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ABSTRACT
Data scientists often draw on multiple relational data sources for

analysis. A standard assumption in learning and approximate query

answering is that the data is a uniform and independent sample

of the underlying distribution. To avoid the cost of join and union,

given a set of joins, we study the problem of obtaining a random

sample from the union of joins without performing the full join and

union. We present a general framework for random sampling over

the set union of chain, acyclic, and cyclic joins, with sample unifor-

mity and independence guarantees. We study the novel problem

of union of joins size evaluation and propose two approximation

methods based on histograms of columns and random walks on

data. We propose an online union sampling framework that initial-

izes with cheap-to-calculate parameter approximations and refines

them on the fly during sampling. We evaluate our framework on

workloads from the TPC-H benchmark and explore the trade-off of

the accuracy of union approximation and sampling efficiency.
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1 INTRODUCTION
Data scientists often draw on multiple sources to collect training

data. Since most relational sources are not stored as single tables

due to normalization, users often need to perform joins before

learning on the join output [11]. Moreover, data may be collected

from distributed sources, each described as a join over internal

databases, data lakes, or web data [3, 12]. Therefore, the target data

is the union of the results of joins.

Joins are expensive and learning after joins leads to poor training

performance due to the introduced redundancy avoided by normal-

ization. There have been efforts to enable learning over joins, but

they are limited to certain models, including linear regression, and

cannot be applied to more general models [11, 22, 23, 35]. Fortu-

nately, an important result [36] from the learning theory suggests

that learning and approximate query answering [26] do not require

the full results and an i.i.d sample can achieve a bounded error.
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𝐽 _𝑊 : Customer_W( · · · ) ⊲⊳ Part1_W( · · · ) ⊲⊳ Supplier1_W( · · · ) ⊲⊳
PartSupp1_W( · · · ) ⊲⊳ PartSupp2_W( · · · ) ⊲⊳
LineItem1_W(𝑃𝑎𝑟𝑡𝐾𝑒𝑦1, · · · ) ⊲⊳ Orders1_W(𝑂𝑟𝑑𝑒𝑟𝐾𝑒𝑦1, · · · ) ⊲⊳
Orders2_W(𝑂𝑟𝑑𝑒𝑟𝐾𝑒𝑦1, · · · ) ⊲⊳ LineItem2_W(𝑃𝑎𝑟𝑡𝐾𝑒𝑦1, · · · )⋃
𝐽 _𝐸 : Customer_E( · · · ) ⊲⊳ PartSupplier_E1( · · · ) ⊲⊳
PartSupplier_E2( · · · ) ⊲⊳
DoubleOrders_E(𝑂𝑟𝑑𝑒𝑟𝐾𝑒𝑦1,𝑂𝑟𝑑𝑒𝑟𝐾𝑒𝑦2, · · · ) ⊲⊳
LineItem_E1(𝑂𝑟𝑑𝑒𝑟𝐾𝑒𝑦1, · · · ) ⊲⊳ LineItem_E2(𝑂𝑟𝑑𝑒𝑟𝐾𝑒𝑦2, · · · )⋃
𝐽 _𝑀𝑊 : Customer_MW( · · · ) ⊲⊳ DoublePartSupplier_MW( · · · ) ⊲⊳
DoubleOrdersLineItem_MW( · · · )

Figure 1: Example of Union of Joins on Denormalized TPC-
H.
This result holds for any model. Therefore, in data collection from

multiple sources, the question to ask is how to obtain a sample

from union of sources without executing join and union. Given a

collection of joins, the goal is to return a sample of 𝑁 tuples from

the union of the results of joins, independently and at random.

Example 1. Suppose a data scientist in an online retail company
wants to train a model for applying a promotion to the future bun-
dle orders of customers. To do so, the data scientist needs a random
and independent sample of size 𝑘 of customer data and their bundle
purchases from the underlying distribution. Suppose the customer
order data is stored in various databases, each having its own schema.
For example, the company may have one database for suppliers of
each east, west, and midwest region. Obtaining customer-bundle data
requires constructing a query for each region database, as shown in
Fig. 1, then unioning the results of queries. Since there is no single
relation that contains all the required features, these queries need to
join data from various relations. Note that 𝐽𝑊 is a cyclic join and 𝐽𝐸
and 𝐽𝑀𝑊 are acyclic. In 𝐽𝑊 , relation Orders is self-joined to obtain the
information of items in the same order (bundle purchases). All three
joins have the same output schema. To construct the target dataset,
the first challenge is although some of these queries are performed on
heavily denormalized relations (or views), for example, PartSupplier
relation in 𝐽𝐸 , since some base relations, for example, the LineItem and
Orders, are very large, performing a full join becomes very expensive.

The problem of random sampling over a single join has been

actively studied since the 1990s [1]. The goal is to obtain a ran-

dom and independent sample from join 𝐽 , without performing the

full join, such that the probability of each tuple in the sample is

1/|𝐽 |. One solution is to join samples of base relations to obtain

sample join tuples [1]. However, the join of samples produces a

much smaller number of join tuples than samples. Moreover, it is

shown that the obtained join samples do not guarantee indepen-

dence [18]. For approximate query answering, some techniques
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such as RippleJoin [16] and WanderJoin [25] manage to use non-

random/independent and random/dependent samples, respectively.

Other techniques for sampling over join apply the accept/reject

sampling paradigm to guarantee i.i.d [10, 33]. The most recent work

by Zhao et al. proposes a framework for sampling over one join

that handles general multi-way joins [38]. The motivation of ran-

dom sampling over join is tightly connected to join size estimation

which has also been a point of interest in the database community

due to its application to query optimization [4, 10, 34].

Example 2. Continuing with Ex. 1, the second challenge is to union
join samples such that uniformity is guaranteed, i.e., each tuple has
the probability 1

| 𝐽𝑊 ∪𝐽𝐸∪𝐽𝑀𝑊 | of being in the final sample. A naive
solution is to union samples of joins, obtained in an offline manner.
Suppose we apply an off-the-shelf sampling over join algorithm and
obtain samples 𝑆𝑊 , 𝑆𝐸 , and 𝑆𝑀𝑊 from 𝐽𝑊 , 𝐽𝐸 , and 𝐽𝑀𝑊 , respectively.
We have 𝑃 (𝑡 ∈ 𝑆𝑊 ) = 1/|𝑆𝑊 |, 𝑃 (𝑡 ′ ∈ 𝑆𝐸 ) = 1/|𝑆𝐸 |, and 𝑃 (𝑡 ′′ ∈
𝑆𝑀𝑊 ) = 1/|𝑆𝑀𝑊 |. It is easy to show that 𝑈 = 𝐽𝑊 ∪ 𝐽𝐸 ∪ 𝐽𝑀𝑊
does not guarantee uniformity and tuples have unequal probability
of appearing in𝑈 . Consider the contradicting example of 𝑟 ∈ 𝑆𝐸 , 𝑟 ∉
𝑆𝑊 , 𝑟 ∉ 𝑆𝑀𝑊 , we have 𝑃 (𝑟 ∈ 𝑈 ) = 1/|𝑆𝐸 |, however, if 𝑟 ∈ 𝑆𝐸 ∩𝑆𝑊 ∩
𝑆𝑀𝑊 , we get 𝑃 (𝑟 ∈ 𝑈 ) = ( 1

| 𝐽𝐸 | +
1

| 𝐽𝑊 | +
1

| 𝐽𝑀𝑊 | ) ·
|𝑆𝐸∩𝑆𝑊 ∩𝑆𝑀𝑊 |

|𝑈 | ,
because we do set union and keep one instance of overlapping tuples.
An accept/reject sampling algorithm can help to adjust this probability
to obtain 1/|𝑈 |, however, as we show in § 2, the algorithm needs to
know apriori, the size of each join and their union, which requires the
overlap size of all combinations of 𝐽𝐸 , 𝐽𝑊 , and 𝐽𝑀𝑊 . One idea may
be to estimate the overlaps and unions from the samples. However,
that would not be a viable option, since just like joining samples or
relations, the probability of obtaining samples from the overlapping
regions of joins is low.

In this paper, we present a generic framework for random sam-

pling over the union of joins. In particular, we consider sampling

set union with replacement. Sampling from the disjoint union is

a straightforward extension of the set union. The classic join sam-

pling [10, 34] and the recently revisited framework [38] consider

random sampling with replacement over join. Another relevant
problem is the random enumeration of the result of the union of

acyclic conjunctive queries [8]. The intermediate results of a ran-

dom query result enumeration algorithm can be considered as a

random sample from the union without replacement which is dif-

ferent than our problem. Moreover, in this paper, we study union

sampling over a larger class of joins (chain, cyclic, and acyclic). In

§ 3.2, we provide an elaborate discussion and analytical comparison

of this line of work with our framework.

There are several challenges to addressing the sampling over the

union of joins problem. First, unioning random samples from joins

does not guarantee uniformity. Our solution is an accept/reject sam-

pling algorithm that defines Bernoulli and non-Bernoulli probability

distributions for selecting joins. The latter mimics the behavior of

union calculation. Second, it turned out that to guarantee unifor-

mity, the sampling framework needs to know the size of each join

and the size of the union of joins apriori. Although the problem of

set union size approximation [2, 7, 21] and its online extension to

streams [9, 14, 21, 28] have been extensively studied in the approx-

imate counting literature, to the best of our knowledge, there is no

study that addresses the problem of approximating the union size

of joins without performing the full join and overlap.

Third, histogram-based estimation requires knowing the over-

lap of an exponential number of sets of joins, each set in the pow-

erset of joins. We reduce the space of calculation by reformulating

the problem to use smaller-unit statistics, called 𝑘-overlaps, of each

join, which is the size of the subset of a join result that is shared

with exactly (𝑘 − 1) other joins. Next, we propose two instantia-

tions of the framework for estimating the overlap of joins with

an arbitrary number of relations and all join types (chain, cyclic,

and acyclic): a histogram-based method and a random-walk

method. The histogram-based technique is cheap and requires

knowing limited statistics of joins. It may incur a loose bound, thus,

a high rejection rate, under circumstances. The histogram-based

method is highly suitable for data in the wild or scenarios, such as

data markets, where limited metadata is available but access to the

whole data is infeasible. The random-walk method is accurate in

estimating parameters and results in low delay. It needs sampling

for parameters warm-up and provides theoretical guarantees. To

balance the trade-off of parameter estimation cost and sampling

efficiency, we propose an online-union sampling algorithm that

initializes and updates parameters with the histogram-based and

random-walk methods, respectively, and reuses the samples ob-

tained during random-walk while ensuring uniformity.

In this paper, we make the following contributions:

• We present the problem of random sampling over the union of

joins.

• We design a framework for sampling over the set union of joins

of types chain, cyclic, and acyclic (§ 2). Any instantiation of the

framework always returns uniform and independent samples

from the full result (Theorem 1) but with different sampling

efficiency (§ 6.2).

• We design histogram-based (§ 4) and random-walk (§ 6) meth-

ods to bound the size of overlap of any collection of chain, acyclic,

or cyclic joins.

• We present an online-union sampling technique that balances

the latency and warm-up cost trade-off (§ 6.2).

• We perform extensive experimental evaluations using the TPC-H

benchmark to investigate the error and runtime of parameter

estimation and sampling methods(§ 9). We also evaluate the

scalability of our framework with respect to relation size, number

of samples, and overlap size.

