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ABSTRACT
The year 2022 was the driest year in Portugal since 1931 with 97%
of territory in severe drought. Water is especially important for
the agricultural sector in Portugal, as it represents 78% total con-
sumption according to theWater Footprint report published in 2010.
Reference evapotranspiration is essential due to its importance in
optimal irrigation planning that reduces water consumption. This
study analyzes and proposes a framework to forecast daily refer-
ence evapotranspiration at eight stations in Portugal from 2012
to 2022 without relying on public meteorological forecasts. The
data include meteorological data obtained from sensors included
in the stations. The goal is to perform a multi-horizon forecasting
of reference evapotranspiration using the multiple related covari-
ates. The framework combines the data processing and the analysis
of several state-of-the-art forecasting methods including classical,
linear, tree-based, artificial neural network and ensembles. Then,
an ensemble of all trained models is proposed using a recent bioin-
spired metaheuristic named Coronavirus Optimization Algorithm
to weight the predictions. The results in terms of MAE and MSE are
reported, indicating that our approach achieved a MAE of 0.658.

CCS CONCEPTS
• Computing methodologies → Ensemble methods; Super-
vised learning by regression; • Applied computing → Envi-
ronmental sciences;
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1 INTRODUCTION
The Drought in numbers report [23] showed an increase of approxi-
mately 30% in the number of droughts worldwide since the year
2000. This has a social impact as people cannot access to potable
water or food, as the agricultural and livestock sector cannot access
to water to irrigate/feed their crops/cattle. An example is Portugal,
where the 97% of the territory in severe drought was reported by
the Instituto Português do Mar e da Atmosfera (IPMA) in 2022,
which is the driest year since 1931. Drought is especially impor-
tant in Portugal, as the agricultural sector represents 78% of total
consumption according to the published 2010 report on the water
footprint.

An essential parameter for the estimation of water resources is
the reference evapotranspiration (𝐸𝑇0), which is defined as the evap-
otranspiration of a hypothetical grass surface that is well watered.
This parameter is used to estimate crop evapotranspiration (𝐸𝑇𝑐 ),
which is mainly responsible for the irrigation infrastructure, sched-
uling, and management of a specific crop. An accurate estimate of
𝐸𝑇0 is essential, as an overestimation considerably increases the
water footprint.

Machine learning and metaheuristics have been combined in
multiple studies, obtaining astonishing results in fields like artifi-
cial vision, natural language processing, time series forecasting, etc.
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Figure 1: Complete methodology. The process starts collecting the data from the different stations into the matrix 𝑋𝑁,𝐷 with 𝑁
instances and 𝐷 features. The first step preprocess the data, this step receives the hyperparameter𝑀 which influence in the
windowing transformation and outputs the matrix 𝑋𝑁,𝑀,𝐷 with𝑀 past events. The second step finds the best hyperparameters
for each selected model using a grid search. The third step selects the best combination of the models 𝐸 using the predictions
𝑃𝑁,𝐻,𝐸 with 𝐻 future instances and the CVOA algorithm. The CVOA algorithm obtains the optimal weights𝑊𝐻,𝐸 for the best
combination of models 𝐸.

For this reason, this work proposes a framework for multi-horizon
time series forecasting [1] that combines several state-of-the-art
models using a bioinspired metaheuristic. Since the ensemble of dif-
ferent models generally obtains better results [14], we propose a set
method based on the recently developed bioinspired metaheuristic
named Coronavirus Optimization Algorithm (CVOA) [22], which
has been shown to efficiently obtain good results in several scenar-
ios [5, 28]. The role of the metaheuristic is to weigh the predictions
produced by the different models. This framework is applied to a
set of eight meteorological stations located near Beja (Portugal).
Data contain multivariate records from 2012 to 2022 obtained from
the Sistema Agrometeorológico para a Gestão da Rega no Alentejo
(SAGRA) [10]. The goal is to forecast reference evapotranspiration
without relying on public meteorological forecasts for three days
in the future, as experts considered it enough to plan and manage
water resources.

The main contributions of this paper are as follows:
(1) Development of an ensemble methodology with a bioin-

spired metaheuristic technique.
(2) Comparison between several state-of-the-art forecasting

methods.
(3) Analysis ofmeteo-agricultural data and the impact of drought

on the efficacy of the model.
The paper is structured as follows. Section 2 shows recent tech-

niques used for evapotranspiration forecasting. Section 3 describes
the methodology followed in the proposed framework step by step.
Section 3.1 analyzes the dataset, its properties and the preprocessing
applied. Section 4 details the experimental setting with all the infor-
mation on the different forecasting methods applied, the evaluation

metrics used, and the result comparison between the forecasting
methods and the ensemble using our methodology. Finally, Section
5 shows the conclusions drawn and future work.

