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ABSTRACT
Runtime Assertion Checking (RAC) is a lightweight formal method

that verifies formal code annotations, typically assertions, at run-

time. The main RAC challenge consists in generating code that

is both sound and efficient for checking expressive properties. In

particular, checking formal arithmetic properties usually requires

to use machine integer arithmetic to be efficient, but needs to rely

on an exact yet slower arithmetic library to be sound.

This paper formalizes an efficient RAC tool for arithmetic prop-

erties, which may include user-defined functions and predicates. Ef-

ficient code generation for these routines is based on specialization,

allowing to generate efficient functions using machine arithmetic

when possible, or slower functions relying on exact arithmetic, ac-

cording to the calling context. This formalization is implemented

in E-ACSL, a runtime assertion checker for C programs.
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1 INTRODUCTION
Runtime Assertion Checking (shortly, RAC) is a lightweight formal

method that verifies formal code annotations —typically, asser-

tions written in a formal behavioral specification language (shortly,

BISL)— at runtime, during concrete program executions [11]. As-

sociated to a testing technique (e.g., unit testing, fuzzing, etc), it is

a powerful way to detect safety and/or security bugs that would

remain unobservable by testing only. To do so, RAC tools usually

generate executable code (or bytecode) from formal annotations,

either directly during the compilation process, or indirectly by gen-

erating source code which is in turn compiled into executable code

(or bytecode) by a standard compiler. Even though RAC is about as
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old as the other formal methods, it has not been as extensively stud-

ied from a theoretical point of view [26]. For instance, the authors

of Spec#, a formal specification language for both RAC and deduc-

tive verification of C# programs write that their “run-time checker

is straightforward” without more details, but also indicate that its

“run-time overhead is prohibitive” [3]. Here is indeed one of the key

challenges for RAC: generating code that verifies the annotations at

runtime, both soundly, i.e. by reporting the correct validity verdicts,

and efficiently, i.e. by limiting the time and memory overheads.

The goal of this paper consists in formalizing the coremechanism

of E-ACSL [27], a RAC tool for C programs, based on Frama-C [5]

for generating monitor that translates arithmetic properties ex-

pressed in the E-ACSL specification language [12] to C code. We

prove that the generated code is sound (i.e. emits an alert as soon as

one annotation is invalid), transparent (i.e. preserves the functional

behavior of the program when all the annotations are valid) and

efficient. Translating such properties in that way is challenging,

because modern BISLs rely on mathematical arithmetic. Therefore,

naively translating a formal annotation /*@ assert x+1 == 0;*/
into a code assertion assert(x+1 == 0); is possibly unsound be-

cause the former is computed over the mathematical integers Z (as-
suming x is of any integer type), while the latter relies on bounded

machine integers (such as int), which may overflow. Soundness

thus requires to rely on an exact arithmetic library when gener-

ating the code, such as the GMP library
1
in C. In that case, the

translation is a block of 16 C statements that dynamically allocates

memory blocks, calls library functions, and deallocates memory

blocks consistently. Executing such a piece of code is very ineffi-

cient compared to computing a single machine arithmetic operation.

To reconcile both soundness and efficiency of the generated code,

we rely on a dedicated type system similar to the one presented

in [16] that allows the generator to use efficient machine integers

when possible and sound arithmetic integers otherwise. This paper

formalizes this code generation step for an arithmetic specification

language over a representative C-like programming language.

Our formal specification language also includes (possibly re-

cursive) user-defined logic functions and predicates. For better

efficiency, the generated code for logic functions and predicates is

specialized according to the call site, which may lead to generat-

ing several C routines from a logic routine. For instance, a logic

function from Z to Z called twice may be specialized into a C func-

tion from int to int called at the first call site, and into another C
function from mpz to mpz called at the second call site, mpz being
the type of GMP integers. While E-ACSL has documented support

for generating expressions in machine integers and GMP [16], the

support for logic functions is new.To sum up, this paper presents

1
https://gmplib.org/
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a formalization of a fast runtime assertion checker for prop-
erties over mathematical integers, which relies on function
specialization [2] to efficiently deal with logic functions and pred-

icate calls. It also proves the correctness of the translation.
Related Work. Y. Cheon [10] was the first to formally study RAC,

in the context of JML [17], a BISL for Java. He did not focus his

work on integer arithmetic since, at that time, the JML’s arith-
metic was exactly the Java’s machine arithmetic: the translation

function for arithmetic was the identity function. However, we

introduce a notion of macro, which is close to his notion of con-

text used for dealing with undefined constructs such as 1/0. Later,

H. Lehner [18] formalized in the Coq proof assistant [7] a large

subset of the JML’s semantics. He also formalized a RAC algorithm

for the JML’s assignable clause, which is independent from, but

compatible with, our integer properties. More recently, J. C. Filliâtre

and C. Pascutto [13] proposedOrtac, a RAC tool forOCaml. It relies
on a similar mechanism than ours for generating efficient arith-

metic code, but without details nor formalization for that part. They

also do not deal with user-defined logic functions and predicates.

Several works focused on RAC of C programs. We already men-

tioned E-ACSL’s type system [16], which we rely on. This paper

does not study the code generation process, stating that “Gener-

ating code from the information computed by the type system is

quite straightforward”. While it is true for the scope of that article,

the code generation becomes an intricate problem when handling

user-defined logic functions and predicates, and avoiding a com-

binatorial explosion to prove the translation. G. Petiot et al [23]

were the first to formalize RAC for an arithmetic language like

ours. However, they did not study how to generate efficient ma-

chine arithmetic when possible and did not deal with user-defined

logic functions and predicates. D. Ly et al [19] also studied formal

RAC, but focused on memory properties. In particular, they only

considered machine arithmetic. Our formalization is complemen-

tary to theirs, since many practical properties are a combination of

memory and arithmetic constructs.

A substantial part of this work relies on the GMP library. We use

it as a black box and only specify the needed functions. A large part

of this library, containing all the functions we use, has been formally

proved with Why3 [21]. We also rely on function specialization [2]

for generating efficient function calls. It is a compilation technique

often used in optimizing compilers, but which has never been used

for RAC as far as we know. This technique has been formalized

in Coq for a JIT compiler [4], while related techniques have been

studied by S. Blazy and P. Facon [9] for program specialization [20],

and by L. Andersen [1] for partial evaluation.

Sec. 2 introduces a running example, while Sec. 3 presents our in-

put programming and specification languages, as well as the output

language which the code is generated to. Sec. 4 details the formal

translation for the arithmetic part of the language, while Sec. 5

extends it to logic functions and predicates. Finally, Sec. 6 presents

the correctness properties that we prove about the translation, and

Sec. 7 presents a few implementation details, before concluding and

discussing future work in Sec. 8.

2 RUNNING EXAMPLE
This article presents a translation mechanism to generate correct

monitors for RAC of C programs. It takes as input aC programwith

1 /*@ logic integer mean (integer x, integer y) = (x + y) / 2; */

2

3 int mean_implem (int a, int b){

4 if (a < b) { return a + (b - a) / 2; }

5 else{ return b + (a - b) / 2; }

6 }

7 void main() (int a, int b){

8 /*@ assert mean_implem (5,7) == mean (5,7); */

9 /*@ assert mean_implem (16000 ,24000) == mean (10000 ,60000); */

10 } (a) An annotated C program.

1 int mean_1 (int x, int y) { return (x + y) / 2; }

2

3 int mean_2 (int x, int y) {

4 mpz x1, y1, res1 , res2 , two; int res;

5 mpz_init(x1); mpz_init(y1);

6 mpz_init(res1); mpz_init(res2); mpz_init(two);

7 mpz_set_int(x1, x); mpz_set_int(y1, y); mpz_set_int(two , 2);

8 mpz_add(res1 , x1, y1);

9 mpz_div(res2 , res1 , two);

10 res = mpz_get_int(res2);

11 mpz_clear(x1); mpz_clear(y1);

12 mpz_clear(res1); mpz_clear(res2); mpz_clear(two);

13 return res;

14 }

15

16 int mean_implem (int a, int b) {

17 if (a < b) { return a + (b - a) / 2; }

18 else { return b + (a - b) / 2; }

19 }

20 void main() (int a, int b) {

21 assert(mean_implem (5,7) == mean_1 (5,7));

22 assert(mean_implem (10000 , 60000) == mean_2 (10000 , 60000))

23 } (b) Its monitored counterpart.
Figure 1: An annotated C program and its translation.

formal annotations and generates a new C program that checks

the annotations at runtime. Fig. 1a presents such a program. The

annotations are enclosed in special comments starting with @. This
example contains both an implementation mean_implem, which
takes care of never overflowing, and a mathematical definition mean
of the mean function. We use runtime assertion to check whether

the implementation complies with the mathematical definition on

a pair of examples provided as assertions. Fig. 1b shows the C code

that our translation generates to monitor these assertions.

This example shows an important feature of the translation:

while the semantics of the annotations relies on Z, the set of (math-

ematical) integers, the semantics of C relies on machine integers,

which may overflow. This semantics is shared by all modern BISLs.

To interpret mathematical integers soundly, we use the GMP li-

brary that provides exact integers through the type mpz. This lets
us detect the invalid assertion during the second function call. This

code requires allocating (e.g. at lines 5 and 6), initializing (e.g. at

line 7), and deallocating (e.g. at line 11 and 12) the generated mpz
variables. Even though there is a single logic function in the input

program, we generate two different specializations: mean_1 when
the computation cannot overflow, and mean_2 when the computa-

tion must happen in the type mpz (as is the case in our example,

assuming a 16-bit architecture where the maximal value for an int
is 65535). More naive approaches can be considered, such as always

using type mpz or always inlining all function calls, but they are

not suitable in practice: the former is not efficient enough, while

the latter is unusable with recursive functions.

3 LANGUAGE DEFINITIONS
Formalizing a runtime assertion checker for the whole C program-

ming language would be too large for our study. We restrict it
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p ::= d∗ f ∗ annotated program

d ::= τc id program declaration

f ::= τc id(d∗){d∗ ; sc } program function

| /*@ logic κ id(δ ∗) = t logic function

| /*@ predicate id(δ ∗) = p predicate

sc ::= skip; empty statement

| id = e; assignment

| id = id(e∗); function call

| id(e∗); procedure call

| s s sequence

| if(e) s else s conditional

| while(e) s loop

| assert(e); program assertion

| /*@ assert p */ logic assertion

| return(e); return statement

e ::= zm machine integer

| id variable access

| e □ e □ ∈ {+; -; *; /}
| e

��e ��∈ {<; <=; >; >=; ==; !=}
τc ::= int | void program types

δ ::= τ id logic declaration

p ::= \true | \false truth values

| t ◁ t ◁ ∈ {<; ≤; >; ≥;

?

=;,}
| ! t negation

| p || p disjunction

| id(δ ∗) predicate call

t ::= z integer in Z
| id variable access

| t ⋄ t ⋄ ∈ {+;−;×; /}

| p ? t : t conditional term

| id(δ ∗) function call

κ ::= int | integer logic types

Figure 2: Syntax of mini-C (above) andmini-FSL (below).

to a smaller core language with arithmetic assertions. We denote

f : X ⇀ Y partial functions, and dom f the subset of X on which

f is defined. For x ∈ X , and y ∈ Y , f {x\y} is the partial function
that coincides with f at every point except in x , which is mapped

to y. The partial function defined nowhere is noted ⊥, while the

type for a list of elements of type A is denoted A∗
.

3.1 Syntax
Fig. 2 presents the syntax of our programming language, named

mini-C together with the syntax of our specification language,

named mini-FSL (for Formal Specification Language). The lan-

guages are mutually dependent. mini-C programs are sequences

of variable declarations followed by routine definitions, a routine

being amini-C function or procedure, or else amini-FSL logic func-
tion or predicate. The body of each (program) function contains a

sequence of statements, including standard control flow structures,

function calls with a particular case for procedures, which return no

values, and both program and logic assertions. The expressions are

usual but all of type int for simplicity. User-defined logic functions

and predicates respectively have a term and a predicate as body.

They may themselves contain (possibly recursive) function and

predicate calls. Importantly, terms are either of type int (machine

integer) or integer (mathematical integer), the former being a sub-

type of the latter. Logic arithmetic operators ⋄ are over integers.

The code generated by the runtime assertion checker may call

GMP functions. We extend the language mini-C to mini-GMP,
introduced in Fig. 3: it provides built-in calls to the GMP API. For

the sake of simplicity, we shorten the names of these functions,

in practice one should write them as in Fig. 1. The only built-in

function not self-explanatory is set_s: It assigns to a mpz variable

the value of an integer represented as a string (hence the type

char * in the syntax). It allows for assignments from a constant

integer that does not fit in int, without requiring to allocate a mpz.

3.2 Program Structure
From now on, we assume the input program to be well-formed.

Specifically, all variables are declared before being used, all func-

tions are defined before being called, and programs are well typed.

s ::= sc | sд statement extension

τ ::= τc | char ∗ | mpz type extension

sд ::= init(id) mpz allocation

| set_i(id, e) assignment from an int
| set_s(id, l ) assignment from

a string literal

| set_z(id, id) assignment from a mpz
| cl(id) mpz de-allocation
| op(id, id, id) op ∈ {add, sub, mul, div}
| id = cmp(id, id) mpz comparison

| id = get_int(id) mpz coercion

Figure 3: Syntax of the mini-GMP language.

We denote V the set of program variables, S the set of program

statements,L the set of logic binders (i.e. the logic variables serving

as parameters of user-defined logic functions and predicates), Z the

set of logical terms and B the set of predicates. We also denote T

the set of mini-GMP types and ty the function that gives the type

of amini-GMP expression. For the sake of simplicity, we model the

names of the program routines as program variables in V , and the

name of logic routines as binders in L. The definition of program

functions are recorded in a partial function F : V ⇀ V∗ × S,

associating to each variable, the list of variables corresponding to

its parameters, together with the statement corresponding to its

body. Similarly, P : V ⇀ V∗ × S models the program procedures,

F : L ⇀ L∗ × Z models the logic functions and P : L ⇀ L∗ × B

models the user-defined predicates.