2 PROBLEM DEFINITION
Let A be the universe of attributes and A𝑖 be the attributes in

relation 𝐽𝑖 . We are given a set of joins 𝑆 = {𝐽1, . . . , 𝐽𝑛}. A join 𝐽 𝑗
is defined as 𝐽 𝑗 = 𝑅 𝑗,1 ⊲⊳𝐴 𝑗,1

𝑅 𝑗,2 ⊲⊳𝐴 𝑗,2
· · · ⊲⊳𝐴 𝑗,𝑛

1
−1 𝑅 𝑗,𝑛1 , where

𝑅 𝑗,1, · · · , 𝑅 𝑗,𝑛1−1 are base relations. Similar to relational algebra, we

assume all joins have the same output schema after performing

the join in terms of the number and name of attributes. Note that

joins can still have different lengths and different relations. We

also assume that join attributes are standardized to have the same

names.We onlymention attribute names when needed. In relational

algebra, there are two types of unions: set union and disjoint union.

The former eliminates duplicate tuples from the result of a union

and the latter keeps the duplicates. The notion of unionability [31]
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can be applied on base relations to align attributes such that joins

incur the same schema.

The problem of sampling over a union of joins is to return each

tuple with probability 1/|𝑢𝑛𝑖𝑜𝑛(𝐽1, · · · , 𝐽𝑛) |, where union may be

set or disjoint union. Returning just one sampled tuple is usually not

enough, therefore, we would like to generate totally independent

sampled tuples continuously until a certain desired sample size

𝑁 is reached. We formulate the sampling set union and disjoint

problems as follows.

Definition 1. (Sampling Disjoint Union of Joins) Given a set
of joins 𝑆 = {𝐽1, . . . , 𝐽𝑛}, return 𝑁 independent samples from 𝑉 =

𝐽1⊎ . . .⊎ 𝐽𝑛 such that each sampled tuple is returned with probability
1

|𝑉 | =
1

𝐽1+...+𝐽𝑛 .

Sampling from the disjoint union is straightforward. Given the

disjoint union 𝑉 = 𝐽1 ⊎ . . . ⊎ 𝐽𝑛 , we first select a join 𝐽 𝑗 with

probability 𝑃 (𝐽 𝑗 ) =
| 𝐽𝑗 |

| 𝐽1+...+𝐽𝑛 | , then, we select a random tuple from

𝐽 𝑗 . This means the probability of each sampled tuple 𝑡 is 𝑃 (𝑡) =
| 𝐽𝑗 |
|𝑉 | ·

1

| 𝐽𝑗 | =
1

|𝑉 | . We repeat the process until 𝑁 sampled tuples

are obtained. This algorithm always returns independent samples

because a returned sample is always uniform regardless of the

previous sampling iterations. Methods of sampling a tuple from a

single join have long been a popular problem [10, 10, 33, 37, 38].

We revisit random sampling over join in § 3.2.

The set union operation eliminates duplicate tuples from the

result of the union. As such, an i.i.d sampling algorithm over the

set union should return each tuple in the universe of the set union

with the probability of the size of a set union.

Definition 2. (Set Union of Joins Sampling) Given a set of joins
𝑆 = {𝐽1, . . . , 𝐽𝑛}, let U be the discrete space of unique tuples in
𝑈 = 𝐽1 ∪ . . . ∪ 𝐽𝑛 . Return 𝑁 independent samples fromU, such that
each sampled tuple is returned with probability 1

| 𝐽1∪···∪𝐽𝑛 | .

3 A UNION SAMPLING FRAMEWORK
Let 𝑈 be the universe of tuples in the set union of joins. We

assume there are no duplicates in each join. Given the set union

𝑈 =
⋃𝑛
𝑗=1 𝐽 𝑗 , we want for each value 𝑢 ∈ 𝑈 , 𝑃 (𝑡 = 𝑢) = 1

|𝑈 | .
Example 3. Consider joins 𝐽1 and 𝐽2 that have the same output
schema. Suppose 𝑡1 = (3, 6, 4) ∈ 𝐽1 and 𝑡2 = (3, 6, 4) ∈ 𝐽2. The value
of each tuple 𝑡 , namely 𝑡 .𝑣𝑎𝑙 , can be obtained by concatenating its
attribute values using a standard convention. Then, by the definition
of a set, 𝑡1 and 𝑡2 refer to the same tuple, say 𝑢, in the universe
𝑈 = 𝐽1 ∪ 𝐽2. We want 𝑃 (𝑢), the probability of selecting a tuple
with value 𝑢 from 𝑈 , to be 1

|𝑈 | . Tuples 𝑡1 and 𝑡2 are distributed in
different joins. Hence, 𝑢 is obtained if 𝑡1 or 𝑡2 are sampled from their
corresponding joins. That is, we want 𝑃 (𝑡 = 𝑢) = 𝑃 (𝑡1) +𝑃 (𝑡2) = 1

|𝑈 | .
Note that we may have a sampling with replacement or we may
get both 𝑡1 and 𝑡2 in the sample. Our framework guarantees that
𝑃 (𝑡 = 𝑢) = 𝑃 (𝑡1 .𝑣𝑎𝑙) = 𝑃 (𝑡2 .𝑣𝑎𝑙) = 1

|𝑈 | , whether we choose to
remove duplicates or not.

At each sampling iteration, the framework performs two steps:

join selection and join random sampling. The framework continu-

ously samples tuples, with replacement, with 1/|𝑈 | probability, until

the desired sample size𝑁 is reached. A straightforwardway is based

on the union trick [15]. At each iteration, we iterate through all joins

and select a join with the Bernoulli probability 𝑃 (𝐽 𝑗 ) = |𝐽 𝑗 |/|𝑈 |.
This means multiple joins may be selected in each iteration. Upon

selecting 𝐽 𝑗 , we randomly sample a tuple 𝑡 from 𝐽 𝑗 with replace-

ment. Recall 𝑢 = 𝑡 .𝑣𝑎𝑙 denotes the value of tuple 𝑡 . We accept tuples

with duplicate values 𝑢, only if they are sampled from the same

joins, otherwise, we accept the tuples. This means a duplicate tuple

𝑡 is retained only if it is sampled from the first join where 𝑢 = 𝑡 .𝑣𝑎𝑙

was observed. With this description, a tuple value 𝑢 ∈ 𝑈 is re-

turned upon first selecting a join 𝐽 𝑗 that contains 𝑢 with probability

|𝐽 𝑗 |/|𝑈 |, then sampling 𝐽 𝑗 with probability 1/|𝐽 𝑗 |. This guarantees
that every value 𝑢 ∈ 𝑈 is returned with probability

| 𝐽𝑗 |
|𝑈 | .

1

| 𝐽𝑗 | =
1

|𝑈 | .

Despite its simplicity, this algorithm has a high rejection ratio for

highly overlapping joins and may result in high latency. This is

attributed to the utilization of a two-phase framework, which is

essential for ensuring uniformity in sampling. Next, we describe

a join selection algorithm with a more careful selection of joins.

In § 7, we propose a novel approach that leverages computation

performed in the first phase to reduce latency in the second stage.

3.1 Non-Bernoulli Join Selection
The above technique keeps samples from an overlap area of joins

only if they are sampled from exactly one predetermined join. Con-

sider two joins 𝐽1 and 𝐽2 with overlapping data region 𝐵 in Fig. 2a.

We select and keep any sample 𝑡1 ∈ 𝐽1. Later, upon selecting 𝐽2, if

we sample a 𝑡2 ∈ 𝐵, we reject 𝑡2. The trick to avoiding rejection is to

keep the 𝐵 from 𝐽1 as the only space we sample from 𝐽1. Therefore,

we have 𝑃 (𝐽1) = |𝐴+𝐵 |
|𝐴+𝐵+𝐶 | =

| 𝐽1 |
|𝑈 | , and 𝑃 (𝐽2) =

|𝐶 |
|𝐴+𝐵+𝐶 | =

| 𝐽2 |− |𝐵 |
|𝑈 | .

Our join selection is outlined in Algorithm 1. Prior to sampling,

the algorithm needs to decide which overlapping region is restric-

tively sampled from which join. We call this division of joins a

cover (line 2 of Algorithm 1). A cover over joins 𝑆 = {𝐽1, · · · , 𝐽𝑛},
namely 𝐶 = {𝐽 ′

1
, · · · , 𝐽 ′𝑛}, is an ordering over 𝑆 such that 𝐽 ′

𝑖
= {𝑡 ∈

𝐽𝑖 |𝑡 ∉
⋃
𝑗<𝑖 𝐽

′
𝑗
}. In fact, a cover 𝐽 ′

𝑖
of join 𝐽𝑖 is a selection query over

join 𝐽𝑖 . A cover of 𝑆 can be created by starting from the first join

and keeping or removing overlapping parts. Fig. 2b illustrates an

example of a cover for three overlapping joins. Given a cover 𝐶 , to

calculate the size of 𝐽 ′
𝑖
, we simply follow the inclusion–exclusion

principle. Let 𝑂Δ =
⋂
𝐽𝑗 ∈Δ 𝐽 𝑗 and 𝑆𝑖 represent the set of joins that

appear before 𝐽𝑖 in the ordering offered by 𝐶 , then we have the

following.

|𝐽 ′𝑖 | = |𝐽𝑖 | +
𝑖−1∑︁
𝑚=1

∑︁
Δ⊂𝑆𝑖 , |Δ |=𝑚

(−1)𝑚 |𝑂Δ ∪ {𝐽𝑖 }|

Based on this cover, each 𝐽𝑖 is selected with 𝑃 (𝐽𝑖 ) =
| 𝐽 ′𝑖 |
|𝑈 | . When

sampling, we should always follow the cover we pre-defined, i.e.,

for any sample 𝑡 ∈ 𝐽𝑖 , we should discard it if 𝑡 ∉ 𝐽 ′
𝑖
. However, if

we do not have overlap information apriori, upon selecting 𝐽𝑖 and

sampling 𝑡 , it is not possible to verify whether 𝑡 is in 𝐽 ′
𝑖
or not. Thus,

we face a non-trivial case when we sample 𝑡 ∈ 𝐽𝑖 \ 𝐽 ′𝑖 . If we later
sample 𝑡 from 𝐽 𝑗 with 𝐽

′
𝑗
∩ 𝐽𝑖 ≠ 0, i.e., 𝐽 ′

𝑗
covers the overlapping

part with 𝐽𝑖 , we should do a critical operation, called revision. This
means we remove 𝑡 ∈ 𝐽 𝑗 from the sample and re-sample 𝐽 𝑗 , while

keeping the 𝑡 from 𝐽𝑖 .
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Example 4. Consider joins 𝐽1, 𝐽2, and 𝐽3 of Fig. 2b. A cover for these
joins are highlighted with blue, red, and green colors. The algorithm
selects 𝐽1, 𝐽2, and 𝐽3 with probability |𝐽 ′

1
|/|𝑈 |, |𝐽 ′

2
|/|𝑈 |, and |𝐽 ′

3
|/|𝑈 |,

respectively. Suppose at some iteration we have selected 𝐽2 and sam-
pled 𝑡 ∈ 𝐽2 \ 𝐽 ′

2
. Suppose now we select 𝐽 ′

1
and sample the same 𝑡 .

