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Understanding User Reliance on AI
in Assisted Decision-Making
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Proper calibration of human reliance on AI is fundamental to achieving complementary performance in
AI-assisted human decision-making. Most previous works focused on assessing user reliance, and more
broadly trust, retrospectively, through user perceptions and task-based measures. In this work, we explore
the relationship between eye gaze and reliance under varying task difficulties and AI performance levels in a
spatial reasoning task. Our results show a strong positive correlation between percent gaze duration on the AI
suggestion and user AI task agreement, as well as user perceived reliance. Moreover, user agency is preserved
particularly when the task is easy and when AI performance is low or inconsistent. Our results also reveal
nuanced differences between reliance and trust. We discuss the potential of using eye gaze to gauge human
reliance on AI in real-time, enabling adaptive AI assistance for optimal human-AI team performance.
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1 INTRODUCTION
AI-assisted human decision-making aims to augment the human-AI team performance to exceed
both parties’ individual performances. However, prior studies have found that in experimental
tasks such as text classification [4], deception detection [33, 34], and treatment selection [31],
even though a human-AI team often outperforms the individual human’s performance, its team
performance is inferior to that of the AI alone. Part of this sub-optimal human-AI team performance
may be attributed to the user’s failure to properly calibrate how much they should rely on, or
trust in, the AI. When the user has little trust for the AI assistance, they do not properly rely on
it. When the user has too much trust for the AI, they over-rely on it [9, 32, 50]. In the latter case,
the human-AI team performance may be bounded by the AI capability, which can be problematic
especially in critical task domains since AI systems are not error-free. Therefore, it is important to
assess user reliance on AI during assisted decision-making and apply necessary strategies to help
users calibrate their reliance to achieve enhanced human-AI team performance.
Indeed, prior research was able to manipulate user agency in decision-making successfully

through manipulating the level of machine assistance [35]. However, most prior works assess
reliance and trust in human-AI interaction through self-reported measures (perceived reliance and
trust) and task measures (user AI agreement fraction). These measures are only used to analyze user
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reliance and trust retrospectively, and therefore are inadequate for timely, adaptive calibration of
reliance and trust in human-AI collaboration. Recent works have explored the use of physiological
measures including heart rate variability, galvanic skin response, and electroencephalography
(EEG) for assessing human-AI trust. While physiological measures would allow for real-time
measurements of trust and reliance, they require special equipment, thereby making them difficult
to generalize for everyday use. The rise of real-time eye gaze tracking with regular webcams
[55, 56, 69] points to a new possible way of assessing human reliance on AI in assisted decision-
making for a wider range of everyday situations. Prior research has shown how eye gaze may
provide insights into human decision-making and collaboration ([28]); for instance, gaze duration
is indicative of people’s preferences in selective decision-making [72]. In this work, we explore
how eye gaze may be used to gauge human reliance on AI in assisted decision-making in hopes to
enable future adaptive AI assistance for optimal human-AI team performance.

Our exploration was contextualized in an AI-assisted spatial reasoning task (Fig. 1). We conducted
an in-person experiment and recorded participants’ eye gaze during the experimental task. We
manipulated task difficulty and AI accuracy level and sought to understand 1) the role of eye gaze in
AI-assisted human decision-making; 2) the relationship between gaze behavior and human reliance
on the AI; and 3) the effects of task difficulty and AI performance on task accuracy, reliance, and
trust. Our results revealed 1) a strong positive correlation between the percent gaze duration on
the AI suggestion and human reliance on the AI; 2) nuanced differences between the concepts of
reliance and trust in human-AI interaction; and 3) preserved user agency when the task is easy
and AI performance is low or inconsistent. Our findings point toward a possibility of enabling
real-time adaptive human-AI collaboration through gaze awareness. Next, we describe relevant
prior research to help situate this work.

2 RELATEDWORK
2.1 Human-AI Collaboration
Artificial Intelligence (AI) agents have much potential to improve efficiency and productivity of
humans in many domains such as agriculture [36, 54] and medical care [21, 30, 54, 61]. In fact, agents
are already out-performing their human counterparts in select scenarios in recidivism prediction
[41, 76], cancer diagnosis [21, 68, 80], and speech recognition [19]. Under ethical and legal concerns,
particularly in critical tasks with high-stakes like medical diagnosis, AI agents are called to be
used as decision support tools for human decision-makings [10, 80, 81]. However, studies have
found the human-AI collaborative performance to be inferior to the AI performance alone in tasks
ranging from text classification [4], to deception detection [33, 34], to treatment selection [31]. A
main reason for this is because users have trouble balancing their trust for the AI and their agency,
and frequently under/over-rely on the AI agent [9, 32, 50]. Prior works have explored providing
explanations and more model information to help users better understand AI’s reasoning so that
they can make a more informed decision on the trustworthiness of the AI recommendation [4, 10].
However, explanations did not appear to offer more benefits than simply displaying the model
accuracy [4, 13, 52], and in some cases even reduced human agency in the decision-making [35].

2.2 Human-AI Trust
Previous work in human-AI interaction often adopted the definition of trust from human-human
trust, illustrating trust as “an attitude that an agent will achieve an individual’s goal in a situation
characterized by uncertainty and vulnerability” [38]. Research to date has adopted a variety of
quantitative measures to study human-AI trust and reliance. Many studies used task-based metrics
of trust such as agreement fraction (frequency at which a person’s final response agreed with the

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 471. Publication date: November 2022.



Understanding User Reliance on AI
in Assisted Decision-Making 471:3

AI) [35, 42, 44, 50, 70, 85], switch fraction (given that a person’s initial response was different from
the AI, the frequency at which the person revised their initial response for their final response
to match that of the AI) [44, 47, 85], and the number of trials at which a person authorized the
AI agent to make predictions on behalf of them [15]. Moreover, studies often used post-task or
post-study questionnaires to gauge user’s self-perceived trust in the AI. Questions about constructs
related to trust including reliance [79], confidence [3, 15, 16, 44, 47, 50], reliability [3, 11, 44, 53],
and predictability [3, 11, 27, 45] are also commonly included in the questionnaires to help aid the
characterization of trust. However, task-based measures and self-reported perception measures
only afford retrospective analysis of user trust.
Some studies have explored if human trust in intelligent systems can be measured through

physiological measures, such as heart rate variability (HRV), galvanic skin response (GSR), elec-
troencephalography (EEG). The use of these measures could allow for real-time estimation of trust.
However, no studies have observed a correlation between HRV and GSR with human trust in
machines. In a study on human trust in virtual reality agents, no significant effects of cognitive load
of the task and accuracy of the agent (highly correlated with perceived trust in the experiment) and
their interaction were found on any of the physiological measures (HRV, GSR, and EEG) [23]. A
study on traffic augmentation in automated driving system found no correlation between HRV and
trust based on user self-reported Technology Acceptance Model (TAM) and the Trust Scale (TS)
values [83]. However, several time-domain EEG features and GSR were found predictive of whether
or not the user would trust or distrust an AI suggestion [1]. Furthermore, EEG signal components
were also found to be correlated with the trustworthiness of the AI in an investment game scenario
with AI agents of varying trustworthiness levels [82]. Particularly, the frontal and the occipital area
of the brain were identified to be correlated with trust. To the best of our knowledge, research thus
far has not explored the use of eye tracking to measure trust and reliance in human-AI interaction,
but prior works have noted it as an area worth studying [23, 79].

