
Comparing Modern Build Automation Tools

for an Insurance Company

A. Koschel, K.C. Tran, A. Grunewald,
M. Lange, A. Pakosch

Hochschule Hannover, Univ. of Applied Sciences and Arts
Hannover

Germany email: akoschel@acm.org
I. Astrova

Tallinn University of Technology
Tallinn
Estonia

email: irina@cs.ioc.ee

June 13, 2023

Abstract

In this paper we describe the selection of a modern build automation
tool for an industry research partner of ours, namely an insurance com-
pany. Build automation has become increasingly important over the years.
Today, build automation became one of the central concepts in topics such
as cloud native development based on microservices and DevOps. Since
more and more products for build automation have entered the market
and existing tools have changed their functional scope, there is nowadays
a large number of tools on the market that differ greatly in their func-
tional scope. Based on requirements from our partner company, a build
server analysis was conducted. This paper presents our analysis require-
ments, a detailed look at one of the examined tools and a summarizes our
comparison of all three tools from our final comparison round.

Keywords: build automation, build server, DevOps, tool evaluation, CI/CD

1

1 Introduction

Over time software became increasingly
more complex and distributed. Pro-
portionally, it became more and more
difficult for developers to compile, link,
package and test software projects with
their dependencies manually. Especially
with the rise of cloud native develop-
ment using microservices (cf. CNCF:
https://www.cncf.io/) and the large num-
ber of involved artifacts, build automa-
tion became nearly a ’must have’.

For this reason, build automation
tools like Make, Ant, Maven, and Gra-
dle have emerged. Based on this, build
servers have been developed. A build
server is a system that checks out the
current project status from a version
control system (VCS) at certain times
or events and then builds the project
using a build automation tool described
above.

If the build server responds to each
check-in to the VCS, it is called Con-
tinuous Integration (CI). Build servers
usually perform other tasks than just
building the software, such as code anal-
ysis or automated testing to detect ex-
ecution or quality issues early and en-
sure the stability of the software. Some
build servers can even publish the built
software. A distinction is made be-
tween publishing in a staging environ-
ment (Continuous Delivery (CD)) and
publishing in a productive environment
(Continuous Deployment (CD)) [1].

With the emergence of topics such
as microservices and DevOps, build au-
tomation and in particular CI/CD is
experiencing a new upswing. Small de-
ployment units that are constantly built,
tested, integrated and deployed, help
significantly to enable continuous re-
leases of – often more stable – software.
As a result, a large number of build
servers are currently available, which
differ widely in their functional scope
[1].

This article is based on a coopera-

tion with a research partner from the
insurance industry. While they oper-
ate successfully a medium scale service-
oriented architecture (SOA), as well as
mainframe and SAP applications, for
newer demands – such as intelligent in-
surance risk predictions, and sponta-
neous insurances – they aim at microser-
vices based solutions. In previous work
[18] we had a look at microservices for
such purposes. We also aim at work-
ing towards a ’Microservice Reference
Architecture for Insurance Companies
(RaMicsV)’ jointly with our insurance
industry partners [19], which gives an
overall context for our work here.

However, especially with microser-
vices a strong demand for a modern
build system with good CI/CD sup-
port arrises. (Also) for that purpose
the research partner is currently mod-
ernizing its build system, but is con-
fronted with the large variety of tools.
As part of our project work, a compar-
ison of modern build servers was con-
ducted. The results of this compari-
son, with – due to space limitations –
an in depth look at (only) one evalu-
ated build server, are the main contri-
butions of this article (see [20] for a
second in depth build tool evaluation
of ours, which of course builds on the
same evaluation process and uses the
same evaluation criteria as here in this
article).

The remainder of this article is or-
ganized as follows: Section 2 briefly
looks at related work. Next Section 3
discusses our approach and shows how
we have selected and compared differ-
ent build server solutions. Section 4
evaluates in depth one particular build
server, namely Travis CI, using the cri-
teria from Section 3. Section 5 explic-
itly compares two evaluated build servers,
and Section 6 gives a conclusion and
some outlook to future work.

