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GHOSM: Graph-based Hybrid Outline and Skeleton
Modelling for Shape Recognition

BASHEER ALWAELY∗, Dept. of Electronic and Electrical Engineering, The University of Sheffield, United

Kingdom

CHARITH ABHAYARATNE2, Dept. of Electronic and Electrical Engineering, The University of Sheffield,

United Kingdom

An efficient and accurate shape detection model plays a major role in many research areas.With the emergence

of more complex shapes in real life applications, shape recognition models need to capture the structure with

more effective features in order to achieve high accuracy rates for shape recognition. This paper presents a

new method for 2D/3D shape recognition based on graph spectral domain handcrafted features, which are

formulated by exploiting both an outline and a skeleton shape through the global outline and internal details.

A fully connected graph is generated over the shape outline to capture the global outline representation

while a hierarchically clustered graph with adaptive connectivity is formed on the skeleton to capture the

structural descriptions of the shape. We demonstrate the ability of the Fiedler vector to provide the graph

partitioning of the skeleton graph. The performance evaluation demonstrates the efficiency of the proposed

method compared to state-of-the-art studies with increments of 4.09%, 2.2% and 14.02% for 2D static hand

gestures, 2D shapes and 3D shapes, respectively.
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Object recognition; · Mathematics of computing→ Graphs and surfaces.
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1 INTRODUCTION

Shape recognition in images, video, point clouds and depth data has often played an important role

in computer vision and humanścomputer interaction (HCI) applications, such as, augmented reality

[47], hand gesture recognition [63], object manipulation robotics and object recognition [37]. Such

real-world applications are often required to distinguish challenging, high similar shapes in intricate

detail [35]. Success of shape recognition is heavily dependent on accurate shape representations

that consider shape appearance, structure, any occlusions and articulation. Such models also

require to recognise shapes from many image modalities, such as, 2D imaging, 3D point clouds

and depth imaging. Shape characterisation is often driven by features identified through modelling

shape outline and local protrusions. In addition to modeling outlines and protrusions, the skeletal
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1:2 B. Alwaely and C. Abhayaratne.

descriptions of shapes are well known to provide unique perceptual information for shape in object

recognition task [9].

Psychophysical and neuro-physiological studies have proposed a hypothesis for a structural

representation of shapes in terms of object structures, parts and their positional relationships [14,

18, 46] and the importance of local details for the visual perception of shapes [12, 64]. A recent study

on human vision suggests that the visual cortex perceives and understands shapes by representing

the shape boundary as a connected set of nodes [42]. Inspired by these human vision literature,

our recent work demonstrated how to consider a shape as a connected graph to capture both the

global outline [3] and the protrusions for shape representation[5].

Graphs have been proven to be an effective means for signals or data captured on an irregular

sampling grid. Graphs contain nodes connected by edges that form the relationship between

nodes. The structural characteristics of a graph is often modelled by considering the connectivity

of the graph nodes leading to so called graph spectral representations[53]. The graph spectral

bases depend on the relative measurements between the nodes, making them invariant to the

rotation changes. Graphs have the ability to represent shapes with a few nodes and maintain the

characteristic of shape. Graph-based representation usually generates graphs based on the shape

abstract to simulate the structure followed by either approximate or bipartite matching methods

that are used for identification [26]. This has posed many challenges, such as, finding an optimal

corresponding match between two graphs [23] and matching two graphs with different numbers

of nodes [52, 59].

Recently, handcrafted graph spectral domain features have been used to represent the boundary

of the shape [3, 5]. In contrast, the present manuscript considers the skeleton of the shape and

proposes new graph spectral domain features of the skeleton formulated as a graph for shape

recognition. With this, we propose Graph-based Hybrid Outline and Skeleton Modelling for Shape

Recognition (GHOSM). In this approach, we combine graph spectral domain handcrafted features

of the shape outline and graph spectral domain handcrafted features of the shape skeleton to

capture the global outline and the structural details of the shape, respectively. We show how the

graph spectral partitioning of the skeleton graph is exploited to capture structural details in the

skeleton-based features. Both outline and skeleton feature sets are concatenated to obtain the overall

feature vector followed by a machine learning process to train a classifier. The main contributions

of this paper include:

(1) Proposal of a new graph spectral domain representation of shape global outline and structural

features using the shape outline and the skeleton.

(2) Proposal of a new skeleton spectral partitioning methodology for obtaining shape structural

details.

Although there have been significant developments in recent years in deep learning techniques

for shape recognition [34, 40, 44, 56], they often result in high computational complexity models. In

this work, we propose handcrafted features as opposed to learned features, as they are more suitable

for small datasets with fast training, less computational complexity and competitive recognition

accuracy rates. The proposed method was evaluated compared to the state-of-the-art using eleven

publicly available datasets: four 2D static hand gesture shape datasets; three other 2D shape datasets;

and four 3D shape datasets, as shown in Section 4. The early results of this work, just focussing

only on static hand gesture recognition, was presented as a conference paper [4]. In contrast, our

argument in the current manuscript is that an appropriate graph partitioning method can enhance

the model performance and it can be further extended to be a general 2D/3D shape recognition

method. The main differences between the proposed method and our previous works are as follows:

Firstly, the present work proposes a new adaptive graph formulation method based on an entropy
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computation inspired energy function rather than the conditional connectivity as in [4] for graph

partitioning. Secondly, we extend the method to 2D/3D shape recognition in general as well as hand

gesture recognition. Thirdly, the performance evaluation is performed on a large number of various

datasets. We also provide more insight and details of the proposed method and its performance.

