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ABSTRACT

Learning to Rank is the task of learning a ranking function from a

set of query-documents pairs. Generally, documents within a query

are thousands but not all documents are informative for the learn-

ing phase. Different strategies were designed to select the most

informative documents from the training set. However, most of

them focused on reducing the size of the training set to speed up

the learning phase, sacrificing effectiveness. A first attempt in this

direction was achieved by Selective Gradient Boosting a learn-

ing algorithm that makes use of customisable sampling strategy

to train effective ranking models. In this work, we propose a new

sampling strategy called High_Low_Sampl for selecting negative

examples applicable to Selective Gradient Boosting, without

compromising model effectiveness. The proposed sampling strategy

allows Selective Gradient Boosting to compose a new training

set by selecting from the original one three document classes: the

positive examples, high-ranked negative examples and low-ranked

negative examples. The resulting dataset aims at minimizing the

mis-ranking risk, i.e., enhancing the discriminative power of the

learned model and maintaining generalisation to unseen instances.

We demonstrated through an extensive experimental analysis on

publicly available datasets, that the proposed selection algorithm is

able to make the most of the negative examples within the training

set and leads to models capable of obtaining statistically significant

improvements in terms of NDCG, compared to the state of the art.
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1 INTRODUCTION

Information Retrieval (IR) is the field of research focused on ex-

tracting useful and structured information from a huge clutter of

data. Ranking web pages, job positions, or ads in a useful manner

for a specific query, employee, or user is a well-known problem in

IR. In Machine Learning, the task of building a ranking function

is known as Learning to Rank (LtR). The family of LtR solutions

encompasses supervised learning algorithms focused on ordering

(ranking) objects based on their relevance to user needs.

The main application of LtR is Web Search. Given a user query,

the model returns a list of documents ordered by relevance to the

query. Through gold standard datasets, where query and documents

are represented as feature vectors paired with a relevance label, a

LtR algorithm learns to assign a score to each query-document in

order to optimise a ranking metric such as NDCG, ERR, etc. [14].

To reflect the real world, these gold datasets are made of thou-

sands of queries and millions of documents. The aim of these

datasets is to provide the learning algorithm with positive exam-

ples of different relevance grades (relevant to the user needs) and

negative examples (irrelevant to the user) to learn a model that

assigns document scores based on their relevance. However, not

all documents within the dataset are good examples, and so they

can compromise the learning phase and lead to poor model gener-

alisation. Furthermore, a large number of documents increases the

training time, which is particularly significant in contexts such as

online learning.

The current trend of research in Learning to Rank focuses on

improving models’ effectiveness by designing new objective func-

tions that better approximate discrete ranking metrics or on de-

signing more efficient models through cache-aware algorithms and

model pruning strategies. Less attention is given to understand-

ing which documents are useful in the learning phase. The use

of document selection strategies to improve the models’ effective-

ness has not been sufficiently explored. To fill this gap, we defined

a new negative-examples sampling strategy for Selective Gra-

dient Boosting (SelGB) called High_Low_Sampl. SelGB is a

supervised learning algorithm for the generation of decision tree

forests through gradient boosting, in order to solve the LtR task.

The algorithm focuses on selecting the most-informative negative

examples from the training set, and learning models from a small

subset of examples. The new sampling strategy we designed se-

lects a percentage of documents that are likely to be mis-ranked

by the model and a percentage of documents that the model ranks
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perfectly. The former is fundamental for the learning algorithm to

minimise the probability of mis-rank between positive and negative

examples. The latter prevents the model from overfitting difficult

examples and allows it to generalise over simple ones. Through an

extensive evaluation, we empirically proved that our new sampling

strategy allows SelGB to train models that significantly improve

NDCG over the ones generated with the sampling strategy defined

in [12] and the ones learned by the state-of-the-art 𝜆-MART algo-

rithm. Nevertheless, the proposed algorithm allows to reduce the

number of documents processed at each iteration of the learning

algorithm with respect to 𝜆-MART, with a consequent reduction of

the training time.

In summary, the contribution we brought to improve the state

of the art in LtR field can be summarised as follow:

• We designed High_Low_Sampl a new samples selection

strategy build on top of SelGB but easily adaptable to other

learning algorithms. This strategy allows SelGB to select

from the training set: i) all the positive examples. ii) the

most informative negative examples to highlight the differ-

ences between the positive examples. iii) the less informative

negative examples in order to avoid the model from overfit-

ting on difficult examples and achieving poor generalisation

on unseen examples. We performed an extensive experi-

mental evaluation to show that SelGB combined with our

High_Low_Sampl outperforms its previous version and the

reference 𝜆-MART algorithm.