2 RELATEDWORKS
There exist multiple studies that attempt to forecast reference evap-
otranspiration due to its multiple advantages.

R. Ballesteros et al. [4] use daily meteorological data to forecast
six days ahead of the 𝐸𝑇0 calculated using the Penman–Monteith
method in Spain. The meteorological data used as input are predic-
tions produced by the Spanish Meteorological Service (AEMET).
Hargreaves–Samani method is compared to an artificial neural net-
work (ANN). The ANN generally achieves better results with a
mean squared error of 0.98 mm/day. In our work, we present a com-
parison of several forecasting methods, including neural networks
[19], demonstrating that an ensemble improves the results.

Y. Yang et al. [35] makes a seven days ahead forecast of 𝐸𝑇0
calculated with the Penman–Monteith method. The authors used
daily meteorological data obtained from six stations and seven
days ahead forecast in China. The method obtained a root mean
square error equals to 0.98 mm/day, obtaining different behaviors
at different stations. In our work, we do not depend on public
meteorological forecasting, as there are contexts in which they are
not available or adequately curated. We use different forecasting
methods that use past data to make the calculation directly from
the past meteorological data to the future 𝐸𝑇0.

L. B. Ferreira et al. [13] apply several models and forecasting
strategies for a seven-day 𝐸𝑇0 forecast. The authors used data mea-
sured daily from 53 weather stations in Brazil, where 4 stations were
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used for testing purposes. The forecasting methods include ran-
dom forest, multilayer perceptron (MLP), long short-term memory
(LSTM), convolutional neural network (CNN), and a CNN-LSTM
combination. The forecasting strategies [21] were related to the
output of the model: iterated forecasting, direct forecasting, and
multiple input multiple output (MIMO). CNN-LSTM combination
obtained the best results using the MIMO forecasting strategy with
a root mean squared error of 0.87 mm/day. In our proposal, an
ensemble approach is used to improve the results of the differ-
ent models tested. Additionally, in addition to using the MIMO
forecasting strategy, validation is done for a dataset subset of all
stations, instead of all data in several stations as this scenario is
more realistic.

P. de Oliveire e Lucas et al. [8] uses several CNN architectures
and an ensemble of them to forecast daily 𝐸𝑇0 using the Pen-
man–Monteith method ten days ahead. The authors used just the
past information from 𝐸𝑇0 as input for the different models. Sea-
sonal <utoregressive integrated moving average (SARIMA) and
Seasonal Naive were used as a baseline, which is improved by the
ensemblewith a rootmean square error of 0.94mm/day. In ourwork,
an ensemble is proposed without limiting them to a single type
of model. Furthermore, the inclusion of the metaheuristic which
improves the ensemble leveraging the relevance of the different
models, is an important additional step included.

M. Alizamir et al. [3] use an adaptive neurofuzzy inference sys-
tem (ANFIS) in combination with the genetic algorithm (GA) and
particle swarm optimization (PSO) to make a one-day ahead fore-
cast of 𝐸𝑇0, calculated using the Penman–Monteith method. The
data was collected every month using two stations in Turkey, which
contained several meteorological features. The proposed method
was compared with a MLP and a decision tree. The proposed meth-
ods obtained an improvement of 27% compared to the best baseline
model in terms of the root mean square error. In our study, we
propose a multi-step forecasting model instead of using just one
step ahead to analyze future behaviour in a short period.

A. Elbeltagi et al. [11] recollect monthly meteorolocal data from
two stations in Pakistan to predict the 𝐸𝑇0 150 months ahead. The
authors employ several tree-based models using bagging, voting,
and random subspace ensemble methods to forecast 𝐸𝑇0. The dif-
ferent models in the ensemble are weighted using the Bayesian
additive regression tree method [30]. The results conclude that the
combination of additive regression with the M5’ regression tree
model [34] was the best combination with a root mean square er-
ror of 0.570. In our work, we use a more variate set of forecasting
methods instead of using only tree-based methods, which increases
the possibility of learning a more diverse representation of future
behavior.