The rest of the paper is organised as follows: the related work of is discussed in Section 2.

Section 3 presents the proposed method in detail including graph concepts, the outline and skeleton

representations, and the proposed features. The performance evaluation of the proposed method

using publicly available shape datasets are presented in Section 4 followed by the conclusions

presented in Section 5.

2 RELATED WORK

In this section, we briefly present the existing works for shape recognition. 2D/3D shape recognition

works can be broadly categorized into five methods as follows:

2.1 Deep learning-based methods

Recent years have witnessed a trend of using deep learning techniques for shape recognition

such as Multi-view CNN [56], VoxNet [40], PointCNN [34], and PointNet [44]. Deep learning

methods provide high levels of local details as well as the general appearance through a sequence

of convolution layers. The initial layers produce a set of learned features of the shape abstract.

With more deep layers and filters, rich knowledge of local details such as edges and protrusions are

detected. Deep learning frameworks have demonstrated superior performance for object recognition

in general. However, they generally need multi-GPU support for training and relatively large

memory space to store the network parameters. This may pose an issue on emerging mobile device

platforms, which are limited in computational power and storage.

2.2 Model-based methods

These studies mainly aim to characterize the geometric details of the shape. They can be classified

into two types: skeleton and contour representations. In the skeleton-based representation, a tree

model is constructed to form a shape descriptor. Then, the similarity is measured based on tree

matching. The descriptors are created using short-cut [36], corresponding points [21], skeleton

pruning [10] and shape scaling [8]. In the contour-based representation, the outline is formed as a

closed curve. This is followed by feature extraction based on the boundaries. Different features

are used for the matching such as convex details [1], Fourier descriptors [68] and the chordal axis

transform [67]. The main drawback in model-based methods is that the local structural details are

omitted or completely ignored in these models.

2.3 View-based methods

View-based studies use different view angles to measure the similarity between shapes. Typical

view-based approaches include circle view signature (CVS) [29], multi-view depth line (MDLA)

[16], complex function [60] and top-bottom-side views [7]. The main issue in these approaches is

in computing the view similarity of different topology samples.

2.4 Feature-based methods

These methods rely on extracting a set of distinguishing features of the shapes. Feature-based

methods typically require more than one set of features to describe a complex structure. Such

features may include: a Scale Invariant Feature Transform (SIFT) [61], virtual retrieval [69], bag of

words [27], variable-dimensional local shape descriptors (VD-LSD) [57], point feature histogram

(PFH) [49] and fast point feature histogram (FPFH) [48].
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2.5 Graph-based methods

Graph-based models usually generate a graphical model to imitate the shape configuration with

low dimension. Approximate and bipartite methods are used to find the optimal map between two

set nodes. The approximate method explores the probability of correspondence mapping between

two samples through the weight matrix based on: polynomial characterization, center of clusters,

spectral relaxation, and the graph incident matrix [15, 19, 28, 71] respectively. Bipartite graph

matching is a fast approach where the edges are organized in such a way that no two edges share

the same end node. A bipartite graph matching is performed based on: shortest edges and largest

eigenvalue [32, 51] respectively. The main issue in graph-based approaches is the implementation

time, which makes these methods unsuitable for real-time applications. To address this issue,

this paper proposes feature-to-feature assignments, which are based on the geometric structure

properties of the objects. The proposed GHOSM combines both feature-based and graph-based

styles.

The graph node connectivity is defined as the number of nodes that one node is connected with.

The existing methods of connectivity can be categorized into three types:

(1) Special connectivity: for specific applications, nodes have their own connectivity without

ability to change it. For example, Minnesota graph [53], where the edges represent the road

network.

(2) Full connectivity: each node is connected to all nodes (N) in the graph [3], which means that

each node has N-1 connections. Fully connectivity provides a global information about the

structure because it preserves the topology of the shape in terms of relative measurement

(e.g., Euclidean distance).

(3) K-Nearest Neighbour: where vertices are linked to the nearest K-vertices, and each vertex

has K connections [24]. This type of connectivity is usually applied in a uniform grid such as

image-based applications.

In contrast to the existing work, in this paper, we formulate an adaptive graph connectivity to

fit the geometric details. This adaptive connectivity varies from sample to sample based on their

structural characteristics.

3 THE PROPOSED GHOSM METHODOLOGY

GHOSM begins by extracting the outline and skeleton of the shape. Candidate nodes are selected

from the contour to form a fully connected graph, which characterizes the topology of the shape. A

skeleton representation is employed to partition the shape into meaningful partitions, which helps

representing the structural details. At the last step, a combination of outline and skeleton features

are used to classify shapes using machine learning techniques. Details of each step are provided in

the following subsections. The full pipeline of the proposed method is shown in Fig. 1. In order

to provide full details of GHOSM, we start with the preliminaries of the graph signal processing

relevant to our work.

3.1 Graph preliminaries

Let G = {V, E,A} be an undirected graph, whereV is the set of 𝑁 vertices or nodes, E is the set

of edges and A is the adjacency matrix with edge weights. We consider E as the Euclidean distance

between nodes and it is invariant to rotation changes. We define the weight, A𝑖, 𝑗 corresponding to

an edge, E𝑖, 𝑗 connecting vertices 𝑖 and 𝑗 as follows:

A𝑖, 𝑗 =
|E (𝑖, 𝑗 ) |

1
𝑁

∑𝑁−1
𝑖=0

∑𝑁−1
𝑗=0 |E (𝑖, 𝑗 ) |

. (1)
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Input shape
Shape skeleton

(GNG) Graph partitioning Feature extraction Classification

Shape outline Graph generation
KNN

Fig. 1. The pipeline of shape representation includes outline and skeleton representations. The top path

shows the outline representation and graph generation to extract the features. The bottom path shows the

graph partitioning of the skeleton.