2.3 Gaze Tracking and Decision Making
Gaze tracking is the analysis of measured eye movement data with respect to the visual scene [14].
Since gaze can reveal underlying attentional patterns of people selectively seeking the information
they need from the environment, we can gain insights into people’s thoughts and intentions based
on where they are looking [8, 24, 60]. Prior works have explored eye movement data in a large
variety of tasks, from basic scene viewing tasks [26, 43] and visual search tasks [5, 17], to complex
food preparation tasks [37] and driving tasks [39, 40]. Fixations on a scene encode the features in
the scene, and the duration of a fixation is determined by the amount of time required to carry
out the intended feature encoding [43]. Thus, gaze fixation duration and positions are reflective of
the person’s perceptual and cognitive processing of the scenery [43]. For instance, in reading, as
text becomes conceptually more difficult, fixation duration increases [63]. Moreover, semantically
informative objects in a picture tend to have longer total fixations duration [26]. In visual preference-
based selection decision-making, people also tend to like things that they spend more time looking
at (preferential looking) [2, 67, 72]. Furthermore, people spend longer time looking at the option
they ultimately choose (gaze bias effect) [20, 48, 58, 65, 72, 73, 77]. Together, the two phenomena
form the “Gaze Cascade” model, in which exposure to an item increases preference, preference
increases gaze duration, which in turn increases exposure, forming a positive feedback loop that
leads to selection of the item [48, 72, 73].

In human-computer interaction, studies have explored the use of gaze tracking as a multi-modal
input device for the system to read the intentions of the users [66, 74, 75, 86]. Some studies have also
used gaze tracking for user experience research and usability testing of websites and smartphone
apps [22, 46, 51, 62]. A study analyzed the gaze behavior of drivers interacting with navigation
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system of different display sizes and positions while driving to determine which combination causes
the least level of visual distraction for the driver [87]. Similarly, a study in human-AI interaction
also employed gaze tracking to gain more insights into the user decision-making process while
engaging with an automated driving system [49]. The study used eye gaze tracking to detect poor
use of automated driving system, less attention paid to the road ahead. However, no study has
explored the characterization of human trust in and reliance on AI through eye gaze tracking.

3 METHODS
3.1 Hypotheses
We designed a user study to explore the relationship between gaze and user trust in and reliance on
AI. We hypothesized that manipulating task difficulty and AI accuracy level will result in changes
in the user’s level of reliance and trust in the AI agent and that this change will be reflected in their
gaze duration on the AI. More specifically, our hypotheses are as follows:

• Hypothesis 1: By increasing task difficulty, regardless of the accuracy of the AI, users will
rely more on the AI. This hypothesis is informed by previous work that showed greater user
reliance on decision aids when a task is more difficult [7, 57].

• Hypothesis 2: By decreasing the accuracy of the AI, regardless of the task difficulty, users
will rely on the AI less. This hypothesis is based on previous findings suggesting that the
observed accuracy of a model can affect people’s reliance on the model [85].

• Hypothesis 3: User gaze duration on the AI suggestion increases with higher user reliance
on AI. Higher user reliance on AI can be reflected in higher user AI agreement in the final
response. Furthermore, the gaze bias effect suggests that preference for the AI suggestion
and adoption of the AI suggestion means longer gaze duration on the AI suggestion [58].

• Hypothesis 4: User gaze duration on the AI suggestion increases with higher user trust in
the AI. We expect that higher trust for the AI suggestion increases preference, which in turn
would increase gaze duration on the AI suggestion [73].

3.2 Experimental Task
To investigate the above hypotheses, we adopted a visuospatial task (Fig. 1) that is commonly used
to study cognitive ability in cognitive psychology research. The spatial ability involved in this task
is of importance in many disciplines including architecture, mathematics, and medicine [59, 64, 78].
For example, in medicine, spatial ability is critical for medical professionals, such as radiologists
and dentists, to understand medical images (CT, MRI, X-ray, and ultrasound) [25]. They must
comprehend complex three-dimensional (3D) structures based on two-dimensional image slices [6].
Our experimental task represents a simpler version of such complex spatial reasoning where the
participants are asked to apprehend the top-view or bottom-view of a 3D block structure based on
one 2D image slice. As AI continues to be developed to assist humans in complex visuospatial tasks
as in, for example, diagnostic radiology, we hope that the results of this investigation will help
inform the development of gaze-aware AI assisted decision support systems for future real-world
applications.
In our experiment, the participants were asked to complete a 10-trial of the task with the

assistance of an AI agent on the computer. In each trial, the participants were shown a new three
dimensional structure made up of 15 cubes of one of four colors (black, orange, purple, or blue) and
asked to determine what the structure would look like from the top view or the bottom view on a 4
by 4 grid (Fig. 1). The color of the square in the top right corner of the response grid was provided
as reference for how the structure should be oriented in the answer. The structures were crafted
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Phase 1

Beginning of the task

Halfway (in terms of task progress) 
through the whole task

(four user clicks)

End of the task

Halfway (in terms of time spent) 
through the second half of the task

Phase 2

Phase 3

Fig. 1. Overview of the 3 phases in the task. Phase 1 is the time before the AI appears, which is roughly halfway
through the task in terms of the progress in the user response; Phase 2 is the time after the AI appears until
halfway in term of the time spent after the AI appears; Phase 3 is the second half of the time spent after the
AI appears. The phases are demonstrated through screen shots from a participant’s screen recording overlaid
with their real-time eye gaze in green. Each green circle shows the location of a fixation and the size of the circle
is representative of the length of the fixation at that location. A screen recording of a participant completing
a full trial over-laid with their eye gaze is available at https://www.youtube.com/watch?v=eFIPCvm3Lqg.

using Blender1 and designed so that there is only one possible correct response given the color of
the top right corner square. The structures were also designed to have nine blocks in the correct
answer; however, this information was not revealed to participants.

The user response is entered by clicking on the square that the participant would like to change
the color of. The color of that square will change following the sequence of white, blue, orange,
purple, and black. With each click, the square will change to the next color in the sequence and
when the user clicks on a black square, the square will change back to white. This method was
chosen to preserve the gaze fixation on the square when the user is updating their response. It does
not involve the user looking down at the keyboard to look for specific keys, nor looking else where
on the screen.

1https://www.blender.org/
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The experimental task was implemented as a custom web application using the React2 and Flask
frameworks3, and deployed with Heroku4.