2

2 Related work

In this section we will have a brief look
at some work related to ours, thus in
particular at some general overview but
also at particular tool evaluations for
CI/CD.

Meyer gives in [21] an overview on
CI and its tools’, which is helpful for a
general look at the topic. More strate-
gically oriented, Jin and Servant dis-
cuss in [22] strategies to improve CI.

A systematic overview on continu-
ous integration, delivery and deploy-
ment, which includes approaches, tools,
challenges, and practices is shown by
Shahin, Babar, and Zhu in [23]. Singh,
Gaba, M. and B. Kaur provide a cloud
platform oriented comparison of differ-
ent CI/CD tools in [24]. Probably clos-
est to our work, although from 2015, is
[25] by Rai et al. They look at Jenkins
with a comparative scrutiny of various
software integration tools.

However, none of the articles fol-
lows the particular evaluation steps and
criteria as they were emphasized by our
partner company, which is a good ex-
ample for (at least the German) insur-
ance business. This, thus, is the ma-
jor contribution of our work here, al-
though might be generalizable and be
of value for at least some other insur-
ance companies as well.

3 Comparison – Our Ap-
proach

In order to find suitable solutions for
the partner to modernize its build sys-
tem, our comparison approach is di-
vided into five steps. They are explained
below in chronological order.

Step 1: Restricting the Subjects
for Comparison After a training phase
we have created a list of six build servers
with a rough overview of each one. Af-
terwards we presented the list to the

partner and in several discussions we
reduced the number of subjects to three.

Jenkins [2,3,4,5], which is currently
used by the partner, Travis CI [7,8,9,
10,11,12,13], and GitLab CI [14,15,16,
17] were selected for the comparison.
Due to space limitations in this arti-
cle we will only present our in depth
evaluation results for Travis CI. Our
in depth GitLab CI evaluation is pre-
sented in [20] and the in depth evalua-
tion of Jenkins is presented [26].

Step 2: Analysis of the Research
Subjects After the build servers were
identified, we assigned a project partic-
ipant to each tool to take a closer look.

Step 3: Development of Compari-
son Criteria After each project par-
ticipant has become an expert with a
specific build server, we worked out a
number of possible criteria to compare
the products. Together with the part-
ner, we discussed and prioritized the
criteria. We have identified the follow-
ing four categories of comparison crite-
ria by which the build servers are com-
pared and analyzed:

� Internals: In this category we roughly
look at the architecture of each
system and we check, how the
build process works internally.

� Pipelines: This category deals with
the topic of pipelines. It is ana-
lyzed how a developer can model
the build process in each tool, i.e.
how pipelines can be created. Fur-
thermore, the pipeline-relevant fea-
tures (e.g. an artifact store, im-
age store or caching in the pipeline)
of each tool are discussed in this
category.

� Additional Features: This cate-
gory deals with the features that
go beyond the functionality of a
build server. An example could

3

be a built-in Wiki or a ticketing
system.

� Platforms: This category analyzes
supported platforms on which the
build server can be run. We also
investigate whether different ver-
sions of the software are available
and how they differ.

� License and Pricing: The last cat-
egory of comparison deals with
the license and the costs associ-
ated with the operation of the
software.

Step 4: Development of a Refer-
ence Scenario After analyzing the
build servers according to the categories
mentioned above, we developed a ref-
erence scenario in cooperation with the
project partner. The scenario was cre-
ated based on the partner’s previous
considerations for modernizing the build
process. The result is a sequence of
tasks which have to be implemented by
the system using specific technologies.
Each system must be able to map the
following process to meet the partner’s
requirements:

1. Reacting to a commit on a git
server.

2. Building the project with Maven.

3. Testing the project with Maven.

4. Create a Docker image with the
executable jar file.

5. Push the created Docker image
to a Docker registry.

6. Initiate image deployment on a
Kubernetes cluster.

Step 6 is optional, because if the
image is in a Docker registry, the de-
ployment can be initiated manually with-
out much effort and the implementa-
tion of Continuous Deployment is not

necessary. Within this work the above
workflow was implemented with the ex-
amined build servers. A ’Hello World’
Spring Boot 2.0 web application served
as an example.