We define the signal r : V → R, where the 𝑖th component represents the Euclidean distance from

the center (0,0,0) to the vertex 𝑖 inV as follows:

r𝑖 =

√︃

𝑥2𝑖 + 𝑦
2
𝑖 + 𝑧

2
𝑖 , 𝑖 = 0, 1, ..., 𝑁 − 1. (2)

The combinatorial graph Laplacian matrix is then calculated as follows:

L = D − A, (3)

where D is the diagonal matrix of vertex degree, whose diagonal components are computed as

follows:

D(𝑖,𝑖 ) =

𝑁−1
∑︁

𝑗=0

A(𝑖, 𝑗 ) , 𝑖 = 0, 1, ..., 𝑁 − 1. (4)

We also define the symmetric normalized Laplacian matrix (L) and the geometric graph Laplacain

matrix (Γ) as follows:

L = D−
1
2 LD−

1
2 , (5)

Γ = D−1A. (6)

Since L is a symmetric positive semidefinete matrix, there exists a real unitary matrix, U, that

diagonalizes L, such that U𝑡LU = Λ = 𝑑𝑖𝑎𝑔{𝜆ℓ } is a non-negative diagonal matrix, leading to an

eigenvalue decomposition of L matrix as follows:

L = U𝑡
ΛU =

𝑁−1
∑︁

ℓ=0

𝜆ℓuℓu
𝑡
ℓ , (7)

where uℓ , the column vectors of U, are the set of orthonormal eigenvectors of L with corresponding

eigenvalues, 0 = 𝜆0 ≤ 𝜆1 ≤ 𝜆2 ... ≤ 𝜆𝑁−1 = 𝜆𝑚𝑎𝑥 .
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Fig. 2. 3D shape representation using GNG. A: node distribution inside the shape. B: our proposed

connectivity.

3.2 Outline and skeleton extraction

2D shapes are usually given as binary images in the data sets. The 2D shape outline is extracted

using an edge detector (e.g., Sobel filter). The resulting contour path, 𝑃 , is usually a smooth curve

with 𝑁 number of pixels, which is different according to the image size and resolution. To reduce

the complexity of the subsequent graph spectral decomposition, we choose 𝑛1 number of nodes,

where 𝑛1 < 𝑁 , to form a new down-sampled shape contour, 𝑃 , as follows (Fig. 2 A):

𝑃 (𝑘) = 𝑃

({

𝑁𝑘

𝑛1

})

, (8)

where 𝑘 = 0, 1, ..., 𝑛1−1 is the new node index and {.} is rounding to the nearest integer operator. 𝑃

is then used as the nodes of the 2D shape. Node ordering is implemented from left to right.

3.3 Outline-based features

3D shapes are often provided as a large point cloud to represent the surface (𝑃 ). In order to reduce

points in the 3D space and to generate a skeleton representation, we use the Growing Neural Gas

(GNG) algorithm [38]. GNG provides an excellent quality representation of the shape with a fewer

number of nodes. It is an unsupervised procedure to select the optimal nodes to represent the

shape based on the distance. Initially, GNG randomly selects two nodes (i.e., 𝑛2 = 2), where 𝑛2 is

the number of nodes generated by the GNG. Then, based on the probability density, it finds the

nearest node to both initial nodes in each iteration (𝑡 ) as follows:

𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛 | | 𝑤𝑖 (𝑡) − 𝑃𝑡 | |, 𝑖 = 0, 1, ..., 𝑛2 − 1, (9)

in which𝑤𝑖 represents the weights assigned to each node and 𝑠 represents the Euclidean distance.

The edges between these nodes will be updated based on the error function (𝑒), which represents

the difference in distance as follows:

𝑒𝑠 (𝑡 + 1) = 𝑒𝑠 (𝑡) + | | 𝑤𝑠 (𝑡) − 𝑃𝑡 | |
2. (10)

These steps are repeated until the 𝑛2 nodes are selected. Note that GNG produces unnecessary edges

outside the shape surface, for example, linking different fingers outside the geometric representation.

Therefore, we consider only coordinates of the nodes, ignoring the connected edges generated by

GNG. At the end of the training process, the GNG should satisfactorily cover the shape regions as

can be seen in Fig. 2. Since GNG selects nodes regularly based on an unsupervised optimization

process in a way that these nodes have a uniform distribution inside the shape, the noisy pixels are

removed by the GNG process. The node ordering is implemented from bottom to top, and then left

to right.
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Fig. 3. Graph spectral response (i.e., the second eigenvector) to different classes using dataset (d1). From left

to right, top row (classes 1-3) and the bottom row (classes 4-6) .

A fully connected graph is generated over the outline, and its spectral features are extracted for

classification. Our proposed method specifically exploits the graph eigenvectors and eigenvalues. To

show the importance of their characteristics, four experiments are conducted to evaluate different

parameters as follows:

3.3.1 The spectral response: The probability of algebraic connectivity is inversely proportional to

the weight𝐴𝑖 𝑗 of the edge connecting 𝑖 and 𝑗 in the adjacency matrix [53]. According to this concept,

we expect to see high values in the spectral bases of a set of nodes that are close together compared

to other regions. This can be clearly seen in the extended fingers in hand gesture recognition and

limbs or other small parts in shapes. Fig. 3 shows the second eigenvector of L for classes from 1-6

using the dataset d1 as an example (more details about the datasets are presnted in Section 4.1).