Because the cover tells us to sample 𝐽2 only from 𝐽 ′
2
area, we remove

𝑡 ’s from the target set, accept 𝑡 that’s sampled from 𝐽1 and assign it
to 𝐽1 in the record.

(a) (b)
(c)

Figure 2: (a) union operation, (b) cover for three joins, and
(c) A𝑘

𝑗
of four joins.

Theorem 1. Given joins 𝑆 = {𝐽1, . . . , 𝐽𝑛}, Algorithm 1 returns each
result tuple 𝑡 with value 𝑢 with probability 1

| 𝐽1∪...∪𝐽𝑛 | .

Proof. Intuitively, a cover defined by Algorithm 1 decides from

which join exclusively a value in the overlap of a collection of joins

is sampled. Recall𝑈 is the universe of the set union of tuples of joins,

i.e., {𝑢 |𝑢 ∈ ∪𝑖 𝐽𝑖 }. Algorithm 1 uses a mapping strategy function

𝑓 : 𝑈 → 𝑆 that tells us to which 𝐽𝑖 a specific 𝑢 is assigned. Note

that 𝑢 could belong to multiple 𝐽𝑖 ’s, however, 𝑓 refers to the unique

𝐽𝑖 from which 𝑢 can be sampled. Let a cover 𝐶 of 𝑆 be the quotient

space of𝑈 over 𝑓 and 𝑔 : 𝑆 → 𝐶 be a mapping function such that

𝑔(𝐽𝑖 ) = 𝐽 ′
𝑖
. Then, 𝑔 ◦ 𝑓 will map each 𝑢 ∈ 𝑈 to a join in cover

𝐶 . For all 𝑢, we denote |𝑔(𝑓 (𝑢)) | to be |{𝑢 ′ |𝑔(𝑓 (𝑢 ′)) = 𝑔(𝑓 (𝑢))}|.
In other words, the probability of sampling a 𝑢 ∈ 𝑈 depends on

the probability of selecting 𝑔(𝑓 (𝑢)) followed by sampling 𝑢 from

𝑔(𝑓 (𝑢)). Therefore, we obtain the probability of 𝑃 (𝑡 = 𝑢) as follows.

𝑃 (𝑡 = 𝑢) = 𝑃 (𝑓 (𝑢)) · 1

|𝑔(𝑓 (𝑢)) | =
|𝑔(𝑓 (𝑢)) |
|𝑈 | · 1

|𝑔(𝑓 (𝑢)) | =
1

|𝑈 |
□

Computing the probability distribution of line 2 of Algorithm 1

requires the knowledge of |𝐽 ′
𝑖
| as well as |𝑈 |. In § 4, we describe

ways of estimating the overlap of 𝑘 joins and |𝐽 ′
𝑖
|.

3.2 Join Sampling Revisited
To sample a single join (line 7 of Algorithm 1), we consider the

work by Zhao et al. [38], which is a generic framework for sampling

from any type of join. The framework defines a join data graph

where each tuple in a relation is a node. Each tuple 𝑡 is labeled with

a weight defined as the upper bound for the number of tuples in

the join result that 𝑡 yields. The framework performs accept/reject

sampling. Each tuple from a relation is sampled with some proba-

bility based on its weight and is rejected with some rate in terms of

the weights to guarantee uniformity. We make some design choices

to adopt the join sample framework of Zhao et al. as a subroutine

in our union sampling framework.

Algorithm 1 Union Sampling

Input: Joins 𝑆 = {𝐽𝑗 , 1 ≤ 𝑗 ≤ 𝑛}, tuple count 𝑁
Output: Tuples {𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑁 }
1: { | 𝐽𝑗 |, 1 ≤ 𝑗 ≤ 𝑛}, |𝑈 | ← 𝑤𝑎𝑟𝑚𝑢𝑝 (𝑆) ⊲ histogram-based (§ 4) or

random-walk (§ 6)

2: { | 𝐽 ′
𝑗
| } ← 𝑐𝑜𝑣𝑒𝑟 (𝑆)

3: 𝑇 ← {} ⊲ target sample

4: 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 ← {} ⊲ record of original join of seen tuples

5: while 𝑛 < 𝑁 do
6: select 𝐽𝑗 with probability

| 𝐽 ′
𝑗
|

|𝑈 |
7: 𝑡 ← a random sample from 𝐽𝑗

8: if 𝑡 ∈ 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 for any 𝑖 < 𝑗 then reject 𝑡

9: else
10: if 𝑡 ∈ 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 for any 𝑖 > 𝑗 then ⊲ revision

11: remove 𝑡 from 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 and add 𝑡 to 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛 𝑗

12: remove all 𝑡 ’s from𝑇

13: if 𝑡 ∉ 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 then add 𝑡 to 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛 𝑗

14: 𝑇 ← 𝑇 ∪ {𝑡 }
15: return𝑇

First, for weight instantiation, we use three techniques: extended

Olken’s, exact, and Wander Join [25], proposed by Zhao et al. [38].

Second, this framework requires index structures over base relations

to know which tuples can be joined together. Instead, we use hash

tables for relations tomaintain tuples’ joinability information. Third,

one limitation of Zhao et al.’s framework is the assumption of having

only key-foreign key joins between relations. Since in a generic

join, some tuples may not have a joinable tuple in other relations,

we release this assumption by modifying the Extended Olken’s to

set the weights (and hence probabilities) of those tuples to zero

with an extra linear search in the hash tables.

Finally, to obtain the accept/reject ratio, this framework allows

us to plug in any of the join size upper-bound estimations. We also

need to compute the size upper bound of joins in Algorithm 1. To

do so, in what follows, we adopt parts of the algorithm proposed in

Ngo et al. [32] and extend Olken’s algorithm [33] to calculate the

upper bound on the size of joins of an arbitrary number of relations.

Assume a join 𝐽 = 𝑅1 ⊲⊳𝐴1
𝑅2 ⊲⊳𝐴2

· · · ⊲⊳𝐴𝑛−1 𝑅𝑛 . Let𝑀𝐴𝑖
(𝑅𝑖+1)

be the maximum value frequency in attribute 𝐴𝑖 of relation 𝑅𝑖+1.
Since each tuple in 𝑅2 with value 𝑣 for 𝐴𝑖 can be matched with

maximum 𝑀𝐴𝑖
(𝑅𝑖+1) tuples of 𝑅𝑖+1 on 𝐴𝑖 , we have the following

upper bound for the size of a join 𝐽 : |𝐽 | ≤ |𝑅1 | ·
∏𝑛−1
𝑖=1 𝑀𝐴𝑖

(𝑅𝑖+1).
In our framework, we consider the above extension of Olken’s

algorithm for join size estimation in all algorithms.

3.3 Cost Analysis
Since the subroutine of sampling from a join in Algorithm 1 is

based on the existing algorithms, for the cost analysis, we decou-

ple the delay of random sampling over join from our algorithm

and consider the total number of samples obtained from the join

subroutine as our total cost.

Theorem 2. Given joins 𝑆 = {𝐽1, . . . , 𝐽𝑛}, the expected total sam-
pling cost of Algorithm 1 for returning 𝑁 uniform and independent
samples is 𝑁 + 𝑁 log𝑁 .
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Proof. Given a cover 𝐶 = {𝐽 ′
𝑗
| 𝑗 ∈ [1, 𝑛] ∩ Z}, Algorithm 1

samples each join 𝐽 𝑗 with probability |𝐽 ′𝑗 |/|𝑈 |. Let𝑁 𝑗 be the number

of tuples from 𝐽 𝑗 that are in the final result. Based on Algorithm 1,

we know a tuple from 𝐽 𝑗 is in the final sample if it is obtained from

𝐽 ′
𝑗
. Therefore, we have 𝑁 𝑗 =

| 𝐽 ′𝑗 |
|𝑈 | . 𝑁 , in expectation. Let𝜓 𝑗 be the

number of tuples Algorithm 1 ever obtains from 𝐽 𝑗 . A tuple may be a

rejected, accepted, or revised sample, because the set of tuples from

different joins may intersect. Based on the union bound, the number

of iterations of Algorithm 1 is bounded by the sum of the number

of tuples sampled from each join. Using this principle, we have

the expected total number of iterations of𝜓 ≤ ∑𝑛
𝑗=1𝜓 𝑗 . Given 𝑁 𝑗

coupons, the coupon collector’s problem provides a bound for the

number of samples we expect we need to draw with replacement

before having drawn each coupon at least once [30]. This result

allows us to obtain the expected value of𝜓 𝑗 = 𝑁 𝑗 log𝑁 𝑗 . Therefore,

we have the following expected number of iterations.

𝜓 ≤
𝑛∑︁
𝑗=1

𝑁 𝑗 log𝑁 𝑗 =

𝑛∑︁
𝑗=1

𝑁 .
|𝐽 ′
𝑗
|

|𝑈 | log
(
𝑁 .
|𝐽 ′
𝑗
|

|𝑈 |

)
Let 𝛼 𝑗 =

| 𝐽 ′𝑗 |
|𝑈 | . We have the following.

𝜓 ≤
𝑛∑︁
𝑗=1

𝛼 𝑗 .𝑁 log(𝛼 𝑗 .𝑁 ) =𝑁
©«
𝑛∑︁
𝑗=1

𝛼 𝑗 log𝛼 𝑗 +
𝑛∑︁
𝑗=1

𝛼 𝑗 log𝑁
ª®¬

From the definition of cover, we know

∑𝑛
𝑗=1

| 𝐽 ′𝑗 |
|𝑈 | = 1. Therefore, we

have the following bound on the expected total time.

𝜓 ≤ 𝑁 (log(𝐻 (𝑛)) + log𝑁 ) ≤ 𝑁 + 𝑁 log𝑁

□

We remark that although our algorithm does not have a strict

and deterministic guarantee on the delay between samples, our

total time is on par with the O(𝑁 log𝑁 ) time of the algorithm

proposed by Carmeli et al., for the random enumeration of the

result of the union of conjunctive queries, where 𝑁 is the number

of answers [8].

4 SIZE OF SET UNION OF JOINS
Executing full joins and computing set union is costly. We propose

a novel way of computing the set union size by using the size of

joins and the size of the overlap of joins. To do so, we first separate

each join 𝐽 𝑗 into 𝑛 disjoint parts, denoted as 𝐽 𝑗 =
⋃𝑛
𝑘=1
A𝑘
𝑗
, where

A𝑘
𝑗
is the set of tuples of 𝑘-th overlap in 𝐽 𝑗 , i.e., each tuple in A𝑘

𝑗

belongs to 𝐽 𝑗 and appears in exactly 𝑘 − 1 other joins. The base

case A1

𝑗
includes the tuples in 𝐽 𝑗 that are the set complement of

all overlaps. Fig. 2c represents the A𝑘
𝑗
areas for a join 𝐽1. Since for

each 𝐽 𝑗 ,A𝑘𝑗 ’s are disjoint, we can define the size of the set union𝑈

as follows.

|𝑈 | =
𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

1

𝑘
|A𝑘𝑗 | (1)

Note that A𝑘
𝑗
is non-trivial information, which requires com-

bining the overlap size of 𝑘-combinations of joins. There are two

challenges for computingA𝑘
𝑗
. First, there is no relationship between

the pairwise overlap information and higher order 𝑘-th overlap,

A𝑘
𝑗
(𝑘 > 2). Second, computing a pairwise overlap size without a

full join is more challenging than computing a single join size.