3 METHODOLOGY
The goal of the proposed methodology is to define a framework for
time series forecasting using an ensemble of multiple heterogeneous
models through the use of the CVOA bioinspired metaheuristic.
This methodology is intended to be as efficient and scalable as
possible, obtaining the best results using state-of-the-art models.

This section is structured as follows. Section 3.1 describes the
dataset collected from different stations used to apply our method-
ology. Section 3.2 defines the preprocessing applied to the input
data. Section 3.3 shows the different models used in the methodol-
ogy. Section 3.4 describes the hyperparameter optimization process
applied to the different models to find the best hyperparameter con-
figuration. Section 3.5 details the bioinspired ensemble process used
to combine and improve the different models. Figure 1 shows the
complete methodology proposed in this work, which is described
in the following sections.

3.1 Dataset
The dataset studied contains data collected from eight automatic
meteorological stations on a daily basis in Beja (Portugal). These
data are part of SAGRA of the Centro Operativo e de Tecnologia de
Regadio [10], which has recollected data from 2012 to 2022. In total,
the dataset contains nearly 3525 instances for each station (eight in
total).

Each station has been named according to its respective zone;
the names are as follows: Castro Verde (CV), Estremoz (E), Her-
dade Lameiroes (HL), Herdade Outeiro (HO), Quinta Saude (QS),
Serpa (S), Viana Alentejo (VA) and Vidigueira (V). The sensors
at the stations collect 14 meteorological data and the reference
evapotranspiration using the Penman-Monteith method.

Feature Full name Mean STD Min Max
Tmed (ºC) Mean temperature 16.69 6.22 1 35.16
Tmax (ºC) Maximum temperature 24.45 7.89 2.38 46.52
Tmin (ºC) Minimum temperature 9.87 5.07 -5.37 24.98
HRmed (%) Mean relative humidity 70.85 16.10 22.48 102.52
HRmax (%) Maximum relative humidity 93.82 7.67 65.19 100
HRmin (%) Minimum relative humidity 42.62 18.82 -0.4 100
RSG (kj/m2) Global Solar Radiation 17083.96 8087.03 641.84 35993
DV (graus) Wind direction 228.75 100.29 0 360
VVmed (m/s) Mean wind speed 1.67 0.85 0 4.53
VVmax (m/s) Maximum wind speed 6.28 2.36 0 116.05

P (mm) Precipitation 1.31 4.60 0 88.4
Tmed Relva (ºC) Mean soil temperature 18.55 7.72 1.4 40.29
Tmax Relva (ºC) Maximum soil temperature 26.29 12.69 5.83 71.43
Tmin Relva (ºC) Minimum soil temperature 13.51 5.86 -4.8 30.7

𝐸𝑇0 (mm) Reference evapotranspiration 3.43 2.01 0 9.47

Table 1: Statistics of features collected at each station.

Table 1 shows the different features obtained from each station,
their abbreviations, and some basic statistics. In general terms, the
ambient temperature and the soil temperature seem to remain in
optimal ranges ( [15 ºC, 30 ºC] depending of the crop) to ensure
optimal growth [16, 26]. Humidity is generally high between a
range of [42 %, 94%]. The wind seems to be moderate in general,
with no dangerous values. Precipitations are mainly scarce, which
implies the use of external water sources.

Figure 2 shows the evolution of each feature over time. We can
observe two types of feature: seasonal and mostly chaotic. Chaotic
variables such as maximum relative humidity, wind measurements,
and precipitations do not present a clear temporal pattern. Sea-
sonal features show a temporal pattern in which the warm seasons
present the peaks in temperature features and valleys in humidity
features. 𝐸𝑇0 seems to present a pattern similar to temperature
features.

443



SAC ’23, March 27-March 31, 2023, Tallinn, Estonia M. J. Jiménez-Navarro et al.

Figure 2: Evolution of the features over time.

3.2 Data preprocessing
The section describes the processing applied to the dataset to pre-
pare the data for the different architectures [2, 27]. Processing is
divided into three steps: outlier processing, standardization, divi-
sion, and windowing. The process is executed sequentially and
receives the input 𝑋𝑁,𝐷 with 𝑁 instances ordered by station and
date, corresponding to the union of all station instances, and 𝐷
features, corresponding to the 15 features measured at each station.

The dataset presents some extreme outliers in some features,
mostly in the mean, maximum, and minimum grass temperature.
The absolute value of the z-score has been calculated for each
instance in every feature to identify these outliers. Once the z-score
is calculated, instances with a z-score greater than three are treated
as outliers and removed. Then, the removed instances are imputed
using the K nearest neighbors (KNN) algorithm with 𝐾 = 3.