We can see that the peaks in the spectral bases refer to the extended fingers. The sequence of the

peaks and troughs helps to localize the extended fingers with respect to the full contour details.

This can be explored in classifying shape that have the same number of the extended parts.

3.3.2 The effect of noise: Graphs G and its noisy version G′ have similar eigenvectors U and U′,

respectively. Experimentally, the similarity between the graph (Fig. 4a) and its noisy version (Fig.

4b) can be shown to be higher in high-frequency eigenvectors (Fig. 4d). This is true because the
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Fig. 4. Understanding the effect of noise and size changes on graph spectral bases.

low-frequency bases correspond to the global outline representation and the high-frequency bases

correspond to the representation of more structural details with local variations [53]. In other

words, low-frequency bases are less affected by noise.
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3.3.3 Scale changes: Since the graph eigenvectors are presented as scalar values in the range of

[−1, 1] to reflect the relative measurements between nodes, they are not affected by linear changes.

Scaling changes can only be captured by the eigenvalues. For illustration, an experiment has been

conducted to test the graph eigenvalues (Fig. 4a) and those of a scaled graph (Fig. 4c). As expected,

these two graphs have exactly the same eigenvectors but different eigenvalues. In other words,

u(0) = u′
(0)
, u(1) = u′

(1)
, and so on. Fig. 4e shows the differences between the eigenvalues of G and

many of its scaled versions. The big difference always occurs in the last eigenvalues. Therefore, the

last 𝜆𝑛1−1 is used in GHOSM to capture the shape size.

3.3.4 The most effective bases: In the final experiment, we test the eigenvectors to determine the

most effective bases for shape representation. Each eigenvector is used as a feature to be classified.

As can be seen in Fig. 4f, a wide range of accuracy levels is achieved and it can be categorized into

four sections (A, B, C, D). Both normalized and geometric bases recognize shapes with a high level of

accuracy in the section A. Then, it drops towards the section D. The combinatorial version provides

inverse behavior and it reaches the highest accuracy in the section D. This experiment shows that

the A and D sections provide a significant contribution of the matching percentage, whereas, the

rest of the eigenvectors (i.e., sections B and C) show lower range of accuracy. Therefore, this paper

employs a certain range of the bases to eliminate inefficient eigenvectors for shape recognition.

To address the ambiguity of the sign, each eigenvector (uℓ ) is updated as follows:

u(ℓ ) =

{

u(ℓ ) 𝑖 𝑓 u(ℓ,0) ≥ 0,

𝛼u(ℓ ) 𝑖 𝑓 u(ℓ,0) < 0,
(11)

where 𝛼 = −1. Let S(n1,𝜂 ) is an array containing the eigenvectors in 𝑥-section, where 𝜂 is the

number of eigenvectors in that section. Then, we compute |𝑆 | as follows:

|𝑆𝑖 | =
1

𝜂

𝜂−1
∑︁

𝑗=0

u(i,j) , 𝑖 = 0, 1, ..., 𝑛1 − 1. (12)

|𝑆 | is the mean of the eigenvectors in the selected section with length 𝑛1. Fig. 5 shows an example

of these bases and their mean value. Then, the global features (𝑓𝐺 ) of GHOSM based on the outline

J. ACM, Vol. 1, No. 1, Article 1. Publication date: August 2022.
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representation are obtained as,

𝑓𝐺 (𝑥) = r 𝑒 (𝜆 (1)−𝜆(𝑛1−1) ) |𝑆𝑥 |. (13)

In order to improve the feature representation for the three Laplacian matrices, we consider the

accuracy status in Fig. 4f. Therefore, the outline-based global features are computed as shown in Eq.

(14), Eq. (15), and Eq. (16) for the combinatorial, normalized, and the geometric Laplacian versions,

respectively.

𝑓𝐺 (𝐿) = r 𝑒 (𝜆(1)−𝜆(𝑛1−1) /1000) |𝑆𝐷 |, (14)

𝑓𝐺 (L) = r 𝑒 (𝜆(1)−𝜆(𝑛1−1) ) |𝑆𝐴 |, (15)

𝑓𝐺 (Γ) = r 𝑒 (𝜆(1)−𝜆(𝑛1−1) ) |𝑆𝐴 |. (16)

The length of the outline features is 𝑛1. These features combine spatial (i.e., r) and spectral details

(i.e., 𝑆𝑥 and 𝜆) of the shape. They also provide an efficient representation of shapes. However,

a mismatching problem occurs when the outline of different samples is conceptually similar.

Therefore, we need to consider more details of the structure. One way to do this is by simplifying

the structure of the shape skeleton into several partitions as shown in Section 3.4.

3.4 Skeleton-based features

In this subsection, we provide a fast partitioning method to simplify the structures for efficient

and reliable matching. Graph partition has a long history in computer vision, specifically using

the eigenvector corresponding to the smallest non-zero eigenvalue, which is known as the Fiedler

vector. It provides the minimum cutting ratio according to the optimization formula in Eq. (17) [25],

𝜆1 =𝑚𝑖𝑛

(

U𝑡LU

U𝑡U

)

. (17)

The vast majority of current partitioning methods require determining the number of clusters in

advance. To solve this issue, we propose new rules to achieve a fully automatic and stable recursive

hierarchical partitioning, leading to automatically identifying the meaningful parts of the structure

without any human intervention.

