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Abstract

We present a scalable “Trustworthy Container Repository” (TCR) infrastructure for the
storage of software container images, such as those used by Docker. Using an authenticated
data structure based on index-ordered Merkle trees (IOMTs), TCR aims to provide assurances
of 1) Integrity, 2) Availability, and 3) Confidentiality to its users, whose containers are stored
in an untrusted environment. Trust within the TCR architecture is rooted in a low-complexity,
tamper-resistant trusted module. The use of IOMTs allows such a module to efficiently track
a virtually unlimited number of container images, and thus provide the desired assurances for
the system’s users. Using a simulated version of the proposed system, we demonstrate the
scalability of platform by showing logarithmic time complexity up to 225 (32 million) container
images. This paper presents both algorithmic and proof-of-concept software implementations
of the proposed TCR infrastructure.

1 Introduction

Recent years have seen the rise of “containerization” [34] software such as Docker, which facilitates
the modular development and deployment of software applications. Such software often depends on
a centralized repository (e.g. Docker Hub), for storing and distributing container images. Because
containers contain code that is executed on client machines, these centralized repositories present
an appealing attack vector to potential bad actors. Malicious entities can use the implicit trust
placed in the hardware, software, and even the administrative personnel of such repository services
as an starting point for conducting attacks against the users of the service. As a result, there is a
need for a trustworthy architecture capable of provisioning explicit trust in the operations of the
repository.

In a traditional repository service, users communicate with a untrusted repository service S ,
which provides the basic services of a repository server: creating containers, modifying containers,
and retrieving contents. Under such a model, users have no way of verifying that S behaves
properly; i.e. S could tamper with the data entrusted to it, and/or improperly deny service by
falsely claiming that requested containers do not exist, and users would have no way to learn of the
misbehavior.

In order to address such limitations in ensuring trust in traditional models, we present a Trust-
worthy Container Repository (TCR) infrastructure. TCR bootstraps security assurances from a
low-complexity trusted module T, and amplifies its trustworthiness using an authenticated data
structure towards the operation of the untrusted repository service S . The TCR model uses a
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variant of the classic Merkle tree, an index-ordered Merkle tree (IOMT), as an authenticated data
structure to efficiently track a large number of container records. Based on the model, assurances
of container integrity, availability, and confidentiality are provided to users of S .

TCR differs from traditional models by introducing the trusted module T, which acts as a “gate-
keeper.” The presence of T ensures that all operations on the container repository are properly
authenticated, and that misbehavior by S is immediately obvious to users. Users do not communi-
cate directly with the trusted module T. Instead, S is expected to act as an intermediary between
users and T to provide validity of its operations. All user requests are relayed by S to T, which
uses simple cryptographic methods and self-memoranda (certificates) to perform operations on the
IOMT data structure. These methods allow T to track the state of the container repository, given
by the root of the IOMT stored within its trusted, tamper-resistant boundary. This system ensures
detection of any illegal operations on the state of the repository, even though almost all data is
stored by the untrusted service S.

Responses to requests from users are given by S and are verifiable with a proof of trust from T
(users and T share keys for verification). For example, for query requests (content and information
retrieval), T certifies that the information returned by S is up-to-date and reflects the true state of
the container repository. T also certifies that update requests (container creation and modification),
which modify the state of the repository, are reflected in the internal state of the module. The TCR
model ensures T will refuse to issue proofs of trust for information inconsistent with the latest
repository state.

As a part of this paper, we also develop and evaluate a proof-of-concept implementation for the
TCR infrastructure. The implementation is based on a client-server architecture, and simulates the
operation of T and S . A SQL-based database is used to maintain the container records and IOMT
data structure. The evaluation explores the performance scalability of the model in large container
repositories (1024 - 32 million containers).

The paper is organized as follows. We begin by discussing containerization and Docker in
Section 2.1, and index-ordered Merkle trees (IOMTs), a key component of TCR, in Section 2.3. We
review related work in the field and outline the current security issues of Docker Hub in Section
3. In Section 4, we present a high-level overview of TCR, describing the interaction of the various
entities involved. Descriptions of its various components and the underlying algorithms are given
in Sections 4.3–4.5. In Section 5, we present our preliminary implementation of TCR. Section 6
discusses the observed performance results (Section 6.1) and evaluates the security analysis (6.2)
of the implemented model. Finally, in Section 7, we summarize our contributions and lay out
possibilities for future work.

2 Background

2.1 Containerization and Docker

Containerization [34, 9] is the use of lightweight virtualization architectures for software packag-
ing and deployment. Similar to a traditional virtual machine (VM), containerization combines
application code (say, for a web server), libraries, and configuration files into an object called an
image. Images can then used to instantiate containers, which are virtualized environments in which
applications can run.

Whereas a traditional VM must virtualize the entire software stack from the operating system
up, containers are extremely lightweight because they provide a higher level of virtualization: while
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VMs provide low-level, instruction-scale virtualization, containers run with only a thin layer of ab-
straction separating them from the host operating system, reducing execution overhead. Addition-
ally, container images are smaller than similar VM images, making them more efficient, space-wise,
for moving applications between cloud providers.

Docker [20] is currently one of the most widely used models of containerization. Docker contain-
ers use operating system features such as Linux Containers (LXC) [3] and Control Groups (cgroups)
[15] to provide the necessary isolation between containers and the host machine.

Within the Docker architecture, a file called a Dockerfile is used to build a Docker container
image. More specifically, the Dockerfile is a build file containing all instruction/commands to be
executed in sequence in order to create a new container image. The file contains all the necessary
code, library, data, and initialization scripts to enable the container operation. Deployment of
the container image for operation is done using a Composefile (or stack file), which contains
instructions (written in YAML) for configuration of container application services. The Dockerfile,
Composefile, and the corresponding container image form the key components of a container based
repository in our approach.

2.2 Merkle Tree

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 la lb lc ld le lf

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve vf

v01 v23 v45 v67 v89 vab vcd vef

v03 v47 v8b vcf

v07 v8f

ξ

Figure 1: A binary Merkle tree with 16 leaves (h = 4). The complementary nodes of the leaf record
l6 are v7, v45, v03 and v8f (shaded).

A Merkle tree [21], also called a “hash tree”, is a tree data structure whose internal nodes are
the cryptographic hash (h(), where h can be SHA-1, SHA-2, etc.) of its child nodes. A common
variant of the Merkle tree is the binary tree, in which each internal node has a maximum of two
child nodes. In such a tree of height h, the data structure consists of N = 2h leaf nodes at the
lowest level. Figure 1 shows an example Merkle tree of height h = 4 with 24 = 16 leaf nodes.

Levels of a tree are numbered with the lowest level (with the most nodes) as L = 0, and the root
level (with only one node) as L = h. We draw an important distinction between leaf nodes and leaf
records: a node of the tree at the level L = 0 is termed a leaf node, and has the value vn = h(ln),
where ln is the value of the node’s corresponding leaf record. In an regular Merkle tree, the form of
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leaf records is unconstrained; however, in an index-ordered Merkle tree (IOMT), described below,
they are constrained to a fixed form.

In order to calculate the value of the parent nodes, a function Fparent() (Algorithm 1) takes the
values of the two child nodes (vi and vj) and their orientation in the tree (e.g. orderi = LEFT ,
meaning first value vi is the left child) as its parameters.

If both vi and vj are nonzero, the value of the parent is then given by the hash (h()) of the
concatenated child node values. However, if one or more of the child nodes has a zero value, the
parent retains the value of the other node (which might also be zero). (Giving the hash value of all
zeros a special meaning is safe because it is computationally infeasible to find a preimage v so that
h(v) = 0 with a well-designed h().)

In other words, each node at level L (where 0 ≤ L ≤ h) is mapped to its parent at level L+ 1,
ending in the root of the tree ξ. The root node can be viewed as a single, compact cryptographic
commitment to all nodes and leaf records of the tree.

