be expressed in future generation, to adjust the attention policy, so that the model can

consider more about unexpressed topic words. Specifically, the topic coverage vector is updated by

parameter q 9 , and it can be regarded as the discourse-level weight of C>?82 9 , the word embedding

of topic word 8 . Topic coverage vector �C is initialized as a k dimensional vector, i.e. �0, k is the

number of input topic words, and each value of�0 is 1.0. At time step C in generation process, each

element 2C, 9 is updated as follows:

2C, 9 = 2C−1, 9 −
UC, 9

q 9
, (62)

in which UC, 9 = exp(6C 9 )/
∑ 
8=1 exp(6C8 ) is the attention weight of topic word 8 at time step C , and

6C 9 is the attention score on C>?82 9 at time step C , which is caculated as:

6C 9 = 2C−1, 9E
)
0 tanh(,0ℎC−1 +*0C>?82 9 ), (63)

where ℎC−1 is the hidden representation of the LSTM at time step C − 1, and E0 , ,0 , *0 are all

parameters to be optimized. Therefore, the probability of the next word ~C can be defined as:

P(~C |~C−1,)C ,�C ) = softmax(linear(ℎC )), (64)

where the topic representation )C is formulated as )C =
∑ 
8=1 UC 9C>?82 9 .

Wang et al. [135] propose an enhanced neural network based on self-attention and retrieval

mechanisms, the encoder and decoder are constructed with self-attention to model longer depen-

dence. And to alleviate the duplication problem, a retrieval process is adopted to collect topic-

related sentences as an aid for essay generation. Specifically, input topic words are divided into<

groups, then the material " = {(1, ..., (<} can be collected based on cosine distance between the

topic group and sentences in the corpus which is created by dividing the training set, where (8 is

a sentence that corresponds to the 8-th topic group. For the different sequence relations between

topic words and material sentences, two encoders with the same structure but different parame-

ters are used to get the hidden representation �)>?82 =
{
ℎ)1 , ..., ℎ

)
:

}
and �"0C4A80; =

{
ℎ"1 , ..., ℎ

"
<;

}
,

based on which the hidden states of generated of essay words � = {ℎ1, ..., ℎ=} are obtained by

essay decoder. Finally the output probabilities of each essay word can be computed as:

? (~C |~C−1,) ,") = softmax(linear(ℎC )). (65)

Meanwhile, Generative Adversarial Net (GAN) has shown promising results for topic-to-essay

generation, which is effectively applied in [152] including a GAN model and two-level discrimi-

nators. The first discriminator guides the generator to learn the paragraph-level information and
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sentence syntactic structure with multiple LSTMs, and the second one processes higher level in-

formation such as topic and sentiment for essay generation. Then the reward is calculated based

on results of two discriminators, and the generator�\ tries to maximize expected reward from the

initial state till the end state via the formulation:

� (\ ) =
)∑

C=1

� ('C |(C−1, \ ) =
)∑

C=1

�\ (~C |. ) [_(�q (. )) + (1 − _)�W (. )], (66)

where _ is a manually set weight, . is a complete sequence, 'C is the reward for a whole sequence,

�q and �W are the first and second discriminator, respectively.

However, the generated essays of previous works are still lack of novelty and topic-consistency,

based on which, some works leverage the external knowledge to solve this problem. Yang et al.

[146] introduce a model with the aid of commonsense knowledge in ConceptNet, in detail, each

topic is used as a query to retrive : neighboring concepts with pre-trained embeddings stored as

commonsense knowledge in a memory matrix M0, in the decoding phase, the generator�\ refers

to the memory matrix for text generation, the hidden state of the decoder at time-step C is:

BC = LSTM(BC−1, [4 (~C−1); 2C ;<C ]), (67)

where [;] means the concatenation of vectors, ~C−1 is the word generated at time-step C − 1. 2C is
the context vector that is computed by integrating the hidden representations of the input topic

sequence, and<C is the memory vector extracted fromMC based on the attention mechanism. As

the generation progresses, the topic information that needs to be expressed keeps changing, which

requires the memory matrix to be dynamically updated, so for each memory entry M8
C in MC , a

candidate update memory M̃
8

C is computed as:

M̃
8

C = tanh(U1M
8
C + V14 (~C )), (68)

whereU1 and V1 are trainable parameters. To determine how much the 8-th memory entry should

be updated, the adaptive gate mechanism is adopted:

68C = sigmoid(U2M
8
C + V24 (~C )), (69)

where U1 and V1 are trainable parameters.M8
C is updated by:

M8
C+1 = (1 − 68C ) ⊙M8

C + 68C ⊙ M̃
8

C , (70)

in which 1 refers to the vector with all elements 1 and ⊙ denotes point-wise multiplication. Fol-

lowing their work, Qiao et al. [97] propose a topic-to-essay generator based on the conditional

variational auto-encoder framework to control the sentiment, and introduces a topic graph atten-

tion mechanism to sufficiently use the structured semantic information which is ignored in [146],

so that the quality of generated essays is further improved and reaches the state-of-the-art level

at present on the mainstream datasets (e.g., ZhiHu).

5 TEXT REWRITING AND REASONING

5.1 Task

The target of text rewriting and reasoning is to make a reversion of the text or apply reasoning

methods to generate responses, which mainly contains two subtopics: text style transfer and dia-

logue generation.