3.3 Language Semantics
We consider a single framework to express the semantics of the

three languages mini-C, mini-FSL and mini-GMP. We denote mint

and Mint the minimal and the maximal integer representable in

type int. The set of values that an expression may evaluate to

is V = Int ⊎ Mpz ⊎ Uint ⊎ Umpz, with Int being the set of all

values of type int, Mpz an enumerable set representing memory

locations for values of type mpz, and Uτ is an enumerable set of

undefined values used to denote uninitialized variables of type

τ . We retrieve an integer from a value thanks to the functions

Û_ : Int → Z and M : Mpz ⇀ Z. The former is a static function

that transcribes the encoding of integers as Int values, while the
latter (calledmemory state) changes throughout the execution of the

program and represents the current contents of memory locations,

which are limited to containing mpz integers in our setting. For

logical annotations, we denote B = {0, 1} the set of truth values.

A (semantical) environment Ω is a pair of two partial functions

ΩV : V ⇀ V and ΩL : L⇀ Z. For the sake of simplicity, we treat

Ω as a single partial function and use the context to distinguish

ΩV from ΩL . The semantic is expressed by Ω,M ⊨ s ⇒ Ω′,M ′

and associates to each statement s in a semantical environment Ω
and a memory stateM, a new environment Ω′

and a new memory

state M ′
. Similarly, for an expression e (resp. a logical term t ,

predicate p), we denote Ω ⊨ e ⇒ v with v ∈ V (resp. Ω ⊨ t ⇒ z
with z ∈ Z, Ω ⊨ p ⇒ b with b ∈ B) its semantics. Fig. 4 presents the

semantic rules for program functions, procedures, logic functions

and predicates. The other rules are omitted because almost standard

and straightforward (yet provided in Appendix A for completeness).

For a mini-C function f , we use a distinguished variable resf for

transmitting the result from the callee to the caller. Fig. 5 presents

the rules for evaluating the GMP primitives of mini-GMP. This
semantics is compliant with the documentation of GMP.

The semantics is blocking [14, 15]: an incorrect program, or one

with invalid assertions has no semantics. It is also non-deterministic:

declared but unassigned variables may take any undefined value.

A satisfied assertion does not change the environment nor the



SAC ’23, March 27-April 2, 2023, Tallinn, Estonia Thibaut Benjamin and Julien Signoles

F(f ) = (x1, . . . , xn ;b) Ω ⊨ e1 ⇒ z1 ; . . . ; Ω ⊨ en ⇒ zn
⊥{x1\z1, . . . , xn\zn }, M ⊨ b ⇒ Ω′, M′ Ω′(resf ) = z

Ω, M ⊨ c = f (e1, . . . , en ) ⇒ Ω{c\z }, M′

P(p) = (x1, . . . , xn ;b)
Ω ⊨ e1 ⇒ z1 ; . . . ; Ω ⊨ en ⇒ zn ⊥{x1\z1, . . . , xn\zn }, M ⊨ b ⇒ Ω′, M′

Ω, M ⊨ p(e1, . . . , en ) ⇒ Ω, M′

Ω, M ⊨ e ⇒ z
Ω, M ⊨ return(e) ⇒ Ω{resf \z }, M

Ω ⊨ p ⇒ 1

Ω, M ⊨ /*@ assert p */ ⇒ Ω, M

F(f ) = (x1, . . . , xn ;b)
Ω ⊨ t1 ⇒ z1 ; . . . ; Ω ⊨ tn ⇒ zn ⊥{x1\z1, . . . , xn\zn } ⊨ b ⇒ z

Ω ⊨ f (t1, . . . , tn ) ⇒ z

P(p) = (x1, . . . , xn ;b)
Ω ⊨ t1 ⇒ z1 ; . . . ; Ω ⊨ tn ⇒ zn ⊥{x1\z1, . . . , xn\zn } ⊨ b ⇒ z

Ω ⊨ p(t1, . . . , tn ) ⇒ z

Figure 4: Rules for function calls inmini-C andmini-FSL

∀v ∈ V, Ω(v) , z ΩV (x ) ∈ Umpz
Ω, M ⊨ init(x );⇒ Ω{x\z }, M{z\0}

ΩV (x ) = a u ∈ Umpz

Ω, M ⊨ cl(x );⇒ Ω{x\∅Mpz }, M{a\u }

ΩV (x ) = a Ω, M ⊨ y ⇒ z
Ω, M ⊨ set_i(x, y);⇒ Ω, M{a\ Ûz }

ΩV (x ) = a M(ΩV (y)) = z ∈ Z

Ω, M ⊨ set_z(x, y);⇒ Ω, M{a\z }

ΩV (x ) = a parse(s) = z
Ω, M ⊨ set_s(x, s);⇒ Ω, M{a\z }

Ω, M ⊨ y ⇒ vy mint ≤ M(vy ) ≤ Mint

Ω, M ⊨ x = get_i(y);⇒ Ω{x\M(vy )int }, M

Ω, M ⊨ x ⇒ vx M(vx ) = z1 Ω, M ⊨ y ⇒ vy M(vy ) = z2

Ω, M ⊨ op(r, x, y);⇒ Ω, M{Ω(r )\z1 ⋄ z2 }

Ω, M ⊨ x ⇒ vx Ω, M ⊨ y ⇒ vy M(vx ) ▷◁ M(vy )
Ω, M ⊨ c = cmp(x, y);⇒ Ω{c\b }, M

b =


1 when ▷◁ is >

−1 when ▷◁ is <

0 when ▷◁ is =

Figure 5: Semantics for the GMP instructions

memory state. Hence, if an annotated program has a semantics, it

is the same than that of the corresponding non-annotated program.

There is no finite derivation tree for the semantics of a call to a non

terminating recursive function or predicate.

3.4 Static Analysis: Interval and Type Inference
As explained in Sec. 2, our translation relies on a static analysis

in order to decide when a generated expression can safely use

machine integer or must use exact GMP integers, of type mpz.
This analysis has already been formalized for an integer language

without functions and predicates [16] and formalizing it in presence

of functions and predicates is left to future work. In the presence

of recursive functions, it requires a fixpoint computation. Here, we

briefly explain informally its general principle: for each mini-FSL
term, this analysis computes an interval that over-approximates the

values it may range over, as well as a type inmini-C. Because it only
computes an over-approximation (the problem is undecidable in the

general case), it is a trade-off between precision and efficiency: the

more precise the analysis is, the more time it needs to be computed,

but the more efficient the generated program is. In this article, we

assume that this analysis has been soundly computed and provides

a “precise enough” result for our examples.

More formally, we assume an oracle I providing the interval

i ∈ I inferred by this analysis. Accessing this oracle requires a

typing environment, denoted ΓI : L ⇀ I , that maps logic binders

(here, function and predicate parameters) to intervals. Therefore,

the oracle I is a function of type Z→ (L⇀ I ) → I .We denote Θ
the operator, formalized in [16], that associates to any interval the

mini-GMP type inferred by the static analysis that can represent

this interval. We define T = Θ ◦ I: when translating a term t in an

environment Γ, it corresponds to themini-GMP type of the resulting

expression. We assume that the type inferred for a function call is

the same as the type inferred for the body of the function in the

environment associating to each argument its inferred interval.

Hypothesis 1 (Type Soundness). In any environment Ω, a term
t evaluates to a value z that fits into T(t).

Hypothesis 2 (Convergence). The typing converges: each func-

tion and predicate gets typed in finite time. In practice, that means

that it gets typed in finitely many environments ΓI

4 TRANSLATIONWITHOUT ROUTINES
We now present one of our key contributions: a formalization of

the translation from mini-C to mini-GMP for RAC. We split this

study into two steps: this section defines the translation for terms

and predicates, but ignores functions and user-defined predicates.

Then, Sec. 5 specifically deals with function and predicate calls. For

terms and predicates, the main challenge consists in accounting

for the result of the static analysis when generating int or mpz
expressions. For this purpose, we rely on a macro-based translation

scheme allowing us to factorize the generated code irrespectively

of the types, to prevent a combinatory explosion.

4.1 Translating Declarations
Given a mini-C program P , we denote JPK the mini-GMP program

generated by our runtime assertion checker. A program is essen-

tially a sequence of statements that are encapsulated in functions,

possibly preceded by variable declarations. Translating a function

just consists in translating its statements one after the other. How-

ever, when translating logic function and predicate calls into func-

tion calls in Sec. 5, we will need an environment of global definitions

Ψ : L × (L ⇀ I ) ⇀ V explained in Sec. 5.1. While introduced

right now, it remains unused for the time being. Furthermore, for

every function or statement f , our translation, in an environment

of global definitions Ψ, not only generates a chunk of code, denoted

ΨJf K, but also produces a new environment of global definitions,

denoted ΨJf K
env

, which is the list of new routines generated when

translating f , that we will only populate in Sec. 5. Since a usual pat-

tern consists in passing this environment to the translation of the

next statement, we denote ΨJf1K • Jf2K the code chunk Ψ′Jf2K with
Ψ′ = ΨJf1K

env
. We also define a function ΨJf K

glob
that denotes the

mini-C globals generated during the translation of f .
Fig. 6 formally defines the translation of mini-C programs and

functions (or procedures): the translation of a program preserves its

global variables, then inserts all the generated routines needed to

translate the functions and then the translation of all the functions

sequentially. The translation of a function is a function where all the

statements are translated sequentially, and the routines generated

by a function are the ones generated by each statement.

4.2 Translating Statements.
Translatingmini-C statements lets anything but logic assertions un-

changed. Therefore we only present how these are translated. The

translation requires an additional environment called environment

for bindings ΓV : L ⇀ V × I , which stores the correspondence

between a binder and the variable generated to represent it with the

interval inferred for this variable. For convenience we sometimes

write the components as follows: Γ(x) = (ΓV (x), ΓI (x)). We denote

Γ
ΨJpK the translation of a predicate p in the environments Γ,Ψ. For
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Jdecl; f1 ; f2 ; . . .K =
decl;

⊥Jf1K
glob

⊥Jf1K • Jf2K
glob

· · ·

⊥Jf1K
⊥Jf1K • Jf2K
· · ·

ΨJτ f (d){decl; s1, s2, . . . }K
env
=

ΨJs1K • . . . • JsnK
env

ΨJτ f (d){decl; s1, s2, . . . }K
glob
=

ΨJs1K
glob

ΨJs1K • Js2K
glob

· · ·

ΨJτ f (d){decl; s1, s2, . . . }K =
τ f (d){

decl;

ΨJs1K

ΨJs1K • Js2K
· · ·

}

Figure 6: Translation of Programs and Functions.

decls((τ , v)::vars)=τ v; decls(vars)
decls([])=skip;

inits((mpz, z)::vars)=init(z); inits(vars)
inits((int, z)::vars)=inits(vars)

inits([])=skip;

clears((mpz, z)::vars)=cl(z); clears(vars)
clears((int, z)::vars)=clears(vars)

clears([])=skip;

Γ
ΨJ/*@ assert p; */K =

{

decls
Γ
ΨJpK.

decl
;

inits
Γ
ΨJpK.

decl
;

Γ
ΨJpK.

code
;

assert(ΓΨJpK.res);
clears

Γ
ΨJpK.

decl
;

}

Figure 7: Translation of Logic Assertions.

simplicity, we decompose it into three parts:
Γ
ΨJpK.

decl
is the list of

fresh variables together with their C type, generated by the trans-

lation,
Γ
ΨJpK.res denotes the distinguished variable containing the

result, and
Γ
ΨJpK.

code
is a generated chunk of code. It is typically

a sequence of statements that uses the variables in
Γ
ΨJpK.

decl
and

assigns to the variable
Γ
ΨJpK.res the value 0 or 1 corresponding to

the truth value of predicate p. We recover the generated code
Γ
ΨJpK

from this data by handling all the declarations, initializations and

deallocations of the variables, as shown in Fig. 7.

The statement translation uses three helper functions decls,

inits and clears that respectively generate the declaration, initial-

ization and deallocation of a list of variables. Similarly to functions,

Γ
ΨJpK

env
and

Γ
ΨJpK

glob
respectively denote an environment of global

definitions associated to the translation of p and the list of routines

generated during the translation.

4.3 Macro Definitions
Our translation uses a set ofmacros, introduced in Fig. 8. It helps us

factor out some core mechanisms required to generate correct code

in the mini-GMP language, independently of the generated types

(either int or mpz). These macros are written in a self-explanatory

meta-language. In order to distinguish it from mini-C and mini-
GMP, all keywords of this meta-language are capitalized.

The macro int_assgn(v, e) (resp. mpz_assgn(v, e)) assigns the
expression e to the variable v of type int (resp. mpz), according
to the type of e . The macro cmp(c, e1, e2,v1,v2) assigns to c a non-
negative integer if e1 > e2, a non-positive one if e1 < e2 and 0
if they are equal. The variables v1 and v2 can freely be used for

storing intermediate results. The macro Z_assgn(τz ,v, z) assigns
to the variable v the value of the integer z, of type τz . When the

integer z is too large, we switch to a string representation and

use set_s. The macro ⋄_assgn((τc , c), e1, e2, r ,v1,v2) assigns to

the variable c the result of e1 ⋄ e2 represented in the type τc . The
variables r ,v1,v2 can freely be used during the intermediate steps.