• We prove how SelGB equipped with High_Low_Sampl ob-

tains a speed-up in the training process compared to 𝜆-
MART without compromising the model effectiveness.

• We show how the low-ranked negative examples selected

by High_Low_Sampl allow the models to achieve a higher

stability and a lower variance.

The rest of the paper is structured as follows: in Section 2 we dis-

cuss the related work. In Section 3 we introduce our new sampling

strategy designed on the body of Selective Gradient Boosting.

In section 4 we provide an extensive evaluation of Selective Gra-

dient Boosting equipped with our sampling strategy against state

of the art and draw the final considerations about this work in

Section 5.

2 RELATEDWORK

The present work is an improvement over the Selective Gradient

Boosting (SelGB) algorithm by Lucchese et al. [12]. SelGB is based

on the gradient-boosted algorithm 𝜆-MART [18] which can be con-

sidered the state-of-the-art in LtR algorithms for the re-ranking

stage of the IR pipeline. SelGB implements a dynamic sampling

strategy called Sel_Sampl that at each stage of the gradient boost-

ing aimed at dealing with highly unbalanced datasets. Only the

positive examples and the currently high-ranked negative ones are

considered for growing the next tree of the gradient-boosted forest.

The authors showed how this sampling strategy retrieves from a

very unbalanced set of documents (with a prevalence of negative

examples) only those examples that are useful for the training pro-

cess by bringing a more effective model and reducing training time

due to a reduced number of documents being processed. To prove

original
query

positive
examples

low-ranked negative
examples

new 
 query

high-ranked negative
examples

p1%

p2%

Figure 1: The figure shows how High_Low_Sampl composes

a new query by selecting from the original three document

classes: the positive examples (in green), the high-ranked

negative examples (in blue), and the low-ranked negative

examples (in red).

the performance of their learning algorithm and sampling strat-

egy, they published Istella-X [13] the largest public LtR dataset

ever released in terms of number of documents per query, with

99.83% negative examples. However, as we show in the experimen-

tal section, the algorithm does not bring significant improvements

in smaller datasets like MSLR-30K [16], or it may even perform

worse than 𝜆-MART as in Yahoo! Learning to Rank Challenge

Set 1 [3]. In this work, we discuss how an improved selection of

negative examples can provide improvement also on smaller and

less unbalanced datasets.

It is worth mentioning that SelGB already proved to be more

effective than related sampling strategies such as (Gradient One-

Sided Sampling) GOSS [9], or stochastic gradient boosting [6].

Other works previously proposed different document selection

strategies that statically pick a set of informative documents to

feed the training process [1, 7]. Moreover, (Surrender on Outliers

and Rank) SOUR [15], a sampling strategy that removes from the

training set those documents that harm the training process. The

presented strategy is instead more effective and dynamically se-

lected informative documents at every boosting round.

Finally, negative sampling is now a very common data augmen-

tation approach for improving the robustness [10], for dealing with

scarcity of negative examples [17], or for managing unlabelled in-

stances in a semi-supervised scenario [4], and many other tasks.

This is not the case of this work as we do not propose a data gener-

ation method but a novel strategy to select existing not-relevant

instances among the pool of available examples in the given dataset.

3 SAMPLING STRATEGY

Lucchese et al. [12] created Selective Gradient Boosting (SelGB)

a learning algorithm that exploits a negative-examples sampling

strategy called Sel_Sampl to train effective ensembles of decision

trees. In Algorithm 1 we report the pseudo-code of Selective Gra-

dient Boosting. The algorithm iterates over a fixed number of

iterations 𝑁 and after every 𝑛 iterations creates a new training

set D∗ through the sampling function (line 14). The new dataset

D∗ is used to train the model in subsequent 𝑛 iterations (from
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Algorithm 1 Selective Gradient Boosting

