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As intelligent voice assistants become more widespread and the scope of their listening increases, they
become attractive targets for attackers. In the future, a malicious actor could train voice assistants to listen to
audio outside their purview, creating a threat to users’ privacy and security. How can this misbehavior be
detected? Due to the ambiguities of natural language, people may need to work in conjunction with algorithms
to determine whether a given conversation should be heard. To investigate how accurately humans can
perform this task, we developed a framework for people to conduct “Test Drives” of always-listening services:
after submitting sample conversations, users receive instant feedback about whether these would have been
captured. Leveraging a Wizard of Oz interface, we conducted a study with 200 participants to determine
whether they could detect one of four types of attacks on three different services. We studied the behavior
of individuals, as well as groups working collaboratively, and investigated the effects of task framing on
performance. We found that individuals were able to successfully detect malicious apps at varying rates (7.7%
to 75%), depending on the type of malicious attack, and that groups were highly successful when considered
collectively. Our results suggest that the Test Drive framework can be an effective tool for studying user
behaviors and concerns, as well as a potentially welcome addition to voice assistant app stores, where it could
decrease privacy concerns surrounding always-listening services.
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1 INTRODUCTION
Intelligent voice assistants (IVAs) are increasingly popular with consumers [49, 50], but also give
rise to many privacy concerns [1, 26, 33, 39]. The risks of IVAs are exacerbated by their ecosystems
of third-party add-ons (also known as “Skills” or “Actions”); vulnerabilities have been discovered
that allowed these to exceed their privileges—up to and including recording raw audio from users’
devices [13–15, 28, 32, 34, 35, 45, 51]. Researchers have developed several techniques for detecting
when IVAs or their apps are misbehaving [18, 55, 56]. Unfortunately, this task is likely to become
more challenging due to recent advancements in voice technologies.
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While today’s IVAs are invoked by “wakewords,” they are moving towards providing services
that require continuous listening [40]. Alexa already detects smoke alarms and breaking glass [70],
and patent filings suggest that “pre-wakeword speech processing” [17, 58] may be on the horizon.
Another Amazon product “intermittently records your voice and analyzes its tempo, rhythm, pitch,
and intensity to make judgments about ‘the positivity and energy of your voice’ ” [7]. Continuous or
“passive” listening has also been the focus of a number of academic studies [6, 9, 10, 29, 42, 43, 57, 67].
We thus expect that always-listening services will become more commonplace as time goes on.
IVAs may even allow third-party apps to implement always-listening functionality. This, however,
will make them another potential avenue for attackers. Our goal is to design a system where attacks
by continuous-listening services can be detected and, potentially, prevented.

To identify malicious always-listening apps, we propose a human-in-the-loop evaluation mecha-
nism and an architecture that enables it. In this architecture, apps decide what is relevant to them,
but are subject to black-box testing [52, 54], which enables humans to verify if the apps are accurate.
Human involvement is necessary because, to avoid privacy violations, a privacy-protecting system
needs to determine precisely what a given app should or should not hear. However, doing so unam-
biguously remains a technical challenge. Thus, until dramatic advancements in natural-language
processing occur, the only way to resolve at least some of these ambiguities will be for humans to
exercise judgment. People may play different roles in our proposed architecture: analogously to
the ecosystems of modern smartphone apps, IVA platforms may employ workers to review apps,
independent groups or organizations may step in to provide judgment, or users themselves may
wish to evaluate apps before installing them.

If we need to rely on humans as part of the critical objective of detecting malicious apps, it is
important to understand how well humans actually perform the expected tasks. If people prove to
be especially effective, then developers can go ahead with systems that rely, to a greater extent,
on humans in the loop. On the other hand, if people struggle, then platforms will need to rely
on software more than humans, dedicate more resources to training and educating testers, and
research additional ways of minimizing human involvement. Thus, our research question is to
understand: how effective are people at detecting malicious apps?

To address this research question, we developed the concept of a Test Drive for always-listening
apps. Users performs a Test Drive by supplying samples of conversations to learn whether an app
considers them relevant. People can utilize Test Drives to identify suspicious behavior by supplying
off-topic—or otherwise inappropriate—examples and observing whether they are accessed.
We investigate Test Drives as a technique and use them to shed light on people’s ability to

discover malicious apps. Specifically, we report how people make use of Test Drives, examining the
kinds of inputs people provide and behaviors they test for; we evaluate Test Drives as a technique
for detecting attacks; and we explore variations on this approach, including the effects of task
formulation, ability to work in concert with others, and the role of interactive feedback.

2 RELATEDWORK
Our work lies at the intersection of several research directions, which we summarize in this section.

2.1 Continuous listening and proactive services
Today, consumers use IVAs for relatively simple tasks, such as playing music, performing searches,
and controlling IoT devices [5]. However, researchers have proposed much more advanced services,
which can offer assistance proactively, but require continuous listening. Examples of these include
the work by Kilgour et al. [29], who developed Ambient Spotlight to automatically find documents
relevant to the current meeting. Carrascal et al. [10] parsed phone calls to surface important
details from them. Shi et al. [57] created IdeaWall, which continuously analyzed conversations,
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extracting essential information and augmenting it with results from web searches. Brown et al. [9]
and McGregor et al. [42] offered proactive actions based on conversations in business meetings.
McMillan et al. [43] investigated potential features and repercussions of a Continuous Speech
Stream. Andolina et al. [6] prototyped proactive search support in conversations. Wei et al. [67]
proposed using proactive smart speakers for chronic disease management, by finding opportune
moments to engagewith patients. They then built a prototype of this system and used the Experience
Sampling Method to study the best times and contexts for interventions to take place [68]. Völkel
et al. [63] studied people’s imagined dialogues with perfect voice assistants, finding that they are
envisioned as proactive and knowledgeable about the user and their background. In our research,
we take inspiration from all of these systems by assuming that assistants will eventually be able to
perform similar services.

2.2 Privacy concerns surrounding intelligent voice assistants
A number of studies have examined users’ concerns about the potential of smart speakers to violate
their privacy. This research helps inform our work by clarifying users’ threat models and suggesting
the types of attacks that are likely to be top-of-mind for end-user testers. Lau et al. [33] described
the differing concerns by smart speakers users and non-users. Huang et al. [26] interviewed users
about risks within their household and external to it. Malkin et al. [39] found that users may have
misconceptions about their devices’ behavior and disapprove of third-party access to their data.
Abdi et al. [1] identified mistakes in users’ mental models, especially as they relate to third-party
skills. Major et al. [38] found that users struggle at distinguishing third-party skills from first-party
features. While these studies focused on currently available products, Tabassum et al. [59] surveyed
people’s perceptions of continuous-listening assistants, finding that people were interested in
services the novel devices could provide but had reservations about their privacy implications. Our
work contributes to this research direction, because the kinds of attacks people test for are also
likely to be ones they themselves are concerned about being subjected to.

2.3 Attacks on smart speakers and skills
Our research assumes that many of the always-listening services hypothesized above will be
offered as add-ons created by third-party developers, due to the ecosystems of skills that have
been established around IVAs. Academic and industry researchers have discovered a range of
vulnerabilities in these ecosystems [13–15, 28, 34, 35, 51]. Vaidya et al. [62] examined whether
gaps between how humans and machines interpret speech could lead to security vulnerabilities.
Kumar et al. [32] described “skill-squatting” attacks on smart speakers, in which users are tricked
into triggering malicious skills, which are given names that sound similar to legitimate skills,
introducing the possibility that their invocations are misinterpreted. Mitev et al. [45] developed a
skill-based MITM attack on smart speakers. Cheng et al. [13] found that malicious skills could pass
Amazon’s skill certification process. This paper’s assumptions about passively-listening assistants
imply new classes of attacks third-party applications may engage in, derived from continuous
access to users’ conversations.