Here, ⋄ ∈ {+,−,×, /} is amini-FSL operation, □ ∈ {+, -, *, /} is the
corresponding mini-C operation and op ∈ {add, sub, mul, div} is
the name of the corresponding mini-GMP function.

mpz_assgn(v, e) :=
MATCH ty(e) WITH :

CASE mpz :
set_z(v, e);

CASE int:
set_i(v, e);

int_assgn(v, e) :=
MATCH ty(e) WITH :

CASE int :
v = e;

CASE mpz :
v = get_i(e);

cmp(c, e1, e2, v1, v2) :=
MATCH ty(e1), ty(e2) WITH :

CASE int, int :

if (e1 < e2) c = -1;
else if(e1 > e2) c = 1;
else c = 0;

DEFAULT :
mpz_assgn(v1, e1)

mpz_assgn(v2, e2)

c = cmp(v1, v2);

Z_assgn(τz , v, z) :=
MATCH τz WITH :
CASE int :
v = z;

CASE mpz :
set_s(v, ”z”);

⋄_assgn((τ , c), e1, e2, r, v1, v2) :=
MATCH τ , ty(e1), ty(e2) WITH :
CASE int, int, int :
c = e1□e2;

DEFAULT :
mpz_assgn(v1, e1)

mpz_assgn(v2, e2)

MATCH τ WITH :
CASE int :

op(r, v1, v2);

int_assgn(c, r )
CASE mpz :

op(c, v1, v2);

Figure 8: Macro Definitions.

ΨJ\trueK.
decl
= {int, c̄ }

ΨJ\trueK.
code
= c̄ = 1;

ΨJ\trueK.res = c̄

ΨJ\trueK
env
= Ψ

ΨJ\falseK.
decl
= {int, c̄ }

ΨJ\falseK.
code
= c̄ = 0;

ΨJ\falseK.res = c̄

ΨJ\falseK
env
= Ψ

ΨJ!pK.
decl
= ΨJpK.

decl
∪ {(int, c̄)}

ΨJ!pK.
code
=

ΨJpK.
code

if(ΨJpK.res){ c̄ = 0; }

else { c̄ = 1; }

ΨJ!pK.res = c̄

ΨJ!pK
env
= ΨJpK

env

ΨJt1 ◁ t2K.
decl
=

ΨJt1K.
decl

∪ ΨJt2K.
decl

∪

{(int, c̄), (mpz, v1), (mpz, v2)}

ΨJt1 ◁ t2K.
code
=

ΨJt1K.
code

ΨJt1K • Jt2K
.code

cmp(c̄, ΨJt1K.res, ΨJt2K.res, v1, v2)

c̄ = c̄
��0;

ΨJt1 ◁ t2K.res = c̄

ΨJt1 ◁ t2K
env
= ΨJt1K • Jt2K

env

ΨJp1||p2K.
decl
=

ΨJp1K.
decl

∪ ΨJp1K.
decl

∪ (int, c̄)

ΨJp1||p2K.
code
=

ΨJp1K.
code

if(ΨJp1K.res){c̄ = 1}

else{

ΨJp2K.
code

c̄ = ΨJp2K.res;
}

ΨJp1||p2K.res = c̄

ΨJp1||p2K
env
= ΨJp1K • Jp2K

env

Figure 9: Predicate Translation.

4.4 Translating Predicates
Fig. 9 formally introduces the predicate translation, in which Γ is

omitted: it is only used when translating function and predicate

calls in Sec. 5. Here, it is just propagated to every sub-term and

sub-predicate. Letters with a bar (e.g. c̄) are used for denoting fresh

variables. Translating the value \true (resp. \false) just assigns 1

(resp. 0) to the result. Translating comparison operators relies on

the translation of arithmetic terms, detailed in the next paragraph,

and uses the macro comparison to compute the result c̄ . Here, ◁ is a
logic comparison operator and

�� its correspondingmini-C operator.

The inductive cases are trivial by translating each operand, and per-

forming the proper mini-C operation using the results inductively

computed, and stores the resulting value in c̄ . Since predicates are
evaluated to 0 or 1, their result always fits in an int. In absence of

routine call, the environment Ψ is never modified, yet Fig. 9 shows

how to propagate it in anticipation for Sec. 5.

4.5 Translating Terms
Translating terms is formally introduced in Fig. 10. A program vari-

able is translated into itself, while we look into the local environ-

ment Ω to translate a logic binder into its corresponding program
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ΨJvK.res = v

Γ
ΨJxK.res = ΓV (x )

ΨJzK.
decl
= (T(z, ΓI ), c̄)

ΨJzK.
code
= Z_assgn(T(z, ΓI ), c̄, z)

ΨJzK.res = c̄

Denote τ = T(t1 ⋄ t2, ΓI ) :

ΨJt1 ⋄ t2K.
decl
=

ΨJt1K.
decl

∪ ΨJt2K.
decl

∪

{(τ , c̄), (mpz, v̄1), (mpz, v̄2), (mpz, r̄ )}

ΨJt1 ⋄ t2K.
code
=

ΨJt1K.
code

ΨJt1K • Jt2K
.code

⋄_assgn((τ , c̄), Jt1K.res, Jt2K.res,
r̄, v̄1, v̄2)

ΨJt1 ⋄ t2K.res = c̄

ΨJt1 ⋄ t2K
env
= ΨJt1K • Jt2K

env

ΨJp?t1:t2K.
decl
=

ΨJpK.
decl

∪ ΨJt1K.
decl

∪ ΨJt2K.
decl

∪

{(T(p?t1:t2, ΓI ), c̄)}

ΨJp?t1:t2K.
code
=

ΨJpK.
code

if (ΨJpK.res) {

ΨJpK • Jt1K
.code

T(p?t1:t2, ΓI )_assgn(c̄, ΨJt1K.res)
} else {

ΨJpK • Jt1K • Jt2K
.code

T(p?t1:t2, ΓI )_assgn(c̄, ΨJt2K.res)
}

ΨJp?t1:t2K.res = c̄

ΨJp?t1:t2K
env
= ΨJpK • Jt1K • Jt2K

env

Figure 10: Term Translation.

variable. As explained in Section 5, this lookup necessarily succeeds.

Translating a binary operation requires to translate its operands

and to invoke the associated macro, while translating a conditional

requires to translate the condition and to produce a if statement

performing the test. Translating a constant stores it into a fresh

variable for consistency with the other cases, even if it fits into a

machine integer. The cases where the environment returned is Ψ
or the command generated is skip; are omitted.

5 TRANSLATION OF ROUTINE CALLS
5.1 Compilation Scheme
We previously introduced an environment Ψ without describing

it. It aims at reusing a function definition already generated when

possible. It is not only useful for avoiding the generation of spu-

rious functions, but also mandatory to handle recursive ones. Ψ
keeps a mapping from logic functions to their generated counter-

parts. Though, since our translation uses function specialization,

multiple counterparts are possible for a same logic function. For

instance, in Fig. 1, the functions mean_1 and mean_2 translate the
same logic function mean. The former is more efficient but may

overflow, thus it is only used when the monitor generator can en-

sure that no overflow is possible (like it is the case for the call at

line 24). To account for this, Ψ records the interval inferred by for

each argument of a logic function, i.e., the typing environment at

the call site. Therefore, denoting R = domF ∪ domP the set of

all binders corresponding to a logic routine, Ψ is a partial function

R × (L ⇀ I ) ⇀ V: given a binder denoting a logic function or

predicate and a typing environment, it returns a variable denoting

a corresponding specialized function, if it exists.

Function duplication. Only reusing a function when both calls

define the same typing environment is conservative, and may lead

to code duplication. For instance, in Fig. 1, if one added the as-

sertion mean_implem(15999, 25001)== mean(15999, 25001), a
new function mean_3 would be generated, since the inferred inter-

vals are singletons different from the intervals of the other calls.

However, mean_3 would be a mere copy of mean_2, which could

have been safely used. Avoiding such a code duplication is not easy

in the general case and this optimization is left for future work.

Γ
ΨLf M =

Γ
ΨJbK

glob

Γ
ΨLf M.

sign
{

Γ
ΨLf M.

body

}

Γ
ΨLf Menv = Γ

ΨJbK
env

{(f , Γ)\ΓΨLf M.name }

Γ
ΨLf M.

body
=

decls
Γ
Ψ̂

JbK.res ; initsΓ
Ψ̂

JbK.res
Γ
Ψ̂

JbK.
code

MATCH T(b, ΓI ) WITH:
CASE int:

clears
Γ
Ψ̂

JbK.res
return Γ

Ψ̂
JbK.res ;

CASE mpz:

set_z(ΓLf M.res, Γ
Ψ̂

JbK.res);

clears
Γ
Ψ̂

JbK.res
Γ
ΨLf M.

sign
=

MATCH T(b, ΓI ) WITH:
CASE int:

int Γ
ΨLf M.res (Θ(ΓI (v1)) ΓV (v1), . . . , Θ(ΓI (vn )) ΓV (vn ))

CASE mpz:

void Γ
ΨLf M.res (mpz ΓLf M.res, Θ(ΓI (v1)) ΓV (v1), . . . , Θ(ΓV (vn )) ΓV (vn ))

where (v1, . . . , vn ;b) = F(f ); Ψ̂ = Ψ{(f , Γ)\ΓΨLf M.name } and
Γ
ΨLf M.res are fresh names in V

Figure 11: Function Generation Scheme.

Recursive functions. mini-FSL includes recursive logic functions

and predicates. For a same recursive call site, we reuse the same

generated functions when possible, in order to avoid a huge number

of code duplication. Consider for instance a call to fac(100) with

fac defined as follows:

logic integer fac (integer n) = n <= 0 ? 1 : n * fac(n - 1);

With the presented approach, there are 101 calls to fac, all with
different intervals, thus 101 functions generated. We delegate to our

inference interval mechanism the task to widen the intervals when

necessary to avoid generating too many functions for recursive

calls, and assume that our oracle performs this task adequately. We

let its formal study to future work.

Generating procedures. If the result of a function call is too large

to fit into a machine integer, we use the type mpz to represent its
result. In practice, this GMP type is equivalent to a pointer: it is not

allowed by the C standard to allocate the corresponding memory

block inside the function and return the corresponding address.

Instead, we generate a procedure of type void that takes an extra

mpz parameter for storing the result. At call site, a fresh mpz variable
is created and provided as argument for this parameter.

5.2 Function Generation
Translating a function call may require to generate a new mini-
GMP function from a logic one. Several functions may be generated

from a single logic function, depending on the calling context. For

this reason, we define the translation of a function call in two

environments: given a binder f ∈ dom (F(f )), we define
Γ
ΨLf M

to be the function corresponding to f , in the environments Γ,Ψ.
If (f , Γ) < dom (Ψ), we generate a function as shown in Fig. 11.

We rely on sub-primitives:
Γ
ΨLf M.sign giving the signature of the

function and
Γ
ΨLf M.

body
its body. Additionally

Γ
ΨLf Menv is the envi-

ronment of global definitions after the function generation, and

Γ
ΨLf M.name the name of the generated function. If (f , Γ) ∈ dom (Ψ),

we define
Γ
ΨLf M.name = Ψ(f , Γ) and Γ

ΨLf Menv = Ψ.

5.3 Translating Function Calls
Translating function calls consists in translating all the arguments,

then generating a corresponding function and calling this function

on the translation of the arguments, as presented in Fig. 12. The

mechanism that avoids function duplication is managed by Ψ and
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Γ
ΨJf (t1, . . . , tn )K.decl =

{T(f (t1, . . . , tn ), ΓI ), c̄ } ∪
Γ
ΨJt1K.

decl
∪ . . . ∪ Γ

ΨJt1K • . . . • JtnK.
decl

Γ
ΨJf (t1, . . . , tn )K.code =

Γ
ΨJt1K.

code
;

Γ
ΨJt1K • Jt2K

.code
;

· · ·
Γ
ΨJt1K • . . . • JtnK.

code

MATCH T(f (t1, . . . , tn ), ΓI ) WITH:
CASE int:

c̄ =Γ̂
Ψ̂

Lf M.name(
Γ
ΨJt1K.res, . . . , ΓΨJt1K • . . . • JtnK.res);

CASE mpz:
Γ̂
Ψ̂

Lf M.name(c̄, ΓΨJt1K.res, . . . , ΓΨJt1K • . . . • JtnK.res);

Γ
ΨJf (t1, . . . , tn )K

glob
=

Γ
ΨJt1K

glob
;

Γ
ΨJt1K • Jt2K

glob
;

· · ·
Γ
ΨJt1K • . . . • JtnK

glob
;

Γ̂
Ψ̂

Lf M

Γ
ΨJf (t1, . . . , tn )K.res = c̄

Γ
ΨJf (t1, . . . , tn )K

env
=Γ̂
Ψ̂

Lf Menv

where Ψ̂ = Γ
ΨJt1K • . . . • JtnK

env

and forF(f ) = x1, . . . , xn ; _,

Γ̂ = ⊥{x1\(v̄1, I(ΓI, t1)), . . . , xn\(v̄nI(ΓI, tn))}

Figure 12: Translating Function Call.

the function generation procedure. Let us explain a few cases. First,

the definition of
Γ
ΨLf M.sign in Fig. 11 makes explicit that, when the

result type of a function is mpz, we generate a procedure call and
pass the variable that represents the result as an argument. Symmet-

rically, an extra argument is added when calling such a function in

Fig. 12. Second, since the generation of a function occurs after hav-

ing translated its arguments, the environment for global definitions

is updated accordingly before generating the function, which is the

role of Ψ̂. Third, when translating a call, all the current bindings

are forgotten, and a new environment Γ̂ is set according to the f ’s
calling context. This new typing environment has no information

about binders in Γ: they are out of scope during function generation,
but it associates to each parameter of f , a variable and the interval

of the term given at the call site.

The translation of predicate calls is omitted. It is similar to the

translation of function calls, but simpler since they always return 0

or 1. Therefore, we never generate procedures from predicates.

6 PROPERTIES
This section states the key properties of our translation and sketches

their proofs. Complete proofs are provided in appendices D to G.

6.1 Well-formedness of the generated program
Theorem 6.1 (Absence of dangling pointers). At any point,

for every value z ∈ Mpz, M(z) , ⊥ if and only if there exists a

unique variable x ∈ V such that Ω(x) = z.

We prove this by first showing that there is no aliasing in the

variables of type mpz. This is actually guaranteed in an easy way by

our simplified semantics, and is the motivation to distinguish Uint
from Umpz. Then, every value in M is initialized (by default at 0)

as soon as a variable points to it, and is reset to ⊥ when clearing it.