3.3 Study Design
In this study, we employed a 2 by 3 mixed factorial design with the task difficulty (top-view
and bottom-view) as a within-subjects factor and the AI accuracy (high, medium, and low) as a
between-subjects factor. In the beginning of an experiment, a participant was randomly assigned
to a particular AI accuracy level by the system; neither the participant nor the experimenter were
made aware of the accuracy level of the AI.

3.3.1 Task Difficulty. To manipulate task difficulty, we chose to let participants solve 3D spatial
reasoning tasks from two perspectives, namely top and bottom. We expected bottom-view tasks
to be more difficult as they required one more level mental rotation than top-view tasks. The
participants rated the bottom-view task to be more difficult than the top-view task in the practice
round (Section 4.1). Apart from the manipulation of the task viewpoint, difficulty of each task
trial was controlled by a consistent number (𝑛 = 15) of blocks making up of each structure and a
consistent number (𝑛 = 9) of filled-in blocks in the response. Each participant alternated between
doing a top-view task and a bottom-view task in hopes to decrease the learning effect throughout
the experiment.

3.3.2 AI Accuracy Level. The accuracy of AI suggestions is defined as the number of squares in
the AI suggestion that matched the ground truth grid divided by 16 (the total number of cells). We
designed three accuracy levels in this experiment for the AI agent.

• High performance. AI with high performance had 100.00% accuracy on all ten trials.
• Medium performance. AI with medium performance had an average cell-level accuracy of
97.50% over the 10 trials. The agent had one minor error in four trials (two trials for each
viewpoint) and 100% accurate response on the rest of the six trials. A suggestion with a
minor error was defined as either having one extra square filled in, one square missing on
the response grid, or one block of an incorrect color. As a result, an AI suggestion with a
minor error has an accuracy of 93.75%. To ensure consistency, the trials with a minor error
were set to be round 2, 3, 7, 8 in the main experiment.

• Low performance. AI with low performance had an average cell-level accuracy of 49.38%
over the 10 trials. The agent had one major error in suggestion on all ten trials. A suggestion
with a major error was defined as having a minor error and on top of that at least three more
square-level mistakes. The additional mistakes may be a result of a reflection error (answer
rotated by 90 degrees) or having shifts in parts of the response. As a result, AI suggestions
with a major error had an accuracy between 31.25% and 75.00%.

3.3.3 Timing of an AI Suggestion. AnAI suggestion was not shown to the user until the user entered
a response for four different squares on the user response grid, regardless of the correctness (color
and location) of the blocks they entered. Since the correct answer for the task always contained nine
squares, four squares corresponds to half way through completing the task in terms of progress
(Fig. 1); note that the first block in the top right corner was always provided. Participants were
not told how many blocks were in the final response and when the AI would appear. This design
choice was to encourage the participants to form an opinion about the task answer before they saw
the AI suggestion so they did not solely rely on the AI.
2https://reactjs.org
3https://flask.palletsprojects.com/en/2.0.x
4https://www.heroku.com
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For simplicity, we refer to the task time before an AI suggestion appears as phase 1, half way into
the task time (in terms of time spent) after an AI suggestion appears as phase 2, and the rest of the
task time until the user clicks “Done” as phase 3. Fig. 1 illustrates the process of a user completing
a top-view task.

3.4 Study Procedure
Upon agreeing to participate in the study, the participants were asked to sit in front of a computer
screen on a chair without wheels. They were told to move as close to the desk as possible and
lean back on the back of the chair. Then, an experimenter adjusted the position and angle of the
Gazepoint GP3 remote eye tracker (60 Hz) accordingly and calibrated the eye tracker using the
built-in 9-point calibration program. The calibration procedure was repeated until all points were
successfully calibrated and captured by the eye tracker for both of the participants’ eyes. After the
eye tracker was calibrated, the experimenter began screen recording and eye movement recording.

Before pulling up the web interface for the experiment, the experimenter emphasized the impor-
tance of the participant staying still in the chair throughout the entire experiment. The experimenter
also iterated that an AI suggestion might not appear right away at the beginning of the task and
rather the AI might take some time to come up with the answer and that the system was not broken
because of the absence of an AI suggestion. The participants were told that the experimenter will
stay in the room while they read the instructions for the experiment and the task in case of any
question or concerns, but will leave the study room after that and the participant will not be able
to ask any more questions.

In the web application, participants were first asked to fill out a demographic survey regarding
their gender, age, education background, level of familiarity with AI, and level of trust for AI.
After the demographic survey, participants were presented with the task instructions and a video
explaining and walking through the task and some tips and strategies for the task for both top-view
and bottom-view. Then, they were given one sample top-view task and a sample bottom-view
task with the correct answers. Then, if the participant did not have any further questions, the
experimenter left the room for the participant to proceed with the practice round of the study.
In the practice round of the study, the participants were asked to complete one top-view task

and one bottom-view task for practice without the AI with unlimited time. The order at which the
two practice tasks appeared was randomized and after each practice task the participants were
asked to rate the difficulty of the task they just completed on a 7-point Likert scale.

After completing the two practice tasks and the post task survey, the participants were told that
they will now be working with an AI agent. After they clicked “Start”, a task image appeared at the
center of the screen with a blank 4 by 4 grid to the left of it labeled “AI suggestion” and another
blank 4 by 4 grid to the right of it labeled “User response” (Fig. 1). An AI suggestion would only
appear after the user clicked on four different squares on the user response grid. The user had
unlimited time to complete each task and was able to click “Done” whenever they were satisfied
with their response. After each task trial, the participant was asked to complete a brief post-task
survey concerning their agreement with, reliance on, and trust in the AI suggestion, as well as their
confidence in their answers.

After the survey, no feedback on their response to the previous trial was given to the participant
to reduce possible learning effects. Every task trial contained a completely different block structure
and the task alternated between top-view and bottom-view. After the ten task trials, the participant
was presented with a final survey with an open-ended question on the strategy they used for
completing the task and any feedback they might have.
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3.5 Measures
We used a set of metrics to evaluate task accuracy, reliance on AI (agreement, gaze duration, and
perceived reliance), and other perception-based metrics. Eye gaze movement was recorded and
processed using the Gazepoint Control and Gazepoint Analysis software.

3.5.1 Task Accuracy. The task accuracy (Range: 0–1) of each trial is defined as the number of
squares in the user response that matched the ground truth grid divided by 16 (the total number of
cells). Thus, if the user response matched the ground truth perfectly, then the accuracy of the user
response would be 1.00.

3.5.2 User Reliance on AI. To understand user reliance on the AI, we use three metrics aiming to
capture user reliance through the lens of user-AI agreement on task outcomes, subjective perception,
and gaze behavior.

• User-AI Agreement (Range: 0–1). We defined the rate of agreement between the final user
response and the AI suggestion as the number of squares in the user response that matched
the AI suggestion divided by 16. Thus, if the user response matched the AI suggestion
perfectly, then the user AI agreement ratio would be 1.00. This metric is a task-based measure
of reliance.