1: function Selective Gradient Boosting(D, 𝑁 , 𝑛, 𝑝1, 𝑝2)
2: Input

3: D : training dataset

4: 𝑁 . ensemble size

5: 𝑛 : # iterations between consecutive sampling steps

6: 𝑝1 : % high-ranked negative examples at each sampling

7: 𝑝2 : % low-ranked negative examples at each sampling

8: Output

9: E : trained ensemble

10: E ← ∅

11: D∗ ← D

12: for𝑚 = 1 to 𝑁 do

13: if (m mod n) = 0 then

14: D∗ ← High_Low_Sampl(D, E, 𝑝1, 𝑝2)

15: {𝜆𝑖 } ← 𝜆-gradients for each 𝒙𝑖 ∈ D∗

16: R∗ = { (𝒙𝑖 , 𝜆𝑖 ) }, for all 𝒙𝑖 occurring in D∗

17: 𝑡𝑚 ← fit a regression tree to R∗

18: E ← E ∪ 𝑡𝑚
19: return E

line 15 to 18). From the above, it can be deduced that the core of

SelGB is the sampling function. The main contribution of this work

is the new sampling function High_Low_Sampl(D, E, 𝑝1, 𝑝2) (line
14). This function creates a subset D∗ of the original training set

D to perform the next 𝑛 iteration of the learning algorithm. In

detail, as Sel_Sampl does, High_Low_Sampl creates D∗ by se-

lecting from D all the positive examples D+ and a subset of the

negative examples D− . The main difference with Sel_Sampl is

the way the negative examples are selected from D− . For ev-

ery query 𝑞, Sel_Sampl selects from D− the 𝑝% · |D− | examples

with the highest score estimated by the current model E. Instead

High_Low_Sampl selects the 𝑝1% · |D
− | examples with the highest

score and the 𝑝2% · |D− | examples with the lowest score. Also in

this case the scores are estimated by the current model E. Trivially,

if 𝑝1 = 𝑝 and 𝑝2 = 0% the two strategy coincide. The final cardinal-

ity of the subset D∗ is |D∗| = |D+| + (𝑝1 + 𝑝2)% · |D− |. The newly

created training set D∗ is used to perform the next 𝑛 iterations

of the learning algorithm, and then a new sampling is performed.

Figure 1 graphically depicts how High_Low_Sampl creates the

new queries of the datasets.

Sel_Sampl selects the high-ranked negative examples to enhance

the discrimination between relevant and irrelevant documents and

consequently minimise the mis-ranking risk. Nevertheless avoiding

the model to see the low-ranked negative examples during training

can lead to overfitting on the most-informative negative examples.

In High_Low_Sampl we extended this idea by introducing negative

examples with low scores to balance the attention of the model and

prevent it to focus only on high-ranked examples.

The pseudo-code in Algorithm 1 is designed to work on GBDTs

but can be easily generalised to handle other learning algorithms.

Therefore, any learning algorithm that processes instances iter-

atively during the training phase can be applied (e.g. boosting

iteration in GBDTs and epoch in NNs).

Table 1: Datasets properties.

Istella-X MSLR-30K Yahoo!

#features 220 136 519

#queries 10,000 31,531 29,921

avg. query length 2,679.14 119.60 23.72

#documents 26,791,447 3,771,125 709,877

%negative examples 99.8% 51.5% 26.1%

4 EXPERIMENTAL SETUP

In this section, we presented the datasets used for the evaluation.We

introduced the state of the art and the other competitors and how

we performed the hyperparameter tuning. All models were trained

through the LightGBM open source library [8]. We used RankEval

analysis framework [11] to measure the statistical significance of

the improvement brought by High_Low_Sampl to SelGB with

respect to the others through a Fisher’s randomisation test [5] with

a one-sided p-value (p = 0.01).

4.1 Datasets

We performed our experiments on three publicly available datasets:

Istella-X [13], MSLR Web30K Fold 1 [16] and Yahoo! Learn-

ing to Rank Challenge Set 1 [3], summarised in Table 1. For

each dataset, documents are labelled with graded relevance ranging

from 0 to 4, where 0 refers to negative examples and relevance

greater than 1 refers to positive examples. All datasets have a differ-

ent percentage of negative examples: Istella-X with 99.8% out of

26,791,447, MSLR-30K with 51.5% out of 3,771,125 and Yahoo! with

26.1% out of 709,877. The datasets come with a predefined training

(60%), validation (20%) and test (20%) split used to perform learning,

hyperparameter tuning/model selection and comparisons.