Theorem 6.2 (Absence of memory leak). At the end of the

program execution,M = ⊥.

We prove this theorem by showing that the code block generated

for each assertion is such that M is the same when entering and

leaving the block, since it ends with the freeing of all the variables of

type mpz declared in the block. Since those blocks are the only ones

to accessM, it is preserved throughout the program execution.

6.2 Correctness of the generated program
To characterize the semantics of the generated program, we intro-

duce a partial order ⊑ on environments, defined by Ω ⊑ Ω′
if and

only if, for every v such that Ω(v) ∈ Int ∪ Mpz, Ω(v) = Ω′(v),
and for every v such that Ω(v) ∈ Uint (resp. Ω(v) ∈ Umpz),
Ω′(v) ∈ Uint ∪ Int (resp. Ω′(v) ∈ Umpz ∪Mpz).

Theorem 6.3 (Correctness of code generation). The gener-

ated program has a semantics if and only if the original program has

one. In that case, the semantics of the generated program subsumes

the one of the original program. More formally for a program P , there
exists an Ω such that ⊥,⊥ ⊨ P ⇒ Ω,⊥ if and only if there exists an

Ω′
such that ⊥,⊥ ⊨ JPK ⇒ Ω′,⊥. If it is the case, then Ω ⊑ Ω′

.

We prove this theorem by first characterizing the semantics of

the macros, and then combining those to characterize the seman-

tics of the entire program. In particular, this theorem proves the

transparency of our monitor: the presence of annotations does not

change the semantics of the original program. Since the semantics

is blocking, it also implies the soundness of the generated code.

Indeed, the semantics of logical implication states a valid annotated

program has a semantics if and only if all its annotations are sat-

isfied. This theorem shows that this is then also a necessary and

sufficient condition for the generated program to have a semantics.

One of the main difficulties is the translation of calls to functions

or predicates: we characterize the behavior of Ψ and Γ, used for the
translation, through an invariant for each of these environments.

Ψ helps reusing a function already generated, and the soundness of

this approach is ensured by the fact that a function is reused only

when its callsite passes arguments for which the type system infers

the exact same intervals. This choice is conservative: There are

many cases where it would be safe to reuse the same function, even

though the inferred intervals slightly differ. However, this problem

is undecidable in the general case and very hard in practice. Our

pragmatic choice generates code that is efficient enough, while

allowing us to prove its soundness. The presence of function calls

also breaks the well foundedness of the induction, since one needs

to prove the result on the body of the function, but Hypothesis 2

guarantees the proof termination.

7 IMPLEMENTATION
The formalization presented in this paper is implemented within

E-ACSL [27]. We describe here the main gap between our work and

the current implementation, and explain how this implementation

has been evaluated in practice.

Gap with the Theory. The current E-ACSL implementation is

very close to the formalization presented here. Here, we mainly

avoid a few optimizations in the generated code for clarity. The

scope of the considered languages is the main difference between

the paper and the implementation. In practice, E-ACSL can runtime

check C programs and not a simple imperative programming lan-

guage. It also covers a much larger spectrum of its specification

language that the one formalized here [25]. In particular, it supports

rational arithmetics over Q in addition to integer arithmetics [16],
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as well as any C type (integer and non-integer types), not only

int. In practice, many user-defined predicates are defined over

pointers representing C arrays (not formalized here) and manip-

ulating through first-order quantifiers over their indices. Finally,

our semantics is a simplified semantics of C, that prevents aliasing,
and allows for instance to pass declared but uninitialized values as

arguments of functions. In practice the generated code complies

with the actual semantics of C.

Empirical Evaluation. This paper claims several times that the

generated code is efficient. It is supported by several previous ex-

periments, including examples specifically written for evaluating

the E-ACSL type system [6, 16], and evaluations on existing bench-

marks [29], or concrete use cases [8, 22, 24, 28]. Beyond demonstrat-

ing scalability, all these experiments increase our confidence in the

implementation. For instance, Robles et al [24] reported that “the

instrumentation of both MetAcsl [i.e., their own tool] and E-ACSL

does not introduce any bug”. Together with the proof of the sound-

ness of the algorithm this gives evidence of the correct functioning

of our approach.

8 CONCLUSION AND FUTUREWORK
This paper has presented a formalization of efficient RAC for an

arithmetic language extended with user-defined (possibly recur-

sive) logic functions and predicates. It is the first work that formally

studies the generation of efficient code for runtime checking arith-

metic properties and proves its key properties. It is also the first

work that formalizes function specialization in this context. This

work is implemented in E-ACSL, the runtime assertion checker of

Frama-C, and has been evaluated on concrete experiments.

We plan future work in two directions. The first one consists in

continuing the formalization effort: extending the formalization of

the type system [16] to logic functions and predicates, extending

this formalization to other interesting constructs such as inductive

and axiomatic predicates, and taking into account undefinedness

during RAC [10], i.e. how to formally prevent to generate code con-

taining undefined behaviors when translating undefined terms such

as 1/0. The second axis of improvements consists in improving

the current support of recursive logic functions and predicates. In

particular, we could design a more precise type system that would

allow us to generate more machine integer code. More generally,

optimizing the code generated by adapting existing compilation

techniques would certainly have a significant effect in practice. For

instance, callingGMP functions prevents several compiler optimiza-

tions (e.g., constant folding), since the compiler does not know that

they implement simple arithmetic operations. Such optimizations

could be directly done by the monitor generator.
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A SEMANTICS OF THEmini-C LANGUAGE
Fig. 13 presents the (standard) semantics of the core part of the

mini-C language, without routine calls, already presented in Fig. 4.

Semantics of declarations

ΩV (x ) = ⊥ u ∈ Uτ

Ω, M ⊨ t x ⇒ Ω{x\Uτ }, M

Semantics of statements

Ω, M ⊨ skip; ⇒ Ω, M

ΩV (x ) ∈ Int ∪ Uint Ω, M ⊨ e ⇒ z
Ω, M ⊨ x = e ⇒ Ω{x\z }, M

Ω, M ⊨ e ⇒ z z , 0
int Ω, M ⊨ s ⇒ Ω′, M′

Ω, M ⊨ if(e) then s else s′ ⇒ Ω′, M′

Ω, M ⊨ e ⇒ 0
int Ω, M ⊨ s′ ⇒ Ω′, M′

Ω, M ⊨ if(e) then s else s′ ⇒ Ω′, M′

Ω, M ⊨ if(e) then s ; while(e) s else skip ⇒ Ω′, M′

Ω, M ⊨ while(e) s ⇒ Ω′, M′

Ω, M ⊨ s ⇒ Ω′, M′ Ω′, M′ ⊨ s′ ⇒ Ω′′, M′′

Ω, M ⊨ s s′ ⇒ Ω′′, M′′

Ω, M ⊨ e ⇒ z z , 0

Ω, M ⊨ assert(e) ⇒ Ω, M

Semantics of expressions

Ω ⊨ zm ⇒ zm

z ∈ Int ΩV (x ) = z
Ω ⊨ x ⇒ z

Ω ⊨ e ⇒ z Ω ⊨ e′ ⇒ z′ mint ≤ Ûz ⋄ Ûz′ ≤ Mint

Ω ⊨ e □ e′ ⇒ (Ûz ⋄ Ûz′)int
(⋄models □)

Ω ⊨ e ⇒ z Ω ⊨ e′ ⇒ z′ Ûz ◁ Ûz′

Ω ⊨ e
��e′ ⇒ 1

int

Ω ⊨ e ⇒ z Ω ⊨ e′ ⇒ z′ Ûz ⋪ Ûz′

Ω ⊨ e
��e′ ⇒ 0

int

(◁ models

��)
Figure 13: Semantics of themini-C language

B SEMANTICS OF THEmini-FSL LANGUAGE
Fig. 14 presents the semantics of the mini-FSL specification lan-

guage, without routine calls, already presented in Fig. 4.

C PROPERTIES OF THE SEMANTICS
For the sake of simplicity, we use Ω,M ⊑ Ω′,M ′

as a shorthand

for Ω ⊑ Ω′
andM ⊑ M ′

.

Lemma C.1 (Weakening of expression semantics). An expres-

sion e evaluates to a value x in an environment Ω if and only if it

evaluates to the same value in all the environment that subsume Ω.
More formally, Ω ⊨ e ⇒ x if and only if for all Ω′

such that Ω ⊑ Ω′
,

Ω′ ⊨ e ⇒ x .

Proof. Suppose that for all Ω′
such that Ω ⊑ Ω′

, we have

Ω′ ⊨ e ⇒ x , in particular, since we have Ω ⊑ Ω, it is immediate

that Ω ⊨ e ⇒ x . So it suffices to show the converse. Suppose that

Ω ⊨ e ⇒ x , and consider an environment Ω′
such that Ω ⊑ Ω′

, we

show by induction on the expression e that Ω′ ⊨ e ⇒ x .

Rules for logical assertions

Ω ⊨ p ⇒ 1

Ω, M ⊨ /*@ assert p */ ⇒ Ω, M

Rules for terms

Ω ⊨ z ⇒ z
ΩL(x ) = z
Ω ⊨ x ⇒ z

x ∈ Int ΩV (v) = x
Ω ⊨ v ⇒ Ûx

Ω ⊨ t ⇒ z Ω ⊨ t ′ ⇒ z′ not (⋄ = / and z = 0)

Ω ⊨ t ⋄ t ′ ⇒ z ⋄ z′

Ω ⊨ p ⇒ 1 Ω ⊨ t ⇒ z

Ω ⊨ p ? t : t ′ ⇒ z

Ω ⊨ p ⇒ 0 Ω ⊨ t ′ ⇒ z′

Ω ⊨ p ? t : t ′ ⇒ z′

Rules for predicates

Ω ⊨ \true ⇒ 1 Ω ⊨ \false ⇒ 0

Ω ⊨ t ⇒ z Ω ⊨ t ′ ⇒ z′ z ◁ z′

Ω ⊨ t ◁ t ′ ⇒ 1

Ω ⊨ t ⇒ z Ω ⊨ t ′ ⇒ z′ z ⋪ z′

Ω ⊨ t ◁ t ′ ⇒ 0

Ω ⊨ p ⇒ 0

Ω ⊨ ! p ⇒ 1

Ω ⊨ p ⇒ 1

Ω ⊨ ! p ⇒ 0

Ω ⊨ p ⇒ 1

Ω ⊨ p || p′ ⇒ 1

Ω ⊨ p ⇒ 0 Ω ⊨ p′ ⇒ z

Ω ⊨ p || p′ ⇒ z

Figure 14: Semantics of themini-FSL language

• If e = zm is a machine integer, then the derivation of Ω ⊨
e ⇒ x is necessarily of the form

Ω ⊨ zm ⇒ zm

and x = zm . The same derivation then shows that Ω′ ⊨
zm ⇒ zm .

• If e = v is a variable access, then the derivation of Ω ⊨ e ⇒ x
is necessarily of the form

z ∈ Int ΩV (v) = z

Ω ⊨ v ⇒ z

Since Ω ⊑ Ω′
, we also have Ω′

V
(v) = x which gives a

derivation of Ω′ ⊨ v ⇒ x .
• If e = e1□e2 is an arithmetic operation, then the derivation

of Ω ⊨ e ⇒ x necessarily terminates with the following rule,

where x = ( Ûx1 ⋄ Ûx2)
int
, with ⋄ the mathematical operator

corresponding to □.

Ω ⊨ e1 ⇒ x1 Ω ⊨ e2 ⇒ x2 mint ≤ Ûx ≤ Mint

Ω ⊨ e ⇒ x

By induction, the derivations of Ω ⊨ e1 ⇒ x1 and Ω ⊨
e2 ⇒ x2 imply respectively derivations of Ω′ ⊨ e1 ⇒ x1 and

Ω′ ⊨ e2 ⇒ x2. Using these two derivations, one can build a

derivation of Ω ⊨ e ⇒ x , using the same rule.

• If e = e1

��e2 is an arithmetic relation, then x = 0
int

or 1
int
.

These two cases being identical, we only present one of them

here. Assume x = 1
int
, then the derivation of Ω ⊨ e ⇒ 1

int
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necessarily terminates with the following rule

Ω ⊨ e1 ⇒ x1 Ω ⊨ e2 ⇒ x2 x1

int ◁ x2

int

Ω ⊨ e ⇒ 1
int

with ◁ the mathematical relation corresponding to
��. Then

the derivations of Ω ⊨ e1 ⇒ x1 and Ω ⊨ e2 ⇒ x2 give us by

induction derivations of Ω′ ⊨ e1 ⇒ x1 and Ω′ ⊨ e2 ⇒ x2.

Using the same rule, we then get a derivation of Ω′ ⊨ e ⇒

1
int
. □

Lemma C.2 (Weakening of statements semantics). He have

the following useful results about the semantics of the same statement

in different but related environments:

(1) The judgment Ω0,M0 ⊨ s ⇒ Ω1,M1 is derivable if and

only if for all Ω′
0
,M ′

0
such that Ω0,M0 ⊑ Ω′

0
,M ′

0
, there

exists Ω′
1
,M ′

1
such that Ω1,M1 ⊑ Ω′

1
,M ′

1
and the following

judgment is derivable

Ω′
0
,M ′

0
⊨ s ⇒ Ω′

1
,M ′

1

(2) If Ω0,M0 ⊨ s ⇒ Ω1,M1 is derivable and Ω0 ⊑ Ω′
0
, M0 ⊑

M ′
0
. Then for a derivation of

Ω′
0
,M ′

0
⊨ s ⇒ Ω′

1
,M ′

1

for every variable v < dom (Ω0), we have Ω
′
0
(v) = Ω′

1
(v) and,

for every address x such that there is nov such that Ω0(v) = x ,
we haveM ′

0
(x) =M ′

1
(x).