Algorithm 1 Merkle tree parent calculation

1: procedure Fparent(vi, vj , orderi)
2: if vi = 0 then
3: return vj . vj can be zero as well
4: else if vj = 0 then
5: return vi
6: else . Both vi and vj nonzero
7: if orderi = LEFT then
8: return h(vi ‖ vj)
9: else if orderi = RIGHT then

10: return h(vj ‖ vi)

One of the key properties of a Merkle tree is that every individual leaf record can be verified
(proving that it exists in a tree with a given root) or updated with h+ 1 operations performed on
the tree. Since N = 2h, these operations take O(logN) time.

More specifically, for a verification of a leaf record, a set of complementary nodes from the tree
can be provided to map its value to the root ξ. In our example tree (Figure 1), for verification of
the leaf record l6, the set of complementary nodes is

[Xcomp] = [(v7, RIGHT ), (v45, LEFT ), (v03, LEFT ), (v8f , RIGHT )].

The root of the tree can then be calculated with the operations, v6 = h(l6); v67 = h(v6 ‖
v7); v47 = h(v45 ‖ v67); v07 = h(v03 ‖ v47); and finally ξ = h(v07 ‖ v8f ).

Function Fmt() (Algorithm 2) describes the general method for calculating the root of a Merkle
tree. The input parameters given to it are the leaf node X, the list of its complementary nodes
[Xcomp], and a list [Xorders] indicating the ordering of the nodes.

2.3 Index-Ordered Merkle Tree

Although a ordinary Merkle tree enables trust in the values of the leaves with a single root ξ, where ξ
can be stored in a secure boundary to mitigate manipulation, it is unable to prevent malicious replay
attacks; a malicious entity could keep duplicate instances of leaves and replay incorrect information
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Algorithm 2 Merkle tree root calculation procedure

1: procedure Fmt(X, [Xcomp], [Xorders])
2: Y ← X
3: for I in [1..Xcomp] do
4: Y ← Fparent([Xcomp]I , Y, [Xorders]I)

5: return Y

based on older leaf values. An ordinary Merkle tree is also limited in its ability to prove the non-
existence of leaves — proving that a certain leaf record does not exist under a given root ξ — which
in turn leads to limited assurances for retrieval queries, including a lack of authenticated denial.

An index-ordered Merkle tree (IOMT) [23, 25] corrects this last deficiency of ordinary Merkle
trees by treating leaf records as a virtual circularly-linked list, which facilitates proofs of non-
existence while maintaining other desirable properties of Merkle trees, such as logarithmic up-
date/verification time.

All leaf records in an IOMT are a 3-tuple consisting of the fields (IDX, IDXNext, V AL). IDX
and IDXNext are the index of the current leaf record and the index of next linked leaf record,
respectively. V AL is a fixed-length (a hash or monotonic counter) value kept as a succinct repre-
sentation of a record with the index IDX.

A leaf record of the form (a, aNext, 0), where V AL = 0, is a special case called a placeholder.
Placeholders are used for record initialization or proving uninitialized indices.

(3, 4, ω3) (1, 3, ω1) (4, 7, ω4) (7, 1, ω7)

v0 v1 v2 v3

v01 v23

ξ

Figure 2: An index-ordered Merkle tree (IOMT) with 4 leaves (h = 2).

Integrity of the IOMT is maintained by requiring that IDX < IDXNext for all leaf records,
except for the leaf record with the greatest index IDXmax, in which case IDXNext = IDXmin,
ensuring the circular linkage of the virtual list. For a tree with only one leaf record, IDXmax =
IDXmin, so IDX = IDXNext for the single record in the tree.

Figure 2 shows an example IOMT consisting of four leaves with a height h = 2. The leaf records
of the IOMT are linked in the order (3, 4, ω3) → (4, 7, ω4) → (7, 1, ω7) → (1, 3, ω1) → (3, 4, ω3).
Note that the ordering of leaf records within the tree is insignificant; only the virtual ordering by
their indices matters.

In an IOMT, a leaf record (b, bNext, ωb) is said to enclose another index a if and only if

(b < a < bNext) ∨ (bNext <= b < a) ∨ (a < bNext <= b).
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In the remainder of this paper, we take the more compact form “(b, bNext) encloses a” to be
synonymous with the above expression.

In our example tree (Figure 2), the existence of the encloser leaf (4, 7, ω4) proves that no leaf
record exists with an index between 4 and 7; in other words, proving that the leaf record (4, 7, ω4)
exists in an IOMT with root ξ implicitly proves the non-existence of leaf records with the indices
enclosed by (4, 7) in the same tree. More generally, encloser leaves can be used to prove that no
leaf with a certain index exists in an IOMT; i.e. the existence of a leaf (b, bNext, ωb) in an IOMT
implies the non-existence of any leaf records with indices enclosed by (b, bNext). The model of
encloser leaves and their ability to prove leaf non-existence is useful for generating authenticated
denial responses in the event that a record requested by a user does not exist.

3 Related Work

One of the earliest works in the field of maintaining a data repository’s integrity is the Secure Un-
trusted Data Repository, or SUNDR [18]. The authors describe the property of “fork consistency”
to detect integrity and consistency issues in data stored securely on untrusted servers. SUNDR fo-
cuses heavily on maximizing the concurrency of individual operations, and increasing the efficiency
of the system as a whole. The SUNDR model does not include a trusted entity, which leads to
some inherent limitations; as a result, SUNDR enables an attack known as forking, in which it is
possible for a malicious server to deceive two users into seeing separate and inconsistent views of
the same repository.

Ensuring security assurances for cloud or remote data storage services using authenticated data-
structure has been a widely studied domain. Erway et. al. [10] have proposed the use of a
authenticated dictionary based on rank information to prove data possession. Privacy preservation
of stored data using audit logs [37, 36] and cryptographic models [14] have been used to provide
confidentiality assurances. In the work done by Bowers et.al. [1], cryptographic models in a
distributed system were used and evaluated to provide “proofs of retrievability” towards availability
and integrity of stored data. Access control mechanisms have also been explored by various authors
[38, 35] to enable sharing of private data across remote servers. Several other security challenges
(such as search, range query, security overhead, etc.) in such cloud based environment have also
been identified by Ren et.al. [29].

One such approach is the use of the authenticated data structure — Merkle trees [21], which
been applied to a wide range of applications to ensure integrity and trust of data publication [5],
authentication schemes [17, 2], tamper evident logging [4], database integrity [19, 16, 27], and
routing [13], among others. In the study done by Sarmenta et al. [31], Merkle trees, in conjunction
with a trusted platform module (TPM), were used for creating virtual monotonic counters for
count-limited objects. These objects can then be used to provide update/utilization assurance for
virtual payments, data storage, encryption/decryption keys, etc.

A similar approach was proposed by Tate et al. [33], in which the use of a TPM in a system
for providing distributed data storage to multiple users was developed and evaluated. Similar to
[31], it relies on the use of a ordinary Merkle tree (or hash tree) to maintain a collection of virtual
monotonic counters, with the root of the tree being protected the TPM. While both approaches are
able to provide assurances of integrity due to the use of a Merkle tree, they are unable to provide
the desirable feature of authenticated denial — proofs that certain data does not exist within the
repository.
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In order to address the limitations above, an IOMT-based approach with a trusted boundary for
root storage was proposed in the prior work done by Mohanty et al. [22, 24]. The paper outlines a
theoretical system known as “Cloud Storage Assurance Architecture” (CSAA), which uses IOMT-
based virtual monotonic counters and self-memoranda to address the issue of secure cloud file
storage. This paper is an extension of this previous work; the IOMT authenticated data structure
has been modified for use with container images, DockerF ile, and ComposeF ile, resulting in the
“Trustworthy Container Repository” (TCR) infrastructure. We present a preliminary version of
TCR for experimental evaluation of the performance characteristics of the proposed model, and
compare it with a similar (simulated) non-secure container repository.