Suppose we have a way of computing the overlap for any set of

joins. More formally, given a collection Δ ∈ 𝑆 of joins, OΔ denotes

the overlap of joins inΔ. In § 4 and 7, we describe various algorithms

for overlap estimation of all join types (chain, cyclic, and acyclic).

Now, we turn our attention to computingA𝑘
𝑗
usingOΔ. We describe

the intuition of our solution with an example.

Example 5. Consider the joins 𝑆 = {𝐽1, · · · , 𝐽4} of Fig. 2c. The areas
A𝑘

1
for 𝑘 ∈ [1, 4] are color-coded. We would like to compute the

size of A2

1
. The dotted, +, and × areas included all pairwise overlaps.

Suppose we first compute the sum of the pairwise overlap size of joins
with 𝐽1, i.e.,

∑
Δ∈P2∧𝐽1∈Δ |OΔ |, where P2 is the collection of all subsets

of size 2 of 𝑆 . However, to determine the area of the overlap of exactly
one join with 𝐽1, A2

1
, we need to exclude all A3

1
and A4

1
areas. In

fact, each subarea of A3

1
counts twice in the above sum. For example,

𝐽1 ∩ 𝐽2 ∩ 𝐽3 is in both 𝐽1 ∩ 𝐽2 and 𝐽1 ∩ 𝐽3. Similarly, A4

1
counts three

times in the sum of OΔ’s since it is included in 𝐽1∩ 𝐽2∩ 𝐽3, 𝐽1∩ 𝐽2∩ 𝐽4,
and 𝐽1 ∩ 𝐽3 ∩ 𝐽4. To avoid over-counting, the A𝑘

𝑗
’s are weighed by

1/𝑘 , in Eq. 1.

Theorem 3. Let 𝑆 = {𝐽1, 𝐽2, . . . 𝐽𝑛} and P𝑘 be all subsets of size 𝑘 of
𝑆 , then for any join path 𝐽 𝑗 , and for any 1 ≤ 𝑘 ≤ 𝑛, we have

|A𝑘𝑗 | =
∑︁

Δ∈P𝑘∧𝐽𝑗 ∈Δ
|OΔ | − (

𝑛∑︁
𝑟=𝑘+1

(
𝑟 − 1
𝑘 − 1

)
· |A𝑟𝑗 |).

For 𝑘 = 𝑛, we have |A𝑛
𝑗
| = |O𝑆 |. For 𝑘 = 1, we have the following.

|A1

𝑗 | =
∑︁

Δ∈P1∧𝐽𝑗 ∈Δ
|OΔ | −

𝑛∑︁
𝑟=2

(
𝑟 − 1
0

)
|A𝑘𝑗 | = |𝐽 𝑗 | −

𝑛∑︁
𝑟=2

|A𝑟𝑗 |

Proof. When 𝑘 = 𝑛, P𝑛 is the set representing the universe 𝑆

including 𝐽 𝑗 . Therefore, it is trivial that |A𝑛𝑗 | = 𝑂𝑆 , which can be

evaluated with

⋂
𝐽𝑗 ∈𝑆 𝐽 𝑗 . Then, for 𝑘 ∈ [2, 𝑛 − 1] ∩ Z, we calcu-

late |A𝑘
𝑗
| dynamically. Now, suppose we know |A𝑘+1

𝑗
|. Recall A𝑘

𝑗

consists of all tuples in 𝐽 𝑗 that appear in exactly 𝑘 − 1 other join
paths. That is, tuples in 𝐽 𝑗 that are in some Δ ∈ P𝑘 but are not in

any higher order overlap Δ′ ∈ P𝑟 , where 𝑟 ∈ [𝑘 + 1, 𝑛]. Therefore,
we first add up all the 𝑘-th overlap for sets Δ ∈ P𝑘 , where 𝐽 𝑗 ∈ Δ.
Since 𝐽 𝑗 is confirmed, we have

(𝑛−1
𝑘−1

)
number of such sets Δ. Note

that a tuple 𝑡 ∈ A𝑘
𝑗
may appear in multiple Δ ∈ P𝑟 , 𝑟 ∈ [𝑘 + 1, 𝑛].

Therefore, to get the exact value of |A𝑘
𝑗
|, for each 𝑟 ∈ [𝑘 + 1, 𝑛], we

need to count the number of Δ ∈ P𝑟 where 𝐽 𝑗 ∈ Δ. Starting with

𝑟 = 𝑘 + 1, each such combination of Δ ∈ P𝑘+1 contains 𝐽 𝑗 , therefore,
it appears once in remaining

( 𝑘
𝑘−1

)
number of Δ′ ∈ P𝑘 ’s. Hence, we

need to deduct (𝑘 − 1) · |A𝑘+1
𝑗
| from the sum. Now for the general

case 𝑟 , where 𝑘 < 𝑟 ≤ 𝑛, after 𝐽 𝑗 is confirmed, each combination of

Δ ∈ P𝑟 has its other 𝑘 − 1 paths chosen in

(𝑟−1
𝑘−1

)
number of Δ′ ∈ P𝑘 ,

so a total number of

(𝑟−1
𝑘−1

)
|A𝑟

𝑗
| needs to be deducted from the sum

for each 𝑟 . Therefore, we can organize the formula of calculating

|𝐴𝑘
𝑗
| as shown in the theorem. □
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Using this theorem to compute |A𝑘
𝑗
|’s for a given 𝐽 𝑗 and all

𝑘 ∈ [1, 𝑛], we start by initializing |A𝑛
𝑗
| with |O𝑆 | using the method

proposed in § 4. Then, |A𝑛−1
𝑗
| requires evaluating |A𝑛

𝑗
| that have

been already computed as well as |OΔ | for each subset of size 𝑛 − 1
of 𝑆 . Again, § 4 is used to compute a |OΔ |. In general, iterating from

𝑛−1 to 1, each |A𝑘
𝑗
| can be computed from |A𝑟

𝑗
|’s, where 𝑟 ∈ (𝑘, 𝑛],

that have been already evaluated and |OΔ |’s that can be computed

from our method for the pairwise join path overlap.

Computing the size of a set union requires computing the overlap

of all 𝑘-subsets of joins, which is exponential in the number of input

joins. We remark that in practice the number of input joins is small.

However, when 𝑆 is large, if we compute |OΔ |’s in the order of the

bottom-up traversal of the powerset lattice of 𝑆 , we can speed up

by reusing some of the computation.

Warm-up Phase: Note that computing the exact values of 𝑘-

overlaps and overlaps for an arbitrary number of joins and relations

is computationally expensive or infeasible. Next, we present two

instantiations of the framework for approximating these parameters.

We consider two cases: centralized and decentralized [18]. In a

centralized setting, relations are accessible through direct access

to data, such as relations within databases. We propose random-

walk for this setting. In a decentralized setting, data is private

or expensive to sample. Examples include data markets or large

relations in databases. Our histogram-based method is suitable

for this setting. Different instantiations of the framework only

differ in how the union size bound, and join overlap bounds are

computed during the warm-up phase.We remark that both methods

guarantee uniformity. There is a tradeoff between efficiency and

cost of estimation: tighter upper bounds are more costly to set up,

but once in place, can generate samples more efficiently. On the

other hand, looser upper bounds are easier to compute but lead to

low sampling efficiency (due to potentially higher rejection rates).

We propose a modified version of union sampling based on the

random-walk method that does not require warm-up and strikes

a better tradeoff between upper-bound computation and sampling

efficiency.

5 INSTANTIATIONWITH HISTOGRAMS
Database management systems often maintain histograms as a

special type of column statistic that provides more detailed infor-

mation about the data distribution in a table column during query

optimization. These histograms are useful for cardinality estima-

tion, particularly if the data in a column is skewed. In this section,

we present ways of estimating join overlap and union size using

these histograms and even more minimalistic statistics such as max-

imum degrees of tuples in relations. Here, we propose a solution

for the case of chain join, inspired by Olken’s seminal work on

join size estimation[34]. In § 8.2, we extend our framework to more

generic cyclic and acyclic joins.

5.1 Overlap of Equi-length Chain Joins
We start with estimating the overlap of multiple chain joins. Sup-

pose all joins consist of the same number of relations and there is a

one-to-one mapping between relations of each pair of joins such

that mapped relations have the same schema. Given a collection

of joins 𝑆 and a subset Δ ⊆ 𝑆 , let 𝑂Δ =
⋂
𝐽𝑗 ∈Δ 𝐽 𝑗 be the set of

tuples that appear in all 𝐽 𝑗 ∈ Δ. Trivially, a loose upper bound for

the overlap is min{|𝐽 𝑗 | : 𝐽 𝑗 ∈ Δ}. We first partition the joins on

relations consistently. At each step, we estimate the overlap size of

each sub-join dynamically from the overlap of smaller sub-joins by

multiplying the overlap size of a smaller sub-joins by the minimum

of the maximum degree of values join attributes. For example, for

joins of three relations, we first evaluate the overlap of the first

relations in all joins. Then, we evaluate the overlap of the first two

relations in all joins by multiplying the overlap of the first rela-

tions by the minimum of the maximum degree of values of the first

relations, and so on.

More formally, let K(𝑖) be the upper bound of the number of

overlapping tuples after the 𝑖-th join. Hence, |OΔ | ≤ K(𝑛 − 1). Let
𝑀𝐴𝑙
(𝑅 𝑗,𝑖 ) be the maximum degree of values in the domain of a

join attribute 𝐴𝑙 of relation 𝑅 𝑗,𝑖 of join 𝐽 𝑗 and let 𝑑𝐴𝑙
(𝑣, 𝑅 𝑗,𝑖 ) be

the degree of value 𝑣 in the domain of 𝐴𝑙 . Note that the statistics

of the degree of values are available from the histograms on join

attributes. We can obtain an upper bound dynamically as K(𝑖) =
K(𝑖 − 1) ·min𝐽𝑗 ∈Δ{𝑀𝐴𝑖

(𝑅 𝑗,𝑖+1)}. Note that forK1 we calculate the

bounds based on values, i.e., K(1) = ∑
𝑣∈C min𝐽𝑗 ∈Δ{𝑑𝐴1

(𝑣, 𝑅 𝑗,1) ·
𝑑𝐴1
(𝑣, 𝑅 𝑗,2)}. So far, this bound requires the full histogram of the

first relations in all joins and the maximum degree of values in

the remaining relations. If the histograms are available for all join

attributes in the relations, we can further refine the bound by re-

placing the term of the minimum of maximum degrees,𝑀𝐴𝑖
(𝑅 𝑗,𝑖+1),

with the minimum of the average degree of values in the join at-

tributes.

5.2 Overlap of Chain Joins
We now release this assumption to accommodate joins with arbi-

trary length and arbitrary relation schemas. Note that the joins

themselves should still have the same schemas after joining. We

introduce the splitting method that aims to reorganize joins into

joins on relations of the same size, so that the results of § 5.1 can

be applied. The splitting method derives new joins by breaking

down relations into sub-relations, each sub-relation consisting of

exactly two attributes. The derived joins have the same schema

and are lossless, i.e., each generates the same data as the original

join, and all contain the same number of relations. Moreover, for

each relation in a derived join, there are corresponding relations in

other joins. Since the derived joins satisfy the requirements of § 5.1

and generate the same data, we can directly apply § 5.1 to estimate

the overlap size of the original joins. Although the input joins may

not include relations with the same schemas, they definitely have

corresponding attributes and the same schema after joining. As

such, breaking all relations in sub-relations of two attributes and

redefining joins incurs join with the same number of same-schema

relations.