Text style transfer is the method to transform the attribute style of the sentence while pre-

serving its attribute-independent content. Dialogue generation aims to automatically generate ap-

proximate answers to a series of given questions in a dialogue system. We show several classical

methods for each subtask in Table 3.
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Table 3. Natrual language generation models for text rewriting and reasoning.

Task Model Description

Text Style Transfer

Spearean Modern Language Translator [43] RNN

ARAE [157] RNN + GAN + WAE

FM-GAN [13] RNN + GAN

Unpaired Sentiment-to-Sentiment Translator [143] RNN + RL + Unsupervised

Non-Offencive Language Translator [85] CNN + RNN + Unsupervised

BST [95] CNN + RNN + Unsupervised

DualRL [72] RNN + RL + Unsupervised

Exploration-Evaluation-based Text Style Translator [28] RNN + Metrics Design

Evaluating Style Transfer for Text [80] Embedding + CNN + RNN + Metrics Design

Error Margins Matter in Style Transfer Evaluation [125] VAE + RNN + Metrics Design

PPVAE [25] WAE + GAN

Dialogue Generation

MARM [159] RNN

GAN-AEL [145] CNN + RNN + GAN

AEM [74] RNN + Context-response Interaction

AGMN [57] RNN + KG + Retrieval + Context-response Interaction

Post-KS [60] RNN + KB

KADG [45] Transformer + KB

%2 BOT [67] Transformer + Multi-task Learning + Persona

KnowledGPT [136] Transformer + Knowledge Selection

PLATO [4] Transformer + Multi-task Learning

TransferTransfo [138] Transformer + Multi-task Learning

5.2 Data

5.2.1 Text Style Transfer. The following four datasets are widely applied for the task of text style

transfer.

Yelp Review. The Yelp Review dataset is provided by the Yelp Dataset Challenge1, which contains

a large amount of business review texts. This dataset contains 1.43M, 10K, and 5K pairs for training,

validation, and testing, respectively.

Amazon Food Review. [77] creates this dataset by crawling reviews from the Fine Foods category

of Amazon. This dataset contains 367K, 10K, and 5K pairs for training, validation, and testing,

respectively.

EMNLP2017 WMT News. [37] picks the News section data from the EMNLP2017WMT2 Dataset,

which is a large long-text corpus consists of 646,459 words and 397,726 sentences. After being pre-

processed, this dataset contains 278,686 and 10,000 sentences for training and testing, respectively.

GYAFC. The Grammarly’s Yahoo Answers Formality Corpus (GYAFC) [101] is a large corpus

for formality stylistic transfer. The informal sentences are collected from Yahoo Answers3 with

domains of Entertainment & Music and Family & Relationships, and the corresponding formal

sentences are created using Amazon Mechanical Turk. This dataset totally contains 106,000 sen-

tence pairs.

5.2.2 Dialogue Generation. There are four popular datasets for dialogue generation as shown be-

low.

DailyDialog. The DailyDialog dataset [58] is a high-quality multi-turn dialog dataset containing

daily conversations. The dialogues in the dataset is formally written by human with reasonable

speaker turns, and often concentrate on a certain topic. Statistically, this dataset contains 13,118

1https://www.yelp.com/dataset/
2http://statmt.org/wmt17/translation-task.html
3https://answers.yahoo.com/answer
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multi-turn dialogues, nearly 8 average speaker turns per dialogue, and about 15 average tokens

per utterance.

UDC. The Ubuntu Dialogue Corpus (UDC) [70] is created based on the two-person conversa-

tions about Ubuntu-related problems in the Ubuntu chat logs4 from 2004 to 2015. This dataset

contains about 1 million multi-turn dialogues, over 7 million utterances, and 100 million words.

Persona-chat. The Persona-chat dataset [155] is an engaging and personal chit-chat dialogue

dataset collected by Amazon Mechanical Turk. Each of the paired crowdworkers condition their

dialogue on a given provided profile. This dataset contains 164,356 utterances in total.

Wizard-of-Wikipedia. TheWizard-of-Wikipedia dataset [19] is a large crowd-sourced collection

for open-domain dialogue. Each of the paired speakers conduct open-ended chit-chat, and one of

the speakers need to link the knowledge to sentences from existing Wikipedia articles connected

to the topic. This dataset contains 22,311 dialogues with 201,999 turns.

5.3 Method

5.3.1 Text Style Transfer. In this field, the RNN-based Seq2Seq framework and deep latent vari-

able model are broadly adopted. Jhamtani et al. [43] design a copy-enriched sequence-to-sequence

model to transform text from modern English to Shakespearean English. The model first uses a

fixed pre-trained embedding vector to represent each token, and uses a bidirectional LSTM to en-

code sentences. In this work,
−−−−−−−→
!()"4=2 and

←−−−−−−−
!()"4=2 represent the for- ward and reverse encoder.