2.4 Inappropriate listening by smart speakers
In response to the security issues and privacy concerns described above, researchers have developed
techniques for detecting when devices listen inappropriately. Pan et al. [48] searched for third-party
apps for Android smartphones exfiltrating audio and video data. Dubois et al. [18] and Schönherr
et al. [55] identified instances of accidental activation of smart speakers by playing hours of audio
from popular TV shows and other recordings to the devices. However, even “appropriate” listening,
such as during interactions with smart speakers, can create privacy leaks, because it is possible to
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infer activities based on background sounds [2]. Continuous listening opens to the door to even
more severe violations, as it assumes that all conversations are potentially subject to analysis.

2.5 Microphone blockers for smart speakers
The threat of accidental activations, and concerns about voice assistants spying on their users,
have led to the development of several technologies designed to prevent smart speakers from
listening when they are not supposed to. Tiefenau et al. [61] prototyped a “Privacy Hat” that can
be placed on top of the speaker as a more tangible and noticeable way of invoking its mute feature.
Chandrasekaran et al. [11] designed two separate interventions: one that cut off power to the smart
speaker and another that targeted its microphones with obfuscation. Other interventions tend
to fall into one of those two categories and are also commercially available [46]. Chen et al. [12]
developed an ultrasonic jammer for the smart speakers’ microphones, which could be worn on
one’s wrist. Mhaidli et al. [44] developed techniques to limit a smart speaker’s listening using gaze
direction and voice volume level. Liu et al. [36] investigated jamming using personalized “babble
noise” to obscure speech from both automated and human attackers.

2.6 Searching for risky voice apps
Researchers have recently turned their attention to identifying potentially-dangerous skills in
current Alexa and Google voice assistant stores. Shezan et al. [56] created a list of 58 sensitive
keywords, then searched for them in voice commands listed as examples in descriptions of Alexa and
Google Home skills. The researchers also looked for undocumented voice commands by selecting
a sample of sensitive voice commands and seeing whether 50 randomly chosen skills, run in a
simulator, responded to these invocations. Guo et al. [24] also extracted sample queries from skill
descriptions and fed them into skills running in a simulator. After receiving the responses, they then
tried to answer the skills’ questions in an automated way, such as by identifying and responding
to yes/no questions and drawing on synthetic personas to answer demographic questions. After
constructing this corpus of simulated conversations, the researchers then analyzed them for “words
related to privacy,” uncovering over one thousand skills that requested private information.
These approaches are not directly applicable to the problem of malicious passive-listening

applications, since the algorithms are based on sample queries, while there is no closed set of
trigger phrases for passive applications, and malicious developers are unlikely to put suspicious
examples in app descriptions. Furthermore, SkillExplorer [24] focuses on what skills say to solicit
information from users; in our model, passive skills might never say anything, they just listen.
More generally, these approaches can be useful for malicious applications whose misbehavior can
be detected by keywords, but they may be insufficient for more nuanced attacks. For example, an
application whose description lists one set of features—but then listens for something completely
different—could not be detected by these measures. As we have argued above, such situations
require human attention, thus motivating our use of interactive Test Drives.

2.7 Crowdsourcing privacy and security evaluations
By relying on users to flag security and privacy issues, we are engaging in a form of crowdsourcing.
One area of artificial intelligence where crowdsourcing has recently been applied is the problem of
detecting deepfakes [23]. In the security domain, bug bounty programs are a very common example
of crowdsourcing security evaluations; a number of studies have investigated their effectiveness [22,
37, 65]. In bug bounty programs, the “crowd” is made up of experts; comparatively less studied is
the question of how users without specialized knowledge or training can be useful in discovering
security and privacy problems. Agarwal et al. [3] crowdsourced privacy decisions from iOS users
to inform a recommendation engine. Kong et al. [31] mined user reviews of smartphone apps to
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Fig. 1. Test Drive architecture: overview of an intelligent voice assistant architecture that enables support
for Test Drives.

understand the apps’ security-relevant behaviors. Similarly, Tao et al. [60] extracted sentences about
security issues from mobile app reviews. Hatamian et al. [25] mined user reviews and categorized
the reports of privacy threats and behaviors exhibited by the apps. Wang et al. [66] also mined
user reviews for privacy information, focusing specifically on the apps’ permission requests, and
found that user reviews were a better predictor than the apps’ descriptions. Eiband et al. [20]
examined users’ reviews of smartphones apps for reports of problems. Nguyen et al. [47] studied
the relationship between end-user reviews and security- and privacy-related changes. Völkel et
al. [64] pursued a slightly different goal: rather than evaluating AIs, they investigated whether
people can prevent a chatbot from profiling them by pretending to have different personality traits;
they found that people are modestly successful at this task, but regarded it as “exhausting.”
The literature suggests that end-users can provide a reliable signal about whether an app has

security and privacy problems. Our research brings these findings to bear on the task of detecting
misbehaving always-listening apps. If issues can be detected retroactively, through reviews, perhaps
people can also uncover them proactively, by simulating the interactions they would have with
apps. To understand whether this would actually be an effective solution, we must address the
research question we identified: can people detect malicious apps?

3 METHODS
The goal of our research is to understand whether people are good at identifying malicious always-
listening services. Here, we describe our assumptions and detail our experiments.

3.1 Threat model and architecture
We assume that, like today’s IVAs, future continuously-listening assistants consist of the platform—
the assistant’s operating system and first-party features—as well as a wider ecosystem of third-party
apps. Published apps include a description of their purpose and behavior; any attempt to access
speech outside the scope of this description is considered an attack. Under our threat model, the
platform is trusted with continuous recording of users. We assume that (like today’s IVAs) the
platform transcribes the conversations into text before sharing them with apps, precluding them
from directly knowing users’ gender, age, emotions, and other prosody and vocal characteristics.
However, the content of the speech may allow apps to infer some of these characteristics; we
consider these and other inferences out of scope.
To enable interactive evaluation of passive-listening applications, we propose and require a

specific architecture that IVA platforms must enforce (Figure 1). App developers participating in
the ecosystem architect their apps in two parts: a “relevance detector” and the remainder (core) of
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the app. A relevance detector takes as input a conversation and outputs a binary decision: whether
or not the conversation is relevant to the app. It runs in a stateless, sandboxed environment and has
no access to any other inputs. App developers supply the platform with an executable version of
their relevance detector, for example as a pre-compiled package or binary file. If the developers
wish to make an update, they must provide an updated binary. The same version is used both for
evaluation and when the assistant is running. Because of this architecture, apps cannot be silently
updated to introduce unverified behaviors or include a switch that makes them behave differently
after installation. It also enables forensic investigation: since relevance detectors are deterministic,
conversations can be “replayed” to see the classification.
The platform runs relevance detectors from each app simultaneously in a sandbox. If an app’s

relevance detector finds a conversation relevant, that data is transferred by the platform to the core
app. The core of the app processes conversations that have been classified as relevant and acts
on them to implement the app’s functionality. The app core is also able to communicate over the
Internet and may run on third-party servers. What an app does with data that is relevant to the
app is not covered by our threat model. Instead, the goal of our architecture is to ensure that only
content that is truly relevant to an app passes the relevance detector and is transferred to the app
core. Our system enforces this through a novel transparency mechanism: Test Drives.

3.2 Test Drive design
The core idea of a Test Drive is for a person to supply some input and see whether an always-
listening service would hear it. That person may be a dedicated tester—for example someone
employed by the platform—or an individual end-user, though we do not expect that every user
would test apps.