A comparative container repository to the proposed TCR architecture is the Docker Hub [8].
It is one of the most widely used centralized repository for hosting docker images. Developers
frequently reuse other pre-built container images to avoid building an image from scratch, and any
user can create an account to host their own container images. While the repository contains,
pre-built images, the repository contains no information about the build code Dockerfile and the
stack file Composefile. The trust in the container images is based on the reputation of the user or
the developer community responsible for building it. As a result, a study conducted by Gummaraju
et al. [12] show almost 30% of the container images hosted on Docker Hub contain vulnerabilities
which make them highly susceptible to security attacks. Similar study of security vulnerabilities
by Shu et al. [32], found even the trusted official and community based repositories contain more
than 180 vulnerabilities on average.

Most recently, in a 2018 security incident [11] a malicious user (with a legitimately created
account) pushed several images masquerading as database servers, with cryptocurrency-mining
malware injected, to Docker Hub. Although this incident did not involve a compromise of Docker
Hub itself, the malicious images involved were still pulled several million times before being taken
down. While this incident was limited to only 17 container images, a compromise of Docker Hub,
which could allow the backdooring of every image stored in the repository, could be far worse.

Docker Hub includes aims to mitigate some of the security issues by using a “Content Trust”
[7] mechanism to ensure all images the Docker client works with have been signed by a trusted
publisher, and are the most recent/freshest version available. Within the system, each publisher (of
container images) holds a root key, termed the “Offline key”, and several “Tagging keys” (signed by
the “Offline key’), one for each container image [28]. Whenever an image is first retrieved/“pulled”
from the hub, the Docker client remembers the public key associated with the image’s publisher,
and uses it to authenticate all future connections to the hub (similar to host authentication used
in the SSH protocol). All image content is signed with the image-specific Tagging key [6].

Freshness of container data is ensured by a system called “The Update Framework” (TUF) [30].
TUF relies on a metadata file that is periodically signed by a “Timestamp key” (in turn signed by
the Offline key). It is the responsibility of the users to request the servers to periodically poll the
repository server to check for new updates and obtain the most recent images.

While the security of “Content Trust” provision certain security measures for collaborative
container development, however, its utility is limited by its opt-in nature (integrity checking is
disabled by default) and complex key management system, which requires periodic re-signing with a
“Timestamp key”. It also fails to address the transparency needed to provide trust in the repository
service. More specifically, the trust in the service operation is not assured with malicious entities
at service administrative level capable of performing unwarranted modifications on the container
images. Dockerfile build files are not tracked within the service, which provide explicit information
of the content within the containers and can reduce container vulnerability by ensuring the upto data
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software is used in its creation. Similarly, verification of Composefile can enable proper utilization
of container images in deployment. Additionally, Content Trust cannot provide authenticated
denials, making improper denial-of-service a possibility.

4 Trustworthy Container Repository

We present a Trustworthy Container Repository (TCR) infrastructure that facilitates the secure
storage of software container images, such as those used by Docker, by leveraging the utility of
IOMTs and the trustworthiness of a trusted module. The TCR infrastructure consists of three
primary entities: 1) a trusted module — T; 2) an untrusted service provider — S ; and 3) any
number of participating users — U .

The TCR infrastructure provides the following assurances, based on the security assumptions
that 1) the module T is trustworthy; 2) the hash function chosen as h() is preimage-resistant; and
3) there is secure, verifiable communication between entities (based on prior secret-sharing):

• Integrity

I1 - S cannot pass off tampered container images as legitimate.

I2 - S cannot pass off tampered build code (Dockerfile) as legitimate.

I3 - S cannot pass off tampered deployment code (Docker Compose file) as legitimate.

I4 - Only U with sufficient access privileges (Uacc >= 2) can modify a container.

• Availability

A1 - S cannot deny existence of container records if they exist (authenticated denial).

A2 - S cannot deny existence of container versions if they exist.

• Confidentiality

C1 - S cannot view the contents of sensitive containers.

C2 - S cannot modify ACLs without an authorized request from a user with sufficient
permissions (Uacc = 3).

• Consistency

F1 - S cannot deceive users into seeing inconsistent views of the same repository.

4.1 TCR Entities and Security Model

The role of the service provider S is to maintain an authenticated data structure (ADS), handle
user requests, and communicate with the trusted module T. S can be comprised of any server-grade
hardware, with no resource constraints on its capabilities.

The service provider S is assumed to be completely untrusted. It can tamper with user data,
improperly deny service, and share encrypted container images with unauthorized users. However,
the TCR infrastructure ensures that such misbehavior by S is either detectable by users, or that
it cannot reveal sensitive information; e.g. if S claims that a container does not exist, it will be
unable to produce the proof of trust from T that the requesting user expects when denied service,
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alerting the user to the misbehavior. Also, if a user chooses to encrypt a sensitive container, S will
be unable to learn anything from the image it is given, because it is protected by encryption.

The module T is the only trusted entity in the TCR infrastructure. T consists of tamper-
resistant, non-volatile memory and a cryptographic processor. The non-volatile memory is used to
store a copy of the container IOMT root ξ, user keys (shared secrets between users and the module),
and the module secret χ, which is a secret value randomly generated upon module initialization.
Any tampering with T will lead to the immediate erasure of all sensitive values, leaving S unable
to provide proofs of trust. Although the root ξ is a public value (S can compute it), the copy of ξ
stored in T is protected, and can only be modified by the cryptographic procedures executed inside
T.

The cryptographic processor in T can be used to generate certificates, a form of self-memoranda
(see Section 4.3). The processor also has the capability to execute simple cryptographic proce-
dures: Transformation Procedures (updates to the module IOMT root) and Integrity Verification
Procedures (functionality for providing authenticated proofs of container integrity to U).

TCR does not prescribe exactly how T is to be implemented. It could be a resource limited
hardware module (similar to a Trusted Platform Module [26]), or something else entirely — the
implementation details are outside the scope of this paper. We simply assume that T provides the
necessary functionality (security and trust).

The trustworthiness of the module T is crucial for the security of TCR infrastructure as a
whole. Therefore, it is desirable to minimize the required functionality of T, easing verification
that the module is free from any undesired functionality (i.e. a backdoor). Additionally, a small
feature set allows for better shielding from physical introspection, and in turn, increased security
for the sensitive data stored in the module. To this end, TCR only requires that T perform a
fixed set of relatively simple operations: the protected storage of small amounts of data, and simple
cryptography based on a hash function, h().

4.2 Data Structures

The TCR infrastructure uses an authenticated data structure (ADS), based on IOMTs, in order
to provide the aforementioned assurances. Figure 3 shows the design of the data structure, which
consists of four major components — 1) the Container IOMT; 2) the Container Record table; 3)
the Container Version Table; and 4) Container Access Control IOMTs. All four components of the
ADS are mapped, directly or indirectly, to the root of the Container IOMT (denoted ξ), which is
stored within trusted module T, and can only be modified by TCR algorithms (described in later
sections).

ξ is the root of the container IOMT, in which each leaf record of the IOMT represents a single
container identified by unique index. The leaf record also contains the next index the leaf is linked
to, and an update counter tracking any updates that where performed on the record (and in turn,
on the container). The leaf record of the container IOMT is of the following form:

CLi =< IDX, IDXNext
IDX , CTR >, (1)

where IDX = Container Index; IDXNext
IDX = Next Container Index; CTR = Container Counter.

The hash value (h(CLi)) representative of the leaf record is kept as the record’s corresponding leaf
node in the container IOMT (1 ≤ i ≤ n; n is the maximum number of leaves in the IOMT).

The container index (IDX) acts as the index (primary key) for container records stored in a
SQL database. Each record is of the form
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Figure 3: Overview of TCR data structures

CRi =< CIDX , CCTR, CV ER, CHMAC , Cα >, (2)

where CIDX and CCTR are from the container leaf record; CV ER is a counter for the number
of versions of the container; CHMAC = HMAC([CIDX , CCTR, CV ER, Cα], χ) is a self-certificate
issued by T, verifying the authenticity of the container record; Cα is the root of the corresponding
container access control IOMT.