4.2 Models

As a baseline, we use the LightGBM [8] software implementation

of LambdaMART, to which we refer as 𝜆-MART [18]. For sake of

simplicity, from hereinafter, we will refer to the original algorithm

proposed in [12] as SelGB𝑆 , and to Selective Gradient Boost-

ing equipped with our sampling strategy High_Low_Sampl as

SelGB𝐻𝐿 . Both SelGB𝑆 and SelGB𝐻𝐿 are implemented on top

of LightGBM. For all the learning strategies we kept the default

gradient normalisation applied by LightGBM library. Gradient nor-

malisation has an important impact on model performance. This

explains why the performances in this work are higher than those

reported in [12].

Hyperparameters tuning follows previousworks [2, 12]: max_bin

is 255, 𝜎 is 1, min_sum_hessian_in_leaf is 0, and lambdamart_norm

is set to true. For Istella-X, Yahoo!, and MSLR-30K respectively:

learning_rate: 0.05, 0.02, and 0.02, num_leaves: 64, 200, and 400, and

min_data_in_leaf: 20, 50, and 50. Each model is trained up to 1,000

trees with early stopping criteria based on the model performance

on the validation set. The hyperparameter 𝑛 of both SelGB𝑆 and

SelGB𝐻𝐿 is set to 1. After hyperparameter tuning, we chose the

best models through model selection on the validation sets.
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Figure 2: Performance of SelGB𝑆 on MSLR-30K validation set,

by varying hyperparameter 𝑝.

4.3 Evaluation

For each dataset, we performed hypertuning on the parameter 𝑝 of

SelGB𝑆 . In Figure 2 we evaluated the effectiveness of SelGB𝑆 on

MSLR-30K validation set, by varying the parameter 𝑝 . Performances

are evaluated in terms of NDCG@10. For the sake of completeness,

in Figure 2 we also added the baseline 𝜆-MART.

As can be seen from Figure 2, the performances of SelGB𝑆 de-

grade as 𝑝 decreases (i.e. as the number of removed negative ex-

amples increases). Thus, SelGB𝑆 is not able to improve the per-

formance in terms of NDCG@10 compared to the baseline on the

MSLR-30K dataset. We observed the same behaviour on Yahoo!.

Instead, the performances on Istella-X are in line with those re-

ported in the original work [12].

As concern hyperparameters 𝑝1 and 𝑝2 of SelGB𝐻𝐿 , in order

to avoid a quadratic grid search, we select the best three 𝑝 values

from SelGB𝑆 hypertuning. The 𝑝1 values are: 20%, 30% and 40% for

MSLR-30K and Yahoo! and 0.25%, 0.5% and 1.0% as 𝑝1 for Istella-X.
Then we tuned the value of 𝑝2 for each value of 𝑝1. In Figure 3 we

drew the performance of SelGB𝐻𝐿 on MSLR-30K, with 𝑝1 = 20%

(the best value for 𝑝1 on MSLR-30K) and by varying 𝑝2.
Also in this case we added the baseline. For clarity, Figure 3

shows only the models that obtain NDCG@10 higher than the

baseline on the validation set.

In Table 2 we summarised for each dataset, the performance

obtained by the best models trained with each learning algorithm.

The models were selected through model selection based on the

performance obtained on the validation set. Model performances

are in terms of NDCG@10 evaluated on the test set.

SelGB𝐻𝐿 with 𝑝1 = 20% and 𝑝2 = 40%, is the best model trained

with our new samples selection strategy, and it achieves a statis-

tically significant improvement with respect to both the baseline

and SelGB𝑆 . Training with SelGB𝐻𝐿 allows to have more effective

models also at the beginning of the learning phase. This phenome-

non is particularly evident in Figure 3, where the performance of

the models is drawn incrementally.

We observed similar behaviour on Yahoo!, where SelGB𝐻𝐿 is

able to achieve statistically significant improvement with different

200 400 600 800 1000
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Figure 3: Performance of SelGB𝐻𝐿 on MSLR-30K validation

set, with 𝑝1 = 20% and by varying hyperparameter 𝑝2.

Table 2: Comparison in terms of NDCG@10 between

SelGB𝐻𝐿 against the state of the art. Statistically significant

differences w.r.t. SelGB𝐻𝐿 according to Fisher’s randomisa-

tion test [5], with a one-sided p-value and p = 0.01, aremarked

with ∗.