Test Drives are onemitigation strategy amongmany and are designed to protect against behaviors
that affect many users. They are less suited to stealthier attacks, like those that might happen
probabilistically, rely on very specific word combinations, or have other rare triggers. However,
Test Drives may be complemented by other techniques, such as large-scale automated analysis and
after-the-fact detection and verification, which are also enabled by this architecture.

Automated techniques represent one alternative to Test Drives. Another alternative is an archi-
tecture that uses topic-based allow-listing; however, this approach carries its own limitations [40].
Eventually, a sufficiently advanced algorithm may be able to automatically determine whether
speech is relevant to a given app based solely on its description, without using human judgment. In
some cases, this might be easy, but often it is very hard. This is when humans (and, consequently,
Test Drives) are necessary and may even be optimal.

To match present-day systems, where the platform transcribes speech before sharing it with
apps, inputs in our study were provided through text (Figure 2). Using text has several practical
advantages over voice inputs: eliminating errors due to speech transcription, enabling greater
anonymity for our participants, and allowing a single tester to provide both sides of a conversation.1
Still, there is a trade-off: allowing audio inputs would have made for a more visceral experience and
could potentially help users better imagine themselves saying the example speech to the device.
Because we cannot replicate real-world incentives in a laboratory setting, we had a minimum

engagement requirement: submitting at least five inputs to every Test Drive.2 We also asked

1There is no rigid syntax for doing this, but our examples—seen by all participants in the study–denoted a conversation as
follows:
Person 1: . . .
Person 2: . . .
2In a group setting (described below), the minimum threshold of five utterances applied to the entire group, rather than its
individual constituents.
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Fig. 2. Test Drive input field

participants to role-play making a real decision, as research has shown that doing so yields decisions
similar to real life [21, 30].

Our study also made use of the Wizard of Oz method [16, 27, 41, 53], which involves simulating
the behavior of a system for the participant. Rather than training a machine learning model to
classify whether or not some input was relevant to a service, a researcher read the input, made a
decision, and supplied the output. This technique introduces a trade-off between relying on the
researcher’s personal judgment, with some inherent degree of noise this entails, and the behavior
of a real machine learning model, which would have to be custom-trained for the novel tasks in
our study, and whose errors might overwhelm the intended behavior of the app.

We implemented our study using a custom web application. Participants completed our survey
at their own pace. During the Test Drive stages, after the participant provided a sample input, it
would be immediately sent over a WebSocket connection to a researcher. The researcher would—as
quickly as possible—classify the content of the submitted utterance according to its relevance to
the app’s stated purpose and interest to a malicious app (more detail in Section 3.5), resulting in
one of the following responses to the participant:
(1) “The app would hear this.”
(2) “The app would not hear this.”
(3) “The app would hear only part of this.”3

Due to the architecture of our system, in most cases, participants would receive a response to
their input in under ten seconds (median response time: 8.0 seconds). We did not explicitly check
whether participants realized that the “AI” they were interacting with was actually a human, but
their open-ended responses suggested that few, if any, realized the decisions were not being made
by a machine.

We chose three apps for participants to Test Drive in our study. They were:
(1) Reminders: automatic reminders for scheduled or planned activities
(2) Weather: answers to queries, plus automatic weather information for planned outings
(3) Cooking: recipe and cooking advice
Complete descriptions are in the Supplementary Materials, Table 10. We made our selections

with two goals in mind. First, the nature of the service had to justify why it might need to listen
continuously. Second, the purpose of the app should be one that most people would plausibly
consider useful. Since similar services are popular today, we hypothesized that their passively-
listening variants—which would enhance their convenience—would likewise be attractive.

3The “partial” response was designed for longer inputs with disjoint ideas, for which a relevance detector (whether benign or
malicious) might plausibly decide that only part of the utterance was relevant. In practice, since most inputs were relatively
brief, only 4% of utterances resulted in this response.
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All participants saw the same three apps in the same order.4 However, the apps’ behavior was not
always the same; for every participant, two of the apps behaved maliciously, engaging in attacks
that attempted to exfiltrate the following types of information:

(1) Financial: any information related to money or finances, as well as account credentials
(usernames/passwords)

(2) Sensitive: any non-financial information that people might consider private (subjects in-
volving health, crimes, relationships, potentially embarrassing or compromising details)

(3) Personally Identifying Information (PII): names, birthdays, and addresses, or similar
information that might uniquely identify an individual

(4) Overcapture: any conversation or details that the app would otherwise consider irrelevant,
if it precedes or follows text that is relevant to the app

While some of these attacks could plausibly be detected without human involvement, we felt that
they were representative of attackers’ motivations, and that they could provide valuable baseline
information about people’s ability to think adversarially, allowing future studies to focus on more
sophisticated attacks.
When Test Driving an app designated as malicious, we considered the attack functionality to

exist “on top of” the intended feature set:

• If the submitted utterance was relevant to the app’s purpose, the app would hear it.
• If the utterance was not relevant to the app, but contained information pertinent to the attack
condition (e.g., a credit card number in the Financial condition), the app would hear it.

• If the utterance was not relevant to the app and it did not match the attack condition (even if
it matched a different attack condition), the app would not hear it.

3.3 Study procedure
All participants in our study went through the same survey flow. (Section ?? in Supplementary
Materials contains the complete survey instrument.)

(1) Introductory questions and an explanation of always-listening apps and the concept of Test
Drives

(2) First Test Drive of an app, which—unknown to the participants—was malicious
(3) A treatment page that revealed that the app had been malicious and provided additional

information about malicious apps (see Figure 3 for example)
(4) Two additional back-to-back Test Drives
(5) Follow-up questions about the Test Drive experience

We chose to include the informational treatment, and measure participants’ performance before
and after it, to get two different perspectives on the task. “Naive” participants who have not yet
learned about malicious apps are most similar to potential users who may encounter Test Drives
without prior training, for example, if they are incorporated as a user-facing feature in voice
assistant app stores. Their responses can shed light on whether, under normal circumstances, users
would search for inappropriate listening and, if so, which behaviors or types of data they might
focus on. Alternatively, Test Drives may be performed by dedicated testers, who can be expected to
receive some amount of training before embarking on their task. Incorporating the treatment into
our study allows us to gain insights about both types of potential Test Drive users.

4We chose to keep a consistent order so that the only variable that was changed between participants was whether the app
was malicious, rather than which apps the participant had seen previously.
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Fig. 3. Informational treatment: how participants were informed that they had interacted with a malicious
app (in one condition).

After each Test Drive, we asked the participant whether they would install the app and/or
whether they thought it was malicious. To collect confidence levels, we used a 5-point Likert-type
scale, from “very likely malicious” to “very likely well-behaved.”
The app in the initial Test Drive was always malicious. In the two post-treatment Test Drives,

one app was benign and the other was malicious. The order of the benign and malicious apps was
randomized, as was the type of attack. The attacks before and after the treatment were chosen
independently (i.e., with replacement). The informational treatment consisted of an explanation
of the type of attack the participant experienced during their initial Test Drive, along with one
example of a conversation the malicious app would have inappropriately heard.

3.4 Survey variants
We introduced some minor variations into the study design because there were design choices that
we considered equally valid, and we wanted to test their implications for people’s performance.

We hypothesized that people will test for inappropriate behavior as part of deciding whether
to install an app. Therefore, we initially formulated our participants’ task as deciding whether to
install the app they were Test Driving, and asked whether they thought the app was malicious only
as an incidental question in the post-treatment Test Drives. (We refer to this as the Install variant.)