For graph partitioning, the main differences in terms of graph generation is that we use the

combinatorial Laplacian version in Eq. (3) and consider the adaptive connectivity proposed in this

section. The main reason for using the combinatorial Laplacian matrix is its ability to efficiently

detect the local details. Further, our propose partition method is based on the adaptive connectivity

to achieve a stable segmentation. While the smallest distance (𝑡◦) was used to connect all nodes as

a single set in [5], the present work increases the stability of the division process by considering a

certain distance to link nodes. This distance depends on the topology of the shape and varies from

sample to sample. The procedure can be summarized as follows:

(1) For a given shape, we initially generate a graph based on the initial edge threshold distance,

𝑡◦.

(2) The threshold distance is increased with a chosen step size (𝛿) for 𝑛2 times.

(3) At each iteration, the energy function (𝑬𝛿 ) of the normalized node degree (B𝛿
𝑖 ) at node, 𝑖 , for

distance, 𝑡◦ + 𝛿 , is computed as follows:

𝑬𝛿 =

𝑛2−1
∑︁

𝑖=0

B𝛿
𝑖 log2

(

1

B𝛿
𝑖

)

. (19)

(4) We use the distance (𝑇 = argmax(𝑬)) that provides the maximum energy to generate the

graph with adaptive connections and extract its features.
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Algorithm 1 Computing the adaptive connectivity value

1: Inputs: Unconnected 3D point cloud graph G.

2: Outputs: The distance required to connect the graph nodes.

3: 𝑘 ← Number of graphs in the dataset.

4: 𝑛2 ← The number of the nodes generated by GNG.

5: 𝑬 ← Energy function.

6: for 𝑖 = 0 : (𝑘 − 1) do

7: 𝑷𝒊 ← Graph representation as (x𝑖 ,y𝑖 ,z𝑖 ).

8: 𝑡◦ ← Smallest distance to connect all nodes as one set.

9: for 𝛿 = 0 : (𝑛2 − 1) do

10: Φ𝜹 ← Node degree of 𝑃𝑖 using (𝛿 + 𝑡◦).

11: B ← Normalizing the node degree ( Φ𝛿

max(Φ𝛿 )
) .

12: 𝑬𝛿 ←
∑𝑛2−1

𝑖=0 B
𝛿
𝑖 log2

(

1

B𝛿

𝑖

)

.

13: end

14: 𝑇𝑖 ← argmax(𝑬).

15: end

(a) Crabs (b) Ants (c) Spider

Fig. 6. Adaptive connectivity of different samples.

Algorithm 1 briefly summarizes the procedure. The energy function (𝑬 ) is inspired by the

computation of entropy in information theory. We do not call it entropy, since it does not involve

probabilities. The entropy is usually regarded as a measure of randomness. The same concept

is used here to capture the description of the shape by considering the node connectivity. This

benefits in strengthening and weakening the node connections according to the shape structure.

The higher the variations in the node vector the higher the 𝑬𝜹 value for a given 𝛿 and vice versa.

Fig. 6 shows examples of the adaptive connectivity. For example, the connectivity of the limbs in

the three shapes always has less connected nodes compared to the other nodes in the shape.
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After the graph is generated based on the adaptive connectivity, the Fiedler vector is used for

partitioning the graph into two sub-graphs based on its sign. In other words, we spread the nodes

into two groups based on the sign of the Fiedler vector. For example, it can result in a sub-graph (g1)

consisting of nodes with a positive sign and a sub-graph (g2) consisting of nodes with a negative sign.

For each sub-graph, we compute the Fiedler vector again and repeat the procedure for partitioning

into the new two sub-graphs. This process is repeated until the complete segmentation is achieved.

In the literature, Bayesian probability has been widely used for partitioning and graph cut [33].

However, these methods suffer from conciseness and accuracy as probability parameters depend

entirely on the training samples. In contrast, the spectral graph domain approach proposed in this

work provides a more stable representation. In order to avoid fragmentation in the main body and

in the small parts in a shape, the segmentation process should satisfy the following two rules:

(1) The minimum number of nodes in each sub-group should be 2.

𝑛𝑔1 ≥ 2, (20)

𝑛𝑔2 ≥ 2, (21)

where 𝑛𝑔1 and 𝑛𝑔2 are the number of nodes in the new generated sub-graphs.

(2) In order to generate two sub-graphs (𝑔1, 𝑔2), the difference in number of nodes between them

must be > 𝑛2/3, where 𝑛2 is the total number of nodes in the skeleton representation. i.e.,

|𝑛𝑔1 − 𝑛𝑔2 | > 𝑛2/3, (22)

Fig. 7 illustrates nine levels of 3D segmentation with the corresponding number of nodes.

Finally, we propose a skeleton-based structural feature vector, 𝑓𝐿 , comprising of the following

four components: 𝑓𝑎, 𝑓𝑏, 𝑓𝑐 and 𝑓𝑑 .