Step 5: Concluding Comparison
of the Analyzed Subjects Finally,
all project participants came together
and presented the results to each other.
A final comparison was made and a
recommendation for the partner was
worked out.

4 CI/CD Tool Evalua-
tion: Travis CI

Travis CI is a cloud-based CI/CD plat-
form that supports open source and
private projects hosted at GitHub. The
integration of GitHub and Travis CI is
easily carried out over GitHub Apps.
Travis CI can build and test code changes
automatically and also provide feedback
on whether the changes led to working
software [7]. Note: Travis CI formerly
offered two different platforms for open
source (https://travis-ci.org/) and pri-
vate projects (https://travis-ci.com/).
Nowadays, Travis CI recommends us-
ing the latter platform that now merges
both kinds of projects. Besides the
hosted platform, there is also the on-
premises Travis CI Enterprise platform
[8].

4.1 Internals

When running a build, either triggered
by a check-in to GitHub or manually
over the web-based user interface, Travis
CI clones the GitHub repository in ques-
tion into a newly created virtual en-
vironment. A series of tasks is then
executed to build and test the code.
The following list explains some of the
terms relevant to the build process in
Travis CI according to [7]:

4

� A phase is one step in a series
of sequential steps of a job. For
each programming language Travis
CI provides a set of default phases.
Some of these phases are optional,
depend on the success of another
phase or on the success of the
build as a whole. Two impor-
tant phases of a job are install for
installing required dependencies
and script where specified scripts
are run. Some other phases a job
can contain are listed below:

– before script or after script

– after success or after failure

– before deploy or after deploy

– deploy

� A job is an automated process
which clones the repository of con-
cern into a virtual environment
and carries out a series of phases.
Each job runs in a fresh virtual
machine or container and does not
share storage with other jobs (un-
less an external mechanism is used).

� A build is a group of jobs. All
jobs have to finish in order for a
build to finish.

� A stage is a group of jobs which
run in parallel. If multiple stages
are defined, the jobs in each stage
run in parallel, but one stage af-
ter another (sequentially). With
stages it is possible to make jobs
only run, if other jobs from all
previous stages have completed
successfully. A use case, that the
Travis CI documentation states,
is to ”run unit tests, deploy to
staging, run smoke tests and just
then deploy to production” [7].
In addition, it is possible to de-
fine conditional builds/stages/jobs
and perform a so-called matrix
expansion to get matrices of jobs.

The build process is executed by
the so-called Travis Worker. In-
ternally, Travis CI has many com-
ponents; the main components and
their interactions are depicted in
Figure 1, deduced from descrip-
tions in Travis CI’s GitHub repos-
itory. The build process works as
follows:

� First, the (Travis CI) worker gets
a bash script generated from the
provided .travis.yml file,

� spins up a compute instance (e.g.,
a VM, container etc.),

� uploads the bash script to the com-
pute instance and

� finally runs the script.

The build environment (either Linux,
macOS or Windows) can be defined
within the .travis.yml file. When the
hosted version of Travis CI is used, the
number of workers and the number of
jobs they can execute is managed trans-
parently by the platform. On-premises
Travis CI Enterprise shall scale to the
amount of workers as needed and de-
fines the amount of jobs to be executed
concurrently on a worker [9].

4.2 Pipelines

The aforementioned jobs are just Travis
CI’s denomination of pipelines [11]. The
terms from the previous section are a
selection of keywords used to outline
jobs declaratively in a .travis.yml. The
YAML file has to be placed in the root
folder of a project for Travis CI to work.
Besides describing the jobs it is also
possible to specify everything around
them, e.g. environment variables with
env or services like Docker with ser-
vices. As mentioned in section IV-A
it is possible to group jobs into stages,
e.g. stages that are named ”test” or
”deploy”, and define phases for each

5

Figure 1: The main Travis CI components deduced from [10].

6

job. A pipeline definition and the cor-
responding .travis.yml file vary in com-
plexity as the requirements demand.
Many examples for CI/CD pipelines can
be found in Travis CI’s user documen-
tation or blog as well as in articles from
other Travis CI users.