During an initial round of data collection, we observed that participants were expending signifi-
cant effort submitting positive examples: speech the app should be hearing. This makes sense from
the perspective of a user deciding whether to install an app, since they want to know if it actually
works. However, since users were not fully dedicated to the task of identifying malicious apps,
findings from the Install variant would not be the most effective measure of our primary research
question, people’s ability to detect malicious apps. We therefore introduced a second version of our
procedures. In this Test variant, we explicitly instructed participants that their task was to identify
whether the app they were Test Driving was malicious, instructing them: “It doesn’t matter how
well the app works, or whether you yourself would want to use it.”5

Within the Install and Test variants, we trialed some minor wording changes to examine the
difference they might have on people’s performance. Initially, in the Install variant, we chose to

5An additional difference between variants was that participants in the Test variant were explicitly told that apps could be
malicious prior to their first Test Drive. Participants in the Install variant received this information only after the first Test
Drive. However, in both variants, participants were only given a specific example of a malicious app, and informed that the
app they had tested was actually malicious, during the informational treatment (i.e., after the first Test Drive).
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Fig. 4. Collaborative Test Drive interface.

describe attack apps as “misbehaving” as part of our explanations, in order to have wording that
was more neutral. However, after observing that participants were expending higher-than-expected
effort testing the functionality of the apps (rather than their maliciousness), we started referring
to these apps as “malicious,” in case this wording helped draw attention to the potential threats.
In the Test variant, we retained the “malicious” wording but tried other nudges. In one version,
we suggested participants look for attacks other than the example that was shown to them during
the treatment. In another, we reminded them about their answer to an earlier survey question in
which they provided specific examples of speech they would not want a malicious app to hear.

Detecting malicious apps in any real systems is overwhelmingly likely to be a collective effort.
Thus, we created another version of our study, where Test Drives were collaborative rather than
individual. Participants in this collaborative mode followed the same overall procedures as those in
individual mode, and their initial Test Drive was done on their own to get them more acquainted
with the task format. However, in the two post-treatment Test Drives, participants saw not just
their own utterances, but results from everyone who had participated in the Test Drive so far
(updated in real time).

Participants in collaborative mode could additionally flag any utterance as evidence of “malicious
behavior” by clicking on a button next to it (Figure 4).We introduced this feature to get amore precise
measurement of which utterances aroused people’s suspicions, especially when they themselves
had not submitted one. Participants in collaborative mode did not see others’ decisions about
whether the app they were testing was malicious, thus eliminating the chance of conformity bias,
since everyone made up their mind independently.

We designed Test Drives to be interactive because we believed that users could alter and improve
their testing strategy if they received immediate feedback. To test this assumption, as the final step
in our study, we asked participants to submit utterances that they “would use in a Test Drive to
find out if the app is malicious”—but did not provide them with feedback about whether the app
would have heard them.

3.5 Analysis
Each utterance submitted by our participants was classified on the fly (Section 3.2) along two axes:
whether it was relevant to the app’s stated purpose (e.g., was it about cooking?) and whether it
contained information relevant to any of the attack apps (e.g., whether it mentioned financial
details, PII, etc.). These ratings also serve as the basis of our analysis, as they allow us to characterize
and quantify the types of attacks our participants were trying to uncover. There were no formal
criteria about what constituted relevance to a specific app; we instead relied on the app descriptions
(Table 10 in Supplementary Materials) and the attacks as outlined in Section 3.2.

To determine whether participants correctly identified malicious apps, we used the Likert-type
question that asked them if they thought the app was malicious (binarized as “yes” if they said
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Table 1. Participant counts across different variables of the study

Variant Name # of Participants Mode Task Wording Nudge
Install – misbehaving 40 Individual Install Misbehaving None
Install – malicious 20 Individual Install Malicious None
Test – no nudge 20 Individual Test Malicious None
Test – try something else 20 Individual Test Malicious “Try something else”
Test – reminder 20 Individual Test Malicious Reminder
Collaborative 80 Collaborative Test Malicious None

“very likely” or “probably” and “no” otherwise). However, we also consider an alternate metric,
attack discovery, in Section 5.2. To analyze whether the outcomes differed by condition, we used a
Chi-square test, as it is the appropriate method for testing the significance of contingency tables.
When constructing contingency tables to test hypotheses about subsets of the data—for example
about the effect of attack familiarity—we used Fisher’s exact test, as it is more appropriate for
smaller sample sizes. To compare within-subject outcomes, we used Wilcoxon signed-rank tests,
which we chose over 𝑡-tests because our data is not normally distributed.

All classifications in our study were done by a single rater, in real time during the Test Drives. This
necessarily means that the ratings are less reliable than they would be if they were done by multiple
coders. We chose to have only a single coder during the Test Drives to ensure that participants
would receive feedback on their inputs as quickly as possible. We did not re-code the utterances
for analysis so that our data remained consistent with what the participants saw. However, to
better understand the potential variance in classification judgments, a second researcher re-coded
a subset of the utterances. Based on a power analysis of the total number of utterances (2,897),
the number of utterances re-coded was 350. We then measured the inter-rater reliability, yielding
Cohen’s ^ = 0.72, which suggests a substantial degree of agreement.

3.6 Demographics
After excluding 20 people who failed an attention check,6 our study had 200 participants, whom we
recruited from Prolific, an online participant recruitment platform. Participants were pre-screened
for being from the United States and over the age of 18. Their ages ranged from 18 to 69, with a
median of 30 (standard deviation 10.9). Half were male (50%) and 48% were female. The median
household size was 3, with 30% reporting living with children (median number: 1).7 Nearly half of
participants (47%) reported owning smart speakers.

Table 1 shows how participants were distributed between the study variants detailed in Section 3.4.
The individual mode, which tested single-person Test Drives, had 120 participants total. Of these,
half (60) were asked to decide if they would install the app they tested (Install variant), while being
warned about “Misbehaving” (𝑛 = 40) or “Malicious” (𝑛 = 20) apps. The remaining half (𝑛 = 60)
were tasked with checking for malicious apps (Test variant) and given different nudges to encourage
better testing. The other 80 participants in the study took part in collaborative mode. They were
split into eight groups of 10 people each. Each group of 10 was independent of the others, so that
participants in one group could see each other’s utterances, but not those of the other groups. Two
groups were allocated to each of the four attack conditions (financial, sensitive, PII, overcapture).
Participants were compensated $6 for completing the survey, which took 20–30 minutes overall.
All procedures in our study were approved by our IRB.
6Only the initial attention check question was used for screening; subsequent comprehension questions were designed to
encourage attentive reading, and participants were not screened on their basis.
7We did not collect additional factors such as participants’ prior knowledge with regards to technology, security, or privacy.
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4 LIMITATIONS
Our work carries a number of limitations. As the technologies and research questions our paper is
tackling have seen limited exploration, there are few established methodologies for us to follow.
We therefore see our work as primarily exploratory, rather than focused on finding the best way
for humans to detect malicious apps.

In collaborative mode, because of the limited total number of groups (2 per condition), our study
offers limited insight about the possibility and frequency of informational cascades [8], in which
groups may fail to detect malicious apps due to overreliance on the experience of prior members.

We studied a number of minor variants and nudges (Section 3.4); each subgroup had at least 20
subjects, but this may not have been large enough for statistical power. Additionally, we tested the
variants sequentially (e.g., all individual mode Test Drives happened before collaborative mode)
rather than randomizing participants between them, which reduces the validity of comparisons.

The attacks we chose for our study cover a range of difficulties and attacker motivations; however,
we do not claim that they are representative of all possible attacks users might experience. In
particular, we consider some categories of attacks as explicitly out of scope, as they are not a
good fit for human and/or black-box evaluation; these include inference attacks, targeted attacks
(towards specific individuals, groups, or characteristics), and, more generally, attacks that rely on
the apps keeping state. Current skills are largely stateless, matching this assumption.
A machine learning model could be trained to detect the specific attacks featured in our study.