• Perceived Level of Reliance on AI (Range: 1–7).We used one item “I relied on the AI suggestion
in the previous task” to assess the participant’s self-reported level of agreement with the
statement after each task trial in the main experiment. The item is on a 7-point Likert scale
with 1 being strongly disagree and 7 being strongly agree. This metric is a perception-based
measure of reliance.

• Percent Gaze Duration onAI Suggestion (Range: 0–1). The total amount of time the participant
spent fixating on the AI suggestion divided by the total amount of time (in seconds) the
participants spent fixating on the task, including fixations on AI suggestions, the task image,
and user responses. This metric is a behavior-based measure of reliance.

3.5.3 Other Perception-based Metrics. In addition to perceived reliance, we include other question-
naire items to assess participants’ agreement with and trust in the AI, as well as their confidence in
their responses. All items below are on a 7-point Likert scale with 1 being strongly disagree and 7
being strongly agree.

• Perceived Level of Agreement with AI Suggestion (Range: 1–7). We used one item “I agree
with the AI suggestion” to assess the participant’s self-reported level of agreement with the
AI suggestion after each task trial in the main experiment.

• Perceived Level of Trust in AI (Range: 1–7). We used one item “I trusted the AI suggestion in
the previous task” to assess the participant’s self-reported trust in the AI suggestion after
each task trial in the main experiment.

• Confidence Level in Response (Range: 1–7). We used one item “I was confident in my answers”
to assess the participant’s self-reported confidence in their responses after each task trial in
the main experiment.

We additionally included an open-ended question, “What strategies did you use that helped you to
complete the task?” to obtain a qualitative understanding of how the participants might use the AI
in their problem-solving processes.

3.6 Participants
A total of 42 participants (22 males, 20 females) were recruited through convenience sampling from
the local community, through physical posters, electronic newsletter posts, and posts to student
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group mailing lists. The participants’ age range was between 19 and 60 years (𝑀 = 23.69, 𝑆𝐷 = 6.13).
Participants self-reported their level of familiarity with AI (𝑀 = 3.38, 𝑆𝐷 = 1.02) on a scale of 5,
with 1 being not familiar at all and 5 being extremely familiar; the range of their reported familiarity
level was between 1 and 5, with a median of 3 out of 5. The participants also self-reported their
perceived level of trust for AI (𝑀 = 3.33, 𝑆𝐷 = 0.69) on a scale of 5, with 1 being not familiar at all
and 5 being extremely familiar; the range of their reported trust level was between 2 and 4, with a
median of 3 out of 5.

On average, the participants took roughly between 10 minutes and 50 minutes (𝑀 = 25.47, 𝑆𝐷 =

7.89) to complete the study. The participants received a $10.00 gift card as compensation for their
time. The participants were incentivized to perform better with an extra $5 reward for the top 5%
of performers. The study was approved by our institutional review board (IRB).

Data from two participants were excluded because they left the experiment room in the middle
of the study. Data from another five participants were excluded because they moved too much
during the experiment and their eyes were completely out of range and unable to be tracked by the
gaze tracker for more than five task trials. Among the resulting 35 participants, 14 were assigned
to the AI with high performance, 10 assigned to the AI with medium performance, and 11 assigned
to the AI with low performance. For the data from the 35 participants, three more trials where the
participant’s eyes were out of range from the gaze tracker was removed from two participants. As
a result, our data analysis included a total of 347 trials.

4 RESULTS
For the analyses reported below, if not specified otherwise, we performed two-way repeated
measure analysis of variance (ANOVA) tests where task difficulty was set as a within-subjects
factor, AI accuracy level as a between-subjects factor, and participants as a random effect. All
post-hoc pairwise comparisons were conducted using Tukey’s HSD test. We considered a 𝑝 < .05
as a significant effect.

4.1 Manipulation Check
We first checked whether we successfully created two different task difficulty levels through the
manipulation of the task orientation using Pearson’s chi-square test for the ordinal dependent
variable, self-report perceived task difficulty, and one-way analysis of variance (ANOVA) test for
the continuous dependent variable, practice accuracy.

4.1.1 Perceived Task Difficulty. A Pearson’s chi-square test revealed that the bottom-view task
(𝑀 = 4.94, 𝑆𝐷 = 1.26) was perceived by the participants to be more difficult than the top-view task
(𝑀 = 3.17, 𝑆𝐷 = 1.29), 𝜒2 (6, 𝑁 = 70) = 25.60, 𝑝 < .001

4.1.2 Practice Round Accuracy. A one-way ANOVA test was conducted to examine the effect of
manipulating the task orientation on the participants’ task performance in the practice round
without the help from the AI. We found that the participants performed significantly worse in the
bottom-view task (𝑀 = 0.49, 𝑆𝐷 = 0.24) than they did in the top-view task (𝑀 = 0.99, 𝑆𝐷 = 0.05),
𝐹 (1, 68) = 147.67, 𝑝 < .001.

4.2 Learning Effect
We examined a potential learning effect throughout the ten main trials using a three-way repeated
measure analysis of variance (ANOVA) test where task difficulty and the trial number were set
as within-subjects factors, AI accuracy level as a between-subjects factor, and participants as a
random effect.
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Fig. 2. (a) Bar plots demonstrating the final user response accuracy under varying task orientations (difficulty)
and AI performance. (b) Bar plots showing the agreement rate between the final user response and the AI
suggestion under varying task orientations and AI performance. The error bars shown in the plots represent
the standard error and only significant results are emphasized.

A three-way repeated measure ANOVA test was conducted to explore the effect of AI accuracy
level, task difficulty, and trial number on the accuracy of the user response right before the AI
suggestion is provided (half-way through the task). Therefore, we did not observe a significant
learning effect over the ten task trials.

4.3 Task Accuracy
A two-way repeated measure ANOVA test was conducted to examine the effect of AI accuracy level
and task difficulty on the accuracy of the user response (Fig. 2, a). We found a significant effect of
task difficulty on task accuracy, 𝐹 (1, 31.91) = 11.06, 𝑝 = .002, with a lower user task accuracy in the
bottom-view task (𝑀 = 0.87, 𝑆𝐷 = 0.24) than the top-view task (𝑀 = 0.97, 𝑆𝐷 = 0.10). Additionally,
we found a significant effect of AI accuracy level on the participant’s task accuracy, 𝐹 (2, 32.02) =
6.64, 𝑝 = .004. Pairwise comparisons using Tukey’s HSD test showed a significantly higher accuracy
in participants with the high performance AI (𝑀 = 0.98, 𝑆𝐷 = 0.08) than participants with the
low performance AI (𝑀 = 0.84, 𝑆𝐷 = 0.25), 𝑝 = .003. No significant difference in performance
was observed in participants with the high performance AI and participants with the medium
performance AI (𝑀 = 0.90, 𝑆𝐷 = 0.20), 𝑝 = .165, nor in participants with the medium performance
AI and participants with the low performance AI, 𝑝 = .270. There was no interaction effect of AI
accuracy level and task difficulty on the user task accuracy, 𝐹 (2, 31.91) = 3.25, 𝑝 = .052. Fig. 2 (a)
visualizes our results.