Next we use a .travis.yml file defin-
ing a simple pipeline for the reference
scenario in II-D. The file specifies ...

� the language the project has and
which version of the language the
project should be build with.

� services to use: In this case Docker.

� environment variables. Creden-
tials can be encrypted and added
to the file.

� the content to cache for this job:
In this case the local repository
of Maven that contains all the
project artifacts.

� commands to execute: mvn sure-
fire:test -B.

� what to do after build success:
Build a Docker image and push
it to Docker Hub.

� where to deploy: Deploy to the
Heroku platform.

The .travis.yml below shows how
to cache content and how to push to
an image store as pipeline relevant fea-
tures.

language:java

jdk:openjdk8

services:

- docker

env:

global:

- COMMIT=${TRAVIS_COMMIT::7}

- secure : [encrypted Docker user name]

- secure : [encrypted Docker password]

- secure : [encrypted Heroku API key]

cache :

directories :

- "$HOME/.m2/repository"

script :

- mvn surefire : test -B

after success :

- docker login -u $DOCKER_USER -p $DOCKER PASS

- export TAG= ’ if ["$TRAVIS_BRANCH" == "master"];

then echo " latest " ;

else echo $TRAVIS_BRANCH;

fi ’

- export IMAGE NAME=example-repo/vis-travis-demo

- docker build -t $IMAGE_NAME:$COMMIT .

- docker tag $IMAGE_NAME:$COMMIT $IMAGE_NAME: $TAG

- docker push $IMAGE_NAME

deploy :

provider : heroku

apikey : "$HEROKU_API_KEY"

app : exampleapp

In the above example is not shown,
that it is possible to push to an arti-
fact store. As with the image store
(Docker Hub in the example), Travis
CI does not provide an in-house solu-
tion, but allows to upload build arti-
facts to Amazon S3 at the end of a job
[7].

4.3 Additional Features

Travis CI is a platform for CI(/CD)
which itself does not offer many func-
tionalities going beyond its original pur-
pose. Nevertheless, it offers means to
integrate services from other providers
such as with the artifact or image stores
like in the previous section. To no-
tify someone of build results it is pos-
sible to send emails, but also send no-
tifications to e.g. Slack channels or
Campfire chat rooms or to webhooks
[7]. With webhooks it is possible to use
an app that allows Jira to get the build
results [12]. Other integrations exist
e.g. with SonarCloud to monitor the
quality of source code, BrowserStack
for interactive and automated testing
or Atom Feeds to get updates on builds.

Furthermore, there are several tools
to interact with Travis CI like com-
mand line tools or plugins for browsers.
Many of these integrations can be de-
fined in the .travis.yml file [7]. Fea-
tures that would facilitate a DevOps
workflow like a build-in wiki or ticket-
ing system are not part of Travis CI,
but since it is used with GitHub (En-
terprise), these and other features might
be found and utilized there.

4.4 Platforms

Travis CI is a ready-to-use Software as
a Service (SaaS) product, but there is
also Travis CI Enterprise, which can

7

be operated on-premises. The under-
lying operating system of the hosted
version is transparent to the users. On-
premises the common setup for Travis
CI Enterprise looks as follows: The Travis
CI Enterprise platform and at least one
Travis CI Enterprise worker run on phys-
ical machines or in virtual environments.
Dedicated hosts or hypervisors (e.g. VMWare,
OpenStack using KVM or EC2) should
run at least Ubuntu 16.04; in the best
case scenario Linux 3.16 is used and at
least 16 GB of RAM and 8 CPUs are
available [9].

4.5 License and Pricing

Travis CI’s code is available at GitHub
(open source) and usable under the MIT
license [13]. The platform is free to use
for open source projects, but for pri-
vate projects only the first 100 builds
are for free. It is possible to subscribe
to different private project plans or to
first start a free trial [8].

If certain customizations are wanted
or Travis CI Enterprise is considered,
the Travis CI team is to be contacted
for consultancy and pricing [8].

5 Evaluation Summary

With this concluding article, all three
selected build servers have been ana-
lyzed independently under the speci-
fied criteria from section 3. The present
article in particular added the in depth
analysis of Travis CI to our previous
work [20,26].