Every container has a corresponding access control IOMT, which contains an access level for
each collaborating user for a container. The leaf records of the access control IOMT are of the form

ULj =< UIDX , U
Next
IDX , a >, (3)

where UIDX is the user index; UNextIDX is the next user index; and a ∈ {0, 1, 2, 3} is the access
level of the user, with 0 = no access, 1 = read-only, 2 = read/write, and 3 = read/write + ACL
modify.

A newly initialized container (with the index CIDX) has CV ER = 0, meaning that it has no
version history; all other containers have a value of CV ER >= 1, implying the existence of all
versions 1 <= V ER <= CV ER. Each version reflects an update made to the contents of the
container, and is described by a version record. The service provider S maintains such records in
a database with the following form:

V Rj =< CIDX , V ER, µcs, σs, λ, VHMAC >, (4)

CIDX is the container index; V ER is the version number (1 <= V ER <= CV ER); µcs =
h(σ ‖ CIDX) is a commitment to the container encryption secret σ and the index CIDX ; σs is the
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encrypted container secret; λ = h(HCI ‖ HBC ‖ HCF ‖ µcs) is a commitment to the container
image hash (HCI), the container build code hash (HBC), the container configuration file (HCF ),
and the container encryption commitment (µcs); VHMAC = HMAC([CIDX , V ER, λ], χ) is the
module self-certificate (issued by T) for the version record.

In addition to the four data structures listed above, the service provider S is expected to store
the contents of the container image files (TAR archives in the case of Docker), associated build code
(Dockerfiles), and configuration (Docker Compose files).

4.3 TCR Certificates

One of the key capabilities of the trusted module T is its ability to issue certificates, a form of
self-memoranda. Certificates serve to either prove some fact about an IOMT, or prove that a
record with certain values exists. A certificate consists of two parts — 1) the memorandum, whose
contents Cert are dependent on the certificate type, and 2) a hash message authentication code
(HMAC) ρ, computed as:

ρ = HMAC(Cert, χ).

where Cert = [type, [v1, v2, · · · , vn]] with v1 · · · vn being the values in the certificate and type
being the type of certificate issued; χ the module secret.

We will use the notation Cert.v1 to refer to specific fields of a certificate. We will also use the
representation X → X ′, suggesting an old node X update to new node X ′, and similarly Y → Y ′,
representing an old root of IOMT Y update to new root Y ′.

The TCR infrastructure requires T to generate six different types of certificates. Each type of
certificate either proves some fact about an IOMT (a root-node mapping or node-record update)
or authenticates a container or version record.

• Node Update (NU)

Input (X - Old node, X ′ - New node, [Xcomp] - List of complementary nodes to X)

Output ρNU = HMAC([type = NU, [X,Y,X ′, Y ′]], χ)

Description NU certificates, issued by Fnu() (Algorithm 3), verify that some IOMT node X
is a child node of an IOMT with root Y , and the transformation X → X ′ will result in a
change of IOMT root Y → Y ′. The procedure uses the Merkle tree calculation procedure
Fmt() (Algorithm 2) to calculate the root node values, using the set of complementary
nodes given by [Xcomp].

• Record Verify (RV)

Input (ρNU , CertNU , < IDX, IDXNext, V AL >, IDX ′)

Output ρRV = HMAC([type = RV, [IDX, V AL, Y ]], χ)

Description The RV certificate procedure (Algorithm 4) maps the value in a node to its
IOMT root. Using a NU certificate of the form CertNU = [NU, [X,Y,X ′, Y ′]] (where
X = X ′ and Y = Y ′), it maps the values IDX, V AL to IOMT root Y .

Optionally, an index IDX ′ such that (IDX, IDXNext) encloses IDX ′ can be passed
to the function. In this case, a second certificate CertRV 2 is generated of the form
[RV, [IDX ′, 0, Y ]], proving no leaf record with index IDX ′ exists within the IOMT with
root Y .
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Algorithm 3 Node Update (NU) certificate generation procedure

1: procedure Fnu(X,X ′, [Xcomp])
2: Y ← fmt(X, [Xcomp]) . Calculate old root
3: if X = X ′ then
4: Y ′ ← Y . if X = X ′, then Y = Y ′

5: else
6: Y ′ ← fmt(X

′, [Xcomp]) . Update to new root Y ′

7: CertNU ← [NU, [X,Y,X ′, Y ′]]
8: return ρNU ← HMAC(Cert, χ) . Sign with module secret χ

Algorithm 4 Record Verify (RV) certificate generation procedure

1: procedure Frv(ρNU , CertNU , < IDX, IDXNext, V AL >, IDX ′)
2: X ← h(IDX ‖ IDXNext ‖ V AL)
3: if CertNU .X 6= X then return NULL

4: Y ← CertNU .Y
5: CertRV 1 ← [RV, [IDX, V AL, Y ]]
6: if (IDX, IDXNext) encloses IDX ′ then . Enclosure verification.
7: CertRV 2 ← [RV, [IDX ′, 0, Y ]] . No node with index IDX ′ exists under root Y .
8: return ρRV ← HMAC((CertRV 1, CertRV 2), χ)
9: else

10: return ρRV ← HMAC(CertRV 1, χ)

• Record Update (RU)

Input (ρNU , Certnu, < IDX, IDXNext, V AL >, V AL′)

Output ρRU = HMAC([type = RU, [IDX, V AL, Y, V AL′, Y ′]], χ)

Description A RU certificate (Algorithm 5) describes the effect that changing the value
field in an IOMT leaf < IDX, IDXNext, V AL > from V AL→ V AL′ has on the root Y
(Y → Y ′).

Using a node update certificate (CertNU and ρNU ) the procedure Fru() (Algorithm 5)
verifies that X = h(IDX ‖ IDXNext ‖ V AL) and X ′ = h(IDX ‖ IDXNext ‖ V AL′),
before returning a certificate of the form CertRU = [type = RU, [IDX, V AL, Y, V AL′, Y ′]].

• Root Equivalence (EQ)

Input (CertNU1, ρNU1, CertNU2, ρNU2, < IDX, IDXNext, V ALIDX >, IDX ′)

Output ρEQ = HMAC([type = EQ, [Y, Y ′′]], χ)

Description An EQ certificate (Algorithm 6) verifies that two IOMT root values Y and Y ′′

are equivalent roots — Y ′′ contains only an additional placeholder (a leaf with a value
V AL = 0) inserted into the tree.

Inserting a placeholder with index IDX ′ into an IOMT with root Y requires that there
be an encloser leaf < IDX, IDX ′, V ALIDX >, such that (IDX, IDXNext) encloses
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Algorithm 5 Record Update (RU) certificate generation procedure

1: procedure Fru(ρNU , Certnu, < IDX, IDXNext, V AL >, V AL′)
2: X ← h(IDX ‖ IDXNext ‖ V AL)
3: X ′ ← h(IDX ‖ IDXNext ‖ V AL′)
4: if (CertNU .X 6= X ∨ Certnu.X ′ 6= X ′) then return NULL

5: Y ← CertNU .Y
6: Y ′ ← CertNU .Y
7: CertRU ← [RU, [IDX, V AL, Y, V AL′, Y ′]]
8: return ρRU ← HMAC(CertRU , χ)

IDX ′ (see Section 2.3). Given such a leaf, it takes two updates to the tree to insert a
placeholder: the first update changes the value of the IDXNext field of the encloser leaf
to IDX ′ (such that the first leaf is then of the form < IDX, IDX ′, V ALIDX >). Then,
the placeholder node < IDX ′, IDXNext, 0 > is inserted, linked to the original IDXNext

to maintain the the integrity of the linked list.

These updates can be verified using two node update certificates — 1) CertNU1 =
[NU, [X1, Y1, X

′
1, Y

′
1 ]], where X1 = h(IDX ‖ IDXNext ‖ V ALIDX) and X ′

1 = h(IDX ‖
IDX ′ ‖ V ALIDX); and 2) CertNU2 = [NU, [X2, Y2, X

′
2, Y

′
2 ]], where X2 = 0 and X ′

2 =
h(IDX ′ ‖ IDXNext ‖ 0).