Algorithm
#Trees

150 350 550 Full

MSLR-30K

𝜆-MART 0.5038* 0.5186* 0.5231* 0.5246*

SelGB𝑆 , 𝑝 = 40% 0.5089 0.5197 0.5231* 0.5262*

SelGB𝐻𝐿 , 𝑝1 = 20%, 𝑝2 = 40% 0.5098 0.5209 0.5259 0.5297

Yahoo!

𝜆-MART 0.7804* 0.7889 0.7929 0.7946*

SelGB𝑆 , 𝑝 = 30% 0.7819 0.7892 0.7915* 0.7937*

SelGB𝐻𝐿 , 𝑝1 = 40% 𝑝2 = 30% 0.7829 0.7896 0.7925 0.7958

Istella-X

𝜆-MART 0.7501* 0.7664* 0.7722 0.7723*

SelGB𝑆 , 𝑝 = 1% 0.7732 0.7858 N/D 0.7865

SelGB𝐻𝐿 , 𝑝1 = 1% 𝑝2 = 2% 0.7715 0.7839 N/D 0.7847

ensemble sizes over both 𝜆-MART and SelGB𝑆 . On the contrary,

on Istella-X we observed a different trend. Both SelGB𝐻𝐿 and

SelGB𝑆 achieve statistically significant improvement in effective-

ness with respect to 𝜆-MART, but there is no statistical evidence

that SelGB𝑆 is better than SelGB𝐻𝐿 and vice versa.

4.4 Training Time

In this section, we evaluated the models’ performance in terms of

efficiency. Since each algorithm trains a model on a different size of

the training set, we summarised in Table 3 both the training time

per tree (one tree for each boosting iteration) and the total training

time. All experiments are performed in a single thread on a machine

equipped with Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz and

operating system Ubuntu 20.04.4 LTS.
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Table 3: Algorithms efficiency in terms of training time. 𝑏𝑒𝑠𝑡
stands for the hyperparameters found through model selec-

tion with respect to models’ effectiveness.

Algorithm
Dataset

Istella-X MSLR-30K Yahoo!

training time per tree

𝜆-MART 13.2 sec 2.8 sec 1.8 sec

SelGB𝑆 , 𝑏𝑒𝑠𝑡 3.7 sec 2.2 sec 1.6 sec

SelGB𝐻𝐿 , 𝑏𝑒𝑠𝑡 3.9 sec 2.3 sec 1.6 sec

total training time

𝜆-MART 128.7 min 35.7 min 21.3 min

SelGB𝑆 , 𝑏𝑒𝑠𝑡 25.3 min 30.0 min 18.3 min

SelGB𝐻𝐿 , 𝑏𝑒𝑠𝑡 28.5 min 34.3 min 22.7 min

percentage of training set

𝜆-MART 100.0% 100.0% 100.0%

SelGB𝑆 , 𝑏𝑒𝑠𝑡 1.1% 58.4% 81.6%

SelGB𝐻𝐿 , 𝑏𝑒𝑠𝑡 3.1% 79.0% 91.2%

In Table 3 we refer as 𝑏𝑒𝑠𝑡 to the hyperparameters found through

model selection on the validation set with respect to models’ effec-

tiveness. The best hyperparameters are summarised in Table 2.

The asymptotic complexity of High_Low_Sampl and Sel_Sampl

is 𝑂 (𝑛 log𝑛) with 𝑛 the number of negative examples with the

query. In detail, the cost of the strategies lies in the cost of the

sorting algorithm used to rank the negative example to retrieve the

low-ranked and high-ranked documents. However, this cost can be

totally amortised since, at each iteration of the learning algorithm,

the algorithm itself orders the examples to evaluate the perfor-

mance of the model. Consequently, both High_Low_Sampl and

Sel_Sampl have no overhead on the training time. Moreover, due

to the lower number of documents being processed at training time,

with the same number of iterations, the cost of training SelGB𝑆 and

SelGB𝐻𝐿 is less than or equal to that of 𝜆-MART .

Finally, if we are more interested in efficiency at training time,

rather than improving model effectiveness, it is possible to apply a

more aggressive sampling (i.e. 𝑝2 = 3% or 10% as shown in Figure

3) and obtain similar performance to 𝜆-MART.