(3) If Ω0,M0 ⊨ s ⇒ Ω1,M1 is derivable, then for Ω′
0
,M ′

0
⊑

Ω0,M0 such that dom (Ω0) − dom (Ω′
0
) contains only vari-

ables that do not appear in s , and dom (M0) − dom (M ′
0
)

contains addresses that are in the image by Ω0 of variables

that do not appear in s , then there exists Ω′
1
,M ′

1
such that the

following is derivable

Ω′
0
,M ′

0
⊨ s ⇒ Ω′

1
,M ′

1

Proof. The three parts of this lemma are independent. We pro-

ceed by induction on the form of the statement s . There are however
10 different cases for statements in the syntax of mini-C, to which

are added 8 cases in the syntax of mini-GMP. Each of this case con-

tains 3 results to check, and the induction are straightforward. For

this reason we only present two base cases that are representative

here.

• For an assignation statement x = e;
(1) If we have a semantics Ω0,M ⊨ x = e; ⇒ Ω′

0
,M, then

we necessarily have Ω0 ⊨ e ⇒ z with Ω′
0
= Ω0{x\z} and

Ω0(x) ∈ Uint ∪ Int, so Ω1(x) ∈ Uint ∪ Int. By Lemma C.1,

we deduce that for all Ω0 ⊑ Ω1 we have Ω1 ⊨ e ⇒ z and
thus Ω1,M ⊨ x = e; ⇒ Ω1{x\z},M.

(2) With the notation of the previous point, since Ω0(x) ∈

Uint∪ Int, we have x ∈ dom (Ω0). Thus for y < Ω0(x), we
have y , x and thus Ω1(y) = Ω1{x\z}(y).

(3) Consider Ω0,M0 such that we have a semantics

Ω0,M0 ⊨ x = e; ⇒ Ω0{x\z},M0

together with Ω′
0
,M ′

0
⊑ Ω0,M0 such that x < dom (Ω0)−

dom (Ω′
0
), then we have a derivation of

Ω′
0
,M ′

0
⊨ x = e; ⇒ Ω′

0
{x\z},M ′

0

• For the assignation of a GMP integer set_z(v,y);,

(1) Assume that we have a semantics

Ω0,M0 ⊨ set_i(v,y);⇒ Ω0,M0{Ω0(v)\M0(Ω0(y))}

and consider Ω′
0
,M ′

0
such that Ω0,M0 ⊑ Ω′

0
,M ′

0
. Then

the existence of the semantics implies that Ω0(v),Ω0(y) ∈
Mpz, thus Ω′

0
(v),Ω′

0
(y) ∈ Mpz. Hence we have the follow-

ing semantics

Ω′
0
,M ′

0
⊨ set_i(v,y);⇒ Ω′

0
,M ′

0
{Ω0(v)\M0(Ω0(y))}

(2) With the previous notations, considering an address x
such that there is nov such that Ω0(v) = x . Then we have

M ′
0
(x) =M ′

0
{Ω0(v)\M0Ω0(y)}(x).

(3) Consider Ω0,M0 such that we have a semantics

Ω0,M0 ⊨ set_i(v,y);⇒ Ω0,M0{Ω0(v)\M0(Ω0(y))}

Then considerΩ′
0
,M ′

0
⊑ Ω0,M0 such thatv,y < dom (Ω0)−

dom (Ω′
0
) , and dom (M0) − dom (M ′

0
) contains addresses

that are in the image by Ω0 of {v,y}. Then we necessar-

ily have Ω′
0
(v) = Ω0(v) and Ω′

0
(y) = Ω0(y) as well as

M ′
0
(Ω′

0
(v)) = M0(Ω0(v)) and M ′

0
(Ω′

0
(y)) = M0(Ω0(y)).

Thus we have the following derivation

Ω′
0
,M ′

0
⊨ set_i(v,y);⇒ Ω′

0
,M ′

0
{Ω0(v)\M0(Ω0(y))}

□

D PROOFS OF STRUCTURAL PROPERTIES OF
THE TRANSLATION

Lemma D.1. If the generated program has a semantics, then for

every variable v of type mpz, the value of ΩV (v) stays the same at

every point between initialization and clearance of v .

Proof. Since this is an invariant that we ensure in the generated

program, we have defined a semantics that has this invariant built-

in. Thus, in the semantics, the only way to give a value to a variable

of type mpz is through the init and cl instructions. The distinction
between Uint and Umpz serves as a way to ensure this property in

the semantics. □

Lemma D.2 (Absence of aliasing). There cannot exist two vari-

able pointing to the same memory location: For all z ∈ Mpz, there is
at most one variable v ∈ V such that ΩV (v) = z at any point.

Proof. By Lemma D.1, a variable v of type mpz keeps the same

value from initialization to clearance in our formalization, so it

suffices to check that the initialization rule does not allow for setting

a memory location already contained in another variable. This is

exactly the premise of the rule. □

Theorem 6.1 (Absence of dangling pointers). At any point,

for every value z ∈ Mpz, M(z) , ⊥ if and only if there exists a

unique variable x ∈ V such that Ω(x) = z.

Proof. Lemma D.2 shows that if there exists a variable x ∈ V

such that ΩV (x) = z, then this variable is unique. By design of the

translation, every time such a variable is used, it is first declared and

initialized. The declaration does not ascribe a value to the variable

(which we model with ∅Mpz). The initialization rule gives a value

z to the variable, and at the same time, sets M(z) = 0. From there

onward, the only rule that allows to change the value of ΩV (v) to
∅Mpz is the clearance rule, and Lemma D.1 shows that in between
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initialization and clearance ΩV (x) = z. Moreover, none of the rule

that modifyM except the clearance rule allow to set the value ⊥.

This shows that as long asΩV (x) = z (i.e. between initialization and
clearance of v), M(z) , ⊥. Conversely, all the rules that modify

a value in M at location z require the existence of a variable v
such that ΩV (v) = z, except the initialization one. Since we have

already proved that ΩV (v) = z implies thatM(z) , ⊥, this implies

that the only rule that may change the value of M(z) from ⊥ to

another value is the initialization rule. This rule requires a variable

v such that ΩV (v) = z. The only rule that may change M(z) to ⊥

is the clearance rule, which also sets ΩV (v) to ∅Mpz. Lemma D.1

shows that as long asM(z) , ⊥ (i.e. in between initialization and

clearance of v) ΩV (v) = z, □

Lemma D.3 (preservation of the control flow). The control

flow graph of the program passes through the initialization phase

(the section declsJpK.
decl

; initsJpK.
decl

) and the clearance phase (the

section clearsJpK.
decl

) of each of the generated blocks

Proof. This lemma is trivial with our simplified languages: the

only way to skip the exit of a block is with the instruction return,
and there is no way to skip the beginning of a block. The return
statement is never used inside a generated block, and only used

in the generated functions in the Lf M.
body

translation. Since this is

outside the blocks, it does not affect the control flow graph of the

programs in the blocks. □

Lemma D.4. The only variables that are used in the generated code

Γ
ΨJpK.

code
are all specified in

Γ
ΨJpK.

decl
, with matching types.

Proof. By construction this invariant is satisfied. Formally it can

be proved by induction on the predicate, proving a similar result for

the terms. However, this induction is straightforward and not very

insightful. Sec. G shows several proofs using this technique. □

Lemma D.5 (memory transparency of generated code). At

the beginning and at the end of each of the generated code blocks,

M = ⊥.

Proof. At the beginning of the program execution, we have

M = ⊥. Since the mini-C language does not contain instruction

whose semantics changeM, the only instructions that may change

it are the mini-GMP ones generated by the tool. Hence, it suffices

to show that ifM = ⊥ at the entry point of a block, thenM = ⊥ at

the exit point of this block. Consider a block obtained by translating

the assertion assert p. By Lemma D.4, all the variables used inside

the block are contained in
Γ
ΨJpK.

decl
. Using Theorem 6.1 before the

call to clears in Fig. 7 shows that at this point, for every value

z ∈ Mpz such thatM(z) , ⊥, there exists a unique variable v such

that Ω(v) = z. Since at the beginning of the block, M = ⊥, the

same theorem implies that the variable v does not hold the value

z at this point. Hence, the variable v is initialized inside the block

to the value z inside the block. Hence (v, mpz) ∈ Γ
ΨJpK.

decl
. So the

clear instruction is called on the variable v at the end of the block,

and thusM(z) = ⊥ at the exit point of the block. Since this holds

for every z such that M(z) , ⊥ before the end, this proves that

M = ⊥ at the exit point of the block. □

Theorem 6.2 (Absence of memory leak). At the end of the

program execution,M = ⊥.

Proof. Lemma D.5 shows that throughout the program’s ex-

ecution, M = ⊥ except inside the code blocks generated by the

monitors. By Lemma D.3, the end of the execution is at the same

point of the original program, outside of the generated code blocks,

hence M = ⊥ at the end of the execution. □

E PROOFS OF THE SEMANTICS OF THE
MACROS

We characterize the formal semantics of the macros defined in

Sec. 4.3. In order to factorize the study of the semantics of the

translation, we introduce an operator Ω,M ⊨ e ⇝ z which given

an expression e in an environment Ω,M returns the integer z that
this expression represents, independently of which C type is used

to represent the integer. The semantics of this operator is defined

with the two following rules

Ω ⊨ e ⇒ x ty(e) = int

Ω,M ⊨ e ⇝ Ûx

Ω ⊨ e ⇒ x ty(e) = mpz

Ω,M ⊨ e ⇝M(x)

Lemma E.1 (semantics of the mpz_assgn macro). If the ex-

pression e represents the number z, then after the execution of the

macro mpz_assgn(v, e), the variable v contains the representation of

the number z in the type mpz, while the rest of the memory is left

unchanged. More precisely, The semantics of the mpz_assgn macro is

characterized by the following admissible rule.

Ω,M ⊨ e ⇝ z ΩV (v) = y ∈ Mpz

Ω,M ⊨ mpz_assgn(v, e) ⇒ Ω,M{y\z}

Proof. We proceed by case disjunction on the C type ty(e).
When ty(e) = int (resp. ty(e) = mpz), the macro mpz_assgn(v, e)
reduces to the single instruction set_i(v, e); (resp. set_z(v, e);).
One can derive the conclusionΩ,M ⊨ mpz_assgn(v, e) ⇒ Ω,M{v\}z
if and only if the rule defining the semantics of the statement set_i
(resp. of the statement set_z), which is equivalent to having a

derivation of Ω,M ⊨ e ⇒ x with Ûx = z (resp. a derivation of

Ω,M ⊨ e ⇒ x with M(e) = z). This is equivalent to having a

derivation of Ω,M ⊨ e ⇝ z in both cases. □

Lemma E.2 (semantics of the int_assgn macro). If the expres-

sion e represents the number z representable in the type int, then after
the execution of the macro int_assgn(v, e), the variable v contains

the representation of the number z in the type mpz, while the rest of
the environment is left unchanged. More precisely, The semantics of

the int_assgn macro is specified by the following admissible rule.

Ω(v) ∈ Int ∪ Uint Ω,M ⊨ e ⇝ z mint ≤ z ≤ Mint

Ω,M ⊨ int_assgn(v, e) ⇒ Ω{v\zint},M

Proof. The proof is essentially the symmetrical to the one of

Lemma E.1, by case disjunction on the type ty(e). In the case ty(e) =
int, we use the equation Ûx int = x to conclude. □

Lemma E.3 (semantics of the Z_assgn macro). After a call to

the Z_assgn(τz ,v, z) macro, the variable v contains the representa-

tion in τz of the number z. More precisely, the following admissible

rules characterize the semantics of the macro.

Ω(v) ∈ Int ∪ Uint z ∈ Z τz = int mint ≤ z ≤ Mint

Ω, M ⊨ Z_assgn(τz , v, z) ⇒ Ω{v\z int }, M
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z ∈ Z τz = mpz Ω(v) = y ∈ Mpz

Ω, M ⊨ Z_assgn(τz , v, z) ⇒ Ω, M{y\z }

Proof. We proceed by case disjunction on the type τz . In the

case where τz = int, the macro reduces to a single assignation

and the result is exactly the rule that defines the semantics of the

assignation. In the case where τz = int, the macro reduces to a

single instruction set_s, and the result is given by the rule that

defines the semantics of this instruction. □

Lemma E.4 (semantics of the cmp macro). After the execu-

tion of cmp(c, e1, e2,v1,v2), the variable c contains the result of the
comparison of e1 and e2, and everything else is unchanged, except

potentially for the values associated to v1 and v2 in memory. More

precisely, for Ω such that ΩV (v1) , ⊥ and ΩV (v2) , ⊥, there exists

an M ′
such that for all v distinct from v1 and v2, M(v) =M ′(v),

and the following admissible rule characterizes the semantics of the

macro.

Ω(v) ∈ Int ∪ Uint Ω, M ⊨ e1 ⇝ z1 Ω, M ⊨ e2 ⇝ z2 z1 < z2

Ω, M ⊨ cmp(c, e1, e2, v1, v2) ⇒ Ω{c\a }, M′

where a =


1 when z1 < z2

0 when z1 = z2

−1 when z1 > z2

Proof. We prove this by case disjunction on the types ty(e1)

and ty(e2)

• If we have both ty(e1) = int and ty(e2) = int, then the

premises Ω,M ⊨ e1 ⇝ z1 and Ω,M ⊨ e2 ⇝ z2 values

x1,x2 ∈ Int, such that Ω,M ⊨ e1 ⇒ x1 and Ω,M ⊨ e2 ⇒ x2,

with Ûx1 = z1, and Ûx2 = z2. The macro cmp(c, e1, e2,v1,v2)

reduces to the following piece of code

1 if (e_1 < e_2) c=-1;

2 else if (e_1 > e_2) c=1;

3 else c = 0;

If z1 < z2, the rule defining the semantics of comparison

expressions gives a derivation for Ω,M ⊨ e1 < e2 ⇒ 1,

and then the rule defining the semantics of if statements

shows that the semantics of this bloc of code is the same

as that of the assignation c = -1. This gives a derivation

of Ω,M ⊨ cmp(c, e1, e2,v1,v2) ⇒ Ω{c\ − 1},M. The same

kind of reasoning using the definition of the semantics of

comparison, if statements, and assignation, specifies that

the semantics of the macro as desired when z1 > z2 and

when z1 = z2. Conversely, since the semantics of each of the

if statement and of the assignation are defined by a single

rule in each of the three above cases, we can check that if

this macro application has a semantics, it is necessarily given

by this rule.