Given these two certificates, the module T can infer that Y and Y ′′ are equivalent roots,
with Y ′′ having an additional placeholder node with index IDX ′ inserted. The module
can then issue a certificate of the form [EQ, [Y, Y ′′]].

Algorithm 6 Root Equivalence (EQ) certificate generation procedure

1: procedure Feq(CertNU1, ρNU1, CertNU2, ρNU2, < IDX, IDXNext, V ALIDX >, IDX ′)
2: if ¬((IDX, IDXNext) encloses IDX ′) then
3: return CertNULL . Not an encloser leaf

4: X1 = h(IDX ‖ IDXNext ‖ V ALIDX) . Hash of old and new encloser leaf
5: X ′

1 = h(IDX ‖ IDX ′ ‖ V ALIDX)
6: X2 ← 0 . Initially no placeholder
7: X ′

2 = h(IDX ′ ‖ IDXNext ‖ 0)
8: if CertNU1.X1 6= X1 ∨ CertNU1.X

′
1 6= X ′

1 ∨
CertNU2.X2 6= X2 ∨ CertNU2.X

′
2 6= X ′

2 then
9: return NULL . Certificate node values do not match.

10: if CertNU1.Y
′
1 6= CertNU2.Y2 then return NULL . Certificates do no form a chain.

11: Y ← CertNU1.Y1
12: Y ′′ ← CertNU2.Y

′
2

13: CertEQ ← [EQ, [Y, Y ′′]]
14: return ρRU ← HMAC(CertEQ, χ)

• Container Record (CR)

Input (CertRV , ρRV , CertRU , ρRU , CertCR, ρCR, IDX, µ,CCTR, CV ER, v = Calpha)
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Output ρCR = HMAC([CR, [IDX,CCTR, CV ER, Cα]], χ)

Description A container certificate is generated to map the container record to the root of
the IOMT ξ. Container records are created by Ctp procedure (Algorithm 8) based on an
user request. The resulting updates to the container record of form [IDX, µ,CCTR, CV ER, Calpha]

A CR certificate has the fields [index, counter, version, α].

• Version Record (VR)

Input (CertRV , ρRV , CertRU , ρRU , CertCR, ρCR, IDX, µ,CCTR, CV ER, v)

Output ρV R = HMAC([V R, [IDX, V ER, λ]], χ)

Description Version record verifies a version (CV ER) of a container along with its index
(IDX) and container hash/secret commitment λ to the root of the IOMT. Similar to
the container record Ctp procedure (Algorithm 8) creates the version record based on a
user request.

4.4 TCR Procedures

TCR procedures use the generated certificates (and generate CR and VR certificates) to update the
stored root in the module (reflecting the changes to the datastructure), retrieve verified information,
and ensure proper storage / retrieval of container secrets. These operations are based on user U
requests to the service provider S . S utilzes the capabilities of T to perform updates and retrieve
information verified by it. The description of the procedures is as follows:

• Placeholder Insertion/Deletion: Fph()

Input (CertEQ, ρEQ)

Output None

Description Fph() (Algorithm 7) accepts an EQ certificate of the form [[Y, Y ′], EQ]. If the
current root of container IOMT ξ = Y (stored by T), then the root ξ is toggled to Y ′.
Otherwise, if ξ = Y ′, the module root is instead changed to Y . The procedure is invoked
by the service provider S in order to insert a placeholder into the container IOMT, and
does not require any form of authentication, i.e. anyone with access to the module is
allowed to execute it, since it does not affect the contents of the container repository.

Algorithm 7 Placeholder insert/delete procedure

1: procedure Fph(ρEQ, CertEQ)
2: if ξ = CertEQ.Y then
3: ξ ← CertEQ.Y

′

4: else if ξ = CertEQ.Y
′ then

5: ξ ← CertEQ.Y

• Container Operation: Ftp()

Input ([type, IDX,CCTR, v], µ, CertRV , ρRV , CertRU , ρRU , CertCR, ρCR)
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Output CertCR, ρCR, CertV R, ρV R

Description Ftp() (Algorithm 8) handles user requests for container creation, container
updates, and ACL modification. The operations on the data structure are described
by a user request of the form [type, IDX,CCTR, v], where type distinguishes between
container and ACL updates, IDX is the index of the container to be modified, CCTR is
the current value of the container counter, and v = λ for container updates, or v = Cα
for ACL IOMT updates. The request is accompanied by the user’s signature, of the form

µ = HMAC([type, IDX,CCTR, v],Ki),

where Ki is the shared secret between the user and T.

Container creation is treated as an ACL update with CCTR = 0. In this case, the input
to the Ftp() consists of only a RU certificate of the form CertRU = [RU, [IDX, 0, Y =
ξ, 1, Y ′ = ξ′]]. The certificate verifies that no container with index IDX exists in the
repository with root Y = ξ, and that the root must be updated from Y → Y ′ to reflect
inserting a container leaf with CCTR = 1. Successful completion of the operation issues
a certificate of form CertCR = [[IDX,CCTR = 1, CV ER = 0, Cα = v], CR]. T will also
update its internal IOMT root ξ → ξ′.

For container updates and ACL updates, three certificates are required as input — 1) a
RU certificate of the form CertRU = [RU, [IDX = CIDX , V AL = CCTR, Y = ξ, V AL′ =
CCTR + 1, Y ′ = ξ′]]; 2) a CR certificate of the form [[IDX,CCTR, CV ER, Cα], CR]; and
3) a RV certificate of the form [RV, [IDX = UIDX , V AL = UACC , Y = Cα]]. The
module will use the value UACC to determine whether the user is allowed to execute the
request (it requires UACC >= 2 for a container update (read/write access), or UACC = 3
for an ACL update). All successful requests return a new CR certificate reflecting the
incremented counter value C ′

CTR, and T updates its internal IOMT root ξ → ξ′.

The CR certificate returned by a container update will have the value CV ER = CV ER+1.
For an ACL update, the certificate will have an altered Cα value but the version counter
CV ER will remain unchanged. T also creates a VR certificate of the form CertV R =
[V R, [IDX,Cert.CV ER + 1, Cλ]] for container updates. The service S is responsible for
storing all returned certificates and their corresponding MACs.

T acknowledges all successful requests with the value

µack = HMAC([type, IDX,CCTR, v],Ki),

which is conveyed to the requesting user to prove request completion. Unsuccessful
requests are not acknowledged by the module. Instead, the user must use the output of
Fverify() determine why the request was denied.

• Version Information Verification: Fverify()

Input (CertRV 1, ρRV 1, CertRV 2, ρRV 2, CertCR, ρCR, CertV R, ρV R, ˆCV ER, δ)

Output Successful Retrieve - {IDX,CCTR, CV ER, ˆCV ER, Cα, λ, δ}Ki
OR Authenticated De-

nial - {IDX, δ}Ki

15



Algorithm 8 Container repository modification procedure

1: procedure Ftp([type, IDX,CCTR, v], µ, CertRV , ρRV , CertRU , ρRU , CertCR, ρCR)
2: if CertRU .X + 1 6= CertRU .X

′ then return NULL . CertRU does not reflect
incrementing counter

3: if CertRU .Y 6= ξ then return NULL . Current root does not match.