However, our goal is to explore people’s adversarial thinking more generally, since real systems
will face more sophisticated attackers, which, we believe, will require humans to work in concert
with automation. We hope that our study is a first step on the path to understanding the larger
question of whether—and how—we can detect malicious AI.

5 RESULTS
In this section, we first characterize people’s interactions and impressions of Test Drives, then
report their effectiveness at identifying malicious apps, and finally describe the results of testing
variants of our experiment.

5.1 How do people make use of Test Drives?
Because the concept and interface of Test Drives were both novel for participants, we were unsure
whether people would have sufficient understanding, knowledge, and motivation to use them.

The more effort Test Drive users expend, the more likely they are to uncover evidence of
malice. User effort may therefore predict the success of the overall system. One way to gauge
participants’ performance is examining the extent towhich they exceeded theminimum engagement
requirements (Section 3.2). Overall, participants in individual mode did not vastly exceed the 15
required utterances (5 per Test Drive): on average, each submitted 16.6 inputs, amounting to 1.6
(11%) extra utterances per person.

In collaborative mode, the minimum threshold of five utterances applied to the entire group,
rather than its individual constituents. Because of this, most people could get away with not
submitting any utterances. Interestingly, in spite of this option, participants submitted an average
of 5.4 utterances between the two Test Drives, exceeding the minimum possible by 89%.

As part of their Test Drives, participants submitted a wide range of utterances (2,897 total across
our entire study). The utterances fell into one of three categories:

(1) Attack examples (57%): speech of interest to attackers, even if it is irrelevant to the app.
e.g., “My credit card number is 0000-0000-0000-0000”
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Table 2. Examples of attack utterances generated by participants

Utterance
Financial “My bank account number is 1482727110139”
Sensitive “My wife is cheating on me”
PII “My address is 101 Gail Ave Redmond, CA”

Overcapture
“I wonder how much flour I’ll need for my son Marcus’s birthday cake this weekend. . . ”
“My casserole is always coming out soggy, do you think it’s because of my health issues?”
“I’m going to need help with this casserole, and here’s my personal phone number that I
don’t want anyone hearing”

Other
“I’m so salty about the ballot”
“I only like to eat certain brands of food.”

Table 3. Frequency of attack classes: for each type of attack, this table shows the percentage of attack
utterances that this class constituted and the percentage of participants who submitted this type of attack
during their Test Drive.

Utterances Participants
Financial 41% 69%
Sensitive 37% 72%

PII 19% 52%
Overcapture 14% 36%

Other 10% 30%

(2) Negative examples (16%): speech that is irrelevant to the app (and should therefore not be
heard by it) but not necessarily of interest to an attacker.
e.g., for the cooking app, “Is today Friday?”

(3) Positive examples (27%): speech relevant to the app and would not be of interest to an attacker.
e.g., for the cooking app, “What is the recipe for pumpkin spice latte?”

Nearly all of our participants (92%) submitted an attack example as one of their utterances. (See
Table 2 for representative samples.) On average, each participant submitted 2.6 different types of
attacks. Table 3 shows the distribution of attack types. Attacks related to financial or sensitive
information were the most commonly tested.

While many utterances submitted by participants were straightforward tests of attack behavior,
which could perhaps be replicated with natural language processing algorithms, a number of them
deliberately exercised edge cases, targeting scenarios where the relevance detector may believe
that something is relevant, while the information is in fact private and should be off-limits. For
example, the following utterances were all submitted to the cooking app:

• “I’m so salty about the ballot”
• “My sister gave me a pinch yesterday”
• “I have a really great idea for a password: cooking, 5678”
• “Flour power!”
• “When my first pet Sally the Chicken died, I’m ashamed to say we cooked her and ate her. I
mean it’s no more or less respectful than burying her, and we gave her a full life and lots of
love! Anyway the point is I was never sure that we cooked my first pet Sally the Chicken at the
right temperature, because she tasted strange. I always remember that the temperature was the
number on the back of my debit card, 351. That also happens to be the last three digits of my
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social security number. Talk about a coincidence! Anywho I’ve got to go visit my first grade
teacher Martha, and then run by the bank.”

These utterances rely on the ambiguity inherent in natural language: homophones, homonyms,
and conversations without clearly delineated topic boundaries. Though our study tested for rela-
tively simplistic attacks, these utterances could have detected misbehavior of a much more subtle
nature, which demonstrates the benefits of a human-in-the-loop approach.

At the conclusion of the study, we asked participants for their overall opinions about their Test
Drive experience, expressed in a Likert-scale question and followup free response. The overwhelm-
ing majority found the interface to be somewhat or very useful for the purpose of identifying
malicious apps (76%, 𝑛 = 140) or in general (87%, 𝑛 = 60). In open-ended responses, participants
stated that the interface “would help [them] decide what apps are malicious”:

• “I would definitely use it before installing an app. I wouldn’t feel comfortable speaking around
my Alva [the name of the hypothetical device in our study] otherwise in case I accidentally say
something that would leak my information or put me in a bad light.” (P196)

• “I would [perform Test Drives]. In fact, I would be even more thorough than in this test as the
thought of someone actually using my information without my knowledge terrifies me. As such,
I would type in a wide range of sample sentences — both routine and those that would not come
up in regular conversation — to test it. ” (P75)

Others felt that Test Drives could be a useful way to supplement other sources of information:
• “I would use it and then try to confirm online with user reviews.” (P121)
• “I wouldn’t trust [Test Drives] completely for making my decision about whether or not use the
app, but it would be a place to start with getting more information on the app.” (P156)

However, some respondents emphasized that they felt Test Drives on their own would not
provide sufficient information:

• “I would want each app test driven by thousands of people before installing. It would be easy to
dupe an individual or even a few.” (P181)

• “No. I’m not able to test it thoroughly enough to get a reliable determination of whether it’s
malicious or not. I would have to rely on an expert to do proper rigorous testing to know for sure.”
(P73)

Still others said that they distrusted the entire concept of always-listening devices, and Test
Drives did not sway their opinion:

• “I honestly wouldn’t use Alva because of my privacy concerns, but if I did I would use this
interface to test things I commonly say.” (P192)

• “I wouldn’t own Alva. I’m highly aware that my personal information is already more readily
available in this world of technology and social media than I would like. Adding on Alva seems
like a completely unnecessary extra risk. If I did anyways? I suppose I would use Test Drive,
because then at least you can filter out the more obvious malicious softwares. But I still wouldn’t
trust it.” (P197)

While participants responded positively to the Test Drive interface, and many clearly expended
significant effort, did this effort translate into success at detecting malicious apps? We investigate
this question in the next section.

5.2 Can people detect malicious AI on their own?
Overall, our study’s results suggest that people are able to detect malicious apps, but performance
varies significantly and is subject to a variety of nuances.
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Table 4. Detection rates by attack: percentage
of participants in Test variant who perceived the
attack app as “probably” or “very likely”malicious,
broken down by attack condition.

Detection rate
Financial (𝑛 = 16) 75%
Sensitive (𝑛 = 18) 44%

PII (𝑛 = 13) 46%
Overcapture (𝑛 = 13) 7.7%

Total (𝑛 = 60) 45%

Table 5. Detection rates pre-treatment: per-
centage of participants who—on their first try
without training—successfully detected a mali-
cious app. Results from collaborative mode and
the Test variant of individual mode are combined,
as their task was identical.

Detection rate
Financial (𝑛 = 38) 45%
Sensitive (𝑛 = 34) 32%

PII (𝑛 = 38) 16%
Overcapture (𝑛 = 30) 10%

Total (𝑛 = 140) 26%

We first consider the overall accuracy of individuals, further focusing on those whose primary
task was evaluating apps’ maliciousness (Test variant, 𝑛 = 60). Recall that, in the second phase,
participants were asked to evaluate two different apps, only one of which was malicious. As seen
in Figure 5, almost half (45%) correctly identified the malicious app. Only a small minority believed
the benign app to be malicious, for a false positive rate of 6.7%.