Once the outliers have been removed and imputed for each
feature, a standardization process has been applied to set the mean
to zero and the standard deviation to 1. For the same reason as for
the imputation, just one mean and one standard deviation were
calculated using all the station data. Therefore, the same mean and
standard deviation were used to characterize all stations.

The data contain instances that have been measured for almost
10 years in total. The division has been applied using instances
over a full year. Thus, the train data contain data from 2012 to 2019
included, the validation data use the year 2020 and the test data
contain the year 2021 and 2022 included. Usually, only the last year
is included in the test. However, since 2022 has only 8 months and
does not complete a period, 2021 was also included. Furthermore,
an analysis to see the effect of drought and compare it with the
performance obtained in 2021 will be presented in Section 4.

The last step is the windowing process applied to every division,
which transforms the two-dimensional matrix with every instance
as a row and every feature as a column in a three-dimensional

tensor. The new dimension includes the past information of an
instance, feeding the architectures with temporal information. This
means that an instance 𝑋𝐷

𝑡 with 𝐷 features at a moment 𝑡 obtains
new information from 𝑀 past instances with respect to the mo-
ment 𝑡 . This means that each instance now contains the features
𝑋𝐷
𝑡 and the features 𝑋𝐷

𝑡−𝑀−1 · · ·𝑋
𝐷
𝑡−1. Thus, the entire dataset and

the output of the preprocessing step compose a three-dimensional
matrix 𝑋𝑁𝑥𝑀𝑥𝐷 with 𝑁 instances ordered by station and date,𝑀
past information, and 𝐷 features. Note that, since the matrix 𝑋𝑁,𝐷

contains data from different stations, it is necessary to remove each
window that mixes information from different stations.

3.3 Forecast strategy
The input of the architectures is a set of meteorological data ob-
tained from multiple stations. In this work, we propose a one-to-
many approach (one model for many stations) to produce the fore-
casts for the different stations. This approach is commonly used
in grouped datasets using the bottom-up strategy [24, 29]. This
approach uses one model to produce the forecast for all stations
rather than using a model for each station. This produces a more
scalable methodology which requires less resources as less infor-
mation needs to be stored and use less computation for retraining
the model. Additionally, the input of each model must include in-
formation from one station in order to achieve better scalability.
Using information from multiple stations can produce good results,
but this approach limits stations to centralized information sharing.
Another problem can arise if a new station needs to be included
in the model; this may change the entire architecture and would
require one to retrain from the beginning. Using a single model
with the input of a single station each time opens up the possibility
of using transfer learning over another new station or a problem of
similar nature.

For the output of the models, a direct approach [17] has been
applied to obtain the three steps ahead forecasting as output. For
example, a multiple input corresponding to the windowed mete-
orological features is fed into the models, and three outputs are
obtained.

3.4 Hyperparameter optimization
In this step, the comparison of 14 different commonly used models
was used using the same window sizes and forecasting horizons
using the same random seed to ensure that randomness has the
smallest possible influence. In this step, a grid search [33] has been
applied to perform a homogeneous search throughout the hyperpa-
rameter space, reducing the effect of randomness in comparison.

Table 2 shows the different models used to evaluate the dataset
and the hyperparameter space for each one. The hyperparameters
have been selected to cover the most common parametrization
trying to give equal opportunities to each model.

In the case of neural networks (MLP, CNN, LSTM), the selected
optimizer was Adam, and the activation function was Relu except
in LSTM as this configuration has proved to provide competitive
results in several applications. The hyperparameters of the win-
dowing process are optimized jointly with the hyperparameters
of each model using a range from 3 to 7 past instances. A linear
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Model Hyperparameter space
Lasso [31] {’Alpha’: [0.0001, 0.001, 0.01, 0.1, 1, 2, 3]}
Ridge [32] {’Alpha’: [0.0001, 0.001, 0.01, 0.1, 1, 2, 3]}
Linear -

ElasticNet [36] {’Alpha’: [0.0001, 0.001, 0.01, 0.1, 1, 2, 3],
’Ratio’: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]}

Decision tree [25]
{’Splitter’: [’best’, ’random’],

’Depth’: [1, 3, 5, 7, 9],
’Criterion’: [’MSE’, ’Friedman MSE’, ’MAE’]}

SVM [7] {’C’: [0, 1, 2, 3, 4],
’Kernel’: [’Linear’, ’Polynomial’, ’RBF’, ’Sigmoid’]}