4: µack ← HMAC([type, IDX,CCTR, v, 0],Ki) . Successful request response
5: if type = ACL ∧ CCTR = 0 then . Container Create.
6: ξ ← CertRU .Y

′

7: CertCR ← [CR, [IDX, 1, 0, v]]
8: return [CertCR, ρCR = HMAC(CertCR, ξ), µack]

9: CCTR ← CertCR.CCTR
10: if CertRU .IDX 6= CertCR.IDX ∨ CertRU .X 6= CertCR.CCTR ∨

CertCR.Cα 6= CertRV .Y ∨ CertRV .X 6= UIDX ∨
CertRV .Y 6= ξ ∨ CCTR 6= C ′

CTR then
11: return NULL . Inconsistent certificates
12: UACC ← CertRV .V AL
13: if type = CONTAINER ∧ UACC >= 2 then . Container Update.
14: CV ER ← CertCR.CV ER
15: ξ ← CertRU .Y

′

16: Cert′CR ← [CR, [IDX,CCTR + 1, CV ER + 1, Cα = CertCR.Cα]]
17: CertV R ← [V R, [IDX,CV ER + 1, v]]
18: return [Cert′CR, ρCR = HMAC(Cert′CR, ξ), CertV R, ρV R =

HMAC(CertV R, ξ)], µack]
19: else if type = ACL ∧ UACC >= 3 then . ACL Update.
20: Cert′CR ← [CR, [IDX,CCTR + 1, CV ER + 1, Cα = v]]
21: return [Cert′CR, ρCR = HMAC(Cert′CR, ξ)], µack]
22: else

return NULL . User has insufficient permissions
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Description Fverify() (Algorithm 9) allows a user ui to retrieve authenticated information
on any container version. The function succeeds if the requested container exists and the
user has sufficient permissions (a >= 1); otherwise it will issue an authenticated denial
response.

The input to Fverify() consists of certificates, the requested version number ˆCV ER (spec-
ified by the requesting user), and a nonce δ to prevent replay attacks. The certificates
must be provided by S based off the requested container and version number. As a
special case, the user can specify ˆCV ER = 0, which is synonymous with ˆCV ER = CV ER,
where CV ER is the maximum version number of the requested container. However, S
not T, is expected to handle this case by treating it as if ˆCV ER = CV ER.

At a minimum, Fverify() requires one RV certificate of the form CertRV = [RV, [IDX,CCTR, ξ]],
where ξ is the current module root. If CCTR = 0, the module can infer that the container
does not exist, and no further certificates are necessary; T will return an authenticated
denial response of the form {IDX, δ}Ki

, where IDX is the index of the requested con-
tainer, δ is the nonce specified in the query, and Ki is the shared secret.

If CCTR 6= 0, implying the existence of the container, then all four certificates (CertRV 1,
CertRV 2, CertCR, CertV R) are necessary. CertCR = [CR, [IDX,CCTR, CV ER, Cα]] in-
dicates the latest ACL root Cα and maximum version CV ER, and must be consistent with
CertRV 1. CertRV 2 = [RV, [UIDX , UACC , Cα]] indicates the access level UACC of the user,
where its root must match that specified in CertCR. CertV R = [V R, [IDX, ˆCV ER, λ]]
ties λ to the requested version number and container index.

With these four certificates, T can conclude that the information it has been given is
consistent with the module root ξ. Then, depending on the user’s access level UACC , T
will either issue an authenticated denial of the form {IDX, δ}Ki if UACC = 0, or a re-
sponse of the form {IDX,CCTR, CV ER, ˆCV ER, Cα, λ, δ}Ki

, certifying the authenticity of
the values associated with the container. This response from T convinces the requesting
user that the container exists, and also indicates the λ value for the requested version.

The authenticated denial response returned by Fverify() when a requested container does
not exist (i.e. CCTR = 0) is identical to the response when the requested container exists,
but the user has insufficient access rights (UACC = 0). Assuming that S cooperates (i.e.
it does not reveal the reason for the denial), then users are unable to distinguish between
the two cases.

• Encryption Key Storage: Fst()

Input (IDX,UIDX , σ
′, µcs)

Output σs

Description Fst() (Algorithm 10) ensures proper storage of the container secret (σ) by
encrypting it with the module T secret χ. A user relays the intended secret to the T, by
XORing (exclusive-OR) the key with the HMAC() of container index IDX, its counter
CCTR, and shared secret Ki as follows:

σ′ = σ ⊕HMAC([IDX,CCTR],Ki). (5)
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Algorithm 9 Container verification

1: procedure Fverify(CertRV 1, ρRV 1, CertRV 2, ρRV 2, CertCR, ρCR, CertV R, ρV R, ˆCV ER, δ)
2: if CertRV 1.Y 6= ξ ∨ CertCR.CCTR 6= CertRV 1.CCTR then
3: return NULL . Invalid certificates
4: IDX ← CertRV 1.IDX . Container IOMT
5: CCTR ← CertRV 1.CCTR
6: UACC ← CertRV 2.UACC . ACL IOMT
7: if CCTR = 0 ∨ UACC = 0 then
8: return {IDX, δ}Ki

. Authenticated denial

9: if ( ˆCV ER 6= CertV R.CV ER) ∨ (CertV R.Cα 6= CertRV 2.Cα) then
10: return NULL . Invalid Input

11: CCTR ← CertCR.CCTR
12: CV ER ← CertV R.CV ER
13: λ← CertV R.λ
14: return {IDX,CCTR, CV ER, ˆCV ER, Cα, λ, δ}Ki

The user also conveys a value µcs = h(IDX ‖ σ) along with σ′ for verification. Fst()
decrypts the encrypted secret, verifies it with µcs, and then re-encrypts with the module
key ξ and µcs for storage.

Algorithm 10 Encryption secret verification and storage

1: procedure Fst(IDX,UIDX , σ
′, µcs)

2: σ ← σ′ ⊕HMAC([IDX,CCTR],Ki) . Decrypt from user
3: if µcs 6= h(IDX ‖ σ) then return NULL . Check integrity

4: σs ← σ ⊕ h(µcs ‖ χ) . Re-encrypt using value only known to T
5: return σs . Return encrypted key for storage by S

• Encryption Key Retrieval: Frs()

Input (CertRV 1, ρRV 1, CertRV 2, ρRV 2, CertCR, ρCR, IDX, ˆCCTR, ˆCV ER, σs, µcs)

Output σu

Description Frs() (Algorithm 11) allows for the retrieval of encrypted secrets stored by
TCR. The request is for a container with index IDX, container counter ˆCCTR, and
version counter ˆCV ER. The module also requires three certificates to prove that a
user has sufficient access to a container — 1) RV certificate of the form CertRV =
[RV, [IDX,CCTR, ξ]], where ξ is the current module root; 2) CR certificate of the form
CertCR = [CR, [IDX,CCTR, CV ER, Cα]]; and 3) RV certificate of the form [RV, [UIDX , UACC , Cα]],
which indicates the user’s access level UACC . If the user has sufficient privileges (UACC >
0), the module will decrypt the secret σs and re-encrypt with the integrity pad (µcs)
known to the user (using the XOR operation, as in Algorithm 10).
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Algorithm 11 Encryption secret retrieval

1: procedure Frs(CertRV 1, ρRV 1, CertRV 2, ρRV 2, CertCR, ρCR, IDX, ˆCCTR, ˆCV ER, σs, µcs)
2: if (IDX 6= CertRV 1.IDX) ∨ (CCTR 6= CertRV 1.CCTR) ∨ (CV ER 6= CertCR.CV ER) then
3: return NULL . Invalid Request

4: if CertRV 2.UACC < 1 then return NULL . Improper Privileges

5: σ ← σs ⊕ h(µcs ‖ χ)
6: σ ← σs ⊕ h(µcs ‖ χ) . See Algorithm 10
7: if µcs 6= h(IDX ‖ σ) then return NULL . Secret invalid

8: σu ← σ ⊕ h(µcs ‖ Ki) . Encrypt for user (µcs is stored by S , but Ki is secret)
9: return σu

4.5 TCR Functionality

S responsible for maintaining the data structures described in Section 4.2: namely, 1) IOMT
describing the state of the container repository, 2) access control lists (in IOMT form) for each
container, and 3) the build code and compose files for each container version. Any operations
performed on the data structures needs to be verified by T, or else functionality will not be trusted by
the users U of the service. For the purpose, S interfaces with the module T to provide functionality
to container repository operation such as — 1) Creation, 2) Content update, 3) ACL modification,
4) Information retrieval, and 5) Content retrieval.

Every request received by S (from its users), it provides proof of its operation via T, which
verifies either that the request has been executed and reflected in the state of T (modification
requests), or that the information returned by S is fresh and authentic (query requests). The
responses are then relayed back to the users with HMAC() signed by the module using shared keys
Ki.