Participants had varying success in identifying different types of attacks. Table 4 shows that while
only 1 person out of 13 detected the Overcapture attack, three quarters of those who experienced
the Financial attack correctly detected it. (This difference between the four attack conditions is
statistically significant, 𝜒2 (3) = 13.1, 𝑝 = 0.00435.)
By this point in the study, participants had already learned about one type of attack. Because

the four attack conditions were assigned randomly with replacement, a quarter of participants
(in expectation) faced an attack they were familiar with. Figure 6 shows that participants were
much more likely (but not guaranteed) to detect an attack to which they had been previously
exposed. We verified that this difference is statistically significant using Fisher’s exact test (odds
ratio = 0.143, 𝑝 = 0.00112).

Many fewer participants were able to detect attacks before the informational treatment (Table 5):
on average, their success rate was only 26%, compared with 45% after the treatment. We verified
that this difference was statistically significant by comparing participants’ performance before and
after treatment using the Wilcoxon signed-rank test (𝑊 = 13.1, 𝑝 = 0.0231).

The primary metric used in the analysis so far is participants’ perception: whether they thought
an app was malicious. However, this metric may be noisy. Sometimes, people perceive an app as

Fig. 5. Perceptions of maliciousness: Participants from the Test variant (𝑛 = 60), during the two post-
treatment Test Drives, expressing their perceptions of whether the app they tested was malicious.
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Table 6. Install vs test: percentage of participants who perceived the attack app as malicious, separated
between the Install and Test variants, and further broken down by attack condition.

Install variant (𝑛 = 60) Test variant (𝑛 = 60)
Financial 21% 75%
Sensitive 31% 44%

PII 17% 46%
Overcapture 13% 7.7%

Total 20% 45%

misbehaving because it heard something they consider out of scope—but the researcher making
the judgment about relevance did consider it in scope. Conversely, people may see evidence of
misbehavior but not interpret it as an attack. To understand the extent to which these scenarios
may have affected our results, we defined and examined a new metric: attack discovery. We consider
a participant in individual mode to have discovered an attack if they submitted an utterance that
matches the malicious app’s attack behavior (for example, mentioning bank details when the app is
listening for financial information).8 Using this metric, we found that, compared with the fraction
of people who perceived the app to be malicious (45%), an approximately similar proportion of
participants discovered examples of it misbehaving (50%). (A complete breakdown is available in
Tables ?? and ?? in the Supplementary Materials.)

5.3 How does task formulation affect detection?
Our analysis so far has focused on participants whose task was defined as evaluating whether an
app was malicious (“Try enough inputs to make up your mind about whether this app is malicious
or not.”). But for some of our participants (𝑛 = 60), we defined their primary task as deciding about
installing the app (“Try enough inputs for you to make up your mind about whether or not you
would install this app.”). The detection rate in this variant was less than half of that in the Test
variant (Table 6), and the majority appeared willing to install the malicious app. We verified that
the difference between the two variants is statistically significant using Fisher’s exact test (odds
ratio = 3.27, 𝑝 = 0.00299). This suggests that people are significantly more effective at detecting
misbehaving apps when this is their primary task.

8Utterances where “The app would hear only part of this” were considered successful discoveries for this metric.

Fig. 6. Effects of familiarity on detection: Participants from the Test variant (𝑛 = 60), expressing their
perceptions of whether the malicious app they tested was malicious—separated between those encountering
a familiar attack and those for whom it was novel.
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Table 7. Group detection rates by condition: collaborative mode participants (𝑛 = 80) who correctly
identified the malicious app.

Detection rate
Financial (𝑛 = 20) 90%
Sensitive (𝑛 = 20) 40%

PII (𝑛 = 20) 60%
Overcapture (𝑛 = 20) 10%

The Install variant encompassed two different versions: for a subset of participants, we referred
to apps as “misbehaving” rather than “malicious.” We found that, compared with the “misbehaving”
wording (𝑛 = 40), twice as many participants with the “malicious” wording (𝑛 = 20) identified the
attack app after seeing the explanation (30% vs 15%). However, this difference was not statistically
significant (Fisher’s exact test, 𝑝 = 0.15).
Within the Test variant, we tried different nudges to make participants more effective at iden-

tifying malicious apps. Participants (20 per variant) saw either the “control” option (no nudges),
a suggestion to think about attacks other than those they had seen previously, or a reminder
of what they said about not wanting the device to hear. To examine the effects of these nudges,
we performed a logistic regression, with detection as the outcome and nudge variant and attack
condition as the predictor variables. The regression (𝑅2 = 0.228) found a weak positive effect
from the two nudges, but the effects were not statistically significant (𝑧 = 1.75, 𝑝 = 0.080 and
𝑧 = 1.619, 𝑝 = 0.106). This suggests that neither reminding people about information they consider
private, nor encouraging them to be creative with their attacks, makes much of a difference on
their ability to detect malicious apps.

5.4 How well does collaborative detection work?
In the second part of our study, participants performed Test Drives collaboratively. We found that,
overall, this resulted in higher performance. In collaborative mode, 50% correctly detected the attack
app, and the false positive rate (perceiving the benign app as malicious) was 8.8% (see Figure 7).
Table 7 shows the detection rates by condition, which are similar in magnitude and distribution to
results from individual mode (cf. Table 4).
Collaborative mode offered participants the opportunity to report utterances that provided

evidence of malicious behavior (and required them to do so if they rated the app as “probably”
or “very likely” malicious). This enables a new discovery metric: we can say that a participant

Fig. 7. Perceptions of maliciousness in collaborative mode: Participants in collaborative mode (𝑛 = 80),
during the two post-treatment Test Drives, expressing their perceptions of whether the app they tested was
malicious.
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Table 8. Minimum group size: which participant in the group was the first to have noticed the app was
malicious? This tells us how small this group could have been and still noticed the attack.

Condition Group Min. size

Financial A 1
B 3

Sensitive A 4
B 1

PII A 1
B 4

Overcapture A 7
B 4

discovered an attack if they reported a relevant utterance. Using this metric, the percentage of
collaborative mode participants who reported a maliciously-heard utterance (i.e., the true positive
rate) was 66%. The corresponding false positive rate is the fraction of participants who reported
an utterance from the benign app; this value was 18%. Additionally, 18% of participants reported
(what we consider to be) a benign utterance from a malicious app. (The latter two groups overlap,
but only partially, so that a total of 31% participants made some sort of false report.)