MLP [12] {’Layers’: [1,2,3], ’Units’: [4, 8, 16]}

CNN [12] {’Layers’: [1,2,3], ’Units’: [4, 8, 16],
’Kernel size’: [3]}

LSTM [12] {’Layers’: [1,2,3], ’Units’: [4, 8, 16]}

Random Forest [15]
{’Estimators’: [50, 100, 200, 300, 400, 500],

’Depth’: [1, 3, 5, 7, 9],
’Criterion’: [’MSE’, ’Friedman MSE’, ’MAE’]}

XGB [6]
{’Estimators’: [50, 100, 200, 300, 400, 500],

’Depth’: [2, 3, 4, 6, 7],
’Criterion’: [’MSE’], ’ETA’: [0.3, 0.4, 0.5]}

CatBoost [9]

{’Depth’: [1, 3, 5, 7, 9],
’Learning rate’: [0.003, 0.001, 0.0001],

’Iterations’: [50, 100, 200, 300, 400, 500],
’L2’: [0, 1, 2, 3, 4]}

LGBM [20]

{’Estimators’: [50, 100, 200, 300, 400, 500],
’Depth’: [1, 3, 5, 7, 9],

’Learning rate’: [0.003, 0.001, 0.0001],
’Regularization’: [0, 0.01, 0.03]}

Table 2: Model and hyperparameters used in the grid search.

model is also used in the grid search, which is not included because
it does not have hyperparameters.

3.5 Ensemble
In this step, the predictions are improved by combining several
models to reduce bias and improve efficacy. The ensemble process
is divided into three steps. The first finds the selection of a combi-
nation of the best 𝐸 models obtained from Section 3.4. The second
step obtains the predictions 𝑃𝑉 ,𝐻,𝐸 of the selected models 𝐸 and
the 𝐻 future (𝐸𝑇0) prediction in all instances of the train and val-
idation sets 𝑉 . Finally, the CVOA algorithm is used to determine
the weights𝑊𝐻,𝐸 for the predictions of the different models 𝐸 and
their horizons 𝐻 . Initially, the weights for all models and horizons
are the same using a base voting approach. Individuals in the CVOA
algorithm consist of a matrix of size 𝐻𝑥𝐸 which, initially, is unre-
stricted. This means that the weights for all models 𝐸 for a specific
horizon may not sum up 1. For that reason, a normalization for
each row in 𝐻 is applied to make the weights in the combination
of 𝐸 models sum up 1.

Therefore, the ensemble consists of two search algorithms. The
first search algorithm must select a combination of models from
which the second search obtains the weights of the predictions
for these models. CVOA algorithm has a set of individuals that
represent the search space and, potentially, can be infected by eval-
uating its performance. As the second search algorithm, CVOA
has proven to be a very efficient algorithm that can converge in a
few iterations, we propose a grid search over every pair, trio, and
quartet combination of models. This will allow us to find the best
combination of models based on CVOA weights.

The ensemble allows us to use heterogeneousmodels that require
different window sizes and hyperparameters. Furthermore, this
ensemble method is efficient, as it does not introduce additional
computation at inference time.

4 RESULTS
4.1 Evaluation metrics
To evaluate the efficacy and efficiency of the different models, three
common metrics have been selected. For efficacy, mean absolute
error (MAE) and mean squared error (MSE) were selected because
they are well-knownmetrics that allow us to obtain a good interpre-
tation of the results. Additionally, the weighted average percentage
error (WAPE) metric is included to avoid unrepresentative values
shown when the values are below zero, as in our study. As we are
in a multi-step forecasting, the metrics apply the calculations av-
eraging the results obtained by each horizon. Taking into account
𝑁 the number of instances to be evaluated, 𝐻 the forecast horizon,
𝑦 (𝑡)𝑡+ℎ and𝑦 (𝑡)𝑡+ℎ the true and predicted value correspondingly at
moment 𝑡 and future prediction at time 𝑡 + ℎ, the formulas applied
are the following:

𝑀𝐴𝐸 =
1
𝑁

𝑁∑︁
𝑡=1

1
𝐻

𝐻∑︁
ℎ=1

|𝑦 (𝑡)𝑡+ℎ − 𝑦 (𝑡)𝑡+ℎ | (1)

𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑡=1

1
𝐻

𝐻∑︁
ℎ=1

(𝑦 (𝑡)𝑡+ℎ − 𝑦 (𝑡)𝑡+ℎ)2 (2)