Requests related to container creation, update, and ACL modification, S to use the Ftp()
(Algorithm 8) interface exposed by T to modify the state of the container repository. Ftp() requires
that the values describing the request ([type, IDX,CCTR, CV ER]) be signed by the user secret Ki

(unknown to S). Acknowledgement to the request include the HMAC() of the request re-signed
using the shared user key by T.

For query requests, container information retrieval and content retrieval, S uses Fverify() (Al-
gorithm 9) and Frs() (Algorithm 11) respectively. Fverify() is invoked by S to provide module
T verified response to container existence, state, and update status to U . Frs() is used to return
container secrets to authenticated users, as the stored information by S is in encrypted format.
Neither type of query request (information or content retrieval) requires authentication from the
user.

Section 6 discusses the security implications of the functionality provided by TCR in relation
to the assurances provided in greater detail.

5 Experimental Setup

We explore the security and performance capabilities of the proposed TCR infrastructure with
a proof-of-concept implementation of the using a Client-Server architecture. Within the imple-
mentation, the service provider S operates a server based machine with storage - computational
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capabilities (for data and records) along with the the trusted module T. The clients in this case are
users U using client software C to submit request to S and verify its (and T’s) response.

In our software implementation of TCR, the functionality of S and T coexist as different modules
within the same monolithic program. The secure storage of module T is emulated as a file in the
server’s file system. Shared secrets between the user U and T are also pre-computed for ease of
implementation. While this experimental setup is not representative of a real-world environment,
where hardware-level boundaries would be present between S and T, the implementation allows
detailed characterization of the performance of the TCR infrastructure at different loads.

A key responsibility of S is to store the data, records, and data structure required by the TCR
infrastructure. While the data and records stored by S are no different than those of a general-
purpose repository server, the key difference lies in the storage of the IOMT data structure proposed
by TCR. For the purpose, we use a SQL database (SQLite) backed by an on-disk file, to persistently
store the container IOMT and its corresponding ACL IOMTs.

Every IOMT is initialized with a fixed height, specified by the parameter h = log(leaves). The
number of leaf records in the IOMT is given by:

leaves = 2h. (6)

The number of nodes in the tree is thus given by:

nodes = 2 ∗ leaves− 1 = 2h+1 − 1. (7)

An IOMT can then be represented by sequential arrays of leaf records and nodes. Leaf records
are simply numbered from left to right, with zero being the leftmost leaf record, and subsequent
leaves having sequential indices within the array. Nodes are ordered in a breadth-first, left-to-right
manner, starting with the root ξ, which is assigned the index iroot = 0. Calculations of the indices
for each of the nodes is given by the following:

ileftchild = 2iparent + 1 (8)

irightchild = 2iparent + 2 (9)

iparent =
bichild − 1c

2
(10)

where the index of the left child (ileftchild) and right child (irightchild) can be calculated if the
index of parent (iparent) is known. Similarly, index of parent can be calculated if the index of one
of their children (ichild) is known. Figure 4 shows an example representation of the array format
for nodes and leaves representation for an IOMT of height h = 3.

The array is used for in-memory representation towards fast population of the IOMT data
structure in our implementation. The in-memory representation of IOMTs uses a fixed amount of
space for every value of logleaves. The S allocates two arrays for each IOMT — one of size leaves
for storing the IOMT leaves, and the other of size nodes for storing the values of the IOMT nodes.
The total memory used is therefore:

sizeof(iomtleaf) ∗ 2logleaves + sizeof(hash) ∗ (2logleaves+1 − 1) (11)

For a more persistent representation, a SQLite database is used to store the array. Although
the representation consumes large amount of space compared to the in-memory layout, the space
requirement was reduced by only storing the indices for non-zero values, i.e. nodes which are not
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Figure 4: A Merkle tree with height h = 2 (Figure 4a), and its equivalent array representation
(Figures 4b–4c). Arrows in Figure 4b point to the parent of each node.

found in the database are assumed to have value zero. The implementation presents its advantages
in the case of sparse trees such as recently initialized IOMT, where most nodes have value 0.

Performance evaluation of the TCR architecture is done by recording time to completion of
various procedure calls for logleaves value of h = [10, 11, · · · , 25]. More specifically, the experimental
setup evaluates performance metrics of the TCR infrastructure for a repository containing 210 =
1024 to all the way upto 225 (32 million) containers stored in the service. A standard mock container
image of size 12KB, along with its build and compose code files were used in the simulation.

For each value of h, the database was populated with 2h −N records, where N = 500, in order
to simulate near full load to the repository. The resulting state of the module T was also updated
to reflect the state of the repository. In-memory arrays and calculations were used to pre-compute
the database records and module state prior to bulk insertion to the database. The pre-populated
database was then queried/updated for N = 500 operations to evaluate the functionality of — 1)
Create (Ftp()), 2) Update (Ftp()), 3) Information retrieve (Fverify()), 4) Encrypted update (Ftp()
and Fst()), and 5) Encrypted retrieve (Frs()).

A fine-grained (microsecond resolution) timing scheme was used to record duration for each of
the aforementioned operations and their subsequent function calls. Each function simulation was
repeated 25 times in order to remove any anomalous behaviour, and median operation times were
recorded. The following section (Section 6) describes the obtained results in greater detail.
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6 Results and Discussion

6.1 Performance Evaluation

Figures 5a-5f compare the performance of the preliminary TCR implementation described in Section
5, and a dummy unsecure repository. The graphs show average time per operation for the operations
of container 1) Creation, 2) Modification, and 3) Retrieval, performed on the repository at varying
container loads, given by the tree height h (n = 2h). Across all operations and h values (1024
to 32 million container records), we observe consistent O(log(n)) performance, demonstrating the
usability and scalability of the TCR architecture.

Container creation (Figure 5b) takes the greatest amount of time of all tested operations. A
worst-case absolute performance of 1.4 ms/operation was observed at a load of 225 containers. The
steps for container creation (times for each step are displayed in Figure 5a) are 1) generation of
an EQ certificate (Feq(), Algorithm 6); 2) insertion of a placeholder for the new container (Fph(),
Algorithm 7); 3) obtaining a RU certificate (Fru(), Algorithm 5); 4) root update by T (Ftp(),
Algorithm 8); and 5) updating service provider database records for the new container.

Compared to a dummy create (Figure 5b), where the insertion of a record to a unsecure repos-
itory takes O(1) time, due to a single database operation of insert), steps 1, 2, and 5 of the create
operation take large amounts of time. In step 1 (EQ certificate generation), the model has to look
up the complementary nodes (h + 1 nodes) necessary to perform mapping of an enclosure node
to the root node, which requires a database query. Step 2 requires a database update to insert
the IOMT leaf record representing the new container. Step 5 requires database updates to insert
the new record, increment its counter in the container IOMT, and copy its ACL IOMT into the
database. Our preliminary implementation of the database architecture, however, is not optimal
(especially for EQ certificate generation), and has potential for optimization.

The time taken for a modification request (Figure 5c) is broken down into five steps: 1) database
lookups for the record; 2) calculating the λ value associated with the new container version; 3)
obtaining a RU and RV certificate (Fru(), Algorithm 5 and Frv(), Algorithm 4, respectively); 4)
root update by T (Ftp(), Algorithm 8); and 5) update service provider database records. Similar to
container creation, the greatest time is taken by step 5, in which database records for the container
IOMT, version record table (insertion of a record for modified container), and the container table
(container counter) must be updated.

If the user chooses to encrypt the container image, step 5 also includes the time taken by T
to decrypt, verify, and re-encrypt a container encryption secret for storage (Fst(), Algorithm 11).
However, the time taken by this operation is minimal, and is not shown as a separate graph.

In comparison, dummy modify (Figure 5d) shows constant time for modification (even at dif-
ferent loads), due to the operation only requiring a single database update.

The performance of container retrieval is shown in Figure 5e. In our implementation, a “re-
trieval” is in fact broken down into two separate client-server requests: the first request retrieves
the contents of the container image and associated configuration files, and possibly retrieves the
encryption key through Frs() (Algorithm 11); this request, however, does not verify the authenticity
of any retrieved data. The second request uses Fverify() (Algorithm 9) to verify the authenticity
of data retrieved in the first request.