Note that our splitting method is different than the normaliza-

tion in the database theory which aims to decompose relations

into sub-relations based on functional dependencies to avoid anom-

alies [13]. Split relations keep a record of their original sizes for

the estimation steps. We call the join between two relations split

from the same original relation fake join. The following theorem

describes a generic way of bounding the overlap of chain joins.
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Theorem 4. Given a collection of split joins 𝑆 and a subset Δ ⊂ 𝑆 ,
let 𝑂Δ =

⋂
𝐽𝑗 ∈Δ 𝐽 𝑗 . Let𝑀𝐴𝑙

(𝑅 𝑗,𝑖 ) be the maximum degree of values
in the domain of a join attribute 𝐴𝑙 of relation 𝑅 𝑗,𝑖 of join 𝐽 𝑗 and let
𝑑𝐴𝑙
(𝑣, 𝑅 𝑗,𝑖 ) be the degree of value 𝑣 in the domain of 𝐴𝑙 . We define

the following.

𝑀𝑗,𝑖 =


𝑀𝐴𝑖
(𝑅 𝑗,𝑖+1) if 𝑅 𝑗,𝑖 ⊲⊳ 𝑅 𝑗,𝑖+1

1 if 𝑅 𝑗,𝑖 ⊲⊳′ 𝑅 𝑗,𝑖+1
LetK(𝑖) be the upper bound of the number of overlapping tuples after
the 𝑖-th join and let 𝑑𝐴𝑙

(𝑣, 𝑅 𝑗,𝑖 ) be the degree of value 𝑣 in the domain
of 𝐴𝑙 . We then obtain an upper bound for the overlap size of joins in
Δ, |𝑂Δ |, dynamically as follows.

|OΔ | ≤ K(𝑛 − 1) = K(𝑛 − 2) · min

𝐽𝑗 ∈Δ
{𝑀𝑗,𝑛}

K(1) =
∑︁
𝑣∈C

min

𝐽𝑗 ∈Δ
{𝑑𝐴1
(𝑣, 𝑅 𝑗,1) · 𝑑𝐴1

(𝑣, 𝑅 𝑗,2)}

K(𝑖) = K(𝑖 − 1) · min

𝐽𝑗 ∈Δ
{𝑀𝑗,𝑖 }

Proof. The proof of this theorem follows from § 5.1 and § 5.2.

□

We remark that Theorem 4 can become a biased estimator of join

overlap if the data is skewed. Here, we present a solution with the

least statistics available. We can extend the theorem, to become an

unbiased estimator, in a straightforward way to use the histogram

information of all join attributes and compute the expected value

and upper bound of overlap.

6 INSTANTIATIONWITH RANDOMWALKS
The techniques proposed in § 4 perform join union size estimation

in a direct manner. In this section, we consider an alternative and

more accurate way of estimating join overlap size in an online

manner. The idea is to update the join size and overlap size on the

fly, during the warm-up phase, by obtaining tuples from join paths

and reusing these tuples during the main sampling step.

6.1 Join Size Estimation Revisited
To solve the online aggregation problem over join, wander join

proposes an algorithm by performing random walks over the un-

derlying join data graph [25]. This solution can be applied to join

size estimation by computing the COUNT operation over the join.

A join data graph models the join relationships among the tuples

as a graph, where nodes are tuples and there is an edge between

two tuples if they can join. Using a join graph, we can easily ob-

tain successfully joined tuples by performing random walks. The

probability of a tuple sampled from a join can be computed on the

fly using the join graph. Given a join 𝐽 = 𝑅1 ⊲⊳ 𝑅2 ⊲⊳ . . . ⊲⊳ 𝑅𝑚 , the

probability of a result tuple 𝑡 = 𝑡1 ⊲⊳ 𝑡2 ⊲⊳ . . . ⊲⊳ 𝑡𝑚 is computed as

𝑝 (𝑡) = 1

|𝑅1 | ·
1

|𝑑2 (𝑡1) | · · · · ·
1

|𝑑𝑚 (𝑡𝑚−1) | , where 𝑑𝑖 (𝑡𝑖−1) is the number

of tuples in 𝑅𝑖 than join with 𝑡𝑖−1.

Example 6. Consider the index graph of 𝐽 in Fig. 3d. The probability
of choosing 𝑎1 is 1

5
. Then among the three joinable tuples with 𝑎1, the

probability of selecting 𝑏2 is 1

2
. Similarly, the probability of selecting

𝑐1 is 1

3
. Therefore, the probability of obtaining tuple 𝑎1 ⊲⊳ 𝑏2 ⊲⊳ 𝑐1 is

𝑝 (𝑎1 ⊲⊳ 𝑏2 ⊲⊳ 𝑐1) = 1

5
× 1

2
× 1

3
.

Suppose we have obtained a sample 𝑆 of size 𝑚 from a join

path 𝐽 . Following Horvitz-Thompson estimator [17], the estimated

join size of 𝐽 based on sample 𝑆 , namely |𝐽 |𝑆 can be evaluated as

|𝐽 |𝑆 =
∑
𝑡 ∈𝑆

1

𝑝 (𝑡𝑘 ) ·
1

𝑚 [25]. We can update this estimation in real-

time as new join samples are obtained. Suppose a new tuple 𝑡0 is

added to 𝑆 , we can update the join size estimation as follows.

|𝐽 |𝑆∪𝑡0 =
∑
𝑡 ∈𝑆

1

𝑝 (𝑡𝑘 ) +
1

𝑝 (𝑡0)
(𝑚 + 1) =

∑
𝑡 ∈𝑆

1

𝑝 (𝑡𝑘 )
𝑚

+
𝑚
𝑝 (𝑡0) −

∑
𝑡 ∈𝑆

1

𝑝 (𝑡𝑘 )
(𝑚 + 1)𝑚

= |𝐽 |𝑆 +
1

𝑚 + 1

(
1

𝑝 (𝑡0)
− |𝐽 |𝑆

)
We revisit the mean and variance of |𝐽 | later in the discussion of

random walk overlap. Hence, a real-time approximate answer is

returned with some confidence level, and the accuracy improves as

the sample size grows larger. Extending from wander join, we have

two methods to estimate the overlap sizes.

First, we set an 𝛼 as a parameter, which is the confidence level we

want to achieve. There is a confidence level value 𝑧𝛼 corresponding

to the 𝛼 . The half-width of the confidence interval is
𝑧𝛼 ·𝜎√
𝑛
, where 𝑛

is the sample size and 𝜎 , is the standard deviation of the sample set.

We terminate the sampling when the half-width becomes less than

the threshold we defined.

6.2 Overlap of Joins
We described an algorithm based on random walks for sampling

a join and estimating a join size. Given a set Δ ∈ 𝑆 of join paths,

we would like to estimate the overlap of joins in Δ, namely OΔ. Let
𝑆 𝑗 = {𝑡1, 𝑡2, . . . , 𝑡𝑚} denote a collection of sampled tuples from join

𝐽 𝑗 ∈ Δ. Let 𝑐𝑜𝑢𝑛𝑡 (𝑡) be the number of occurrences of tuple 𝑡 in a set.

We define 𝑆 ′
𝑗
such that for each tuple 𝑡 in 𝑆 𝑗 , 𝑆

′
𝑗
contains exactly

1

𝑝 (𝑡 )
number of such tuple 𝑡 , i.e., 𝑆 ′

𝑗
= {𝑡 ∈ 𝑆 𝑗 | 𝑐𝑜𝑢𝑛𝑡 (𝑡) = 1

𝑝 (𝑡 ) }. Thus,
sample 𝑆 ′

𝑗
preserves the distribution of 𝐽 𝑗 . We assume uniformity,

over overlap, and non-overlap regions among join paths, that is

we sample tuples and estimate join sizes by performing random

walks, for any 𝐽 𝑗 ∈ Δ, we have |OΔ || 𝐽𝑗 | =
|⋂𝐽𝑗 ∈Δ 𝑆

′
𝑗 |

|𝑆′
𝑗
| . Therefore, a join

overlap size is estimated on the fly as follows.

|OΔ | = |
⋂
𝐽𝑗 ∈Δ

𝐽 𝑗 | = |𝐽 𝑗 | ·
|⋂𝐽𝑖 ∈Δ 𝑆

′
𝑖
|

|𝑆 ′
𝑗
| (2)

How to get the |⋂𝐽𝑖 ∈Δ 𝑆
′
𝑖
|? We fix a 𝐽 𝑗 ∈ Δ and continually sample

from this single source, forming the 𝑆 𝑗 . In each round, if we accept

the sample 𝑡 , then we check every𝐽𝑖 ∈ Δ, where 𝑖 ≠ 𝑗 to see where 𝑡

is contained in 𝐽𝑖 . Since we already have the index for each 𝐽𝑖 (stored

in hash tables), this operation could be cheap since it just requires

(𝑁 − 1) × (𝑀 − 1) queries with key, where 𝑁 = |Δ| and 𝑀 is the

number of tables in a join path. If 𝑡 is in every 𝐽𝑖 , we include it

into

⋂
𝐽𝑖 ∈Δ 𝑆

′
𝑖
. We can now plug in this estimation in Theorem 3 to

compute the union size of joins in Δ. Next, we compute the confi-

dence interval for |OΔ |. The variance of |
⋂
𝐽𝑖 ∈Δ 𝑆

′
𝑖
|/|𝑆 ′

𝑗
|, denoted

by 𝜎2
𝑗
, can be computed by a binomial sampling, with a variance

of 𝑝 𝑗 (1 − 𝑝 𝑗 ) and mean of 𝑝 𝑗 [24]. Li et al. showed the mean and

variance of |𝐽 𝑗 |, denoted by 𝜙2
𝑗
, are 𝑇

𝑗
𝑛 (𝑢) (= 1

𝑛−1
∑𝑛
𝑖=1 𝑓

𝑗 (𝑖)) and
𝑇
𝑗

𝑛,2
(𝑢) (= 1

𝑛−1
∑𝑛
𝑖=1 (𝑓 𝑗 (𝑖) −𝑇

𝑗
𝑛 (𝑓 ))2), respectively [25]. Assuming

7



these terms are independent, we have the variance of |OΔ | as fol-
lows.

𝜎2|OΔ | = 𝑇
𝑗

𝑛,2
(𝑢) · 𝑝 𝑗 · (1 − 𝑝 𝑗 ) +𝑇 𝑗𝑛,2 (𝑢) · 𝑝 𝑗 +𝑇

𝑗
𝑛 (𝑢) · 𝑝 𝑗 · (1 − 𝑝 𝑗 )

This gives us the following confidence interval for |OΔ | of Eq. 2.