ℎ
−−→4=2
C represent hidden state of encoder model at step t. The following equations describe the model:

ℎ
−−→4=2
C =

−−−−−−−→
!()"4=2 (ℎ4=2C−1, �4=2 (GC )), (71)

ℎ
←−−4=2
C =

←−−−−−−−
!()"4=2 (ℎ4=2C+1 , �4=2 (GC )), (72)

ℎ4=2C = ℎ
−−→4=2
C + ℎ

←−−4=2
C . (73)

In this work, only the forward and backward encoder states are added, and the standard con-

nection is not used because it does not add additional parameters.Then a mixture model of RNN

and pointer network are employed to transfer the text style. The pointer module provides loca-

tion based attention, and output probability distribution due to pointer network module can be

expressed as follows:

?%)'C (F) =
∑

G 9=F

(V 9 ). (74)

Zhao et al. [157] propose an adversarially regularized autoencoder framework to generalize the

adversarial autoencoder, which combines a discrete autoencoder with a regularized latent repre-

sentation of GAN, and can be further formalized by the Wasserstein autoencoder.The model is

trained with coordinate descent across: (1)the encoder and decoder to minimize reconstruction,

(2) the critic function to approximate the, term, (3) the encoder adversarially to the critic to

minimize, :

1)min
q,k

!A42 (q,k ) = �-∼%∗ [− log?k (G |4=2k (G))], (75)

2) max
F∈,

!2A8 (F) = �-∼%∗ [5F (4=2k (G))] − �Ĩ∼%I [5F (Ĩ)], (76)

3)min
q
!4=2 (q) = �-∼%∗ [5F (4=2k (G))] − �Ĩ∼%I [5F (Ĩ)]. (77)

Here 4=2k is a deterministic encoder function. %I is the the prior distribution, and 5F (Ĩ) is the
critic/discriminator.

4http://irclogs.ubuntu.com/
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Chen et al. [13] utilize optimal transport to improve the ability of traditional GAN in processing

descrete texts with the objective of feature-mover’s distance. In this work, the feature-mover’s

distance(FMD) between two sets of sentence features is then defined as:

��"� (%5 , %5 ′ ) = min
) ≥0

<∑

8=1

=∑

9=1

)8 9 · 2 (58 , 59′ ) = min
) ≥0

< ) ,� >, (78)

where
∑=
9=1)8 9 =

1
<

and
∑<
8=1)8 9 =

1
=
are the constraints, and <,> represents the Frobenius dot-

product. In this work, the transport cost is defined as the cosine distance: 2 (58 , 59′ ) = 1− 5 )8 5
′
9

‖58 ‖2‖ 5 ′8 ‖2
and � is the cost matrix.

However, the problem of lacking supervised parallel data has not been well studied by the above

works. To tackle this problem, many unsupervised methods have been proposed. Xu et al. [143]

propose a cycled reinforcement learning approach through the cooperation between the neutral-

ization and emotionalization modules. The neutralization module extracts the non-emotional part

of the sentence with a single LSTM and a self-attention based sentiment classifier, and the emo-

tionalization module generates emotional words and add them to the semantic content with a

bi-decoder based encoder-decoder framework.

Santos et al. [85] propose an unsupervised style transfer model to convert offensive language

into non-offensive one. A single collaborative classifier is used to train the encoder-decoder net-

work, and an attention mechanismwith a cycle consistency loss is adopted to preserve the content.

Prabhumoye et al. [95] realize the style transfer of gender, political slant and sentiment through

an unsupervised back-translation method. The transferring process is divided into two stages. The

first stage learns the latent representation with back-translation of the input sentence through a

language translation model, and the second stage adopts an adversarial generation technology to

enable the output to match the desired style.The latent representation with back-translation of the

input sentence can be described as:

I = �=2>34A (-5 ; \�), (79)

where, G 5 is the sentence G in language 5 . \� represent the parameters of the encoder of language

5 → language 4 translation system

Luo et al. [72] reformulate the traditional unsupervised style transferring task as a one-step

mapping problem, and propose a dual reinforcement learning framework to train the source-to-

target and target-to-source mapping models. In this work, two reward methods that can evaluate

style accuracy and content preservation separately are proposed. 'B = % (B~ |~
′
;k ) formulate the

style classifier reward where k is the parameter of the classifier and is fixed during the training

process, and '2 = % (G |~
′
;q) represents the reward for preserving content. To encourage the model

to improve both the content preservation and the style accuracy, the final reward is the harmonic

mean of the above two rewards:

' = (1 + V2) '2 · 'B
(V2 · '2 ) + 'B

, (80)

where V is a harmonic weight aiming to control the trade-off between the two rewards.

Moreover, another challenge in this field is that there does not exist reliable evaluation metrics,

which is neglected by previous works. To alleviate this issue, Fu et al. [28] propose two aspects

of evaluation metrics to measure the transfer strength and content preservation of style transfer.

The transfer strength aims to evaluate whether the style is transferred through an LSTM-sigmoid

classifier. The style is defined in (30). This classifier is based on keras examples2. Transfer strength

accuracy is defined as
#A86ℎC

#C>C0;
, #C>C0; is the number of test data, and #A86ℎC is the number of correct
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case which is transferred to target style.

;BC~;4 =

{
?0?4A (?>B8C8E4) >DC?DC ≤ 0.5

=4FB (=460C8E4) >DC?DC ≥ 0.5
. (81)

The content preservation is used to evaluate the similarity between source and target texts and

is calculated by the embedding cosine distance. Content preservation rate is defined as cosine

distance (31) between source sentence embedding EB and target sentence embedding EC .