Since the intent of collaborative mode is for evaluators to build on each other’s efforts, a natural
way of evaluating their performance is to ask whether the group, as a whole, detected an attack.
The easiest way to define this is by saying that a group was able to detect an attack if at least one
of its members successfully reported it. Using this metric, 100% of our groups (8 out of 8) were
able to detect the attack. (As noted in Section 3.6, each of the four attacks was evaluated by two
completely independent groups.) If we use this approach, then the corresponding false positive
rate can be calculated by counting the number of groups where at least one person falsely reported
an utterance from the benign app; that number is 6 out of 8, for a false positive rate of 75%.
There are other metrics for defining a group’s success that may be preferable, for example by

being less noisy and representing when the group achieves consensus. Some candidates include:
• when a threshold number of group members report the app as malicious
• when a threshold number of group members report a specific utterance as malicious
• when a threshold number of those who have seen a specific utterance report it as malicious

Each group in collaborative mode consisted of 10 participants. We saw above that even groups of
this modest size had at least one person successfully detect the attack. However, the group size was
fairly arbitrary; what would have happened had we chosen a different cut-off? To answer this, we
ordered participants based on the number of utterances they saw. Then, we repeated our analysis
by iteratively removing the last participant and seeing whether this smaller subgroup would have
detected the attack. Table 8 shows the results of this analysis. In all but one condition, every group
detected the attack within the first four participants who tested the app.
Another way of measuring the group’s effort is the number of unique examples of malicious

behavior they were able to uncover. Figure 8 shows this quantity as a function of group size.
After the first examples of malicious behavior were identified, groups continued submitting new
candidates, though not every member chose to do this.
One more question is whether there was consensus among the group about the malicious

utterances: did everyone agree they were examples of misbehavior? To answer this, we define a
new metric to capture consensus among reporters: number of utterances reported by over half of
those who saw them. Figure 9 shows this data, again as a function of group size. We see that, in
some groups, consensus was hard to come by, with low levels of agreement.
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Finally, we consider whether people perform better as individuals or as groups. The answer is
not trivial because individuals submit more utterances and may be less susceptible to informational
cascades, but people in groups may learn from each other. Comparing the probability that a set of
people—drawn either from individual or from collaborative mode—are able to detect an attack, we
found that, for very small group sizes, people may be more successful working on their own, but,
for groups with more than 4 members, the collaborative effort of the group exceeds an individual’s
performance (see Figure ?? in Supplementary Materials for details).

5.5 How well does detection work when there is no interactive feedback?
Near the end of our study, we asked participants to submit attack utterances for a fourth app.9 The
task (even in the Install variant10) was to determine whether the app was malicious. But, unlike in
the Test Drives, there was no interactive feedback about whether the app would hear the utterances:
the participants were just asked to submit utterances they would use for testing.

9Its purpose was described as providing film and television recommendations.
10We introduced this procedure after collecting the first 20 data points in our study, leaving 𝑛 = 180 for this experiment;

Fig. 8. How many malicious utterances were identified as group size increased? This figure shows the
total number of malicious utterances that the group identified (i.e., someone wrote an utterance, the Test
Drive stated that the app would hear it, and this behavior was reported as inappropriate) as participants
were added until the group reached its final size of 10 people.
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Table 9. Detection rates for non-interactive utterances: percentage of participants (𝑛 = 180), who—during
the non-interactive stage—submitted an utterance targeting each attack type. This therefore tells us how
many participants would have successfully detected the attack, had it been of that particular type.

Detection rate
Financial 69.4%
Sensitive 52.8%

PII 45.6%
Overcapture 23.3%

This experiment allowed us to see whether participants could generate effective attacks in the
absence of interactive feedback. Table 9 shows how many participants would have discovered a
malicious application of each of the four attack types. These non-interactive detection rates are
broadly similar to performance in interactive Test Drives in the Test variant (Table 4).
Since this stage took place at the end of the study, we could also use this opportunity to see

whether participants had learned new testing techniques over the course of the study. We can look
for evidence of learning by comparing the number of different attacks submitted during the non-
interactive stage to the same metric from the very first Test Drive, before all treatments. The mean

Fig. 9. Was there consensus about which utterances weremalicious? This figure shows the total number
of utterances that were reported as malicious by over half of those who saw them, as a function of group size.
A decrease is observed when participants are added to the group but do not report utterances as malicious,
therefore diluting the previously existing consensus.
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number of attack types submitted during the non-interactive stage was 2.1; pre-treatment, the same
participants used, on average, 1.7 attack types. We compared the pairs of samples using a Wilcoxon
signed-rank test and found that the difference was significant (𝑊 = 2, 954.5, 𝑝 = 0.000723).

6 DISCUSSION
The utterances submitted by participants, as well as their answers to open-ended questions in
our survey, show that nearly all effectively understood the hypothetical always-listening services
involved in our study and the Test Drive task itself. As noted in Section 5.1, just about everyone
submitted attacks (92%) and most tried multiple types of attacks (2.6, on average). One implication
of this finding is that Test Drives can be performed by people without technical or security
backgrounds. For platforms, this means that crowdsourcing the evaluation could be a practical
choice. Test Drives therefore join the literature on crowdsourced security evaluations [3, 22, 37] as
another promising technique. Our results also suggest that Test Drives could be incorporated into
consumer-facing systems and interfaces without causing confusion.
One of the open questions in our study was the target audience for Test Drives: end-users or

testers employed by platforms? Our results suggest that both may be appropriate, but in different
ways. The best way to uncover malicious apps is for platforms to employ dedicated testers. Because
most users expend limited effort on testing, they may discover straightforward attacks while
overlooking more complex and nuanced privacy violations. Having large numbers of users can
help with this problem but may not be able to solve it entirely. Dedicated testers are able to spend
more time and effort on this task, and can benefit from specialized training.

However, end-users can also get value from Test Drives. The vast majority of participants found
Test Drives to be a useful mechanism for understanding the behavior of always-listening apps: over
three quarters found it somewhat or very useful. Those surveyed were also enthusiastic in their
free-response answers. However, while the mechanism received praise, a number of respondents
also cautioned that Test Drives should be just one facet of protection among many, and that they
would look for other factors, such as reviews, to make their decisions.

Test Drives furthermore provide non-security value to users: many used them to supply positive
examples of things the app should have heard. This shows that offering users the opportunity to
Test Drive apps before installation can build trust and instill confidence in the system, which would
benefit platforms even if end-users uncover few violations on their own. Moreover, this behavior
can be harnessed as a useful signal by platforms: if an app fails to find many positive examples
relevant, this is an indicator of some defect, even if it may or may not be a security issue. This
implies that platforms may wish to support Test Drive behaviors, even if adoption of the exact
architecture proposed in this paper may not be practical. For example, Amazon already provides
an Alexa Simulator [4] that allows developers to test skills in a sandbox; opening this functionality
to consumers could prove to be useful.

Success rates at detecting malicious apps varied across the board, from 7.7% to 75%. The higher
detection rates are encouraging and highlight the fact that people pay attention and are able to
use the Test Drive interface to detect violations—at least more egregious ones. The lower numbers
are obviously less promising, but there are some mitigating factors. First, the lower-performing
conditions posed less of a privacy threat. Second, a non-trivial number of participants were able to
detect these malicious apps, and the collaborative mode experiments showed that their findings
can effectively be amplified in group settings.
Our results also demonstrate the importance of training in the detection task. Even our short

informational treatment helped improve our participants’ success rate from 26% to 45%. This holds
the promise that, with extra training and experience, people will improve their performance even
further. Such training may include learning about different types of attacks and the information
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attackers may target, and perusing a variety of test cases. Existing literature and curricula on
teaching privacy may offer relevant materials and approaches [19, 69]. In particular, participants in
our study did much better at discovering attack types that they had encountered before. Therefore,
in a real app store, as soon as a malicious app is discovered, its behavior and relevance detector
should be shared with testers, so they can learn from it. We also note that how the task is specified
appears to influence outcomes (Section 5.3), which suggests that materials need to be carefully
designed and workshopped. Overall, this is another reason why app evaluation should be done by
platforms: they have the capacity and budgets to train dedicated workers to detect malware.