𝐸 = 𝑧 ·

√√√√√√√√√ 1

𝑛

∑︁
𝐽𝑗 ∈Δ
(𝑇 𝑗
𝑛,2
(𝑢) · 𝑝 𝑗 · (1 − 𝑝 𝑗 )+

𝑇
𝑗

𝑛,2
(𝑢) · 𝑝 𝑗 + (𝑇 𝑗𝑛 (𝑢) · 𝑝 𝑗 · (1 − 𝑝 𝑗 ))

(3)

This means to obtain a 90% confidence on overlap estimation,

the algorithm requires a sample size of ( 1.96·𝑧
𝐸
·𝜎 |OΔ |)2, on average.

Note that our estimator for overlap, using random walks, is

unbiased. We first guarantee uniformity by adding
1

𝑝 (𝑡 ) number of

tuple 𝑡 to the collection 𝑆 𝑗 . We know we have the following.

lim

|𝑆 𝑗 |→∞

|⋂𝐽𝑗 ∈Δ 𝑆
′
𝑗
|

|𝑆 ′
𝑗
| =

lim |𝑆 𝑗 |→|Δ | |
⋂
𝐽𝑗 ∈Δ 𝑆

′
𝑗
|

lim |𝑆 𝑗 |→|Δ | |𝑆 ′𝑗 |
=
|⋂𝐽𝑗 ∈Δ 𝐽 𝑗 |
|𝐽 𝑗 |

Therefore, we can show that our result gets more and more accurate

when |𝑆 𝑗 | gets larger and equals the exact result when |𝑆 𝑗 | = |Δ|.
As the accuracy of overlap estimation gets closer to the true values,

we also obtain a better estimation for the union size, which shows

that our estimator improves for values used in our algorithms.

7 ONLINE UNION SAMPLING
The histogram-based method has almost zero setup cost but low

sampling efficiency, while the random-walkmethod requires some

sampling cost during the warm-up phase, but yields better estima-

tion and efficiency. To design a sampling algorithm with a minimal

setup cost and high sampling efficiency, we introduce an online

union sampling algorithm as illustrated in Algorithm 2. At a high

level, join and union size estimation is performed in an online man-

ner as the union of joins is being sampled. Algorithm 2 extends

Algorithm 1 with two optimizations: sample reuse and backtrack-

ing with parameter update. It initializes join and union parameters

using the histogram-basedmethod, then, continues with selecting

joins and sampling joins using the random-walk method. At each

iteration, obtained samples are used to further refine estimations

using the join and union estimation proposed in § 6.1.

Sample Reuse (lines 8-10 of Algorithm 2) This makes up for

the overhead of the random-walk. Recall the tuples sampled by

random-walk are not uniform, however, with an extra accept/reject

step we can reuse them in the main sampling phase. For each join,

we keep track of every tuple 𝑡 and its probability 𝑝 (𝑡), computed

during join sampling as described in § 6.1. Suppose we have already

sampled 𝑆 = {𝑡1, 𝑡2, . . . , 𝑡𝑙 }, 𝑡𝑖 ∈ 𝐽 𝑗 , from 𝐽 𝑗 . Recall 𝑆 may have

duplicates, i.e., there exists 𝑖, 𝑗 s.t. 𝑡𝑖 = 𝑡 𝑗 . Then, if we choose 𝐽 𝑗 ,

we can first randomly choose a tuple 𝑡 from 𝑡1, 𝑡2, . . . , 𝑡𝑙 , but we

only accept it with probability
𝑙

𝑝 (𝑡 ) · | 𝐽𝑗 | . In this way, the algorithm

guarantees that the reused 𝑡 is sampled from 𝐽 𝑗 with probability

𝑝 (𝑡) · 1
𝑙
· 𝑙
𝑝 (𝑡 ) · | 𝐽𝑗 | =

1

| 𝐽𝑗 | which ensures uniformity of sampling over

the union. Note that if we accept 𝑡 , we do not return 𝑡 to the pool,

i.e., it is a sample without replacement process and 𝑙 is changing.

Once we use all the tuples we stored, the next time 𝐽 𝑗 is selected,

we simply sample over join using the techniques of § 3.2.

Note that the acceptance rate, namely 𝑅, can be equal to and

greater than 1. This means the algorithm may return more than one

instance of 𝑡 in a certain round, while still ensuring the uniforming

condition. We define the 𝑟𝑖 as the probability that 𝑖 instances of

𝑡 be accepted in a certain round. That is,

∑𝑛
𝑖 𝑟𝑖 · 𝑖 = 𝑅, where∑𝑛

𝑖 𝑟𝑖 = 1, 0 ≤ 𝑟𝑖 ≤ 1. Then, we have to choose the number of

instances, 𝑛 ∈ 𝑁 +, by choosing one of the many valid solutions of

this system.

Algorithm 2 Set Union Sampling with Reuse and Backtracking

Input: Join paths {𝐽𝑗 , 1 ≤ 𝑗 ≤𝑚}, tuple count𝑁 , backtrack para𝜙 , target

confidence level 𝛾

Output: Tuples {𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑁 }
1: { | 𝐽𝑗 |, 1 ≤ 𝑗 ≤ 𝑛}, |𝑈 |,← 𝑤𝑎𝑟𝑚𝑢𝑝 (𝑆) , { | 𝐽 ′

𝑗
| } ← 𝑐𝑜𝑣𝑒𝑟 (𝑆)

2: 𝑐𝑜𝑛𝑓 _𝑙𝑒𝑣𝑒𝑙 ← 0,𝑇 ← {} ⊲ result sample

3: 𝑃 ← [ 𝑗 ] [] ⊲ record probability of selected tuples from each join path

4: 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 ← {} ⊲ record of original join of seen tuples

5: while 𝑛 < 𝑁 do
6: select 𝐽𝑗 with probability

| 𝐽 ′
𝑗
|

|𝑈 |
7: if 𝑆 𝑗 ≠ ∅ then
8: sample 𝑡 ∈ 𝑆 𝑗 , accept with 𝑙

𝑝 (𝑡 ) ·| 𝐽𝑗 | , remove 𝑡 from 𝑆 𝑗

9: if 𝑆 𝑗 = ∅ or 𝑡 from 𝑆 𝑗 is rejected then
10: 𝑡 ← a random sample from 𝐽𝑗

11: if 𝑡 ∈ 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 for any 𝑖 < 𝑗 then reject 𝑡

12: else
13: if 𝑡 ∈ 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 for any 𝑖 > 𝑗 then ⊲ revision

14: remove 𝑡 from 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 and add 𝑡 to 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛 𝑗

15: remove all 𝑡 ’s from𝑇 and delete 𝑃 [𝑖 ] [𝑡 ]’s
16: if 𝑡 ∉ 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛𝑖 then add 𝑡 to 𝑜𝑟𝑖𝑔_𝑗𝑜𝑖𝑛 𝑗

17: 𝑇 ← 𝑇 ∪ {𝑡 } and update 𝑃 [ 𝑗 ] [𝑡 ]
18: if

∑
𝑗∈[𝑚] |𝑃 [ 𝑗 ] | % 𝜙 == 0 and 𝑐𝑜𝑛𝑓 _𝑙𝑒𝑣𝑒𝑙 < 𝛾 then

19: { | 𝐽𝑗 |, 1 ≤ 𝑗 ≤𝑚}, |𝑈 |,𝑇
20: 𝑐𝑜𝑛𝑓 _𝑙𝑒𝑣𝑒𝑙 ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑇, 𝑃 ) ⊲ backtrack (§ 7)

21: return𝑇

Backtracking with Parameter Update In § 4, we show that

despite the small overhead of the histogram-basedmethod and its

usefulness, the histogram-based method may not be an unbiased

estimator of our sampling parameters. Moreover, in § 6, we proved

that the random-walk is an unbiased estimator whose parame-

ter estimations converge to the true values after infinitely many

numbers of samples. Algorithm 2 initializes the framework with

the estimation of the histogram-based method and refines the

parameters by applying random-walk. The caveat is that, with

this refinement strategy, although at each round the probability

of sampled tuples is uniform and equal to 1/|𝑈 |, the uniformity of

tuples sampled across rounds is not guaranteed since the estimation

of |𝑈 | changes from one round to another with more random walks.

To mitigate this non-uniformity, we introduce a backtracking trick

which is an accept/reject strategy for all already sampled tuples in

previous rounds.

Algorithm 2 initializes 𝑇 to be the set of result samples and

initializes a list 𝑃 to store, 𝑝 (𝑡)’s, the probabilities of tuples obtained
from a join either it is accepted, rejected, or when the random

walk fails. We also specify a parameter 𝜙 , which indicates how

often we backtrack. During the sampling process, we record all

𝑝 (𝑡)’s regardless of 𝑡 being a rejected or reused tuple or being the
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Figure 3: (a) Acyclic join, (b) Cyclic join, (c) Tree structure
for overlap estimation of (b), (d) Skeleton join and residual
joins for random sampling (d’) Join data graph of 𝐽

result of a failed random walk (in this case, 𝑝 (𝑡) = 0). Every 𝜙

iterations, i.e., 𝜙 recorded 𝑝 (𝑡)’s, we update join, overlap, and union
estimations following the random-walk method then perform

backtracking following Algorithm ?? to adjust the probability of

previously sampled tuples based on the new estimation of |𝑈 |.
During backtracking, we iterate over all previously sampled tu-

ples in the result and adjust their probabilities by rejecting tuple 𝑡

with probability
| 𝐽 (𝑡 .𝑣𝑎𝑙)′ |/ |𝑈 |′
| 𝐽 (𝑡 .𝑣𝑎𝑙) |/ |𝑈 | , where |𝐽 (𝑡 .𝑣𝑎𝑙) | and |𝑈 | are origi-

nal values, and |𝐽 (𝑡 .𝑣𝑎𝑙) |′ and |𝑈 | are updated values. It is not hard
to see that the backtracking algorithm guarantees that each tuple

in the result is sampled with
1

|𝑈 |′ . We also keep track of the con-

fidence level 𝛾 of the estimated sizes and stop backtracking when

the accuracy is beyond a predefined threshold.

8 OTHER TYPES OF JOINS
In this section, we show how to generalize our sampling frame-

work to acyclic joins. The join subroutine of our algorithm re-

lies on an existing algorithm. The work by Zhao et al. provides a

way of random sampling over join of all types: chain, acyclic, and

acyclic [38]. The two discussed instantiations of our framework

propose different ways of estimating join overlap size parameters.

The random-walk method relies on samples obtained from joins

for estimation and handles acyclic and cyclic joins in the subrou-

tine of join sampling. For brevity, we do not repeat the algorithm

of Zhao et al. and describe how we extend the histogram-based

method to acyclic and cyclic joins.

8.1 Acyclic Joins
We organize the relations in a join tree, where each node refers

to a relation and each edge denotes a join. Figure 3c illustrates an

example of a join tree. The basic idea in extending our sampling

algorithm to acyclic joins is to transform all acyclic joins and chain

joins in the union to the base case of equi-length chain joins and use

the results of § 5.1 to estimate join overlaps. Our solution involves

first building a standard template of joins. A template is a join tree

structure to which the structure of every join can be converted.

We formalize the standard template as a chain join that contains

relations of two attributes. The reason we need the template is

that the degree-based comparison which is necessary for the size

estimation of § 5.1 can only be applied when relations have exactly

the sample structure.