4.5 Query Analysis

In this last part of the experimental section, we analysed the impact

that low-ranked negative examples have on the model prediction

and so why High_Low_Sampl is preferable to Sel_Sampl. In partic-

ular, we wanted to highlight how ignoring the low-ranked negative

examples can harm the model’s effectiveness. We analysed this phe-

nomenon on models trained with both SelGB𝑆 and SelGB𝐻𝐿 and

we showed how the model trained with SelGB𝐻𝐿 is more stable

and effective due to the introduction of the low-ranked negative

examples.

To do so, we sampled a subset of queries fromMSLR-30K training

set and we observed how documents’ ranks vary after each tree in

both SelGB𝑆 and SelGB𝐻𝐿 . As hyperparameters, we used the best

values found through model selection, the same reported in Table

2. We set 𝑝 = 40% for Sel_Sampl and 𝑝1 = 20% and 𝑝2 = 40% for

High_Low_Sampl. In Figure 4 we show the result of this analysis

for one specific query (query ID: 1349), but we highlight that the

same behaviour was observed in all queries. Figure 4 shows with

a colour the label of the document ranked at the 𝑖-th position (on

the 𝑥 axis) after the 𝑡-th tree of the forest (on the 𝑦 axis). The green

colour stands for a relevant document with label > 0. For the sake of

simplicity, we sampled only queries where positive documents have

the same relevance label. The red colour stands for those documents

that are consistently scored low, i.e., those documents that occur

in the bottom 𝑝2 portion of the rank positions after each of the

1000 trees. We computed this set for SelGB𝐻𝐿 (on the right-hand

side) and we report their rank positions also for SelGB𝑆 (left-hand

side). We denote this set with D−∩
𝐻𝐿 . The light grey colour is used

for the remaining non-relevant documents. The width of each rank

position is proportional to the logarithmic discount factor of NDCG,

so as to highlight the top-ranked positions that contribute the most

to the quality of the ranking.

There are a number of interesting insights we can provide with

this fine-grained analysis (see Figure 4).

• i) the documents within the set D−∩
𝐻𝐿 are roughly the same

across boosting iterations. This might be expected from its

definition. In fact, after 1000 trees, D−∩
𝐻𝐿 always cover the

50% of the lowest 𝑝2 portion of the ranking. Computing the

same statistic on SelGB𝑆 leads to a poor 10%, and just 15%

at iteration 66.

• ii) the negative examples in D−∩
𝐻𝐿 have a very stable rank

in SelGB𝐻𝐿 (red squares, right-hand side), but the same

documents have a cluttered behaviour during the training

with SelGB𝑆 (red squares, left-hand side).

• iii) also positive examples not placed in the top-𝑘 position

(rightmost green traces) have a very stable behaviour in

SelGB𝐻𝐿 (right chart); this does not hold for SelGB𝑆 (left

chart), where their ranking varies significantly, tree after

tree.

• iv) in SelGB𝐻𝐿 , some positive examples require a few more

iterations to reach the top-𝑘 position of the list, but in the

end, they reach higher positions than in SelGB𝑆 . As a result,

equipping Selective Gradient Boosting with the pro-

posed sampling strategy High_Low_Sampl produces more

effective models.

All of the above confirms that the ranking provided by SelGB𝐻𝐿 is

of higher accuracy than SelGB𝑆 . Some of the reasons for this accu-

racy might be found in the stability provided by the lowest-ranked

document. The set of lowest-ranked documents provides the model

with interesting information about the training process that trans-

lated into higher stability, reduced variance, and the opportunity

to better refine the predicted document scores.

5 CONCLUSION

We developed a new negative-examples selection strategy called

High_Low_Sampl for Selective Gradient Boosting. We have

shown how the selected documents can learn more effective models

in terms of NDCG. Through extensive experiments, we empirically

proved the proposed strategy has a statistically significant increase

in performance compared to the state of the art. Moreover, we have

demonstrated that the proposed strategy improves at the same time

both the effectiveness of the trained models and the efficiency of the
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Figure 4: Document rankings (𝑥 axis) at each boosting iteration (𝑦 axis) for both SelGB𝑆 (left) and SelGB𝐻𝐿 (right) for query

1349 sampled from MSLR-30K training set. The rank position widths are proportional to the logarithmic discount factor of

NDCG. In green colour are query documents with relevance > 0. In red colour are documents consistently scored low by

High_Low_Sampl in 1000 boosting iterations. In light grey colour are the remaining non-relevant documents.

training phase. Finally, we have shown High_Low_Sampl retrieves

useful information from the training set that enriches the learning

process and brings tomodels with higher stability and less variance.
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