4.4 User Reliance on AI
4.4.1 User-AI Agreement. A two-way repeated measure ANOVA test was carried out to study the
effect of AI accuracy level and task difficulty on the similarity rate between the user response and
the AI suggestion (Fig. 2, b). We observed a significant effect of AI accuracy level on the agreement
ratio between the final participant response and the AI suggestion, 𝐹 (2, 32.15) = 124.58, 𝑝 <

.001. Pairwise comparisons using the Tukey’s HSD test revealed a significantly higher similarity
level in participants with the high performance AI (𝑀 = 0.98, 𝑆𝐷 = 0.08) than participants with
the medium performance AI (𝑀 = 0.90, 𝑆𝐷 = 0.19), 𝑝 = .014. Moreover, participants with the
medium performance AI had a significantly higher agreement level than participants with the
low performance AI (𝑀 = 0.55, 𝑆𝐷 = 0.18), 𝑝 < .001, and participants with the high performance
AI had a significantly higher agreement level than participants with the low performance AI,
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Fig. 3. Bar plots demonstrating the behavior-based metrics (percent gaze duration on AI) under varying task
orientations, AI performance, and phase in the task. The error bars shown in the plots represent the standard
error and only significant results are emphasized.

𝑝 < .001. No significant effect of task difficulty on the similarity rate between the final participant
response and the AI suggestion was found, 𝐹 (1, 32.02) = 1.19, 𝑝 = .283. However, there existed
a significant interaction effect of AI accuracy level and task difficulty on the user AI agreement
rate, 𝐹 (2, 32) = 5.58, 𝑝 = .008. Pairwise comparisons using Tukey’s HSD test (see Table 3 in
Appendix) found that the difference in similarity is significantly lower for the bottom-view task
(𝑀 = 0.83, 𝑆𝐷 = 0.25) than the top-view task (𝑀 = 0.96, 𝑆𝐷 = 0.05) for participants interacting only
with the medium performance AI, 𝑝 = .040. Fig. 2 (b) visualizes our results.

4.4.2 Perceived Level of Reliance on AI. A two-way repeated measure ANOVA test found a signifi-
cant difference in the participants’ perceived reliance on the AI under varying AI accuracy levels,
𝐹 (2, 32.11) = 12.73, 𝑝 < .001 (Fig. 4, a). Pairwise comparisons using Tukey’s HSD test showed that
participants with the high performance AI (𝑀 = 4.68, 𝑆𝐷 = 1.99) reported that they relied on the AI
more than participants with the low performance AI (𝑀 = 2.53, 𝑆𝐷 = 1.57), 𝑝 < .001. Participants
with the high performance AI reported significantly higher perceived reliance levels than partici-
pants with medium performance AI (𝑀 = 3.58, 𝑆𝐷 = 1.92), 𝑝 = .043. The difference between the
reported perceived reliance level of participants with the medium performance AI and that of par-
ticipants with the low performance AI was not significant, 𝑝 = .079. Participants reported that they
relied more on the AI in the bottom view task than the top view task, (𝐹 (1, 31.8) = 3.89, 𝑝 = .057).
No interaction effect of AI accuracy level and task difficulty (𝐹 (2, 31.78) = 0.31, 𝑝 = .739) were
identified on the participant reported perceived level of reliance on the AI agent. Fig. 4 (a) visualizes
our results.

4.4.3 Percent Gaze Duration on AI Suggestion. In addition to understanding the effect of AI accuracy
level and task difficulty on the participant’s percent gaze duration on the AI suggestion, we were
interested in how gaze duration on the AI might be influenced by task phase (time). To this end,
we used a three-way repeated measure analysis of variance (ANOVA) test where task difficulty
and task phase (phase 2 vs. phase 3) (Fig. 1) were set as within-subjects factors, AI accuracy level
as a between-subjects factor, and participants as a random effect. The test revealed a significant
difference in the participants’ percent gaze duration on the AI suggestion under the bottom-view
task (𝑀 = 0.17, 𝑆𝐷 = 0.11) and the top-view task (𝑀 = 0.13, 𝑆𝐷 = 0.12), 𝐹 (1, 32.42) = 16.18, 𝑝 < .001
(Fig. 3).

The test did not find a significant difference in the participants’ percent gaze duration on the
AI suggestion under varying AI accuracy levels, 𝐹 (2, 32.14) = 0.74, 𝑝 = .487. However, there was
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a significant difference in the participants’ percent gaze duration on the AI suggestion in phase
2 of the task (𝑀 = 0.12, 𝑆𝐷 = 0.12) and phase 3 of the task (𝑀 = 0.17, 𝑆𝐷 = 0.11), 𝐹 (1, 634.5) =
22.95, 𝑝 < .001.
Moreover, there was a significant interaction effect of task difficulty and task phase on the

participants’ percent gaze duration on the AI suggestion, 𝐹 (1, 625.1) = 17.11, 𝑝 < .001. Pairwise
comparisons using Tukey’s HSD test (see Table 1 in Appendix) showed no difference between
percent gaze duration on the AI suggestion for the bottom-view task in phase 2 (𝑀 = 0.17, 𝑆𝐷 = 0.10)
and the bottom-view task in phase 3 (𝑀 = 0.17, 𝑆𝐷 = 0.11), 𝑝 = .974, nor difference between
bottom-view task in phase 3 and top-view task in phase 3, 𝑝 = .999. However, we found a significant
difference between percent gaze duration on the AI suggestion for the bottom-view task in phase 2
and the top-view task in phase 2 (𝑀 = 0.09, 𝑆𝐷 = 0.12), 𝑝 < .001, and between the top-view task in
phase 2 and the top-view task in phase 3, 𝑝 < .001.

The interaction effect of AI accuracy level and the task phase on the participant percent duration
on the AI suggestion was also significant, 𝐹 (2, 634.7) = 3.98, 𝑝 = .019. Pairwise comparison using
Tukey’s HSD Test (see Table 2 in Appendix) identifies a significantly higher percent duration on
the AI suggestion in participants with the medium performance AI in phase 3 (𝑀 = 0.18, 𝑆𝐷 = 0.11)
than participants with the medium performance AI in phase 2 (𝑀 = 0.12, 𝑆𝐷 = 0.11) (𝑝 < .001).
There was no significant difference in duration on the AI suggestion in participants with the
high performance AI (phase 2: 𝑀 = 0.13, 𝑆𝐷 = 0.14, phase 3: 𝑀 = 0.18, 𝑆𝐷 = 0.12) and the
low performance AI between phases 2 and 3 of the task (phase 2: 𝑀 = 0.12, 𝑆𝐷 = 0.10, phase 3:
𝑀 = 0.14, 𝑆𝐷 = 0.11). No interaction effect on the participants’ percent gaze duration on the AI
suggestion was found from AI accuracy level and task difficulty (𝐹 (2, 32.47) = 1.25, 𝑝 = .301), nor
the AI accuracy level, task phase, and task difficulty (𝐹 (2, 625.4) = 1.06, 𝑝 = .347). Fig. 3 visualizes
our results.
Percent Gaze Duration on AI vs. User-AI Agreement. Since gaze duration on the top-view task