(1) The first part of the feature vector addresses the local details by using the normalized node

degree B at the adaptive connectivity:

𝑓𝑎 = B . (24)

(2) In the second part of the feature vector, we include the features from the global outline of

the shape by considering the distance vector r, with r𝑖 representing the distance to node 𝑖

from the central point (0,0,0) as shown in Eq. (2). Although 𝑟𝑖 represents the global shape, in

order to improve the discrimination among classes by considering the local variations, we

modulate 𝑟 with corresponding eigenvalues 𝜆𝑖 corresponding to the graph formulated with

adaptive connections for the given shape sample, as follows:

𝑓𝑏 = 𝜆𝑖 r𝑖 𝑖 = 0, 1, ..., 𝑛2 − 1. (26)

(3) The third part of the feature represents the number of clusters generated using the proposed

graph partitioning algorithm:

𝑓𝑐 = 𝐶, (28)

where 𝐶 is the number of clusters after graph partitioning. For example, 𝐶 is 9 for the shape

in Fig. 7.

(4) The fourth part of the feature shows the number of nodes connected to only one node. This

represents the specific shape characteristics, for example, the limbs in the skeleton as shown

in Fig. 6:

𝑓𝑑 = 𝜓, (30)

where 𝜓 is the number of nodes that have only a single link (i.e., node degree is 1). For

example,𝜓 = 8 for the shape shown in Fig. 7.
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158
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148
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Fig. 7. Graph partitioning with its corresponding number of nodes at each level. In this example, the number

of clusters 𝐶 is 9 in the final level, each cluster is coloured in a different colour.

Concatenating these features (𝑓𝑎, 𝑓𝑏, 𝑓𝑐 , 𝑓𝑑 ) results in high discriminate local-based features (𝐹𝐿).

The skeleton-based feature length is 2𝑛2 + 2. The total length of GHOSM features (𝑓𝐺 + 𝑓𝐿) is

𝑛1 + 2𝑛2 + 2.
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3.5 Machine learning

In this final step, machine learning is used to train a classifier based on the feature vectors generated

in Section 3.3 and Section 3.4. We have evaluated several classifiers including Support Vector

Machine with a cubic form as a kernel function (CSVM), Classification Tree (CT), Discriminant

Analysis (DA), the Nearest Neighbour (KNN), Neural Network (NN). Based on several experiments

conducted to select the optimal classifier, the Nearest Neighbour (KNN) with K = 1 shows the best

performance compared to other classifiers in terms of accuracy and time processing, as shown in

Section 4.

4 PERFORMANCE EVALUATION

This section presents information on the experimental set up of the proposed method including, the

datasets used for evaluation, the experimental set up, the performance of the proposed GHOSM in

terms of accuracy rates, confusion matrices, comparison with the existing methods and the ablation

studies.

4.1 Datasets

The experiments were based on both 2D and 3D shape datasets. The static hand gesture datasets

were used as a special case of 2D shapes. Our experiments included four static 2D hand gesture

datasets, three other 2D shape datasets and four 3D shape datasets:

(1) d1: ASL dataset [13] consists of 36 American Sign Language (ASL) gestures performed by

five persons. Images are captured using a neutral-coloured. We focus on the 10 classes

corresponding to the numbering gestures from (0 - 9) with 65 samples for each class as shown

in Fig. 8a.

(2) d2: NTU static hand gestures recognition dataset [45] consists of 10 subjects × 10 hand

gestures × 10 different orientations = 1000 colour and its corresponding depth images as can

be seen in Fig. 8b. The database includes the subject poses with various hand orientation,

scale and articulation. Only depth images are used in these experiments.

(3) d3: This dataset [41] contains 120 samples for 11 classes, which are implemented by 4 persons.

The dataset provides RGB images and its corresponding depth image. A confidence depth

map for each sample is used for the evaluation as shown in Fig. 8c.

(4) d4: HKU dataset [62] contains 100 samples for 10 classes, which are implemented by 5

persons. The dataset provides RGB images and its corresponding depth image. Only the depth

information of each gesture is used in the experiments as shown in Fig. 8d.

(5) d5: ETU10 silhouette dataset provides a 5 degree rotation difference for each class. Sample

silhouettes from each class are shown in the top two rows of Fig. 9a (top). ETU10 silhouette

has 10 classes ×72 shapes per class = 720 total images. The ten classes in the confusion matrix

correspond to the Bed, Bird, Fish, Guitar, Hammer, Horse, Sink, Teddy, Television and Toilet

respectively.

(6) d6: Kimia 99 dataset [50] consists of 9 classes × 11 samples = 99 images as shown in Fig. 9a

(bottom). The nine classes in the confusion matrix correspond to the Fish, Hand, Human,

Aeroplane, Ray, Rabbit, Misk, Spanner and Dog respectively.

(7) d7: MPEG-7 CE-Shape-1 PartB (MP7-shape) dataset [30] consists of 70 classes with 20 samples

per class, resulting in a total of 1400 2D shapes.

(8) d8: SHREC2010 dataset [54] consists of 20 objects × 10 classes = 200 points cloud models

in total. These samples are taken from McGill Articulated Shape Benchmark dataset and

some of its samples are shown in Fig. 9b. The classes include Ants, Crabs, Hands, Humans,

Octopus, Pliers, Snakes, Spectacles, Spiders, and Teddy respectively.
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Fig. 8. Samples of static hand gestures datasets are used to evaluate GHOSM.

(9) d9: 3D shape benchmark dataset [17] provides 19 classes× 20 samples per class = 380 shapes in

total. The shapes in each class were presented in different orientations, scales and articulation.

These classes include: Human, Cup, Glasses, Airplane, Ant, Chair, Octopus, Table, Teddy

bear, Hand, Plier, Fish, Bird, Mech, Bust, Armadillo, Bearing, Vase, and Four Leg respectively.

Some of the samples are shown in Fig. 9c.