• Otherwise, the macro reduces to the following piece of code

1 mpz_assign(v_1 ,e_1);

2 mpz_assign(v_2 ,e_2);

3 c = cmp(v_1 ,v_2);

Then, Lemma E.1 together with the rules defining the se-

mantics of GMP statement c = cmp(v1,v2); and the rule for

concatenation of statements give the semantics of the macro.

More precisely, it gives a derivation for the judgment

Ω,M ⊨ cmp(c, e1, e2,v1,v2) ⇒ Ω{c\a},M ′

where M ′ =M{ΩV (v1)\z1}{ΩV (v2)\z2}. Conversely, we

can check using the same techniques, that if this macro has

a semantics, it is necessarily obtained by application of this

rule.

□

Lemma E.5 (semantics of the ⋄_assgn macro). After the exe-

cution of ⋄_assgn((τ , c), e1, e2, r ,v1,v2), the variable c contains the
representation in the type τ of the operation ⋄ on e1 and e2, and every-

thing else is unchanged, except potentially for the values associated

to v1, v2 r in memory. More precisely, for Ω such that ΩV (v1) , ⊥,

ΩV (v2) , ⊥ and ΩV (r ) , ⊥ there exists an M ′
such that for

all v distinct from v1, v2 and r , M(v) =M ′(v), and the following

admissible rules characterize the semantics of this macro.

Ω(v) ∈ Int ∪ Uint
Ω, M ⊨ e1 ⇝ z1 Ω, M ⊨ e2 ⇝ z2 mint ≤ z1 ⋄ z2 ≤ Mint τ = int

Ω, M ⊨ ⋄_assgn((τ , c), e1, e2, r, v1, v2) ⇒ Ω{c\(z1 ⋄ z2)
int }, M′

Ω, M ⊨ e1 ⇝ z1 Ω, M ⊨ e2 ⇝ z2 τ = mpz ΩV (c) = y ∈ Mpz

Ω, M ⊨ ⋄_assgn((τ , c), e1, e2, r, v1, v2) ⇒ Ω, M′ {y\z1 ⋄ z2 }

Proof. We proceed by case induction, following the form of the

macro

• If τ = int, ty(e1) = int and ty(e2) = int then the macro

reduces to the following piece of code

c = e1 □ e2 ;

The semantic rules for assignation and operation, then show

that the following rule is admissible and any semantics for

the macro reduces to an application of this rule.

Ω ⊨ e1 ⇒ z1 Ω ⊨ e2 ⇒ z2 mint ≤ Ûz1 ⋄ Ûz2 ≤ Mint

Ω,M ⊨ ⋄_assgn((τ , c), e1, e2, r ,v1,v2) ⇒ Ω{c\ Ûz1 ⋄ z2

int}

• If τ = int but ty(e1) , int or ty(e2) , int then the code of

the macro reduces to

mpz_assgn(v1, e1)

mpz_assgn(v2, e2)

op(r ,v1,v2);

int_assgn(c, r )
Then Lemma E.1 together with the semantic rule for the op
keyword and Lemma E.2 show that the semantics is com-

pletely characterized by the following rule

Ω, M ⊨ e1 ⇝ z1 Ω, M ⊨ e2 ⇝ z2 mint ≤ z1 ⋄ z2 ≤ Mint

Ω, M ⊨ ⋄_assgn((τ , c), e1, e2, r, v1, v2) ⇒ Ω{c\z1 ⋄ z2

int }, M′

with M ′ =M{ΩV (v1)\z1}{ΩV (v2)\z2}{ΩV (r )\z1 ⋄ z2}

• If τ = mpz the code of the macro reduces to

mpz_assgn(v1, e1)

mpz_assgn(v2, e2)

op(c,v1,v2);

Then Lemma E.1 together with the semantic rule for the op
keyword and is completely characterized by the following

rule

Ω, M ⊨ e1 ⇝ z1 Ω, M ⊨ e2 ⇝ z2 ΩV (c)

Ω, M ⊨ ⋄_assgn((τ , c), e1, e2, r, v1, v2) ⇒ Ω, M′

with M ′ =M{ΩV (v1)\z1}{ΩV (v2)\z2}{y\z1 ⋄ z2}

□
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F INVARIANTS FOR ROUTINE
TRANSLATION

Useful notations for environments. Considering a environment Ω
and a memory M, we denote (Ω,M) + +(τ ,v, z) the environment

and memory obtained by adding a variable v representing z in the

type τ .

• If τ = int and z ∈ Z such that mint ≤ z ≤ Mint or z ∈ Uint,
we define

(Ω,M) + +(τ ,v, z) = Ω{v\zint},M

• If τ = mpz and z ∈ Z, we pick an address x ∈ Mpz which is

not in the image of Ω, and define

(Ω,M) + +(τ ,v, z) = Ω{v\x},M{x\z}

If A is a set of such triples with all distinct variables, we denote

(Ω,M) + +A the result of applying this operation successively on

all elements of A, which does not depend on the order in which we

pick the elements.

The synchronicity invariant. Wedefine the Synchronicity of binders

invariant, which characterizes the environment for bindings through-

out the translation. It states that the environment for binders always

abstracts accurately the state of the logical part of the semantical en-

vironment. We do not prove this invariant here, but just define the

statement. We say that Ω and Γ satisfy (I1) when the two following

conditions are satisfied{
dom ΩL = dom Γ

∀x ∈ dom Γ,min ΓI (x) ≤ ΩL(x) ≤ max ΓI (x)
(I1)

The suitability invariant. We introduce another invariant, which

concerns the environment Ψ and states that at any point, it only

contains name of program functions that have a semantics that

translate the logic function they model, under the assumption that

they are called with arguments varying within the right intervals.

Before introducing this invariant, we first formalize what we mean

by this semantical condition.We consider the following pieces of

data

• a logic function or a predicate f , withF(f ) = (v1, . . . ,vn ;b)
(or P equals the same thing in the case of a predicate)

• a program function or procedureϕ withF (ϕ) = (x1, . . . ,xn ; s)
(or P(ϕ) = (x1, . . . ,xn ,xn+1; s) in case of a procedure)

• an environment for bindings Γ

Consider a family of integers z1, . . . , zn , z such that z1 ∈ ΓI (v1), . . . , zn ∈
ΓI (vn ). We denote

Ωf , Mf =

{
(⊥, ⊥) + +{(Θ(ΓI (vi )), xi , zi ) |i = 1 . . . n } if T(b, ΓI ) = int

(⊥, ⊥) + +{(mpz, v0, 0)} ∪ {(Θ(ΓI (vi )), xi+1, zi ) |i = 1 . . . n } if T(b, ΓI ) = mpz

We say that ϕ is suitable to represent f in Γ when for every integers
z1, . . . , zn , z such that z1 ∈ ΓI (v1), . . . , zn ∈ ΓI (vn ), one of the

following equivalence is satisfied

• IfT(b, ΓI ) = int:ϕ is a function and there exists a derivation

of ⊥{v1\z1, . . . ,vn\zn } ⊨ b ⇒ z if and only if there exists

Ω such that there is a derivation of

Ωf ,Mf ⊨ s ⇒ Ω,Mf

with Ω(resf ) = zint

• If T(b, ΓI ) = mpz: ϕ is a procedure and there exists a deriva-

tion of ⊥{v1\z1, . . . ,vn\zn } ⊨ b ⇒ z with z < mint or

Mint < z if and only if there exists Ω,M such that there is

a derivation of

Ωf ,Mf ⊨ s ⇒ Ω,Mf {Ωf (x1)\z}

We can now state our invariant for the environment by using this

notion of suitability: We say that Ψ respects the suitability invari-

ant (I2) if the following is true

Ψ(f , Γ) , ⊥ =⇒ Ψ(f , Γ) is suitable to represent f in Γ (I2)

G PRESERVATION OF THE SEMANTICS
The objective of this section is to prove Theorem 6.3. The technical

difficulty of this theorem mostly resides in three lemmas that we

prove by mutual induction, and which characterize the semantics of

the pieces of codes generated by the term and predicate translation

and routine calls. The generated code needs to be evaluated in

a semantic environments containing more program variables. In

particular it needs to contain program variables that correspond to

all the logical binders as well as all the program variables that are

generated during the translation. For this reason, given a semantic

environment Ω and an environment for bindings Γ that respect the

synchronicity of binders (I1), we build ΩΓ ,MΓ
as follows

ΩΓ ,MΓ = (Ω,M) + +{Θ(ΓI (v)),v,ΩL(v)|v ∈ dom (Γ)}

The environment ΩΓ ,MΓ
correspond to adding the representation

a representation as program variables of the values of the logical

binders as prescribed by Γ. We then extend this environment further,

by building for a term or predicate t ΩΓ,t ,MΓ,t
. For this we define,

for (τ ,v) ∈ Γ
ΨJtK.

decl
, the value zv to be 0 if τ = mpz or a fresh value

in Uint if τ = int. It is the value after declaration of a variable of

type int or after declaration and initialization of a variable of type

mpz. We then define

ΩΓ,t ,MΓ,t = Ωt ,Mt + +{(τ ,v, zv )|(τ ,v) ∈
Γ
ΨJtK.

decl
}

This represent the minimum extension of the environment that

lets us evaluate the code generated for a term or a predicate that

evaluates in an environment Ω. It lets us ignore the declaration
and initialization phases of each block at first. See Th. G.4 to a

verification that this environment accurately models these phases.

Lemma G.1 (Semantics of term translation). Consider a term

t and two environments Ω, Γ that satisfy the synchronicity for the

binders (I1) as well as a Ψ satisfying suitability (I2). Then the judg-

ment Ω ⊨ t ⇒ z has a derivation if and only if there are exists

Ω′,M ′
such that ΩΓ ⊑ Ω′

,MΓ ⊑ M ′
and the following judgment

is derivable

ΩΓ,t ,MΓ,t ⊨ ΓΨJtK.
code

⇒ Ω′,M ′

When it is the case, the relation Ω′,M ′ ⊨ ΓΨJtK.res ⇝ z, is satisfied,
more specifically{

Ω′
V
(ΓΨJtK.res) = zint if T(Γ, t) = int

M ′(Ω′(ΓΨJtK.res)) = z if T(Γ, t) = mpz

Proof. We proceed by induction on the term t . Verifying that in
the recursive calls the environment also satisfy the invariants (I1)

and (I2) is straightforward in most cases since the environments
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do not change. For the sake of simplicity, we omit this verification

when it is immediate, and even omit the environments Γ and Ψ in

our notation when they do not intervene. The induction is mutual

with that of Lemmas G.2 and G.3.

• If t = v is amini-C variable (thus of type int), then we have

JtK.
decl
= ∅, thus Ω,Γ,t = ΩΓ

and MΓ,t =MΓ
. The gener-

ated code JtK = skip; then has the following semantics

ΩΓ ,MΓ ⊨ skip; ⇒ ΩΓ ,MΓ

The term v = JtK.res has a semantics in the mini-FSL lan-

guage Ω,M ⊨ v ⇒ Ûx if and only if ΩΓ
V
(v) = x .

• If t = z is an integer, then it always have a mini-FSL seman-

tics, and we distinguish two sub-cases:

– If T(t , ΓI ) = int, then JtK.
decl
= {(JtK.res, int)}, thus

we chose u ∈ Uint such that ΩΓ,t = ΩΓ{JtK.res\u} and
MΓ,t =MΓ

. ThenHypothesis 1 then ensures that mint ≤

z ≤ Mint, and thus Lemma E.3 provides the following

semantics

ΩΓ,t ,MΓ ⊨ JtK.
code

⇒ ΩΓ,t {JtK.res\zint},MΓ

– If T(t , ΓI ) = mpz, then there exist a fresh value x ∈ Mpz
such that ΩΓ,t = ΩΓ{JtK.res\x} and MΓ,t = MΓ{x\0}.

Lemma E.3 then provides the following semantics

ΩΓ,t ,MΓ,t ⊨ JtK.
code

⇒ ΩΓ,t ,MΓ,t {ΩΓ,t (JtK.res)\z}

• If t = t1 ⋄ t2 is the application of an operation, then we have

the following relation between the semantics environments
ΩΓ,t1 ,MΓ,t1 ⊑ ΩΓ,t ,MΓ,t

ΩΓ,t2 ,MΓ,t2 ⊑ ΩΓ,t ,MΓ,t

dom (ΩΓ,t1 ) ∩ dom (ΩΓ,t2 ) = dom (ΩΓ)

dom (MΓ,t1 ) ∩ dom (MΓ,t2 ) = dom (MΓ)

Suppose that there is a semantics Ω ⊨ t1 ⋄ t2 ⇒ z, then we

necessarily have the semantics Ω ⊨ t1 ⇒ z1 and Ω ⊨ t2 ⇒ z2

with z = z1 ⋄ z2. Then using induction and weakening pro-

vided by Lemma C.2.1, this shows that we have a semantics

ΩΓ,t ,MΓ,t ⊨ Jt1K.code ⇒ Ω′,M ′

with ΩΓ ⊑ Ω′
and MΓ ⊑ M ′

, and Ω′,M ′ ⊨ Jt1K.res ⇝ z1.