To rewrite an acyclic join as a base chain join, we first construct

the equivalent join tree such that a breadth-first traversal, always

starting from the left-most node in each level, gives us joins of the

same schema for all trees. A chain join is indeed a join tree with

one branch. Joins may result in different tree structures. Therefore,

we next need to choose a standard tree structure (template) before

decomposing them into base chain joins. A good template is impor-

tant in the estimation process. A bad template can lead us to the

worst bound results of min𝑗 ∈[𝑛] |𝐽 𝑗 |.

Example 7. Consider the join in Fig. 3a. Suppose we choose the
template of (𝐴, 𝐷) ⊲⊳ (𝐴,𝐶) ⊲⊳ (𝐵,𝐶) ⊲⊳ (𝐵, 𝐸) ⊲⊳ (𝐸, 𝐹 ). To obtain
(𝐵, 𝐸), we need to estimate the size of (𝐴, 𝐵,𝐶) ⊲⊳ (𝐶, 𝐷) ⊲⊳ (𝐷, 𝐸); to
obtain (𝐸, 𝐹 ), we need to estimate the size of (𝐷, 𝐸) ⊲⊳ (𝐶, 𝐷) ⊲⊳ (𝐶, 𝐹 ).
Since we also need to estimate the fake join size, these two estimations
between relations lose lots of information. However, the template
(𝐴, 𝐵) ⊲⊳ (𝐵,𝐶) ⊲⊳ (𝐶, 𝐷) ⊲⊳ (𝐷, 𝐸) ⊲⊳ (𝐸, 𝐹 ) gives us a better bound
as we only use the pre-estimation for relations once to obtain (𝐸, 𝐹 ).

It is not hard to notice that if we want to preserve most of the

structure of the original relations, we prefer templates that put

attributes in their original relations. We formulate the problem of

finding a standard template for a collection of chain and cyclic joins

as the problem of splitting joins into two-attribute relations such

that the total pairwise distance of attributes in the same relation,

in the tree of the template, is minimized.

8.1.1 Pairwise attributes score. Suppose all 𝐽 ’s in 𝑆 result in ta-

bles with attributes D. For any pair of attributes 𝐴,𝐴′ ∈ D, let

𝐷𝑖𝑠𝑡 𝑗 (𝐴,𝐴′) be the distance between node(relation)s of 𝐴 and 𝐴′

in join tree for 𝐽 𝑗 . Note that the distance between two attributes 𝐴

and 𝐴′ is equivalent to the number of joins we need to perform to

obtain (𝐴,𝐴′) in a template. Then, we define the score between 𝐴

and 𝐴′ as 𝑠𝑐𝑜𝑟𝑒 (𝐴,𝐴′) = ∑
𝑗 ∈[𝑛] 𝐷𝑖𝑠𝑡 𝑗 (𝐴,𝐴′).

Again consider Figure 3a. We have 𝑠𝑐𝑜𝑟𝑒 (𝐴, 𝐵) = 0 + 0 + 0 =

0, which has the highest priority when we select a table for the

standard. Moreover, 𝑠𝑐𝑜𝑟𝑒 (𝐴, 𝐹 ) = 2 + 3 + 2 = 7 represents that 𝐴

and 𝐹 are far from each other and have a small possibility to appear

together in the original tables. Thus, pairs with a lower score have

a higher possibility of originally being in the same table. The lower

the score is, the higher the priority. We form all the pairs as a tree,

where the root is an empty node and each path from the root to

a leaf is an eligible path after eliminating the empty root node.

For example, if the resulting table has schema D = {𝐴, 𝐵,𝐶}, and
(𝐴, 𝐵) = 0, (𝐴,𝐶) = 3, (𝐵,𝐶) = 6, the tree will be formed as shown

in Fig. 8.1.1.

Null

A B (0)

A C (3)

B C (6)

B C (6)

A C (3)

A C (3)

A B (0)

B C (6)

B C (6)

A B (0)

B C (6)

A B (0)

B C (6)

A C (3)

A B (0)

We want the standard template to have the lowest score, so we can

convert the problem to finding the minimum cost path which can

be solved recursively.
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8.1.2 Alternating score. Another thing worth noticing is that split

relations and joins without estimating sub-join size preserve most

information, so wemay give weights to the case with𝐷𝑖𝑠𝑡 𝑗 (𝐴,𝐴′) =
0. We can view the score for this case as a hyper-parameter that

can be tuned for finding the tightest bound.

Given a standard template, we now introduce how acyclic and

cyclic joins can be converted while preserving information for "fake

join"s. Consider the tree structure acyclic join. Suppose node for 𝑅𝑖
has 𝑘 number of children, 𝑅𝑖1 , 𝑅𝑖2 , . . . , 𝑅𝑖𝑘 , and we have an extreme

case of the template where each table 𝑅𝑖 𝑗 has one attribute that

is paired with an attribute in 𝑅𝑖 . In this case, we do fake join on

each 𝑅′
𝑖, 𝑗

= 𝑅𝑖 ⊲⊳
′ 𝑅𝑖 𝑗 ⊲⊳

′ 𝐶ℎ𝑖𝑙𝑑𝑠 (𝑅𝑖 𝑗 ) and estimate |𝑅′
𝑖, 𝑗
| using the

method in § ??. In this step, we also record the estimated maximum

degree in each attribute 𝐴 in 𝑅′
𝑖 𝑗
as follows:

𝑀𝐴 (𝑅′𝑖 𝑗 ) =

𝑀𝐴 (𝑅𝑖 ) ·𝑀𝐴 (𝑅𝑖 𝑗 ) if 𝐴 is join attribute

max{𝑀𝐴 (𝑅𝑖 ), 𝑀𝐴 (𝑅𝑖 𝑗 )} otherwise

Through this way, we can split 𝑅′
𝑖 𝑗
according to the standard tem-

plate and with information on both cardinality and maximum de-

grees. Moreover, we are able to estimate the overlap size accordingly.

Note that we do not necessarily need to fake join all the child nodes

with their parent for transformation, as in real scenarios, we se-

lect the children based on the schemes of relations in the standard

template.

8.2 Cyclic Joins
In this section, we extend our sampling algorithm to cyclic queries.

Following the method proposed in [38], we break all the cycles in

the join hyper-graph by removing a subset of relations so that the

join becomes a connected and acyclic join. The residual join, namely

S𝑅 , is the set of removed relations and the skeleton join, namely

S𝑀 , is the set of relations in the main acyclic join. Fig. 3c shows

the equivalent skeleton join tree and residual join to the cyclic join

of Fig. 3b. Let attributes in S𝑅 be𝐴𝑡𝑡𝑟 (S𝑅), and attributes in S𝑀 as

𝐴𝑡𝑡𝑟 (S𝑀 ). We treat S𝑅 as a single relation in the new acyclic join.

We can even materialize S𝑅 by performing joins in S𝑅 . Note that
some attributes in 𝐴𝑡𝑡𝑟 (S𝑅) from the residual S𝑅 may be joined

with 𝐴𝑡𝑡𝑟 (S𝑀 ). This means we have an acyclic join (the skeleton

join) and a residual that can be joined with two or more relations

in the skeleton. Now the maximum degree𝑀 (S𝑅) of any attribute

in S𝑅 is defined as follows.

𝑀 (S𝑅) = max

𝑣𝑖 ∈𝐴𝑖

|𝑡 : 𝑡 ∈ S𝑅, 𝜋𝐴𝑖
(𝑡) = 𝑣𝑖 ,∀𝐴𝑖 ∈ 𝐴𝑡𝑡𝑟 (S𝑀 )∩𝐴𝑡𝑡𝑟 (S𝑅) |

Since we treat the residual as one relation, with the degree infor-

mation, we can estimate the join size and overlap size by breaking

𝑆𝑅 into the base chain join structure, as described in § 8.1. Note

that the choice of set or relations to remove can have a significant

influence on performance. We follow the methods used by Zhao et

al. [38] to decide where to break the cycle in practice.

8.3 Selection Predicates
Our sampling algorithms can support selection predicates in two

ways. The first alternative is to push down the predicates to rela-

tions, i.e., we filter each relation with the predicates, during the pre-

processing, and work with filtered relations during sampling. This

paradigm works for both histogram-based and random-walk.

Another alternative is to enforce the selection predicate during the

sampling process. This paradigm works with only random-walk,

unless the histogram-based method has access to the selectivity

degree of the predicate and can adjust the degree statistics. Since

this paradigm adds an additional rejection factor, it is most appro-

priate for selection predicates that are not very selective.

9 EVALUATION
Datasets: We use three datasets consisting of different types of

joins tailored from the TPC-H benchmark. Each query workload

is to sample from the union of joins in a dataset. UQ1 consists of

five chain joins, where each has five relations: nation, supplier,

customer, orders, and lineitem; UQ2 consists of three chain joins

which use: region, nation, supplier, partsupp, and part, where we

also add selection predicates following 𝑄𝑁
2
∪𝑄𝑃

2
∪𝑄𝑆

2
in [8]; and,

UQ3 has one acyclic join and two chain joins. UQ3 is derived from

relations: supplier, customer, and orders. We split them vertically

and horizontally to get relations with different schemas. Therefore,

working with UQ3 involves the application of the splitting method.

To experiment with the scale of data, we use TPCH-DBGen

to generate relations with various scales. For example, with TPC-

H scale factor 𝑁 -gb, and 𝐾% scale ratio, UQ3 is a dataset of size

𝐾% · 𝑁 · 3. For UQ2, we have the same data for three joins but

have different constraints for selection predicates. Hence, UQ2 has

a large overlap scale. We also vary the overlap scale 𝑃% between

joins of UQ1. When generating different queries, we keep 𝑃% of

the data the same in the original corresponding relations. This

way, although we cannot ensure that the overlap ratio in queries is

exactly 𝑃%, given unknown information between relations, we can

guarantee that the overlap ratio between queries is proportional

to the overlap scale. Note that we did not perform experiments

on cyclic joins queries, particularly because transforming cyclic to

acyclic joins and online sampling from cyclic join is done based on

an existing work [38].

Algorithms We evaluate the histogram-based and a random-

walk instantiations by plugging in techniques of § 4 and § 6, respec-

tively, in Theorem 3. The join estimation of histogram-based can

be instantiated by baselines EW (Exact Weight) [38], which is the

ground truth for weights by calculating the exact weight of each

tuple in the join data graph, or EO (Extended Olken’s) [38], which

we described in § 3.2. The join estimation of the online technique

uses our random-walk of § 6. We also consider FullJoinUnion

as the ground truth for our join size and union size estimations.

This algorithm performs the full join and computes the union. Note

that FullJoinUnion is extremely expensive on large datasets. Our

experiments timed out on data sizes of more than 5GB (per re-

lation). We do not evaluate DisjoinUnion since it is consistent

with sampling over one join path as it has no extra delays. we do

not evaluate the Bernoulli set union sampling since it is a slightly

different variation of the Non-Bernoulli and has lower efficiency

theoretically.

Implementation: The framework is implemented in Python. Re-

lations in joins are stored in hash relations with a linear search.

Acyclic joins are implemented in a tree structure and acyclic joins
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(a) (b) (c) (d)

Figure 4: The error of join to union size ratio estimation using histogram-based +EO on (a) UQ1 and (b) UQ3; runtime of union
size estimation using histogram-based and FullJoin on (c) UQ1 and (d) UQ3.

are handled by recursion. All experiments are conducted on a ma-

chine with 2 Intel
®
Xeon Gold 5218 @ 2.30GHz (64 cores), 512 GB

DDR4 memory, a Samsung
®
SSD 983 DCT M.2 (2 TB), 4 GPUs -

TU102 (GeForce RTX 2080 Ti).