The times for both requests are shown stacked in one graph in Figure 5e. The steps shown
on the graph are 1) database lookups for the requested container and version record; 2) obtaining
two RV certificates (one for the container IOMT and one for the ACL IOMT); 3) encryption secret
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(b) Dummy Create

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

m
ea

n 
C

P
U

 ti
m

e 
pe

r 
op

er
at

io
n,

 la
st

 5
00

 o
ps

 (μ
s)

log(leaves)

Modify: Database update
Modify: Module request
Modify: Obtain RU, RV certificates
Modify: Calculate λ value
Modify: Record lookup

(c) Authenticated Modify (unencrypted)
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(d) Dummy Modify (unencrypted)
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(e) Authenticated Retrieve (unencrypted)
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Figure 5: Average server CPU time (including module time) taken for the last 500 operations by
both authenticated and dummy service providers, for various operations. Note the logarithmic
x-axis. Error bars show 95% confidence (+/- 1.96 SE), but may be too small to be visible.
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retrieval (Frs(), Algorithm 11); 4) database lookups (again); 5) obtaining two certificates (again);
and 6) module T verification (Fverify(), Algorithm 9).

Somewhat suboptimally, steps 1–2 and 3–5 are duplicates of each other, resulting from the use
of two separate requests for a retrieval query. Performing these steps only once and saving their
result would save about 0.2 ms/operation. However, even with this suboptimal implementation,
retrieval is still the fastest of all tested operations, with all times being less than 1 ms/operation.

Operations that either modify or retrieve an encrypted container image incur a slight perfor-
mance penalty over their unencrypted counterparts. Namely, a modification operation with an
encrypted container requires S to invoke the Fst() (Algorithm 10) function exposed by T in order
to process the encryption secret for storage, and an encrypted retrieval requires the use of Frs()
(Algorithm 11) to decrypt the encryption secret. However, the time taken by these additional steps
is minimal, so separate performance graphs for the two encrypted variants are not shown.

Across all operations, the observed performance demonstrates the exceptional scalability af-
forded by an IOMT-based design. All operations show nearly logarithmic server performance curves
with loads from 210 ≈ 103 up to 225 ≈ 107 container images. Compared to the 1.5 ms/operation
taken by container creation (at h = 25), modification and retrieval take 0.9 ms/operation and 0.8
ms/operation respectively. Container retrieval requests are, on average, the fastest operation —
this is desirable because a real-world repository usually sees far more retrievals than modifications.
This is due to caching of certificates within our databases, leading to constant time query even at
higher loads (h = 25). The certificates invalidate themselves once any updates are performed on
the repository and they can no longer be mapped to the root.

A key limitation of our performance evaluation is that the the service provider S and module
T are implemented in a single monolithic program. As, there is minimal communication latency
between them, while in a real world implementation, T may implemented as an application-specific
integrated circuit, which could be orders of magnitude slower than the hardware used by S . Thus,
the absolute performance figures (the exact time per operation) given by our results may not
be representative of real-world numbers. However, the performance trends should still hold —
operation times should still scale linearly with log(n), regardless of the absolute performance of T
or S .

6.2 TCR Infrastructure Security Assurances

As observed in the previous section, the TCR model is slower in performance comparison to a
regular un-secure repository. However, the key benefits of the TCR architecture lies in the security
assurances (Section4) provided by the model. Using the authenticated data structure of IOMTs and
leveraging the trusted operation of T, S the TCR model is able to provide following assurances:

• Integrity

I1, I2, I3 - S is prevented from successful tampering of any container-related data (image,
build code, or deployment code) by TCR model. While the data stored on the servers
of S can be modified, it would not be able to provide authenticated response of its
operations to the users of the service. Successful updates to the container repository
(including new container creation), can only be performed by a call to Ftp() (Algorithm 8)
function exposed by T. The certificates generated from Ftp() (container and version),
cannot be forged by the service provider S , as they are signed by the module T secret
χ. For a request from user U regarding the verification of the container updates, S
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can invoke the function Fverify() (Algorithm 9), which uses the certificates generated
by Ftp() in order to provide an authenticated response. The response is generated by T
and signed with the module-user secret Ki, thwarting any attempts by S to manipulate
the response. The response from Fverify() allows an authorized user to learn the λ value
associated with any version of a container, which is a commitment to all data related to
the container. Replay attacks are also prevented by the inclusion of the request nonce -
δ, in the response.

I4 - Only users U with sufficient privileges can update/modify container contents. Updates
to a container are possible using the Ftp(), where the access privileges (a >= 2 needed
for updates) of a user are verified using the ACL IOMT (root Cα). The function then
updates the module root ξ to reflect any changes a privileged user has performed on the
repository. Verification of the operation can again be performed using Fverify() function.

• Availability

A1 - S cannot deny the existence of any containers if they exist within the repository. The
enclosure , attributes of the IOMT data structure supports the functionality of authen-
ticated denial. Users can query the status of any container by its index through Fverify().
Using the CR certificate of an enclosing leaf (proving non-existence of a leaf index), the
module can prove the the users, that the requested container index does not exist, and
the response is consistent with the current module root ξ. The response to the user
contains the queried index and the nonce, signed with Ki to prevent manipulation by S .

A2 - S cannot deny the existence of container versions if they exist in TCR. The version
record of the containers, store the version counter CV ER, tracking any updates to the
container leading to creation of a new version. Using Fverify() function and CERTCR -
CERTV R certificates , the module T verifies if there exist any versions of the container
(CV ER > 0). That suggests, if CV ER > 0, all versions V ER such that 1 <= V ER <=
CV ER are implied to exist.

• Confidentiality

C1 - S cannot view the contents of the containers as they are encrypted by the key σ, which
is inaccessible to the service provider. The storage of σ is handled by the module function
call of Fst(), which encrypts the key using the module secret. The transmission of the
secret to the user is done by re-encrypting it with the shared key Ki by T, thereby S
does not have access to container secret at any point of time.

C2 - S cannot modify the access control list of the containers for malicious intentions. Only
an authorized request from an user with access privileges a >= 3 can be used to invoke
Ftp() for updates to ACL.

As shown, the attack surface of the TCR model is greatly reduced to the following components
— 1) the trusted hardware boundary of T, 2) operation of TCR functions, and 3) underlying
cryptographic functions. The smaller attack surface of the TCR model, enables ease of verifiablity
of such components in a complex system. Furthermore, the provable trust in simpler components
can then be amplified to assure trust in the entire system.
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7 Conclusion

With the current trend towards containerization for most server based software applications, an
unsecure centralized container repository opens new attack vectors for potential bad actors due to
the implicit trust currently placed in them. Current approaches for securing the distribution of
containers, such as Docker Hub, are insufficient due to the potential for improper denial-of-service
attacks, which are unacceptable for most mission-critical applications.

The TCR architecture we have presented in our paper aims to address these issues by assuring 1)
integrity, 2) availability, and 3) confidentiality, of container images stored in an untrusted service.
TCR specifies the requirement of a trusted module T, which provides users with the necessary
assurances regarding the repository. Using an authenticated data structure based on index-ordered
Merkle trees (IOMTs), and self-certificates/self-memoranda, TCR allows a resource-limited module
such as T to efficiently track a virtually unlimited number of containers.

Additionally, we outline a software implementation of the service provider in a open-source
repository [39] providing proof-of-concept operation of TCR. Performance of such an architecture
shows logarithmic server and module time complexity (for container creation, update, and retrieval)
at loads from 1024 up to 33, 554, 432 containers.

While the scalability of the TCR model shows promising results, it leaves quite a bit of room for
optimization of its database operations. We also plan to explore sub-tree based trust, where trust
within internal nodes can be provided without mapping the root everytime. Blockchain technology
will also be explored as a transaction based system for keeping track of all operations performed
on the repository. Transaction verification incentive in terms of cloud compute/storage credits can
be provided for user participation.
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