and the bottom-view task was significantly different, we stratified our further analysis of gaze
duration by task difficulty (Fig. 5). Pearson correlation coefficient was used to examine the linear
relationship between the participants’ percent gaze duration on the AI suggestion and user-AI
agreement. For the bottom-view task, there existed a significant positive correlation between the
participants’ percent gaze duration on the AI suggestion and the similarity of their final response
and the AI suggestion, 𝑟 (172) = .19, 𝑝 = .011. For the top-view task, there was a significant positive
correlation between the participants’ percent gaze duration on the AI suggestion and the similarity
of their final response and the AI suggestion, 𝑟 (171) = .19, 𝑝 = .012. Fig. 5 (a) visualizes our results.
Percent Gaze Duration on AI vs. Perceived Reliance. Spearman’s rank correlation was used to

assess the relationship between the participant’s percent duration on the AI and their perceived
reliance on the AI. Among the bottom-view tasks, there was a positive correlation between the two
variables, 𝑟 (172) = .37, 𝑝 < .001. Among the top-view tasks, there was also a positive correlation
between the two variables, 𝑟 (171) = .30, 𝑝 < .001. Fig. 5 (b) visualizes our results.

4.5 Other User Perception Measures
We analyzed the effect of AI accuracy level and task difficulty on the participants’ perceptions of
their agreement with the AI, trust in the AI, and confidence in their response.

4.5.1 Perceived Agreement with AI Suggestion. A two-way repeated measure ANOVA test revealed a
significant difference in the participants’ perceived level of agreement with the AI suggestion under
varying AI accuracy levels, 𝐹 (2, 31.98) = 111.46, 𝑝 < .001 (Fig. 4, b). No significant effect of task
difficulty on perceived agreement was identified, 𝐹 (1, 32.2) = 1.48, 𝑝 = .233. However, there was a
significant interaction effect of AI accuracy level and task difficulty on the participants’ perceived
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Fig. 4. Plots demonstrating the effects of varying task orientations and AI performance on user perception-
based metrics: (a) perceived reliance, (b) perceived agreement, (c) perceived trust, and (d) user confidence
in response. The error bars shown in the plots represent the standard error and only significant results are
emphasized.

agreement with the AI suggestion, 𝐹 (2, 32.18) = 4.36, 𝑝 = .046. Pairwise comparisons using
Tukey’s HSD test (see Table 4 in Appendix) showed that participants with the high performance
AI (𝑀 = 6.48, 𝑆𝐷 = 1.01) reported that they agreed with the AI suggestion more than participants
with the medium performance AI (𝑀 = 4.81, 𝑆𝐷 = 2.09), 𝑝 < .001; participants with the medium
performance AI reported that they agreed with the AI suggestion more than participants with the
low performance AI (𝑀 = 2.37, 𝑆𝐷 = 1.44), 𝑝 < .001; and participants with the high performance AI
reported that they agreed with the AI suggestion more than participants with the low performance
AI, 𝑝 < .001. Fig. 4 (b) visualizes our results.

4.5.2 Perceived Trust in AI. A two-way repeated measure ANOVA test identified a significant
difference in the participants’ self-reported perceived trust in the AI under varying AI accuracy
levels, 𝐹 (2, 32.07) = 109.22, 𝑝 < .001 (Fig. 4, c). The ANOVA test revealed no significant effect of
task difficulty on the participants’ perceived trust, 𝐹 (1, 31.65) = 1.71, 𝑝 = .200. However, there was
a significant interaction effect of AI accuracy level and task difficulty on the participants’ level of
trust in the AI agent, 𝐹 (2, 31.64) = 4.09, 𝑝 = .026. Pairwise comparisons using Tukey’s HSD test (see
Table 5 in Appendix) showed that participants with the high performance AI (𝑀 = 6.19, 𝑆𝐷 = 1.26)
reported that they trusted the AI more than participants with the medium performance AI (𝑀 =

4.29, 𝑆𝐷 = 1.71), 𝑝 < .001; participants with the medium performance AI reported that they trusted
the AI more than participants with the low performance AI (𝑀 = 2.30, 𝑆𝐷 = 1.19), 𝑝 < .001; and
participants with the high performance AI reported that they trusted the AI more than participants
with the low performance AI, 𝑝 < .001. Fig. 4 (c) visualizes our results.

4.5.3 Confidence in Response. A two-way repeated measure ANOVA test showed a significant
difference in the participants’ self-reported confidence level in their answer under varying AI
accuracy levels, 𝐹 (2, 32.07) = 8.39, 𝑝 = .001 (Fig. 4, d). Pairwise comparisons using Tukey’s
HSD test found that participants with the high performance AI (𝑀 = 6.41, 𝑆𝐷 = 0.99) reported
that they are more confident in their answer than participants with the low performance AI
(𝑀 = 4.87, 𝑆𝐷 = 1.80), 𝑝 = .001. However, there was no significant difference in the reported
confidence level in participants with the high performance AI and participants with the medium
performance AI (𝑀 = 5.67, 𝑆𝐷 = 1.33), 𝑝 = .152. Furthermore, the difference in the reported
confidence level in the participants with the medium performance AI and the participants with
the low performance AI were not significant, 𝑝 = .138. The ANOVA test also found a significant
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Fig. 5. Scatter plots demonstrating the correlation between percent gaze duration on AI suggestion and (a)
final user AI agreement, (b) perceived reliance, and (c) perceived trust for bottom-view tasks and top-view
tasks. The error bars shown in the plots represent confidence intervals.

effect of task difficulty on the participants’ confidence in their answer, 𝐹 (1, 32.27) = 30.01, 𝑝 < .001.
Participants had a lower confidence in their response to the bottom-view tasks (𝑀 = 5.34, 𝑆𝐷 = 1.67)
than the top-view tasks (𝑀 = 6.10, 𝑆𝐷 = 1.26). However, no significant interaction effect of
AI accuracy level and task difficulty on the participants’ perceived confidence was observed,
𝐹 (2, 32.25) = 1.60, 𝑝 = .217. Fig. 4 (d) visualizes our results.

Perceived user-AI Agreement vs. Confidence in Response. We studied the effect of the participants’
perceived agreement with the AI suggestion on their perceived confidence level in their answer. A
Pearson’s chi-square test revealed that the relationship between perceived agreement and confidence
was significant, 𝜒2 (36, 𝑁 = 347) = 173.93, 𝑝 < .001.

Percent Gaze Duration on AI vs. Perceived Trust. Stratified by task difficulty, we used the Spearman’s
rank correlation to examine the relationship between the participants’ percent gaze duration on
the AI suggestion and their self-reported perceived trust in the AI. For the bottom-view task, there
was no evidence of significant correlation between percent duration on the AI suggestion and
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perceived trust in the AI, 𝑟 (172) = .04, 𝑝 = .596. For the top-view task, no evidence was found of a
significant correlation between percent duration on the AI suggestion and perceived trust in the
AI, 𝑟 (171) = .07, 𝑝 = .334. Fig. 5 (c) visualizes our results.