𝑊𝐴𝑃𝐸 =
1
𝐻

𝐻∑︁
ℎ=1

∑𝑁
𝑡=1 |𝑦 (𝑡)𝑡+ℎ − 𝑦 (𝑡)𝑡+ℎ |∑𝑁

𝑡=1 |𝑦 (𝑡)𝑡+ℎ |
(3)

For efficiency, the training time measured in minutes is selected
as represents the metric that takes more resources and is one of the
most important metrics in order to allow the model to be re-train.
The hardware configuration consists of an NVIDIA Geforce RTX
3070 GPU, an AMDRyzen 7 5800X 3.8 GHz, and 32 GB of RAM. Note
that the GPU is used in CNN, LSTM, Extreme Gradient Boosting
(XGB) and Light Gradient Boosted Machine (LGBM) models.

4.2 Hyperparameter optimization results
This section represents the best results obtained for each model
after applying the grid search. The MSE was used as a criterion to
decide which hyperparameters are the best. The data was sorted
by MSE reporting efficacy metrics and efficiency. Additionally, a
baseline model (Base) was included consisting of repeating the last
known value for the three-days forecasting, this approach has a
training time of zero as there is no model implied.

Table 3 shows the efficacy and efficiency metrics for the best
models found in the grid search. The results have been ordered
by MSE, showing that the best model is the LSTM with a training
time fewer than that of almost all models except the linear model.
XGB and Random forest show efficacy similar to the best model,
but considering efficiency, LSTM shows a 3x and 8x reduction
in training time. However, it must be considered that LSTM and
XGB used a GPU for the training process, while random forest did
not. The next eight models show similar efficacy in general with
heterogeneous efficiency. SVM shows the worst efficiency in terms
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Model MAE MSE WAPE Time (m)
LSTM 0.669 0.774 0.183 0.272
XGB 0.678 0.784 0.186 1.014

Random Forest 0.673 0.788 0.184 7.032
MLP 0.692 0.811 0.190 18.860
CNN 0.691 0.812 0.189 0.514
Lasso 0.700 0.827 0.191 0.562

ElasticNet 0.701 0.828 0.191 0.783
SVM 0.688 0.832 0.187 762.736
Ridge 0.704 0.833 0.192 0.062
Linear 0.704 0.833 0.192 0.100

Decision Tree 0.706 0.889 0.193 0.498
LGBM 0.762 0.927 0.208 4.691

CatBoost 0.790 0.987 0.215 168.259
Base 0.855 1.350 0.234 -

Table 3: Top models obtained after the grid search sorted by
MSE.

of training time in all the datasets with a great difference followed
by CatBoost and MLP. Interestingly, neural network approaches
are in the top five best models, while only two of four ensemble
methods obtained good results. The other two ensemble models
obtained the worst efficacy, being just better than the baseline
model.

Model Window size Optimal parameters
LSTM 3 {’Units’: 16, ’Layers’: 3}

XGB 4 {’ETA’: 0.3, ’Criterion’: ’MSE’,
’Depth’: 3, ’Estimators’: 50}

Random forest 4 {’Criterion’: ’Friedman MSE’,
’Depth’: 9, ’Estimators’: 200}

MLP 3 {’Layers’: 3, ’Units’: 4}

CNN 4 {’Units’: 4, ’Layers’: 2,
’Kernel size’: 3}

Lasso 7 {’Alpha’: 0.001}
ElasticNet 7 {’Alpha’: 0.001, ’Ratio’: 0.7}

SVM 7 {’C’: 1, ’Kernel’: ’Linear’}
Ridge 7 {’Alpha’: 3}
Linear 7 -

Decision tree 4 {’Criterion’: ’Friedman MSE’,
’Depth’: 7, ’Splitter’: ’best’}

LGBM 5 {’Learning rate’: 0.003, ’Depth’: 7,
’Estimators’: 500, ’Regularization’: 0}

CatBoost 7 {’Depth’: 9, ’Iterations’: 500,
’Regularization’: 0, ’Learning rate’: 0.003}

Table 4: Best parameters obtained by the grid search.

Table 4 shows the best parameters found by grid search using the
same order as Table 3. Focusing on the optimal hyperparameters,
there seem to be some extreme scenarios in some cases. For example,
the best parameters of the LSTM were the highest number of units
and layers, and, for XGB, the smallest depth and the lowest number
of estimators. LGBM and CatBoost also obtained a greater number
of depths and estimators/iterations, which could be related to their
poor efficacy in producing overfitting.