9.1 Join and Union Size Approximation
9.1.1 Error. We evaluate the estimation error of the ratio |𝐽𝑖 |/|𝑈 |
for each join in a query, because our algorithms rely on this ratio to

define probability distributions over joins. For these experiments,

we use UQ1 and UQ3 with 3GB scale raw data. After preprocessing,

UQ1 is 9GB and UQ3 is 5.4GB.The overlap scale is set to 0.2. Fig. 4a

and 4b show the ratio estimation error for UQ1 and UQ3, with

respect to overlap scale, using histogram-based method.

For large overlap scales, the error tends to be small and stable. For
smaller scales, the performance is unstable. This is because when the

overlap scale is small, small samples will have a large effect on the

estimation performance. However, when we have a large scale of

overlap, which is our use case, the randomness will be removed.

Besides, we observe that the average error for UQ3, in Fig. 4b, is

better than UQ1, in Fig. 4a. As we take an upper bound for every

join, our histogram-based method gains higher accuracy on joins

with a smaller length. Given that UQ3 is smaller both in length

and numbers, this explains why the estimation is relatively more

accurate for UQ3.

9.1.2 Runtime. We report the runtime of our parameter estimation

methods, in Fig. 4c and 4d. First, histogram-based is significantly
faster than the brute-force full join. Second, for UQ1, we observe
that as the cost of full join increases with overlap scale, the time

histogram-based method needs becomes less. This is because

when the overlap scale is large and the overlapping structure is

complex, it becomes harder for the full join to scan over data, but for

our method, a higher overlap scale instead accelerates our method

in finding the tuple with the maximum degree.

Unlike thehistogram-based technique, our random-walk tech-

nique collects sampling statistics during the warm-up phase. When

evaluating the confidence level of the overlap size, we are actu-

ally evaluating the ratio that the overlap part takes in the join,

i.e.,

|⋂𝐽𝑖 ∈Δ 𝑆
′
𝑖 |

|𝑆′
𝑗
| . In Eq. 2, we take |𝐽 𝑗 | as an exact value to fulfill the

assumption of independence. This is in fact equivalent to having

the confidence level of |𝐽 𝑗 | as 1 and confidence interval as 0, which

is an approximation of the case given by Wande Join [25]. We ter-

minate online sampling when the confidence level reaches 90% or

we obtain 1,000 samples.

Fig. 5a compares the performance of histogram-based with

EO [33, 38], as join size instantiation, with random-walk, in terms

of the error of join to union size ratio estimation on UQ1. We used a

data scale of 3GB for each query. First, random-walk outperforms
histogram-based; in fact, random-walk is extremely accurate and
stable and has an error close to zero for all joins. This is because the
nature of indexing will give us extra information about overlap-

ping. We remark that the accurate estimation comes at the cost of

sampling during the warm-up phase. We will discuss the empirical

evaluation of the sampling technique that reuses these samples,

shortly. Besides, while the estimation error is quite robust across
joins, the higher the overlap, the more accurate histogram-based
becomes. Since the accuracy of overlap size estimation heavily de-

pends on the overlap size of samples we collect, the larger the actual

overlap is, the easier we find overlap in samples, As we take the

minimum in each step as the upper bound of overlap size, the bound

gets tighter when overlap size approaches data size, which results

in more accurate results in overlap size estimation. Nevertheless,

though random-walk has better performance, histogram-based

is relatively faster and can be applied to databases without index

structures.

9.2 Set Union Sampling
9.2.1 Scaling with Number of Samples. For histogram-based, We

use both EW and EOmethods for weights initialization in sampling

from a single join, and we only use EW for random-walk. First,

Fig. 5c, 5d, and 5e show how SetUnion scale with number of

samples. Overall, we can see that when using EW instantiation,

histogram-based and random-walk have nearly no difference in

performance. In other words, the accuracy of the estimation bound
has little impact on sampling efficiency. However, for histogram-
based, using EW results in a much slower situation than using EO

on all three queries, since with exact weights calculated, we obtain

a rejection rate of zero.

9.2.2 Runtime Breakdown. Fig. 5f, 5g, and 5h shows the compar-

isons of time spent on parameter estimation(join size, overlap, and

weights), producing accepted answers and on producing rejected

answers. The reason for the decay comes from EO, as well as the

fact that we need to reject duplicate tuples that are sampled from a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: (a) the error of join to union size ratio; (b) SetUnion time vs. data scale on UQ1; runtime vs. sample size on (c) UQ1
and (d) UQ2; (e) UQ3; time breakdown of (f) UQ1 (g) UQ2 and (h) UQ3.

join different from what it is assigned to. From these plots, the most

significant finding is that though using EO is much less efficient

than using EW, it has better performance in the warm-up phase.

Moreover, since it uses the upper bound of weights for sampling

from a join, it has an extra rejection phase and needs to spend

much more time on rejected answers than using EW. Besides, the

time spent on accepted answers is similar for three combinations

of instantiations for all queries. Moreover, our SetUnion algorithm
spends minor time rejecting duplicate tuples and has very high effi-
ciency when using EW for join sampling.

9.2.3 Scaling with Relation Size. Although we use 𝑠𝑐𝑎𝑙𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟 = 5

for all three queries, we will get different sizes of unions if we

perform full joins due to different numbers of relations and different

levels of overlaps. From our set out, the order of union size for three

queries from large to small is UQ1, UQ3, UQ2. From both sets of

plots, we notice that sampling time is in proportion to the resulting

union size. What’s more, when the expected union size is small, as

for UQ2, EO has a relatively smaller gap with EW during sampling,

and has an even better advantage in the warm-up phase.

Moreover, Fig. 5b reports sampling time for various data scales

for UQ1. The first observation is that using EO for join size esti-

mation makes both algorithms slower than using EW and overall

EW scales better with the size of data since with exact weights

the rejection rate for sampling from single join path is 0. Second,

though the sampling time of both algorithms increases with the

size of data, the scale has a much larger effect on EO than EW. As

the size of each relation grows larger, a tuple has a higher rejec-

tion rate due to the growth of the number of tuples in the relation

to be joined with. Finally, initialization in union size using either

histogram-based or random-walk has little impact on efficiency,

which is consistent with the conclusion we obtained earlier.

(a) (b)

Figure 6: (a) time vs. sample size with and without reuse (b)
time per sample spent in a regular phase vs. a reuse phase.

9.3 Online Union Sampling with Sample Reuse
In the next set of experiments, we evaluate the runtime of the

random-walk sampling using the idea of reusing samples collected

during warm-up. We compare random-walk with and without

reuse on all three queries. Fig. 6a shows sampling time with respect

to sample size. First, we can clearly observe that we have much

higher efficiency when we sample with reuse. When we sample

from the pool of pre-sampled and joined tuples during the warm-up

phase, we only do a fast check on rejection or acceptance and do

not need to sample over each relation. Moreover, there is a slight

change in slope on lines of sampling with reuse cases. When pre-

sampled samples are all used, the performance of SetUnion will

slowly converge to their original performance. One other interest-

ing phenomenon is that the reuse of samples has a more apparent

increase in performance when the expected union size is larger. For

UQ1, there is a huge gap between with and without reuse; but for

UQ2, the gap is much smaller. Fig. 6b compares to time spent on

successfully accepting one tuple in the regular sampling phase and

in the reuse sampling phase. We use the ratio of total time spent
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on sampling and the number of successfully sampled tuples for

each phase for comparison, and we can see that when we reuse

pre-sampled tuples, we have much higher efficiency. This shows

the huge improvement in efficiency brought by our online union

sampling.

10 RELATEDWORK
Random Access to Query Results The closest problem to ours

is random access to the results of conjunctive queries. Bagan et

al. show that the free-connex acyclic conjunctive queries can be

evaluated using an enumeration algorithm with a constant delay

between consecutive answers, at the cost of a linear-time prepro-

cessing phase [5]. However, because this work does not guarantee

the randomness of the intermediate answers, the produced result

may have extreme bias, making it unsuitable for learning tasks.

Recently, Carmeli et al. studied the problem of enumerating the

answers of the union of acyclic conjunctive queries in a uniformly

random order [8]. The proposed algorithm requires full access to

the database, i.e., the computation of the full joins as well as a linear

pre-processing time in the size of the database. As such, this algo-

rithm is not applicable to random sampling over open data, data

markets, proprietary databases, or web databases where the access

model is tuple-at-a-time access. Unlike the approach of Carmeli et

al. which requires computing the exact join and overlap sizes, our

framework presents sampling strategies and ways of approximating

these parameters using simple statistics, such as degrees, in our

direct method or a subset of random samples in our online method.

Random Sampling over Joins The problem of random sam-

pling over a single join path was posed in the 1990s [1]. Acharya

et al. proposed a solution for good approximate answers using

only random samples from the base relations, but accuracy still

remained to be improved [1]. Joining random samples of joins pro-

duces a much smaller sample size than samples. Moreover, it is

shown that join samples obtained do not satisfy the independence

requirement [18]. To solve this, Olken proposed the idea of reject-

ing join of two samples with specific probabilities for two-table

join [33]; Chaudhuri et al. proposed techniques that are applica-

ble to linear joins but not to arbitrary joins [10]. Both methods

require full information of the tables as well as the index structure.

Chaudhuri et al. significantly improved the efficiency by propos-

ing another strategy group sample algorithm that relies on only

partial statistics [10]. However, all the above three methods only

work for 2-table Joins. Ripple join returns dependent and uniform

samples [16]. Wander join [25] extended ripple join to return inde-

pendent but non-uniform samples from the join. Recently, Zhao

et al. proposed a framework that handles general multi-way joins

and guarantees i.i.d [38]. This algorithm can be plugged in our

framework for random sampling over a single join path.

Union of Sets and Queries The union-of-sets problem has been

studied in approximate counting literature [21]. The goal is to

design a randomized algorithm that can output an approximation

of the size of the union of sets efficiently. Karp et al. proposed a

(1+𝜖)-randomized approximation algorithm for approximating the

size of the union of sets with a linear running time. This algorithm

requires the exact size of each set and a uniform random sample of

each set. [21]. Bringmann and Friedrich later applied this algorithm

in designing an algorithm for high dimensional geometric objects

using uniform random sampling. They also proved that the problem

is #P-hard for high dimensional boxes [7]. The computation of union

of sets also has links to 0-th frequency moment estimation [2]. One

line of work in this area is on DNF counting problem [20], including

designing hashing-based algorithms [9, 14, 21, 28]. Another popular

line of work is on estimating the union of sets where each set arrives

in a streaming fashion [6, 19, 27, 29].

11 CONCLUSION
This paper studies two novel problems: sampling over the union of

joins and size approximation of the union of joins. A general union

sampling framework is proposed that estimates join overlap and

union parameters when (1) data statistics are available in DBMSs

and (2) access to the data in relations is feasible. The framework

extends to the union size of joins of arbitrary multi-way acyclic

and cyclic. Interesting future work directions include analyzing the

impact of data skew on approximations as well as integrating a

union sampling operator into a database engine.
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