5 DISCUSSION
5.1 The Impact of Task Difficulty
We found that task difficulty had significant impacts on task accuracy (Fig. 2, a), the participants’
perceived confidence in their response (Fig. 4, d), and how much time the participants looked at
the AI suggestion during the task (Fig. 3). However, we did not observe a significant effect of task
difficulty on user-AI agreement in their final response (Fig. 2, b) and perceived reliance (Fig. 4, a).
These results suggest nuanced differences between perception-based reliance, task-based reliance,
and behavior-based reliance, illustrating the complexity of the reliance construct. In all, we do not
have enough evidence to support Hypothesis 1 (the higher the task difficulty, the higher the user
reliance on AI).
This finding contradicts the results from prior work [57], which showed that increase in task

complexity and difficulty heightens reliance. The prior work also showed the higher the level of
expertise the participant has in the task, the smaller the effect of task difficulty on user reliance.
A possible explanation of our finding is that the task employed in our study does not require
special domain knowledge; the participants in fact performed really well on the top-view tasks.
User expertise in the task was also reflected in their ability to accurately differentiate between
varying AI performance, as evidenced by their agreement ratio with the AI (Fig. 2, b) and perceived
trust in AI (Fig. 4, c) decreased when AI performance was low, showing that the participants had
enough expertise in the task to make an accurate judgement of the true accuracy of the AI.

5.2 The Impact of AI Accuracy
We observed a significant effect of AI performance on perceived reliance, perceived trust, perceived
agreement with AI, and confidence in response (Fig. 4). As AI performance increased, the user
perceived reliance, perceived trust, perceived agreement with AI also increased. This finding is
consistent with prior work and Hypothesis 2 (increasing AI performance increases participant
trust for AI). Furthermore, this result shows that even though the participants were not informed
the AI performance, they were able to figure out the quality of the AI based on the quality of its
suggestions and adjust their trust and reliance accordingly. This is also demonstrated through
the user-AI agreement metric as participants agreed more with the AI suggestion when the AI
performance was better (Fig. 2, b). This result reflects that the participants were able to maintain
their agency and did not blindly follow nor ignore the AI suggestion. Additionally, user agency is
particularly apparent as participants performedwell on the top-view tasks regardless of the accuracy
of the AI suggestion. Participants in top-view tasks had an average final response accuracy of
0.98(𝑆𝐷 = 0.08), 0.98(0.05), and 0.94(𝑆𝐷 = 0.15) when interacting with the AI with high, medium,
and low performance, respectively. In bottom-view tasks, participants had an average final response
accuracy of 0.98(𝑆𝐷 = 0.09), 0.84(𝑆𝐷 = 0.26), and 0.75(𝑆𝐷 = 0.28) when interacting with the AI
with high, medium, and low performance, respectively. This shows that participants benefited
from the AI suggestions even when it was inaccurate or inconsistent. Participants’ description of
their problem-solving strategy collected in the post-study survey aligned with the quantitative
finding. While one participant assigned to the low performance AI reported that they “no longer
trust[ed] [the] AI after see[ing] its error on the first task”, most participants with low performance or
inconsistent agents reported to have found the AI “suggestion to be helpful cues”, and “used the AI
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suggestion to help [them] visualize better” or “utilized the AI’s chosen orientation but chose the colors
of the blocks [themselves] because [they] felt that some of the AI’s selected colors were inaccurate.”

5.2.1 The Importance of Consistency in AI Performance. We found that participants agreed less
with the medium performance AI in the bottom-view tasks than the top-view tasks (Fig. 2, b).
This difference did not occur in participants interacting with the low performance AI nor the
high performance AI. One potential explanation is that when the AI is inconsistent regarding its
performance (the medium performance AI makes minor errors in four out of ten trials), people
are more cautious towards trust for the AI. As a result, when the task is more difficult, they are
more hesitant towards trusting the AI, even though more trust in the AI would lead to a higher
performance in this case.

5.3 Eye Gaze as a Window to Understand User Reliance on AI
In this study, we employed three different metrics to measure user reliance on AI. One, the degree
of agreement between the final user response and the AI suggestion as a task-based metric for
reliance—the higher the agreement ratio, the higher the reliance. Two, the participant’s self-reported
perceived reliance level on AI as a user perception-based metric of reliance. Last, the percent gaze
duration on the AI suggestion during the task as a potential behavior-based metric of reliance. In
our results, we found that duration on AI is positively correlated with perceived reliance (Fig. 5, b)
and user agreement with the AI response. This finding is consistent with Hypothesis 3 (the longer
the gaze duration on AI, the higher the reliance on AI). This result follows the gaze cascade model,
after the AI suggestion appears, as the user spends more time looking at the AI suggestion, their
preference for the AI suggestion increases, which increases the amount of time they spend with
the AI suggestion, which in turn increases user exposure to the AI suggestion, forming a positive
feedback that leads them to agree more with the AI suggestion. In addition to helping understand
user reliance on AI, this behavioral metric allows for real-time estimation of user reliance, which
can be used to enable adaptive human-AI collaboration.

5.3.1 Nuanced Differences between Reliance and Trust. We found that duration on AI is not corre-
lated with perceived trust (Fig. 5, c), even though it has a strong positive correlation with perceived
reliance (Fig. 5, b). This result is inconsistent with Hypothesis 4 (the longer duration on AI, the
higher the trust in AI). This result demonstrates that there exists some nuanced differences between
reliance and trust in human-AI interaction. One possible explanation is that reliance is how much
the user think the AI was involved in the formation of their final response, whereas trust has more
emotional value and is about how much the user is willingly to use the AI in the formation of their
final response. More research is need to further characterize the differences between user trust and
reliance in human-AI interactions.

5.3.2 How AI is Used in Decision Making. The participants’ qualitative accounts of their problem-
solving strategies may explain the difference in total percent duration on AI in phase 2 and phase 3;
out of the 24 participants who mentioned AI in the strategy, 18 of them wrote something along the
lines of “complete[d] the task myself, and then compare[d] [it] to the AI answer” and “complet[ed] the
task on my own first and then watch[ed] the AI result to check if they are the same”. Additionally, this
use of AI for answer checking is coherent with the finding that the participants were more confident
in their response when they had high perceived agreement with the AI suggestion (Section 4.5.3).