Considering the window size, a value of 3 or 4 seems to be the
most common value in the top 5 models. Interestingly, all linear

models required the maximum window size. These facts lead us to
believe that using nonlinear models like neural networks [18] or
tree-based models requires fewer past events than linear models,
except LGBM and CatBoost.

4.3 Ensemble results
This section describes the results obtained by the ensemble process
detailed in the methodology. This section is structured as follows.
Section 4.3.1 shows the top ten combinations that improve the best
model obtained during the grid search. Section 4.3.2 represents the
error obtained in the best ensemble for each station and horizon.
Section 4.3.3 compares the results obtained by the best ensemble
for the same periods in 2021 and 2022 for each station. Section 4.3.4
analyzes the results obtained by the best model for each station
and season. Finally, Section 4.3.5 represents the weights learned by
CVOA for the best ensemble.

Models MAE MSE WAPE Time (m)
LSTM, XGB, CNN 0.658 0.747 0.180 1.80
LSTM, XGB, MLP,

CNN 0.658 0.747 0.180 20.66

LSTM, XGB, MLP,
LGBM 0.661 0.748 0.180 24.84

LSTM, XGB, MLP,
ElasticNet, LGBM 0.662 0.748 0.180 25.62

LSTM, XGB,
MLP 0.659 0.748 0.180 20.15

LSTM, XGB,
LGBM 0.660 0.748 0.180 5.98

LSTM, XGB, MLP,
CNN, Random Forest 0.659 0.749 0.180 27.69

LSTM, XGB 0.659 0.749 0.180 1.29
LSTM, XGB, MLP,

CNN, LGBM 0.661 0.749 0.181 25.35

LSTM, XGB, MLP,
Lasso, ElasticNet, LGBM 0.663 0.749 0.181 26.19

Table 5: Top ten combinations obtained from the ensemble
stage sorted by MSE.

4.3.1 Combination analysis. Table 5 shows the top ten combina-
tions ordered by MSE. The results show that the best ensemble
consists of a combination of LSTM, XGB, MLP, and CNN, with an
improvement over LSTM of 3.50% in MSE with an increase of 75
times the training time. Improvement in efficacy is acceptable, how-
ever, the MLP introduced too much increment of training time. For
this reason, we consider the best ensemble to be the combination
of LSTM, XGB, and CNN (marked in bold) that has the same im-
provement in efficacy (3.5%) over LSTM and the efficiency increases
almost 6 times.

From Table 5 we can analyze the most effective models. We
observed that the combination of LSTM and XGB seems to be
mandatory to obtain good results, since both models appear in all
ensembles. In fact, using only both models, the results show that
there is an improvement of 3.2% over LSTM in terms of MSE and
the training time increases just almost 4 times.
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Models like LGBM, MLP, Random Forest, Lasso, and ElasticNet
seem to be useful too, but introduce great training time increments.
Despite the fact that the LGBM model obtains poor results during
Section 3.4, it appears to slightly improve the efficacy. Furthermore,
models like Decision Tree, Ridge, SVM, and CatBoost seem to be
useless in combination with other models.

MAE MSE WAPE
1 2 3 1 2 3 1 2 3

CV 0.626 0.738 0.796 0.676 0.915 1.062 0.150 0.177 0.190
E 0.566 0.652 0.694 0.566 0.710 0.793 0.176 0.205 0.218
HL 0.494 0.596 0.619 0.444 0.593 0.638 0.145 0.177 0.186
HO 0.551 0.646 0.677 0.550 0.712 0.787 0.153 0.179 0.186
QS 0.607 0.716 0.754 0.632 0.836 0.917 0.159 0.188 0.198
S 0.590 0.690 0.711 0.648 0.811 0.859 0.156 0.184 0.192
V 0.567 0.689 0.719 0.584 0.822 0.902 0.156 0.191 0.200
VA 0.592 0.723 0.774 0.622 0.866 0.978 0.160 0.196 0.210

Table 6: MAE, MSE, and WAPE error analysis by station and
horizon.

4.3.2 Horizon analysis. Table 6 shows the error obtained for the
first, second, and third horizons independently for each station.

In general, the error increases as themodel forecast further ahead
in time, obtaining an increase of almost 33% between the first and
second horizons and 10% between the second and third horizons
on average.

There exist significant differences between the stations. The
station with a lower error corresponds to Herdade Lameiroes, while
the station with a higher error corresponds to Castro Verde.