B2>A4 =
E)B EC

‖EB ‖ · ‖EC ‖
. (82)

Mir et al. [80] specify three aspects of evaluation metrics including style transfer intensity, con-

tent preservation, and naturalness. The style transfer intensity is measured by Earth Mover’s Dis-

tance, the content preservation is calculated by METEOR and embedding-based metrics, and the

naturalness is obtained by an adversarial evaluation method.

It is also instructive that Tikhonov et al. [125] also point out the three significant problems en-

countered in the evaluation metrics of style transfer. These problems mainly illustrate that the

measures of style accuracy and content preservation are often different in various style transfer

tasks. Therefore, they propose to take BLEU between input and human-rewritten texts into con-

sideration, so as to better measure the performance of style transfer models. Additonally, Duan

et al. [25] propose the Pre-train and Plug-in Variational Autoencoder (PPVAE), which is a model-

agnostic framework towards flexible conditional text generation and consists of PretrainVAE and

PluginVAE, where PretrainVAE aims to learn the original style of the sentence, and PluginVAE

aims to learn the latent space of new style. The PPVAE achieves the state-of-the-art performance

on the Yelp Reviews dataset.

5.3.2 Dialogue Generation. The RNN-based or GAN-based Seq2Seq model is widely leveraged to

handle this task. Zhou et al. [159] propose a mechanism-aware neural machine based on a proba-

bilistic RNN-based Seq2Seq framework. The model first uses latent embeddings to represent the

corresponding mechanisms, then an encoder-diverter-decoder framework is leveraged to gener-

ate mechanism-aware context. In this study, there are " latent mechanisms "8
"
8=1 for response

generation. Then, ? (~ |G) can be expanded as follows:

? (~ |G) =
"∑

8=1

? (~,<8 |G) =
"∑

8=1

? (<8 |G)? (~ |<8 , G), (83)

where ? (<8 |G) represents the probability of the mechanism<8 conditioned on G . This probability

actually measures the degree that<8 can generate the response for x. The bigger of this value is,

the more degree that the mechanism<8 can be used to generate the responses for G . Additionally,

? (~ |<8 , G) measures the probability that the response y is generated by the mechanism<8 for G .

With the modeling of ? (<8 |G) and ? (~ |<8 , G) the objective of likelihood maximization, namely

∑

(G,~) ∈�2

log? (~ |G) =
∑

(G,~) ∈�2

log

"∑

8=1

? (<8 |G)? (~ |<8, G), (84)

is used to learn the mechanism embeddings"8
"
8=1 and other model parameters.

Xu et al. [145] introduce a GAN framework comprising a generator, a discriminator, and an

approximate embedding layer to generate informative responses. The generator uses a Seq2Seq

model with GRU to generate responses, and the discriminator uses a convolutional neural network
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to judge the difference between human responses and machine responses. In the approximate

embedding layer, the overall word embedding approximation is computed as:

4̂F8 =

+∑

9=1

4 9 · softmax(,? (ℎ8 + /8) + 1?) 9, (85)

where F? and 1? are the weight and bias parameters of the word projection layer, respectively,

and ℎ8 is the hidden representation of wordF8 , from the decoding procedure of the generator� .

However, previous works ignore the semantic and utterance relationships between the context

and response, and thus the obtained responses are not satisfying. To solve this problem, Luo et al.

[74] propose an auto-encoder matching model with a mapping module. In this model, two auto-

encoders are leveraged to learn the semantic representations, and the mapping module is used to

learn the utterance-level dependency between the context and response. In this mapping module,

for simplicity, there is only a simple feedforward network for implementation. The mapping mod-

ule "W transforms the source semantic representation ℎ to a new representation C . To be specific,

we implement a multi-layer perceptron (MLP) 6(·) for"W and train it by minimizing the L2-norm

loss �3 (W) of the transformed representation C = 6(ℎ) and the semantic representation of target

response B:

�3 (W) =
1

2
‖C − B‖22 . (86)

Li et al. [57] design a dual encoder model with an attention mechanism and a graph attention

network. The attention mechanism is responsible of capturing the relationship between context

and response, and the graph attention network is used to integrate the knowledge connections

of domain words. The concept representation in the domain knowledge is constructed by a series

of triples, � (G) = {) 1,) 2, ..., )=} where )8 has the same concept node D but different neighbor

concept E and the graph representation of the concept 6(G) can be calculated by graph attention

mechanism as:

6(G) =
=∑

8=1

U)8 [D48 ; E48 ], where U)8 =
4G? (V)8 )∑=
9=1 4G? (V)8 )

, V)8 = ReLU( [(D48 )),E48 ]), (87)

in which (D8 , A8, E8) = '8 ∈ � (G)is the i-th triple in the dataset.

Some researchers try to improve the response quality by incorporating external knowledge

bases, and propose many strategies to select appropriate knowledge. Lian et al. [60] present a

knowledge selection mechanism by separating the posterior distribution from the prior distribu-

tion. The distance between the posterior and prior distributions are minimized by the KL diver-

gence during training, and during inference, the knowledges are selected and incorporated into

the response based on the prior distribution.The Kullback-Leibler divergence loss (KLDivLoss),

to measure the proximity between the prior distribution and the posterior distribution, which is

defined as follows:

! ! (\ ) =
#∑

8=1

? (: = :8 |G,~) log
? (: = :8 |G,~)
? (: = :8 |G)

, (88)

where \ denotes the model parameters.