Then Lemma C.2.2 shows that we have ΩΓ,t2 ⊑ Ω′
and

MΓ,t2 ⊑ M ′
. We again use induction with Lemma C.2.1,

showing that we have a semantics

Ω′,M ′ ⊨ Jt2K.code ⇒ Ω′′,M ′′

with ΩΓ ⊑ Ω′′
and MΓ ⊑ M ′′

, and Ω′′,M ′′ ⊨ Jt2K.res ⇝
z2. Note that Jt1K.res < dom (ΩΓ,t2 ) thus by Lemma C.2.2, we

also have Ω′′,M ′′ ⊨ Jt1K.res ⇝ z1. Lemma E.3 then apply

to show that we have a derivation of

Ω′′, M′′ ⊨ ⋄_assgn((T(t1⋄t2, ΓI ), Jt1 ⋄ t2K.res), Jt1K.res, Jt2K.res, r̄, v̄1, v̄2) ⇒ Ω′′′, M′′′

with ΩΓ ⊑ Ω′′
and MΓ ⊑ M ′′

, and the following evalua-

tion Ω′′′,M ′′′ ⊨ Jt1 ⋄ t2K.res ⇝ z1 ⋄ z2 with the type given

by T(t1 ⋄t2, ΓI ). The semantics of statement sequencing lets

us conclude that we have the following

ΩΓ,t1⋄t2 ,MΓ,t1⋄t2 ⊨ Jt1 ⋄ t2K.code ⇒ Ω′′′,M ′′′

with Ω′′′,M ′′′
satisfying the desired conditions.

Conversely, suppose that there is a semantics for the trans-

lated term in the mini-GMP language as follows

ΩΓ,t1⋄t2 ,MΓ,t1⋄t2 ⊨ Jt1 ⋄ t2K.code ⇒ Ω(2),M(2)

Then the semantics for sequencing shows that we then must

have the two following derivations

ΩΓ,t1⋄t1 ,MΓ,t1⋄t2 ⊨ Jt1K.code ⇒ Ω(0),M(0)

Ω(0),M(0) ⊨ Jt1K.code ⇒ Ω(1),M(1)

By LemmaC.2.3, we get a semantics for Jt1K.code inΩt1 ,Mt1
,

thus by induction we get a semantics of themini-FSL term t1
in the environment Ω. This implies that Ω(0) = Ω′

and

M(0) = M ′
, and thus ΩΓ,t2 ⊑ Ω(0)

and MΓ,t2 ⊑ Γ(0).
Lemma C.2.3 again applies to show that t2 has a semantics

in Ω. The semantics of t1 and t2 give a semantics for t1 ⋄ t2,

and applying the opposite direction shows that Ω(1) = Ω′′
,

Ω(2) = Ω′′′
andM(1) =M ′′

,M(2) =M ′′′
.

• If t = p?t1:t2 is a conditional term, then we have the follow-

ing relations

ΩΓ,p ,MΓ,p ⊑ ΩΓ,t ,MΓ,t

ΩΓ,t1 ,MΓ,t1 ⊑ ΩΓ,t ,MΓ,t

ΩΓ,t2 ,MΓ,t2 ⊑ ΩΓ,t ,MΓ,t

dom (ΩΓ,p ) ∩ dom (ΩΓ,t1 ) = dom (ΩΓ)

dom (MΓ,p ) ∩ dom (MΓ,t1 ) = dom (MΓ)

dom (ΩΓ,p ) ∩ dom (ΩΓ,t2 ) = dom (ΩΓ)

dom (MΓ,p ) ∩ dom (MΓ,t2 ) = dom (MΓ)

This term has a semantics Ω ⊨ t ⇒ z if and only if either of

those two conditions are satisfied

(1) There is a semantics Ω ⊨ p ⇒ 1 together with a semantics

Ω ⊨ t1 ⇒ z. Then using the mutual induction case with

Lemma G.2 together with the weakening of Lemma C.2.1

shows that the first condition gives a derivation of

ΩΓ,t ,MΓ,t ⊨ JpK.
code

⇒ Ω′,M ′

with ΩΓ ⊑ Ω′
and MΓ ⊑ M ′

, and Ω′
t (JpK.res) = 1

int
.

Then Lemma C.2.2 shows that we have ΩΓ,t1 ⊑ Ω′
and

MΓ,t1 ⊑ M ′
. Then induction with Lemma C.2.1 show

that the second condition gives a derivation of

Ω′,M ′ ⊨ Jt1K.code ⇒ Ω′′,M ′′

withΩΓ ⊑ Ω′′
andMΓ ⊑ M ′′

, andΩ′′
t ,M

′′
t ⊨ Jt1K.res ⇝

z. The semantics for if statements and of theT _assgn(Γ, t)
macro given by Lemma E.1 or E.2 then gives a derivation

of

Ωt ,Mt ⊨ JtK.
code

⇒ Ω′′,M ′′

(2) There is a semantics Ω ⊨ p ⇒ 0 together with a semantics

Ω ⊨ t2 ⇒ z: This is symmetrical to the previous case.

Conversely, the semantics of the if statements imply that

if JtK.
code

has a semantics, then it necessarily falls in either

of those two cases, and using Lemma C.2.3 shows that there

necessarily p has semantics 1 and t1 has a semantics, or p
has semantics 0 and t2 has a semantics. In both cases, the

proof for the forward direction apply to show that the initial
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semantics of the translated code respects the semantics of

the logical term.

• If t = x is a logical binder, then the translation is given by

JxK.
code
= skip;, so we have the semantics

ΩΓ ,MΓ ⊨ skip; ⇒ ΩΓ ,MΓ

The term v = JtK.res has a semantics in the mini-FSL lan-

guage Ω,M ⊨ v ⇒ z if and only if ΩL(v) = z, which is

equivalent to ΓV (v) , ⊥ by (I1). This is by construction

equivalent to ΩΓ ,MΓ ⊨ ΓV (v)⇝ z.
• If t = f (κ1 t1, · · · ,κn tn ) is a call to a logic function, with

F(f ) = (v1, . . . ,vn ;b). Suppose that there is a semantics

Ω ⊨ f (κ1 t1, . . . ,κn tn ) ⇒ z, then we necessarily have

semantics the following semantics

Ω ⊨ t1 ⇒ z1 . . . Ω ⊨ tn ⇒ zn

then using successive inductions together with Lemmas C.2.1

and C.2.2, as well as the rule for sequencing, we show that

there is a semantics

ΩΓ,t ,MΓ,t ⊨ Jt1K.code; . . . ; JtnK.
code

⇒ Ω′,M ′

with ΩΓ ⊑ Ω′
, MΓ ⊑ M ′

and Ω′,M ′ ⊨ Jti K.res ⇝ zi . Let
us now build the environment

Γ̂ = ⊥{x1\(v̄1,I(ΓI , t1)), . . . ,xn\(v̄nI(ΓI , tn ))}

Ψ̂ = Γ
ΨJt1K • . . . • JtnK

env

By induction Ψ̂ satisfy the invariant (I2). Moreover, since

v1, . . . ,vn ∈ Γ̂ Lemma G.3 shows that
Γ̂
Ψ̂
Lf M is suitable to

represent f in Γ̂. We then distinguish two cases:

– IfT(f (t1, . . . , tn ), Γ) = int, then the translation endswith
the following line of code

Jf (t1, . . . , tn )K.res = Γ̂
Ψ̂
Lf M.name(Jt1K.res, . . . , JtnK.res)

The semantics of the logical term then gives a derivation

⊥{v1\z1, . . . ,vn\zn } ⊨ b ⇒ z

Note that we can chose addresses such that Ωf ⊑ Ω′
and

Mf ⊑ M ′
. The suitability of

Γ̂
Ψ̂
Lf M to represent f in Γ̂

together with Lemma C.2.1, shows that, denoting

F (Γ̂
Ψ̂
Lf M.name) = (x1, . . . ,xn ; s)

we have a derivation of the following semantics

⊥{xi\Ω
′(Jti K.res)},M ′ ⊨ s ⇒ Ω′′,M ′

with Ω′′(resf ) = zint. The semantics of function calls then

shows that this gives a semantics

Ω′, M′ ⊨ JtK.res = Γ̂
Ψ̂

Lf M.name(Jt1, . . . , JtnK.resK.res) ⇒ Ω′ {JtK.res\z int }, M′

– IfT(f (t1, . . . , tn ), Γ) = mpz, then the translation endswith
the following line of code

Γ̂
Ψ̂
Lf M.name(Jf (t1, . . . , tn )K.res, Jt1K.res, . . . , JtnK.res)

The semantics of the logical term then gives a derivation

⊥{v1\z1, . . . ,vn\zn } ⊨ b ⇒ z

Note that we can chose addresses such that Ωf ⊑ Ω′
and

Mf ⊑ M ′
. The suitability of

Γ̂
Ψ̂
Lf M to represent f in Γ̂

together with Lemma C.2.1, shows that, denoting

F (Γ̂
Ψ̂
Lf M.name) = (x1, . . . ,xn ; s)

we have a derivation of the following semantics

⊥{x1\Ω
′JtK.res }{xi+1\Ω

′(Jti K.res)}, M′ ⊨ s ⇒ Ω′′, M′ {JtK.res\z }

The semantics for procedure calls then implies that we

have

Ω′,M ′ ⊨ t ⇒ Ω′,M ′{JtK.res\z}

Note that JtK.res < dom (MΓ) and MΓ ⊑ M ′
by induc-

tion, so we haveMΓ ⊑ M ′{JtK.res\z}.
Conversely, we can perform the same reasoning the other

way around, distinguishing the two above cases, and using

Lemma C.2.3, in order to show the equivalence.

This case is the only one where the environmentΨ gets modi-

fied, and a new program function is added. Lemma G.3 shows

that this function is suitable, and thus the new environment

Ψ still satisfies (I2). □

Lemma G.2 (Semantics of predicate translation). Consider a

predicate p and two environments Ω, Γ that satisfy the synchronicity

for the binders (I1) as well as a Ψ satisfying suitability (I2). Then for

b ∈ B, the judgment Ω ⊨ p ⇒ b has a derivation if and only if there

are ΩΓ ⊑ Ω′
and MΓ ⊑ M ′

such that the following judgment is

derivable

ΩΓ,p ,MΓ,p ⊨ ΓΨJpK.
code

⇒ Ω′,M ′

When it is the case, we necessarily have Ω′
V
(ΓΨJpK.res) = bint.

Proof. We proceed by induction on the predicate p and mutual

induction with Lemma G.1.

• Ifp = \true (orp = \false) is a truth value: Since both cases
are symmetric, we only prove for the case p = \true. In that

case, in any environment Ω, we have Ω ⊨ p ⇒ 1. Moreover,

the piece of code ΨJpK.
code

reduces to JpK.res = 1;.Since

ΩΓ,p (JpK.res) ∈ Uint, the rule defining the semantics of the

assignation statements and of the machine integer expres-

sions then gives

ΩΓ,p ,MΓ,p ⊨ JpK.
code

⇒ ΩΓ,p {JpK.res\1
int},MΓ,p

• If p = t1 ◁ t2 is a relation, then the environments satisfy the

following relations
ΩΓ,t1 ,MΓ,t1 ⊑ ΩΓ,p ,MΓ,p

ΩΓ,t2 ,MΓ,t2 ⊑ ΩΓ,p ,MΓ,p

dom (ΩΓ,t1 ) ∩ dom (ΩΓ,t2 ) = dom (ΩΓ)

dom (MΓ,t1 ) ∩ dom (MΓ,t2 ) = dom (MΓ)

The semantics Ω ⊨ p ⇒ 1 is derivable if and only if we have

a derivation of Ω ⊨ t1 ⇒ z1 and Ω ⊨ t2 ⇒ z2 with z1 ◁z2. By

induction from Lemma G.1 and using weakening provided

by Lemma C.2.1 and LemmaC.2.3, the former is equivalent

to having a derivation of

ΩΓ,p ,MΓ,p ⊨ Jt1K.code ⇒ Ω′,M ′
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with ΩΓ ⊑ Ω′
and MΓ ⊑ M ′

and Ω′,M ′ ⊨ Jt1K.res ⇝
z1. Then Lemma C.2.2 shows that ΩΓ,t2 ,MΓ,t2 ⊑ Ω′,M ′

.

Lemma G.1 and using weakening provided by Lemma C.2.1

and LemmaC.2.3, then apply to show that the semantics of

t2 is equivalent to having a semantics

Ω′,M ′ ⊨ Jt2K.code ⇒ Ω′′,M ′′

with ΩΓ ⊑ Ω′′
and MΓ ⊑ M ′′

and Ω′′,M ′′ ⊨ Jt2K.res ⇝
z2. Then Lemma C.2.2 shows that we also have Ω′′,M ′′ ⊨
Jt1K.res ⇝ z1. By Lemma E.4, these two evaluations are

equivalent to having the semantics

Ω′′, M′′ ⊨ cmp(JpK.res, Jt1K.res, Jt2K.res, v̄1, v̄2) ⇒ Ω′′ {JpK.res\1
int }, M′′

By statement sequencing, having a semantics Ω ⊨ p ⇒ 1 is

thus equivalent to having a semantics

ΩΓ,p ,MΓ,p ⊨ JpK.
code

⇒ Ω′′{JpK.res\1
int},M ′′

with ΩΓ ⊑ Ω′′{JpK.res\1
int} and MΓ ⊑ M ′′

. The case

where the semantics of p evaluates to 0 is symmetric to

this case.

• Ifp = !p1 is a negation, thenΩ
Γ,p1 ,MΓ,p1 ⊑ ΩΓ,p ,MΓ,p

. By

induction, and Lemmas C.2 and C.2 there is a derivation Ω ⊨
p1 ⇒ 1 if and only if there is a derivation of ΩΓ,p ,MΓ,p ⊨
Jp1K.code ⇒ Ω′,M ′

with ΩΓ ,MΓ ⊑ Ω′,M ′
, and Ω′,M ′ ⊨

Jp1K.res ⇝ 1
int
. Then the semantics for the if statement

and assignation shows that this is equivalent to a derivation

ΩΓ,p ,MΓ,p ⊨ J!p1K.code ⇒ Ω′{JpK.res\0
int},M ′

In a symmetric way, there is a semantics Ω ⊨ p1 ⇒ 0 if and

only if there is a semantics

ΩΓ,p ,MΓ,p ⊨ J!p1K.code ⇒ Ω′{JpK.res\1
int},M ′

with ΩΓ ,MΓ ⊑ Ω′{Jp1K.res\0
int},M ′

.