To tie up the analysis and to com-
pare the build servers, Figure 2 shows
our summarized results. At first glance
the internals of the build automations
tools look differently, but they all use a
similiar underlying master/worker ar-
chitecture. While GitLab and Travis
CI pipelines are defined declaratively
using YAML files, Jenkins pipelines are
defined declaratively or procedurally with

Figure 2: Comparison of Build Au-
tomation Tools.

Groovy via Jenkinsfiles. The procedu-
ral style gives Jenkins users more con-
trol over the internal flow of the pipeline,
but requires more expertise.

GitLab and Jenkins both support a
full DevOps workflow. Jenkins through
its plugin mechanism and GitLab through
its many built-in tools. Travis CI, on
the other hand, is a pure CI/CD tool,
that doesn’t offer many additional fea-
tures. But it integrates smoothly with
GitHub (Enterprise), which provides ad-
ditional functionality. Travis CI can be
compared to the GitLab CI component
in GitLab.

There is no official SaaS solution for
Jenkins. GitLab and Travis CI offer
such a solution. Each examined tool
can be run on premise. However, for
Travis CI you have to pay for it. All
tools offer versions that are available
under the MIT license [6]. While Jenk-
ins is completely open source and free
to use, this is only partially true for
GitLab and Travis CI.

6 Conclusion

Within the scope of this paper the mar-
ket for build servers was examined. In
cooperation with an industrial partner,
three representatives were selected and
a more in depth evaluation of them was
undertaken. The detailed evalutaion of
one of them and the overall brief eval-
uation results of all tools are presented
in this article.

8

Comparison criteria were developed
and grouped into categories. First the
tools were examined independently. Then
their similarities and differences were
identified. To summarize, there are many
tools that vary largely in their func-
tionality. It is difficult to make a state-
ment about which tool is the best, be-
cause different tools address different
needs. However, beside the technical
evaluation of the tools themselves, the
comparison criteria and our general com-
parison approach might well be of value
for others to undertake their own eval-
uation.

In [20] we presented the in depth
evaluation of GitLab and in [26] we
presented the in depth evaluation of
Jenkins. Here we compared both to
the Travis CI based solution in Sec-
tion 5.

For our industry partner we rec-
ommend, that the functionality of the
tools should be checked again against
more detailed requirements. Jenkins
as the currently used tool can meet all
requirements known to us, but has to
be equipped with a lot of plugins and
configurations in order to do so. Beside
GitLab and Jenkins, our partners also
wanted to look in depth at the Travis
CI build tool solution, which we pre-
sented here.

There is no clear winner in our com-
parison, since all tools have their pros
and cons. At the moment we slightly
favor GitLab however, because of it’s
DevOps workflow support, many use-
ful features, open source availability,
and it’s big community.

References

[1] P. M. Duvall, S. Matyas, and A.
Glover, Continuous Integration:
Improving Software Quality and
Reducing Risk. Pearson Educa-
tion, 2007.

[2] J. F. Smart, Jenkins: The Defini-
tive Guide - Continuous Integra-
tion for the Masses. Sebastopol:
O’Reilly Media, Inc., 2011.

[3] kohsuke. (2016) Use jenk-
ins. [Online]. Available:
https://wiki.jenkins.io/display/JENKINS/

[4] J. IO. Jenkins user documen-
tation. [Online]. Available:
https://jenkins.io/

[5] S. J. Bigelow. Jenkins-
unterstuetzt-eine-umfassende-
devopskultur. [Online]. Available:
https://www.computerweekly.com/de/tipp/Jenkins-
unterstuetzt-eine-umfassende-
DevOps-Kultur

[6] Massachusetts Institute of
Technology. The MIT Li-
cense. [Online]. Available:
https://github.com/jenkinsci/jenkins/blob/master/LICENSE.txt,

[7] Travis CI. (2019) Travis CI user
documentation. [Online]. Avail-
able: https://docs.travis-ci.com/

[8] T. CI. (2019) Travis CI - test
and deploy with confidence. [On-
line]. Available: https://travis-
ci.com/plans