(10) d10: ModelNet10 dataset [65] consists of 10 classes of 3D shapes formed as a CAD model of

the point could as can be seen at Fig. 9d. The number of training and validation samples per

class ranging from 106-889 and 50-100, respectively. These classes, numbered 1 to 10, include

Bathtub, Bed, Chair, Desk, Dresser, Monitor, Night-stand, Sofa, Table and Toilet, respectively.

(11) d11: ModelNet40 dataset [65] consists of 40 classes with the number of training and validation

samples per class ranging from 64-889 and 20-100, respectively.

4.2 Performance evaluation of the proposed GHOSM

All the experiments were implemented using MATLAB R2019a on a PC with Intel processor

CPU@3.6GHz and RAM 16GB. The number of nodes used for 2D shapes representation was

(𝑛1 = 80, 𝑛2 = 50) and 3D shapes representation was (𝑛1 = 320, 𝑛2 = 200), which were determined
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(a) d5(top) and d6(bottom)

(b) d8

(c) d9
(d) d10

Fig. 9. Samples of 2D/3D datasets are used to evaluate GHOSM.

by experiments. The accuracy rates presented in this paper for most of the datasets are the average

accuracy rates obtained from a k-fold validation scheme. The most efficient k value for each dataset

was chosen and shown with the results. For most datasets, k=10 was considered as determined by

experiments. Since ModelNet datasets (d10 and d11) provide separate training and testing samples,

k-fold cross validation was not used for them.

TABLE 1 shows the accuracy rates for the proposed method evaluating the performance of

various classifiers. As can be seen, NN and KNN (with the normal Euclidean distance) classifiers

result in the best accuracy rates among all classifiers. From TABLE 1, we can conclude that KNN

and NN result in the highest accuracy rates and therefore we use these two classifiers for the rest

of the evaluations. We recommend KNN as the preferred classifier because it is faster compared

to the NN classifier. In addition, for both 2D and 3D shapes, we can clearly see that the proposed

GHOST + CT has the worst accuracy rates compared to other methods. The main problem with the

classification tree is the lack of a principle probabilistic framework, which leads to poor results.

Also, classification trees are extremely sensitive and easily result in over-fitting compared to the

other methods.
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Table 1. Overall accuracy rates (%) for the GHOSM using different classifiers. Red indicates the highest score.

Cross

Dataset validation GHOSM GHOSM GHOSM GHOSM GHOSM

(k) + CSVM + CT + DA + KNN + NN

2D d1 10 99.1 91.3 98.8 99.6 99.4

(Hand d2 10 98.27 88.11 97.57 99.7 99.7

gesture) d3 10 91.44 71.81 90.15 94 94.4

d4 10 96.2+ 78.1 95.1 99.5 99.4

2D d5 10 98.8 85.2 96.43 99.58 99.7

(Other d6 9 97.98 85.86 97.98 100 100

shapes) d7 10 87.8 84.7 85.3 94.2 97.4

d8 10 89.5 71.4 92.47 94 94

3D d9 10 77.3 64.32 74.12 76.32 75.52

d10 N/A 79.5 72.8 76.82 84.66 87.11

d11 N/A 77.1 69.8 63.7 82.74 86.62

Table 2. Overall accuracy rates (%) for the GHOSM compared to the existing work. Red indicates the highest

score, and blue is the second highest.

Cross Proposed Proposed Our Existing Existing

Dataset validation GHOSM GHOSM previous handcrafted features deep learning

(k) + KNN + NN work [4] based methods based methods

2D d1 10 99.6 99.4 98.5 98.51[6] 98.40 [58]

(Hand d2 10 99.7 99.7 99.7 99.6 [62] N/A

gesture) d3 10 94 94.4 93.7 89.91 [41] 94 [22]

d4 10 99.5 99.4 99.4 99.1 [62] N/A

2D d5 10 99.58 99.7 99.1 97.5 [2] N/A

(Other d6 9 100 100 97 100 [43] N/A

shapes) d7 10 94.2 97.4 91.28 96.6[11] N/A

d8 10 94 94 91.5 92.5[31] 96 [39]

3D d9 10 76.32 75.52 74.32 70.79 [20] 78.2 [66]

d10 N/A 84.66 87.11 80.76 73.09 [72] 88.4 [55]

d11 N/A 82.74 86.62 79.8 N/A 88.93 [70]

4.3 Comparison with the existing methods

TABLE 2 compares the performance of the proposed method with the best published results in

the literature. Our proposed handcrafted features (GHOSM) outperform the existing handcrafted

features based methods for 10 of the datasets. The differences in performance between GHOSM and

the existing handacrafted features based work for d1 to d10 are +1.09, +0.1, +4.49, +0.4, +2.2, 0,

0.8, +1.5, +5.53, +14.02m, respectively. Results also show improved performance compared to our

previous work in [4]. The confusion matrices with recognition accuracy rates for each class in

datasets that provide less than 100% overall accuracy are presented in Fig. 10.

In addition, GHOSM shows excellent performance for 2D static hand gesture datasets, outper-

forming both handcrafted feature-based and deep learning-based methods. Static hand gesture

shapes can sometimes result in the same shape contour as shown in Fig. 11. For example, the hand

gestures, fist and open hand have almost the same shape contour which can result in a highly
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Fig. 10. Confusion matrices of d3, d8, d9, and d10 based on KNN.

similar segmentation process and a skeleton. The same issue can be observed in class 8 and class 9

in d1 (as shown in Fig. 8). In these cases, the outline-based global features have worked better than

skeleton-based structural features. GHOSM also outperforms deep learning methods reported for

d1 and d3 datasets.