• If p = p1||p2 is a disjunction, then we have
ΩΓ,p1 ,MΓ,p1 ⊑ ΩΓ,p ,MΓ,p

ΩΓ,p2 ,MΓ,p2 ⊑ ΩΓ,p ,MΓ,p

dom (ΩΓ,p1 ) ∩ dom (ΩΓ,p2 ) = dom (ΩΓ)

dom (MΓ,p1 ) ∩ dom (MΓ,p2 ) = dom (MΓ)

There is a derivation of Ω ⊨ p ⇒ b if and only if either of

these two cases is satisfied

(1) There is a derivation of Ω ⊨ p1 ⇒ 1, in which case b = 1.

By induction and weakening (Lemma C.2.1), this implies

that there is a derivation

ΩΓ,p ,MΓ,p ⊨ Jp1K.code ⇒ Ω′,M ′

with Ω′ ⊨ Jp1K.res ⇒ 1
int

and ΩΓ ,MΓ ⊑ Ω′,M ′
. Then

the semantic rules for the if statements and the assigna-

tion give a semantics

ΩΓ,p ,MΓ,p ⊨ JpK.
code

⇒ Ω′′,M ′′

with ΩΓ ,MΓ ⊑ Ω′′,M ′′
and Ω′′(JpK.res) = 1

int
.

(2) There is a derivation of Ω ⊨ p1 ⇒ 0 and of Ω ⊨ p2 ⇒ b.
By induction and weakening (Lemma C.2.1), this implies

that we have a derivation

ΩΓ,p ,MΓ,p ⊨ Jp1K.code ⇒ Ω′,M ′

with ΩΓ ,MΓ ⊑ Ω′,M ′
and Ω′ ⊨ Jp1K.res ⇒ 0

int
. Then

Lemma C.2.2 shows that we have ΩΓ,p2 ,MΓ,p2 ⊑ Ω′,M ′
.

Then again, by induction and Lemma C.2.1, we show that

we get a derivation of

Ω′,M ′ ⊨ Jp2K.code ⇒ Ω′′,M ′′

with ΩΓ ,MΓ ⊑ Ω′′,M ′′
and Ω′′ ⊨ ΨJp2K.res ⇒ bint.

Then the semantic rules for the if statements and the

assignation give a semantics

ΩΓ,p ,MΓ,p ⊨ JpK.
code

⇒ Ω′′{JpK.res\bint},M ′′

with ΩΓ ,MΓ ⊑ Ω′′M ′′
.

Conversely, the semantics of the if statements and of the

assignation togetherwith induction, shows using LemmaC.2.3

that if the generated code has a semantics, then it falls in

one of the three above cases.

• If p = f (κ1 t1, . . . ,κn tn ) is a predicate call, with P(f ) =
(v1, . . . ,vn ;b). We proceed in a similar way as for the case

of functions for the term translation. Suppose that there is a

semantics

Ω ⊨ f (κ1 t1, . . . ,κn tn ) ⇒ z

then we necessarily have semantics the following semantics

Ω ⊨ t1 ⇒ z1 . . . Ω ⊨ tn ⇒ zn

then using successive inductions together with Lemmas C.2.1

and C.2.2, as well as the rule for sequencing, we show that

there is a semantics

ΩΓ,t ,MΓ,t ⊨ Jt1K.code; . . . ; JtnK.
code

⇒ Ω′,M ′

with ΩΓ ⊑ Ω′
, MΓ ⊑ M ′

and Ω′,M ′ ⊨ Jti K.res ⇝ zi . Let
us now build the environment

Γ̂ = ⊥{x1\(v̄1,I(ΓI , t1)), . . . ,xn\(v̄nI(ΓI , tn ))}

Ψ̂ = Γ
ΨJt1K • . . . • JtnK

env

By induction Ψ̂ satisfy the invariant (I2). Moreover, since

v1, . . . ,vn ∈ Γ̂ Lemma G.3 shows that
Γ̂
Ψ̂
Lf M is suitable to

represent f in Γ̂. The translation ends with the following

line of code

Jf (t1, . . . , tn )K.res = Γ̂
Ψ̂
Lf M.name(Jt1K.res, . . . , JtnK.res)

The semantics of the logical term then gives a derivation

⊥{v1\z1, . . . ,vn\zn } ⊨ b ⇒ z

Note that we can chose addresses such that Ωf ⊑ Ω′
and

Mf ⊑ M ′
. The suitability of

Γ̂
Ψ̂
Lf M to represent f in Γ̂ to-

gether with Lemma C.2.1, shows that, denoting

F (Γ̂
Ψ̂
Lf M.name) = (x1, . . . ,xn ; s)

we have a derivation of the following semantics

⊥{xi\Ω
′(Jti K.res)},M ′ ⊨ s ⇒ Ω′′,M ′

with Ω′′(resf ) = zint. The semantics of function calls then

shows that this gives a semantics

Ω′, M′ ⊨ JpK.res = Γ̂
Ψ̂

Lf M.name(Jt1, . . . , JtnK.resK.res) ⇒ Ω′ {JpK.res\z int }, M′ □
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Lemma G.3. The function and procedure generation to translate

logic functions and predicates generates a function that has the same

semantics as the logic function, for a call with arguments that range

in intervals as given by the environment ΓI . More precisely, for every

logic function (resp. logic predicate) f with F(f ) = (v1, . . . ,vn ;b)
(resp with P(f ) = (v1, . . . ,vn ;b)) and every Γ such that dom (Γ) =
{v1, . . .vn }, and Ψ satisfying (I2), the function

Γ
ΨLf M is suitable to

represent f in Γ

Proof. We prove this result by inductionmutual with LemmaG.1

and Lemma G.2, and distinguish two cases

• If Ψ(f , Γ) , ⊥, then this is simply given by the invariant (I2).

• If Ψ(f , Γ) = ⊥, we define Ψ̂ = Ψ{(f , Γ)\ΓΨLf M.name}. The

function is defined as in Fig. 11 and we distinguish two sub-

cases:

– If T(b, ΓI ) = int, then the generated is as follows

int Γ
ΨLf M.name (Θ(ΓI (v1)) ΓV (v1), . . . , Θ(ΓI (vn )) ΓV (vn )){

decls
Γ
Ψ̂

JbK.
decl

inits
Γ
Ψ̂

JbK.
decl

Γ
Ψ̂

JbK.
code

clears
Γ
Ψ̂

JbK.
decl

return Γ
Ψ̂

JbK.res;
}

Consider a family of integer zi ∈ ΓI (vi ), we build the

semantic environment Ω = ⊥{v1\z1, . . . ,vn\zn }. Note
that by definition Ω and Γ satisfy the invariant (I1), thus

we consider ΩΓ ,MΓ = Ωf ,Mf
. By definition of the en-

vironment, we have the following semantics:

ΩΓ ,MΓ ⊨ declsΓ
Ψ̂
JbK.

decl
; inits

Γ
Ψ̂
JbK.

decl
⇒ ΩΓ,b ,MΓ,b

Applying Lemma G.1 by mutual induction shows that

there is a semantics Ω ⊨ b ⇒ z if and only if there is

a semantics ΩΓ,b ,MΓ,b ⊨ Γ
Ψ̂
JbK.

code
⇒ Ω′,M ′

with

Ω′(Γ
Ψ̂
JbK.res) = z and ΩΓ ⊑ Ω′

, MΓ ⊑ M ′
. Using the

semantics for statement sequencing as well as the one for

the return statement, this is equivalent to a semantics

ΩΓ ,MΓ ⊨Γ
Ψ̂

Lf M.
body

⇒ Ω′′,M ′′

with Ω′′(res ΓLΨM.name f ) = z. Note that by Lemma D.1,

for each of the variable (x , mpz) ∈ Γ
Ψ̂
JbK.

decl
, we have

Ω′(x) = ΩΓ,b (x), and thus the clears call only clears

the variables added in the inits call. SinceMΓ ⊑ M ′
, this

entails thatM ′′ =MΓ
.

– If T(b, ΓI ) = mpz: it is similar, but slightly more intricate.

The generated function is as follows

void Γ
ΨLf M.name (mpz

Γ
ΨLf M.res, Θ(ΓI (v1)) ΓV (v1), . . . , Θ(ΓI (vn )) ΓV (vn )){

decls
Γ
Ψ̂

JbK.
decl

inits
Γ
Ψ̂

JbK.
decl

Γ
Ψ̂

JbK.
code

clears
Γ
Ψ̂

JbK.
decl

set_z(ΓΨLf M.res, Γ
Ψ̂

JbK.res);
}

Consider a family of integer zi ∈ ΓI (vi ), we build the se-

mantic environment Ω = ⊥{v1\z1, . . . ,vn\zn }. Note that
by definition Ω and Γ satisfy the invariant (I1), thus we

consider ΩΓ ,MΓ
. Note that we have ΩΓ ,MΓ ⊑ Ωf ,Mf

.

The same reasoning as the previous case, using the in-

duction of Lemma G.1 shows that there is a semantics

Ω ⊨ b ⇒ z if and only if there is a semantics

ΩΓ ,MΓ ⊨ declsΓ
Ψ̂
JbK.

decl
; inits

Γ
Ψ̂
JbK.

decl
;
Γ
Ψ̂
JbK.

code
⇒ Ω′,M ′

with MΓ ⊑ M ′
and M ′(Ω′(Γ

Ψ̂
JbK.res)) = z. Moreover,

dom (Ωf ) − dom (ΩΓ) = {ΓΨLf M.res} and by definition, it is
a fresh variable, so it is not a variable in the originalmini-C
program nor a variable in the image of ΓV . Since those

are the only variables generated by the term translation,

it follows that
Γ
ΨLf M.res cannot appear in Γ

Ψ̂
JbK.

code
. Thus

Lemma C.2.3 shows that this is equivalent to having a

semantics

Ωf ,Mf ⊨ declsΓ
Ψ̂
JbK.

decl
; inits

Γ
Ψ̂
JbK.

decl
;
Γ
Ψ̂
JbK.

code
⇒ Ω′,M ′

with MΓ ⊑ M ′
and M ′(Ω′(Γ

Ψ̂
JbK.res)) = z. Using the

semantics of sequencing, as well at that for the statements

set_z and kwcl, we have that the latter is equivalent to a

semantics

Ωf ,Mf ⊨ΓΨ Lf M.
body

⇒ Ω′′,Mf {Ωf (ΓΨLf M.res)\z} □

In both cases,
Γ
ΨLf M is suitable to represent f in Γ, the en-

vironment
Γ
ΨLf Menv = Ψ{(f , Γ)\ΓΨLf M.name} satisfies the in-

variant (I2).

The mutual induction performed in these three lemmas is not a

priori well formed. Indeed, in the case of function calls, the lemma

are applied to the body of the function which is not structurally

a sub-term of the caller term. We can however notice that at each

function call that requires generating a new function, the domain

of the environment Ψ strictly increases. Since there are finitely

many logic functions, and that by Hypothesis 2 each of the logic

function can only be associatedwith finitelymany environments for

bindings, the size of this domain has an upper bound. This variant

thus ensures the termination, and justify the mutual induction that

we have performed.

Theorem G.4 (Soundness of assertion translation). For

every predicate p, the judgment Ω ⊨ p ⇒ 1 is derivable if and only

if there exists an environment Ω′
such the following judgment is

derivable

Ω,⊥ ⊨ΓΨ J/*@ assert p; */K ⇒ Ω′,⊥

Proof. Since we have already proven that after a generated we

always haveM = ⊥, the rule defining the semantics for the assert
statements shows that there is a derivation of

Ω,⊥ ⊨ΓΨ J/*@ assert p; */K ⇒ Ω′,⊥

if and only if there is a derivation of

Ω, ⊥ ⊨ declsΓΨJpK.
decl

; inits
Γ
ΨJpK.

decl
;
Γ
ΨJpK.

code
⇒ Ω′, M

with a value x , 0
int

and a derivation of Ω′ ⊨ Γ
ΨJpK.res ⇒ x .

Denote Ωp ,Mp as defined in Lemma G.2, and Ω0 the environment

Ωp with all values replaced by undefined values of the right type (in

Uτ ). Then the first two parts of the translation have the following

semantics

Ω, ⊥ ⊨ declsJpK.
decl

⇒ Ω0, ⊥ and Ω0, ⊥ ⊨ initsJpK.
decl

⇒ Ωp , Mp
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Then the semantics of juxtaposition lets us apply Lemma G.2

exactly to show that the translation of the assertion has a semantics

if and only if p ⊨ Ω ⇒ 1. □

Theorem G.5 (Transparency of assertion translation). For

every predicate, p, assume we have a derivation of the following

judgment

Ω,⊥ ⊨ΓΨ J/*@ assert p; */K ⇒ Ω′,⊥

then Ω ⊑ Ω′

Proof. We proceed as in the proof of Theorem G.4 to show

that Ω′
is necessarily the Ω′

p defined in Lemma G.2, and we have

Ω ⊑ Ωp ⊑ Ω′
p by direct application of this Lemma. □

Theorem 6.3 (Correctness of code generation). The gener-

ated program has a semantics if and only if the original program has

one. In that case, the semantics of the generated program subsumes

the one of the original program. More formally for a program P , there
exists an Ω such that ⊥,⊥ ⊨ P ⇒ Ω,⊥ if and only if there exists an

Ω′
such that ⊥,⊥ ⊨ JPK ⇒ Ω′,⊥. If it is the case, then Ω ⊑ Ω′

.

Proof. This is an immediate consequence of the successive ap-

plication of Theorem G.4 and Theorem G.5 on each assertion of the

program, together with Lemma C.2.1 to manage the fact that the

environment of the translated program does not stay strictly the

same as the one of the original at the corresponding point, but still

always subsumes it. □
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