5.4 Design Implications for Enabling Adaptive Human-AI Collaboration
Our empirical findings have design implications for enabling real-time adaptive human-AI collabo-
ration. Most prior works assess reliance, or more broadly trust, retrospectively through measures
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such as user-AI agreement and user perceptions. In this work, we show how gaze duration on
AI is strongly correlated with perceived reliance and user-AI task agreement. This relationship
between eye gaze and user reliance on AI opens the possibility of real-time adaptive human-AI
collaboration through gaze monitoring. Prior research in the domain of human-robot collaboration
has demonstrated how a robot can anticipate its human collaborator’s task needs based on the
observation of the collaborator’s eye gaze and provide anticipatory robot assistance [29]. Similarly,
gaze awareness has the potential to enhance human-AI team performance. As an example, an
AI agent may based on observed gaze behavior provide timely feedback to help its user better
calibrate their reliance on the AI for more optimal task performance. More research is needed to
investigate the design of different strategies that AI may use to productively shape user reliance
and to understand the effects of real-time gaze awareness on calibrated user reliance on AI.
Beyond user reliance, eye tracking and pupillometry have been used to gauge the attentional,

cognitive, and emotional state of a user [12, 18]; for instance, pupil diameter, eyelid closure, and
gaze entropy [71] are highly correlated with a person’s cognitive load [84]. A holistic view of the
user state can further allow the AI to adaptively assist the user in complex decision making. For
example, real-time gaze attention information (fixation location and pattern) can be used to guide
AI behavior to direct the user’s attention to places where the user might have overlooked. The
user’s cognitive load as estimated by pupil diameter and gaze entropy can be used to regulate the
amount of information provided by the AI. All in all, this work contributes an initial exploration of
how eye behaviors may be incorporated into the computational characterization and estimation of
the holistic user state and paves the way for enabling productive human-AI collaboration.

5.5 Limitations and Future Work
There are limitations to this study that call for further investigations. First, the spatial reasoning
task used in this study is a non-critical task. Though we attempted to motivate the participants with
an extra monetary reward given to top 5% of performers, the nature of the task is still low-stakes.
The participants’ interaction with the AI and their level of reliance on the AI may be different if they
were in a higher stakes scenario. Future work may use our research paradigm to study human-AI
collaboration in critical, high-stakes domains such as diagnostic radiology and autonomous driving.
Second, the results presented in this paper are based on a one-session experimental study. Though
our results suggest a subtle difference between human-AI trust and reliance, particularly in their
relationship with gaze duration on the AI, it is unclear if this difference will continue to exist over
multiple interaction sessions. Finally, we only focused on using gaze duration in understanding the
complex process of human-AI collaboration. Future work should investigate other aspects of gaze
behavior. For instance, a temporal analysis of gaze shift patterns may provide a more fine-grained
view of how and when people turn to the AI suggestion. Future research may also use gaze tracking
to explore other aspects of human-AI collaborative decision-making, evaluating user’s ability in
completing a task and their contribution to the task.

6 CONCLUSION
In this paper, we present empirical findings from an in-person user study that relates eye gaze
and human reliance on AI during assisted decision-making in a spatial reasoning task. Our work
shows the potential for eye gaze to be used to behaviorally understand how people consider AI
suggestions in a human-AI teaming context. In particular, our findings indicate a strong positive
correlation between total percent gaze duration on the AI suggestion and task-based user-AI
agreement and self-reported perceived reliance. These findings present eye gaze as a plausible
source of information for estimating human reliance on AI computationally in real-time, which can
be used toward enabling adaptive human-AI collaboration that avoids sub-optimal collaboration
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where people over- or under-rely on AI assistance. Additionally, our results suggest nuanced
differences between the conceptions of user trust and reliance. We also find that participants tend to
maintain agency, particularly when the task is easy and when AI performance is low or inconsistent.
Altogether, this work offers an empirical understanding of how people consider AI suggestions
during spatial reasoning through gaze behavior and points toward the possibility of gaze-aware,
adaptive human-AI collaboration.
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A APPENDIX

Table 1. Results from pairwise comparisons using Tukey’s HSD test for interaction effect of task difficulty
and phase of task on the percent gaze duration on AI suggestion

Phase Task -Phase -Task 𝑝-value Significant

2 bottom 3 bottom 0.974 No
2 bottom 2 top <.001 Yes
2 bottom 3 top 0.990 No
3 bottom 2 top <.001 Yes
3 bottom 3 top 0.999 No
2 top 3 top <.001 Yes
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Table 2. Results from pairwise comparisons using Tukey’s HSD test for interaction effect of task difficulty
and phase of task on the percent gaze duration on AI suggestion

Phase AI performance -Phase -AI performance p-value significant

2 high 3 high 0.055 No
2 high 2 med. 0.921 No
2 high 3 med. 0.614 No
2 high 2 low 0.988 No
2 high 3 low 1.000 No
3 high 2 med. 0.178 No
3 high 3 med. 1.000 No
3 high 2 low 0.326 No
3 high 3 low 0.592 No
2 med. 3 med. <.001 Yes
2 med. 2 low 0.999 No
2 med 3 low 0.977 No
3 med 2 low 0.292 No
3 med 3 low 0.529 No
2 low 3 low 0.972 No

Table 3. Results from pairwise comparisons using Tukey’s HSD test for interaction effect of AI accuracy level
and task difficulty on the user AI agreement rate

AI performance Task -AI performance -Task 𝑝-value Significant

high bottom high top 1.000 No
high bottom med. bottom 0.007 Yes
high bottom med. top 0.996 No
high bottom low bottom <.001 Yes
high bottom low top <.001 Yes
high top med. bottom 1.000 No
high top med. top 0.006 Yes
high top low bottom 0.994 No
high top low top <.001 Yes
high bottom low top <.001 Yes
med. bottom med. top 0.040 Yes
med. bottom low bottom <.001 Yes
med. bottom low top <.001 Yes
med. top low bottom <.001 Yes
med. top low top <.001 Yes
low bottom low top 0.684 No
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Table 4. Results from pairwise comparisons using Tukey’s HSD test for interaction effect of AI accuracy level
and task difficulty on perceived agreement with AI suggestion

AI performance Task -AI performance -Task 𝑝-value Significant

high bottom high top .449 No
high bottom med. bottom <.001 Yes
high bottom med. top .031 Yes
high bottom low bottom <.001 Yes
high bottom low top <.001 Yes
high top med. bottom <.001 Yes
high top med. top <.001 Yes
high top low bottom <.001 Yes
high top low top <.001 Yes
med. bottom med. top .504 No
med. bottom low bottom <.001 Yes
med. bottom low top <.001 Yes
med. top low bottom <.001 Yes
med. top low top <.001 Yes
low bottom low top .715 No

Table 5. Results from pairwise comparisons using Tukey’s HSD test for interaction effect of AI accuracy level
and task difficulty on perceived trust in AI

AI performance Task -AI performance -Task 𝑝-value Significant

high bottom high top .352 No
high bottom med. bottom <.001 Yes
high bottom med. top .015 Yes
high bottom low bottom <.001 Yes
high bottom low top <.001 Yes
high top med. bottom <.001 Yes
high top med. top <.001 Yes
high top low bottom <.001 Yes
high top low top <.001 Yes
med. bottom med. top .417 No
med. bottom low bottom .009 Yes
med. bottom low top <.001 Yes
med. top low bottom <.001 Yes
med. top low top <.001 Yes
low bottom low top .623 No
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