Jiang et al. [45] propose a knowledge augmented response generation model to improve the

knowledge selection and incorporation. The model consists of a divergent knowledge selector and

a knowledge aware decoder, where the selector conducts a one-hop subject reasoning over facts

to reduce the subject gap in the knowledge selection, and the decoder is used to efficiently incor-

porate the selected fact. In addition, Liu et al. [67] concern about the importance of conversational

understanding for the high-quality chit-chat systems and propose the Persona Perception Bot (i.e.,
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%2 BOT). Different from other existing models, %2 BOT focus on a important and previously over-

looked concept, mutual persona perception, which is more appropriate to describe the process of

information exchange that enables interlocutors to understand each other. The %2 BOT is also the

current state-of-the-art model on the Persona-chat dataset.

Recently, pre-trained language models (e.g., BERT) have shown significant improvements over

traditional RNN-based methods in many NLP tasks and are also applied to this task. Wang et

al. [136] propose an encoder-decoder framework containing a BERT encoder and a transformer

decoder. The encoder is used to learn semantic representations for both unstructured text and

conversational history, and the decoder is leveraged to generate the dialogue response.In the en-

coder of this work,the input embedding is the sum of its token embedding, knowledge indicating

embedding and position embedding:

� (G8) = � (G8) +) (G8) + % (G8 ), (89)

where � (G8), ) (G8 ), % (G8 ) are word embedding, knowledge indication embedding and position

embedding, respectively. The input embeddings are then fed into BERTmodel to get the knowledge

and dialogue history encoding representations.

Bao et al. [4] design a pre-training framework with discrete latent variables. The pre-training

tasks include repsonse generation and latent act recognition, which are jointly pre-trained through

a unified network with shared parameters. Furthermore, inspired by the core idea of transfer learn-

ing, Wolf et al. [138] propose the TransferTransfo, which uses the paradigm of transfer learning

to fine-tune the powerful transformer models. The specific fine-tuning tasks they select include:

language modeling task, next utterance retrieval task, and generation task. Different fine-tuning

tasks endow TransferTransfo with generalization performance for dialogue generation tasks in

different scenarios.

6 FROM IMAGE TO TEXT GENERATION

6.1 Task

The image-based text generation aims at explaining or summarizing the visual concept of the given

image, which mainly consists of three parts: image caption, video caption, and visual storytelling.

The purpose of image captioning is to generate summaries from an image. Based on image cap-

tions, video caption aims to generate the summary of a series of images. Visual storytelling not

only identifies the correlation between objects in a single picture but also gives the logical rela-

tionship between consecutive sequential images. It should be noted that the language generation

component of VQA [1, 2, 75] model is relatively similar to that of image caption. There exists the

main distinction that current VQA systems [10, 11, 21, 33, 34, 130] are focused on reasoning pro-

cess and mainly designed to choose answers from a given candidate answer set, which is not quite

related to the natural language generation. Several popular methods for each subtask are shown

in Table 4.

6.2 Data

6.2.1 Image Caption. The literature review of the image caption datasets is shown below.

Flickr30k. [94] contains 31,783 images collected from Flickr. Most of these images depict humans

performing various activities. Each image is paired with 5 crowd-sourced captions.

COCO. [65] is the largest image captioning dataset, containing 82,783, 40,504 and 40,775 images

for training, validation and test respectively. This dataset is more challenging, since most images

contain multiple objects in the context of complex scenes. Each image has 5 human annotated

captions.
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Table 4. From Image to Text Generation

Task Model Description

Image Caption

Show and Tell [129] CNN + LSTM

BUTD [1] Faster-RCNN + LSTM

Knowing When to Look [71] CNN + LSTM

Exploring Visual Relationship for Image Captioning [149] Faster-RCNN + LSTM + GCN

Self-Critical Sequence Training [104] CNN + LSTM + RL

Auto-Encoding Scene Graphs [148] CNN + LSTM + GCN + RL

OFA [132] Transformer + Multimodal

Video Caption

LRCN [22] CNN + LSTM

S2VT [128] CNN + LSTM + Knowledge

Dense Caption Events [140] CNN + LSTM + Daps

Masked Transformer [160] CNN + TCN + Transformer

Hierarchical Reinforcement Learning [131] CNN + LSTM + RL

Adversarial Inference [88] CNN + LSTM + Discriminator

VideoBERT Pretrain [121] CNN + BERT

ActBERT Pretrain [161] CNN + BERT + Multi-task Learning

ClipBERT [52] CNN + BERT + Clip Sampling

UniViLM [73] Transformer + Multimodal

Visual Storytelling

Informative Visual Storytelling [55] CNN + GRU

Knowledgeable Storyteller [147] CNN + GRU + Graph

Composite Reward [40] CNN + RNN + MLE

KAGS [56] CNN + RNN + KG

Visual Genome. [50] is composed of dense annotations of objects, attributes, and relationships

within each image to learn thesemodels. Specifically, this dataset contains over 108K imageswhere

each image has an average of 35 objects, 26 attributes, and 21 pairwise relationships between

objects.