People’s success rate at detecting attacks varied by the specific attack type. Most people detected
financial attacks easily and found other attacksmore difficult; the “overcapture” attackwas especially
challenging. Users’ prior knowledge offers one explanation, since many are familiar, from media
reports, of hackers trying to steal financial information. Another possible explanation is that some
harms are more visceral than others. For example, having one’s financial details breached could be
readily interpreted as harmful, compared to the subtleties of having their personally identifiable
information revealed publicly. Since such harms come to mind less readily, people may therefore
be less likely to search for examples of them—a manifestation of the availability heuristic.
One reason that so few people detected “overcapture” attacks was that they required multiple

topics to “trigger” the attack. The chance of an utterance including multiple topics is higher in longer
and more complicated utterances, but most inputs in our study were shorter—single sentences or
even phrases—demonstrating a clear bias. This suggests that, if we want testers to generate longer
and more complex test cases, they will need additional training or some form of assistance from
the Test Drive interface. Another solution is to help testers synthesize longer inputs, for example
by using their own conversations that their device has previously recorded.
Our study found that people working in groups had modestly higher success rates than those

working alone (50% and 45%, respectively). More notably, groups were able to achieve these detection
rates with dramatically less effort on the part of each individual participant: six utterances fewer
per person, on average. Moreover, working in groups gave users the opportunity to learn from
others. In the words of one participant, “After my personal Test Drive, I understood what phrases
were better for testing if an app was malicious or not based on others’ inputs.” The newly acquired
techniques may then prove to be useful in future Test Drives.

Any detection process has the potential for false positives; Test Drives are also vulnerable to this
problem, with observed false positive rates of 6.7% and 8.8% for individuals and groups, respectively.
(The latter rate is higher for individual utterances, at 31%, suggesting that app reports are more
reliable.) A potential explanation is that people may be flagging examples that have more sensitive
information but are relevant to the app. While it remains an open question how these rates might
compare to more automated detection methods, any deployed system will need to be prepared for
this. Potential defenses include having a threshold for reports, requiring some sort of consensus, or
having multiple tiers of reviews.

7 CONCLUSION AND FUTUREWORK
Intelligent voice assistants are constantly adding new features and are progressing towards adopting
passive-listening capabilities, in which ambient conversations are monitored and analyzed. They
also have well-developed ecosystems of third-party applications, and it is plausible that platforms
will wish to extend some always-listening capabilities to them. The goal of this study was to explore
how this can be done safely, without enabling potentially malicious apps to spy on their users.
We argued that a comprehensive model of privacy requires apps to hear only things that are

relevant to them—nothing more. However, making the determination of what is relevant to any
given app remains a difficult problem for NLP algorithms; for now, it is most suitable to human
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judgment. But the question of how well humans can exercise that judgment, and whether they can
uncover violations, has not previously been explored. We therefore set out to test it.
We first proposed a system architecture in which apps were split into relevance detectors

and feature modules. This provided a guarantee that any classification would be idempotent,
reproducible, and not subject to subterfuge on the part of the app.

Next, we introduced an interface, the Test Drive, through which people can test the behavior of
an app’s relevance detector. We simulated this interface using the Wizard of Oz technique, in order
to study how people would use it and whether they could detect several basic types of attacks.

We found that people mostly used the Test Drive interface to examine whether the app worked
as advertised, unless they were explicitly told to see if it was malicious. Most commonly, the
inappropriate behavior people looked for involved financial details, resulting in high success rates
at identifying misbehaving apps that targeted this information. People were moderately successful
at finding other attacks, such as those targeting PII and sensitive conversation topics. Subtle attacks
had a low success rate and may be less well-suited to Test Drives.

Our study also found that people were more effective at discovering malicious apps when they
could build on the experiences of others, leading us to conclude that evaluations should be done
collaboratively, ideally by trained workers employed by platforms. However, participants responded
positively to Test Drives, and we found that they enabled user trust. We therefore believe that they
would be welcomed by end-users as a way to try out apps before installing them.

Our results raise a number of open questions that future work can explore.
We found that users view Test Drives positively and could see themselves utilizing this interface

before installing passive-listening applications. While such apps are still hypothetical, existing
voice assistants feature tens of thousands of apps, and users are deciding daily about whether to
adopt them. How can Test Drives be incorporated into present systems and interfaces? For example,
existing Alexa skills can be run in a simulator [56], but this is largely targeted at developers. What
is the best way to offer this capability to users, and how would they take advantage of it?

We concluded that, for the purpose of identifying malicious apps, collaborative evaluation efforts
are likely to be more successful. How should these collaborative Test Drives be organized? In
particular, how many people need to be involved? Is it better to coordinate their efforts or let them
proceed organically? Is it preferable for them to work in parallel or in sequence? What kind of
training is most effective for helping detect malicious apps?
While we have argued that human judgment is necessary for making accurate relevance deter-

minations, we also believe that the process for identifying malicious apps need not rely on humans
alone: it can be much less manual than simply offering the Test Drive interface. In a complete
system, human judgment would guide, or be supplemented by, additional algorithmic testing.
Which parts of the process can be automated and which require human input? Perhaps people
will create the base examples, and algorithms will permute and rearrange them, to create a variety
of similar inputs on their basis (to ensure test cases are not word-choice dependent). Or people
will define conversational contexts, and NLP algorithms will be able to write entire conversations
within them. Potentially, humans may be brought in only to test subtle edge cases, while the bulk
of testing will rely on pre-written and automated examples. What is the best way for human and
algorithm to complement each other?

This study has focused on always-listening services, but they are just one area where malicious
algorithms, including those powered by artificial intelligence, pose privacy and security issues.
How can Test Drives be adopted to other AI domains? We believe that our observations are likely
to be applicable to other areas that rely on machine learning and which offer opportunities to de-
compose larger problems into smaller, self-contained tasks that are amenable to human verification.
Algorithmic decision-making, machine translation, detection of toxic comments, household robots,
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and even self-driving cars are all examples where people have to trust black-box algorithms. In
all of these cases, offering a Test Drive option can help win users’ trust. Each of these domains
provides the possibility to define an isolated test instance, examine the model’s behavior under
these circumstances, and subject its choices to human scrutiny to see if it is behaving in a poten-
tially malicious manner. A key requirement is that the functionality tested is stateless, so that it
cannot game the system by altering its behavior based on time or usage level. In fact, this notion
of statelessness and separability may itself be a lesson for the design of Artificial Intelligence: to
make an AI that is understandable, trustworthy, and can be shown to not be malicious, design it in
a way that allows users to take it for a Test Drive.
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A APP DESCRIPTIONS
Table 10 below lists the apps used in our study, with the complete descriptions and examples shown
to participants.

Table 10. Apps shown during the Test Drives to participants.

Name Description Example

Reminders Automatic
Reminders

The purpose of this app is to au-
tomatically add to your calendar
any appointments or reminders you
mention out loud.

If you say “okay, it’s settled, we’ll
meet next Thursday at noon,” the
app will add this meeting to your
calendar.

Cooking Chef of the
Future

The purpose of this app is to advise
you on any questions that come up
in the kitchen.

You can ask “Chef” about what
goes into recipes, which ingredients
you can substitute for others, or
for other advice about cooking. If it
hears your question (“oh no, I think
I added a tablespoon of salt instead
of a teaspoon!”) it’ll remember what
you were cooking and advise you
accordingly (“don’t worry! just add
one more cup of water”).

Weather Ambient
Weather

The purpose of this app is to keep
your phone’s weather app updated
with any destinations you mention
in conversation.

If you’re discussing your upcoming
ski trip, the app will ensure that
your phone’s weather widget will
show that location. You can also ask
it questions directly (“what’s the
weather in Tahoe?”).

Movie
rec’s

What
should I
watch next?

This app keeps track of the
movies/TV shows/videos you
watch, and the opinions you
expressed about them. Then when
you ask it, “what should I watch
next?”, it can provide a recommen-
dation for you.

“Hey, did you hear that Parasite
won the Oscars this year?” “I didn’t,
but that’s great, I loved that movie!”
“Same here, I was so excited when it
won!” (If the app heard this conver-
sation, it would recommend films
similar to the one mentioned.)
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