For 2D datasets, d5 and d6 datasets contain highly detailed shapes and GHOSM recognises these

classes with high accuracy rates. Despite having shape samples with different angles of views in

d5, GHOSM outperforms the existing methods. d7 is one of the most challenging 2D datasets due

to having a small number of samples in each class compared to the total number of classes, yet

GHOSM with NN outperforms the existing handcarfted features based methods.

For 3D datasets, GHOSM exceeds the performance of existing handcrafted features basedmethods

by 1.5% for d8, 5.53% for d9 and 14.02% for d10. GHOSM recognizes all shape classes in d8 with a

high accuracy rate of 94% (Fig. 10). The main confusing class is the octopus class (class 5), which

matches spider class (class 9) due to its similarity in graph structure. For example, 3D shapes like

Crabs, Ants, and Spider in SHREC2010 have high similarities in their surfaces as can be seen in Fig.

9 (d8). d9 is a very challenging dataset due to various angles of views, and the GHOSM outperforms

the existing hand-crafted features based methods by 5.53%. d10 is a large dataset and usually used

to evaluate deep learning methods. GHOSM has achieved an overall recognition accuracy rate
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Fig. 11. Confusion cases.

of 87.11% significantly outperforming the other hand-crafted features based methods. The most

confusing class is the Night-stand class (class 7) due to its structural similarity to Chair class (class

3) and Desk class (class 4). Errors also appear in the Bathtub class (class 1), which is confused with

the Dresser class (class 5).

Although our proposal is on handcrafted features, we have included deep learning methods for

comparison. Out of all 2D shape datasets, used in our evaluation, deep learning results has been

reported only for d1 and d3 datasets in the literature. Our proposed GHOSM, which is based on

handcarfted features, has outperformed the deep learning methods by 1%, and 0.4%, respectively.

However, for 3D datasets, deep learning based methods have shown 1.29%-2% advantage over the

proposed method. As evident from TABLE 2, the existing handcrafted features-based methods have

not performed well for 3D datasets. Whereas, GHOSM shows comparable results with those of deep

learning based methods that were trained on large datasets with a high computational resources.

This is very encouraging for applications that have small datasets and low computational resources.

4.4 Computational complexity

The computational complexity of GNG, partitioning, fully connected graph generation, feature

extraction and classification stages are𝑂 (𝑛2),𝑂 (𝑛2),𝑂 (𝑛2) and𝑂 (𝑛2), respectively. Then, the overall

complexity of the proposed GHOSM can be considered as 𝑂 (𝑛2) excluding the pre-processing and

classification steps. We also show the execution times of our method in TABLE 3. It includes the

average time taken for the feature extraction, training and testing for 12 instances. In general,

the average time taken to test a new sample is around 2.4 seconds, which reflects the real-time

performance of the proposed method. Although the implementation was in Matlab, the proposed

method can be implemented on any platform, programming language and edge devices leading to

many real-world applications, such as, automated analysis and understanding of complex shapes,

hand gesture analysis, sign language recognition, point cloud analysis, and other human-computer

interaction and computer vision applications.

4.5 Ablation studies

We evaluate the performance of GHOSM using the global outline-based features and skeleton-based

structural features. TABLE 4 shows that the outline feature representation 𝑓𝐺 efficiently recognises

different classes. In other words, a fully connected graph based shape model works well to classify

hand gestures and 2D shapes. However, 3D shapes often need further structural details for accurate
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Table 3. The average time to perform different steps of the proposed method.

Step Performance average time (ms)

GNG 1984.54

Partitioning 428.12

Fully connected graph generation 0.429

Feature extraction 0.185

Classification 1.654

Full time system 2415 ms ≈ 2.4 seconds

Table 4. The accuracy rate (%) of the outline, skeleton and combination of both.

Dataset Outline-based Skeleton-based Combined

Global features Local features (GHOSM)

d1 99.6 91.8 99.6

d2 99.2 89.2 99.7

d3 93 75.3 94

d4 97.8 86.5 99.5

d5 99.1 99.58 99.58

d6 95.8 100 100

d7 86.6 94.2 94.2

d8 85 93 94

d9 61.57 76.32 76.32

d10 78.4 84.25 84.66

d11 70.2 82.74 82.74

recognition. For this reason the 3D shapes have benefited from the inclusion of the skeleton-based

structural feature representation in GHOSM.

5 CONCLUSIONS

This paper has proposed a new set of hand-crafted features, known as GHOSM, for shape recognition

by modelling both outline-based global features and skeleton-based structural features that are

based on spectral partitioning of the underlying graph with shape characteristics driven adaptive

connectivity. To achieve this, we have proposed a newmethod for formulating a graph with adaptive

connections to represent shapes’ global structure with an unique graph and spectral partitioning

of the graph. This is followed by proposing graph spectral features to capture both global outline

and structural characteristics of the shape. The effectiveness of the proposed GHOSM was verified

by experiments on four static hand gestures datasets, three 2D shape datasets and four 3D shape

datasets. The proposed GHOSM, which is a handcarfted features based method, has outperformed

the existing handcrafted features-based methods, by increments of up to 4.09%, 2.2% and 14.02% for

2D static hand gesture, 2D shapes, and 3D shapes datasets, respectively. It has also outperformed

the deep learning based methods reported in the literature for 2D hand gesture datasets. The

accuracy rates for 3D datasets have shown performance comparable to those of deep learning-based

approaches.
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