6.2.2 Video Caption. There are mainly three popular datasets for video caption as shown below.

MSR-VTT. [142] is the most widely used video caption dataset, which contains 7,180 videos of

20 categories. This is created by collecting 41.2 hours of 10K web video clips from a commercial

video search engine.

Charades. [114] is collected with a focus on common household activities using the Hollywood

in Homes approach. This dataset contains 9,848 videos with 66,500 annotations describing 157

actions.

ActivityNet. [49] is a large dataset that connects videos to a series of temporally annotated sen-

tences. Each sentence describes what occurs in an unique segment of a video. Specifically, Acitvi-

tyNet contains 20k videos with 100k sentence-level description.

6.2.3 Visual Storytelling. The following two datasets are widely used for visual storytelling.

VIST. [42] is themost widely used dataset for visual storytelling. It contains 10,032 visual albums

with 50,136 stories. Each story contains five narrative sentences, corresponding to five grounded

images respectively.

VideoStory. [32] contains 20k videos posted publicly on a social media platform amounting to

396 hours of video with 123k sentences.
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6.3 Method

6.3.1 Image Captioning. Image captioning aims to generate a description of the given image.

The Show-Tell model [129] proposed an encoder-decoder based framework that encodes images

into feature vectors with Convolution Neural Networks (CNN), and decodes the feature vectors

into words with Recurrent Neural Networks (RNN). To obtain the fine-grained visual concepts,

attention-based image captioning model [71] was proposed to ground words with the correspond-

ing part of imaging. Considering the fact that region aware feature better fits the human visual

system, Anderson et al. [1] Propose a recognized baseline called Bottom-Up-Top-Down (BUTD)

for image caption. The BUTD is composed of two LSTM layers. The first LSTM layer is designed

to capture the top-down visual attention model, while the second LSTM layer is regarded as a lan-

guagemodel. Given the mean-pooled image feature v, a word embeddingmatrix,4 , and a one-hot

encoding ΠC of the input word at time C we could obtain the output h1C as:

h
1
C = LSTM

( [
h
2
C−1, v,,4ΠC

]
,h1C−1

)
, (90)

and the normalized attention weight 08,C can be represented by the following formulations:

08,C = w
)
0 tanh

(
,E0v8 +,ℎ0h

1
C

)
, (91)

" C = so�max (aC ) , (92)

The attended image feature used as input to the language LSTM is calculated as a convex combina-

tion of all input features as ÊC =
∑ 
8=1 U8,CE8 . The input to the language model LSTM consists of the

attended image feature, concatenatedwith the output of the attention LSTM, given byh2C =
[
v̂C ,h

1
C

]
.

Using the notation ~1:) to refer to a sequence of words, at each time step t the conditional distri-

bution over possible output words is given by:

? (~C | ~1:C−1) = so�max
(
,?h

2
C + b?

)
, (93)

The distribution over complete output sequences is calculated as the product of conditional distri-

butions:

? (~1:) ) =
)∏

C=1

? (~C | ~1:C−1) . (94)

To reduce exposure bias andmetric mismatching in sequential training, notable efforts are made

to optimise non-differentiable metrics using reinforcement learning [68, 104, 144]. To further boost

accuracy, detected semantic concepts [29, 139, 150] are adopted in captioning framework. A more

structured representation over concepts calling scene graph is further explored [148, 149] in image

captioning which can take advantage of detected objects and their relationships. Instead of using

a fully detected scene graph to improve captioning accuracy, Chen et al. [14] propose to employ

Abstract Scene Graph as control signal to generate intention-aware and diverse image captions.

With the progress of multimodal representation learning, Wang et al. [132] propose the OFA,

a unified multimodal pretrained model that can be applied in all modalities and various tasks.

The OFA is simple yet effective, and it achieves new state-of-the-art performance on the kinds of

multimodal tasks, such as image captioning, text-to-image generation, and VQA.

6.3.2 Video Caption. The aim of video caption is to describe or summarize a video in natural

language. It is a non-trivial task for computers since it is difficult to select the useful visual fea-

tures from a video clip and describe what’s happening in a way that obeys the common sense of

humanity.

The currently prevailing architecture for video caption is composed of a CNN-like visual encoder

and a RNN-like linguistic decoder. Donahue et al. [22] design the Long-term Recurrent Convec-

tional Networks (LRCNs) that is both temporally and spatially deep. After that, Venugopalan et al.
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[128] introduce the S2VT, a Seq2Seq approach for video to text with the knowledge from text cor-

pora. Krishna et al. [49] propose a captioning module that uses contextual information from past

and future events to capture the dependencies between the events in a video. However, Krishna et

al. [49] fails to take advantage of language to benefit event proposal with the co-training diagram.