[9] Travis CI. (2019) Travis CI en-
terprise - Travis CI. [Online].
Available: https://docs.travis-
ci.com/user/enterprise/

[10] T. CI. (2019) Free continu-
ous integration platform for
Github projects. [Online]. Avail-
able: https://github.com/travis-
ci/travis-ci

[11] ——. (2019) The Travis CI blog:
Setting up a CI/CD process on
Github with Travis CI. [Online].
Available: https://blog.travis-
ci.com/2019-05-30-setting-up-a-
ci-cd-process-on-github

9

[12] Atlassian. (2019) Travis
for Jira Jatlassian market-
place. [Online]. Available:
https://marketplace.atlassian.com/apps/1220191/travis-
for-jira

[13] T. CI. (2019) The Travis VI
blog: Travis CI joins the Idera
family. [Online]. Available:
https://blog.travis-ci.com/2019-
01-23-travis-ci-joins-idera-inc

[14] GitLab Inc. (2019) The first sin-
gle application for the entire de-
vops lifecycle. [Online]. Available:
https://about.gitlab.com/

[15] ——. (2019) Gitlab CI/CD doc-
umentation. [Online]. Available:
https://docs.gitlab.com/ee/ci/

[16] ——. (2019) Gitlab feature
overview. [Online]. Available:
https://about.gitlab.com/features/

[17] ——. (2019) Gitlab pric-
ing. [Online]. Available:
https://about.gitlab.com/pricing/

[18] C.v. Perbandt, M. Tyca, A.
Koschel, I. Astrova, “Develop-
ment Support for Intelligent Sys-
tems: Test, Evaluation, and Anal-
ysis of Microservices”, in: SAI
IntelliSys 2021. LNCS, vol 294.
Springer, 2021.

[19] A. Koschel, A. Hausotter, R.
Buchta, A. Grunewald, M. Lange,
P. Niemann, “Towards a Mi-
croservice Reference Architecture
for Insurance Companies”, in
IARIA SERVICE COMPUTA-
TION 2021, The 13th Intl. Conf.
on Advanced Service Computing,
Online, Thinkmind, 2021.

[20] A. Grunewald, M. Lange, K.C.
Tran, A. Koschel, and I. Astrova,
“A Case for Modern Build Au-
tomation for Intelligent Systems”,

SAI Intelligent Systems (Intel-
liSys) 2022, vol. 1, Springer LNNS
542, 2022.

[21] M. Meyer, “Continuous Integra-
tion and Its Tools”, in IEEE Soft-
ware, vol. 31, no. 3, pp. 14-16,
May-June 2014.

[22] X. Jin and F. Servant, “What
Helped, and what did not? An
Evaluation of the Strategies to
Improve Continuous Integration”,
2021 IEEE/ACM 43rd Interna-
tional Conference on Software En-
gineering (ICSE), 2021, pp. 213-
225.

[23] M. Shahin, M. Ali Babar and
L. Zhu, “Continuous Integration,
Delivery and Deployment: A Sys-
tematic Review on Approaches,
Tools, Challenges and Practices”,
in IEEE Access, vol. 5, pp. 3909-
3943, 2017.

[24] C. Singh, N. S. Gaba, M.
Kaur and B. Kaur, “Compari-
son of Different CI/CD Tools In-
tegrated with Cloud Platform”,
2019 9th International Conference
on Cloud Computing, Data Sci-
ence & Engineering (Confluence),
2019, pp. 7-12.

[25] P. Rai, Madhurima, S. Dhir, Mad-
hulika and A. Garg, “A prologue
of JENKINS with comparative
scrutiny of various software in-
tegration tools”, 2015 2nd Inter-
national Conference on Comput-
ing for Sustainable Global Devel-
opment (INDIACom), 2015, pp.
201-205.

[26] M. Lange, K.C. Tran, A.
Grunewald, A. Koschel, A.
Pakosch, and I. Astrova, “Mod-
ern Build Automation for an
Insurance Company Tool Selec-
tion”, in: Proc. CENTERIS 2022,
Elsevier Procedia CS, 2022.

10