4.3.3 Year analysis. To analyze the effect of drought and the possi-
ble drift of the distribution, a comparison between 2021 and 2022 is
presented. However, since the year 2022 only includes eight months,
only the first eight months of 2021 have been considered in this
comparison.

MAE MSE WAPE
2021 2022 2021 2022 2021 2022

CV 0.733 0.798 0.878 1.041 0.169 0.180
E 0.708 0.681 0.824 0.756 0.204 0.208
HL 0.599 0.648 0.611 0.658 0.163 0.184
HO 0.638 0.702 0.712 0.838 0.166 0.182
QS 0.709 0.785 0.814 0.994 0.173 0.198
S 0.691 0.763 0.798 0.983 0.172 0.190
V 0.702 0.746 0.847 0.939 0.180 0.195
VA 0.721 0.753 0.889 0.909 0.184 0.195

Table 7: MAE, MSE and WAPE comparison between the first
8 months of 2021 and 2022 for each state.

Table 7 shows the comparison by year for each station. The sta-
tions perform similarly as reported in the previous section, Herdade
Lameiroes being the best station and Castro Verde the worst station.
All stations considerably increased the error during 2022, which
may be caused by the effect of the distribution drift caused by the
drought. Estremoz is the only station that improves the results
during 2022, this may be explained because the drought does not
have a high impact on this station.

4.3.4 Season analysis. As shown in Section 3.1, the warm seasons
have different behaviours compared to the cold seasons. For that
reason, it is interesting to analyze the effect of seasons on the error
produced by the selected ensemble.

MSE WAPE
Fall Spring Summer Winter Fall Spring Summer Winter

CV 0.401 1.260 1.084 0.575 0.185 0.181 0.118 0.281
E 0.325 1.121 0.504 0.559 0.220 0.227 0.104 0.319
HL 0.206 0.979 0.436 0.383 0.172 0.194 0.090 0.276
HO 0.298 1.014 0.663 0.547 0.187 0.177 0.107 0.286
QS 0.418 1.176 0.654 0.686 0.206 0.188 0.105 0.303
S 0.268 1.284 0.605 0.612 0.175 0.188 0.106 0.292
V 0.276 1.305 0.646 0.547 0.185 0.198 0.108 0.296
VA 0.438 1.272 0.855 0.515 0.211 0.203 0.120 0.292

Table 8: MSE andWAPE error analysis by season and station.

Table 8 shows the error obtained for each season and station. As
observed, the major error occurs during the spring season, which
is the season in which the flowering process begins and the tem-
perature begins to increase. Interestingly, Castro Verde is not the
worst station during Spring but Vidigueira which increases consid-
erably the error compared with other seasons. The greater error
usually found in Castro Verde is explained because, in contrast to
other stations, the error remains considerably high during the sum-
mer, while the error in other stations decreases. Fall is the season
with the lowest error, in general, where Herdade Lameiroes has
the lowest error and Viana Alentejo has the greatest one. Winter
and summer are generally similar, and summer has more errors, in
general.

Figure 3: Weight matrix learned by the CVOA algorithm.

4.3.5 Weight analysis. Figure 3 represents the weights learned by
CVOA that assign the relevance of each model and horizon. The
weights are represented as a matrix in which the rows represent
the horizons and the columns represent the combined models. Note
that each row must sum 1 to produce the final prediction.

The matrix shows that LSTM and XGB are the most relevant
models in all horizons. In the first horizon, XGB seems to be the
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most relevant, while in the second horizon, LSTM seems to be more
relevant than XGB. In the third horizon, LSTM and XGB are equally
relevant. As observed, CNN seems to have little or no relevance,
slightly reducing the error with litter contribution.

5 CONCLUSIONS AND FUTUREWORKS
In this work, we propose a general comparison between different
models and the bioinspired ensemble of them applied to the pre-
diction of reference 𝐸𝑇0 forecasting using the CVOA algorithm.
The results showed that the ensemble of boosting (XGB) and deep
learning models (LSTM and CNN) are the best individually in terms
of efficacy with a remarkable improvement. Specifically, LSTM and
XGB were the most important models that reduced the impact of
bias for the 𝐸𝑇0 forecasting.

In future work, other forecasting strategies, such as a model for
each station, may be tested and compared between them, selecting
the best strategywhich adapts to the business requirements. Feature
engineering may be used, as the effectiveness of deep learning could
be related to its ability to extract features automatically.
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