Thus, Zhou et al. [160] propose a video caption framework that produces proposal and description

simultaneously. To describe a video with multiple fine-grained actions, Wang et al. [131] propose a

hierarchical reinforcement learning framework that a high-level agent learns to design sub-goals

and a low-level worker recognizes the primitive actions to fulfill the sub-goal. By introducing the

discriminator that considers visual relevance to the video, language diversity & fluency, and coher-

ence across sentences, Park et al. [88] generate more accuracy video descriptions. To resolve the

dilemma that encoders of vision-language tasks are not trained end to end, Lei et al. [52] propose

ClipBERT, a framework that applies the sparse sampling to use a few sampled clips to achieves bet-

ter performance. Additionally, with the rise of multimodal learning, Luo et al. [73] propose UniVL,

a unified multimodal pre-training model for vedio captioning. The UniVL consists of four compo-

nents (i.e., two encoders for single-modal, a cross-modal encoder and a decoder) and is pre-trained

with five tasks, including language understanding and generation tasks. The highlight of UniVL

is that it uses both understanding and generative tasks for cross-modal pre-training, leading to its

state-of-the-art performance on video captioning.

Recent years, self-supervised learning has become increasingly important with its power to

leverage the abundance of unlabeled data. Sun et al. [121] propose VideoBERT to learn bidirectional

joint distributions over sequences of visual and linguistic tokens without any explicit supervision.

Zhu et al. [161] propose ActNet, which models global and local visual cues for fine-grained visual

and linguistic relation learning.

6.3.3 Visual Storytelling. Visual Storytelling not only needs to identify the correlation between

objects in a single picture, but also Need to identify and learn the logical relationship between

consecutive sequential images. In practice, Visual Storytelling is prone to problems such as single

narrative words, rigid sentences, incoherent context logic, and lack of emotion in story descrip-

tions. aims at generating a coherent and reasonable story with a series of images [42]. To deal

with the issue that Visual Storytelling usually focus on generating general description rather than

the details of meaningful visual contents, Li et al. [55] propose to mine the cross-modal rules to

assistant the concept inference. Yang et al. [147] present a commonsense-driven generative model

to introduce crucial commonsense from the external knowledge base for visual storytelling. Due

to the limitation of maximum likelihood estimation on training, the majority of existing models

encourage high resemblance to texts in the training database, which makes the description overly

rigid and lack in diverse expressions. Therefore, Mo et al. [81] cast the task as a reinforcement

learning task and propose an Adversarial All-in-one Learning (AAL) framework to learn a reward

model, which simultaneously incorporates the information of all images in the photo stream and

all texts in the paragraph, and optimize a generative model with the estimated reward. Tomake the

Visual Storytelling model topic adaptively, Li et al. [55] introduce a gradient-based meta-learning

algorithm. Conventional storytelling approaches usually focused on optimizing metrics such as

BLEU, ROUGE and CIDEr. In this paper, Hu et al. [40] revisit the issue from a different perspective,

by delving into what defines a natural and thematically coherent story. In addition, considering

the inability of previous methods to explore latent information beyond the image and thus fail to

capture consistent dependencies from the global representation, Li et al. [56] propose the KAGS,

a knowledge-enriched attention network with group-wise semantic model which achieves new

state-of-the-art performance with respect to both objective and subjective evaluation metrics.
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7 NLG EVALUATION METRICS

In the research field of Artificial Intelligence, the evaluation metrics for models of kinds of tasks

have always been the focus of attention for a long time, and the same is true in the fields of NLP

[119]. In this section, we mainly introduce several automatic evaluation metrics for NLG, which

can be divided into two categories: untrained evaluation metrics, and machine-learned evaluation

metrics [12].

7.1 Untrained Evaluation Metrics

This category of metric is most widely used in the NLG community since it is easy to be imple-

mented and does not involve additional training cost, which compares machine-generated texts

to human-generated ones simply based on content overlap, string distance or lexical diversity. We

mainly introduce five metrics of such category, including BLEU, ROUGE, METEOR, Distinct, and

Self-BLEU.

The Bilingual Evaluation Understudy (BLEU) metric [87] is used to calculate the co-occurrence

frequency of two sentences based on the weighted average of matched n-gram phrases. BLEU was

originally used to evaluate machine translation, and has been used for more and more NLG tasks,

such as question generation [158], topic-to-essay generation [146], text style transfer [72], and

dialogue generation [4, 64].

The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric [62] is used to measure

the similarity between the generated and reference texts based on the recall score. This metric is

commonly used in the field of text summarization, including four types: ROUGE-n measures the

n-gram co-occurrence statistics; ROUGE-l measures the longest common subsequence; ROUGE-w

measures the weighted longest common subsequence; ROUGE-s measures the skip-bigram co-

occurrence statistics. ROUGE has also been widely applied to other NLG tasks such as question

generation [158], distractor generation [98], and dialogue generation [4].

The Metric for Evaluation of Translation with Explicit Ordering (METEOR) metric [3] is an

improvement over BLEU to address several weaknesses including four aspects: lack of recall, use

of higher order n-grams, lack of explicit word-matching between translation and reference, and

use of geometric averaging of n-grams, which is calculated by the harmonic mean of the unigram

precision and recall. In addition to machine translation, METEOR has also been widely used in

text summarization [96], question generation [158], and dialogue generation [4].

The Distinct metric [54] is used to measure the diversity of response sequences for dialogue

generation. It calculates the number of distinct unigrams and bigrams in generated responses to

reflect the diversity degree. To avoid preference for long sequences, the value is scaled by the total

number of generated tokens.

The Self-BLEU metric [162] is also a metric to measure the diversity. Different from BLEU that

only evaluates the similarity between two sentences, Self-BLEU is used to measure the resem-

blance degree between one sentence (hypothesis) and the rest sentences (reference) in a generated

collection. It first calculates the BLEU score of every generated sentence against other sentences,

then the average BLEU score is defined as the Self-BLEU score of the document, where a lower

Self-BLEU score implies higher diversity.

7.2 Machine-learned Evaluation Metrics

This category of metric is based on machine-learned models to simulate human judges, which

evaluates the similarity betweenmachine-generated texts or betweenmachine-generated texts and

human-generated ones. We mainly introduce three metrics of such category, containing ADEM,

BLEURT, and BERTScore.
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TheAutomatic Dialogue EvaluationModel (ADEM)metric [69] is used to automatically evaluate

the quality of dialogue responses, where the evaluation model is trained in a semi-supervised man-

ner with a hierarchical recurrent neural network (RNN) to predict the response scores. Specifically,

given the dialogue context c, model response r̂, and reference response r encoded by a hierarchical

RNN, the predicted score can be calculated by:

B2>A4 = (c⊤" r̂ + r⊤# r̂ − U)/V, (95)

where ", # are learnable matrices initialized by the identity, and U, V are scalar constants to ini-

tialize the predicted scores in range [1,5].

The Bilingual Evaluation Understudy with Representations from Transformers (BLEURT) met-

ric [111] is based on BERT [18] with a novel pre-training scheme. Before fine-tuning BERT on

rating data to predict human rating scores, a pre-training method is applied, where BERT is pre-

trained on a large number of synthetic sentence pairs on several lexical- and semantic-level super-

vision signals in a multi-task manner. This pre-training process is important and can improve the

robustness to quality drifts of generation systems.

The BERTScore metric [156] uses pre-trained contextual embeddings from BERT to measure

the similarity between two sentences. Given the contextual embeddings of a reference sentence G

and a candidate sentence Ĝ , namely x, x̂, the recall, precision, and F1 scores are calculated by:

'BERT =

1

|G |
∑

G8 ∈G
max
Ĝ 9 ∈Ĝ

x⊤8 x̂9 , (96)

%BERT =

1

|Ĝ |
∑

Ĝ 9 ∈Ĝ
max
G8 ∈G

x⊤8 x̂9 , (97)

�BERT = 2
%BERT · 'BERT
%BERT + 'BERT

, (98)

where the recall is calculated by matching each token in G to a token in Ĝ , the precision is obtained

by matching each token in Ĝ to a token G , and greedy matching is adopted to match the most

similar tokens.

7.3 Human Evaluation Metrics

For generation, human evaluation focuses on the explanation of two key matters: diversity and

creativity, i.e., the capacity of varying their texts in form and emphasis to fit an enormous range of

speaking situations, and the potential to express any object or relation as a natural language text. In

further detail, human evaluation is implemented to evaluate on three aspects: Grammar (whether

a generated sentence is fluent without grammatical error), Faithful (whether the output is faithful

to input), and Coherent (whether a sentence is logically coherent and the order of expression is in

line with human writing habits). This needs to organize the capabilities of the people who work

on generation in field of computational linguistics and artificial intelligence.

8 PROBLEMS AND CHALLENGES

In this section, we primarily point out four problems and challenges that deserve to be tackled and

investigated further, including the evaluation method, external knowledge engagement, control-

lable generation, and multimodal scenarios.

Evaluation Method. Evaluation method is still an important and open research area for the field

of NLG. As pointed by [17], traditional untrained evaluation metrics do not always correlate well

with human judgements, while recent machine-learned metrics need a large amount of human
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annotations and not always have good transferability. Hence, there still exists a significant amount

of challenges and improvement room in this area.

External Knowledge Engagement. Considering the limited information lying in the original texts

and the difficulty of generating satisfying sentences [151], it is crucial to incorporate external

knowledge to enhance the performance. Therefore, how to obtain useful and correlative knowl-

edge and how to effectively incorporate the knowledge still deserve to be investigated.

Controllable Generation. Another challenging problem is how to generate controllable natural

language as we would like it to be. Although a great body of work has been done in this area to

study how to perform various kinds of controlled text generation, there is still a lack of uniform

paradigms and standards about it. More importantly, how to measure the controllability of the

generated text remains an open question, for different controlled contents.

Multimodal Scenarios. Recently, research on various applications in multimodal scenarios have

gradually attractedmore andmore attention fromNLP researchers. How to apply natural language

generation methods in multimodal scenarios has been a worthy problem and promising direction.

It is reasonable to believe that the utilization of rich multimodal information into natural language

generation tasks will surely further advance the progress and development in this direction.

9 CONCLUSIONS

Over the past few years, natural language generation tasks and methods have become important

and indispensable in natural language processing. This progress owes to advances in various deep

learning-based methods. This article describes deep learning research on natural language genera-

tion with a historical perspective, emphasizing the special character of the problems to be solved. It

begins by contrasting generation with language understanding, establishing basic concepts about

the tasks, datasets, and the deep learning methods through it. A section of evaluation metrics

from the output of generation systems follows, showing what kinds of performance are possible

and where the difficulties are. Finally, some open problems are suggested to indicate the major

challenges and future research directions of natural language generation.
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